2020年九年级数学中考模拟试卷二
2020届哈尔滨市中考数学模拟试卷(有答案)(Word版) (2)
黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m23.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.96.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3 7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=18.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.109.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.210.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为.12.(3.00分)函数y=中,自变量x的取值范围是.13.(3.00分)把多项式x3﹣25x分解因式的结果是14.(3.00分)不等式组的解集为.15.(3.00分)计算6﹣10的结果是.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER 的面积与△DHK的面积的差为,求线段BR的长.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF 得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE 、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∵AD=CD、AC⊥BD,∴CE=AE=2a,=AC•DE=•(2a+2a)•a=2a2=2S△ADE;则S△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,=AE•BE=•(2a)•2a=2a2,∴S△ABES△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER 的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,由(2)得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。
2020年中考数学模拟试卷03含解析 (2)
2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。
即1x y x+=-的自变量取值范围是0x ≠。
故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。
备战2020中考大连市中考第二次模拟考试数学试题含答案【含多套模拟】
第四题图DC A EB中学数学二模模拟试卷一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选 项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1. 下列各数中:-4、12π、39、0.010010001、73、0是无理数的有A.1个B.2个C.3个D.4个2.关于x 的方程-2x 2+4x+1=0的两个根分别是x 1、x 2,则x 12+x 22是A.2B. -2C. 3D. 53.点P 在平面直角坐标系中,位于x 轴上方,距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 关于x 轴对称的点的坐标是A.(3,4)、(-3,4)B. (4,-3)、(-4,-3)C. (3,-4)、(-3,-4)D. (4,3)、(-4,3) 4.如图,在四边形ABCD 中,点E 在线段DC 的延长线上,能使直线AD ∥BC 的条件有:(1)∠D=∠BCE ,(2)∠B=∠BCE ,(3)∠A+∠B=1800,(4)∠A+∠D=1800,(5)∠B=∠DA.1个B. 2个C. 3个D. 4个5.等腰三角形的两边长分别是2cm 、5cm ,则等腰三角形的周长是 A.9cm B.12cm C.9cm 或12cm D. 都不对6.如图,在Rt △ABC 中,∠C=900,Sin ∠A=43,AB=8cm ,则△ABC 的面积是A.6cmB.24cmC. 27cmD. 67cm7.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?A.6名,38个B.4名,28个C. 5名,30个D. 7名,40个 8.如图,二次函数y=ax 2+bx+c 的图像如图所示,直线m 是 图像的对称轴,则下列各式的取值正确的是:a>0, b<0,c>0, b 2-4ac<0,2a+b>0,a+b+c>0A.1个B. 2个C. 3个D. 4个A D CB MNE F 第十七题图H第十八题图(1) (2)9.X 的值适合不等式31x 122-x +≤+且x 是正整数,则x 的值是 A.0,1 B.0,1,2 C. 1,2 D.110. 如图,某下水道的横截面是圆形的,水面CD 的宽度为2m ,F 是线段CD 的中点,EF 经过圆心O 交⊙O 与点E ,EF=3m ,则 ⊙O 直径的长是 A. m 32 B.m 35 C.m 34 D. m 31011.如图,等腰△ABC 中,∠BAC=1200,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转300后,点D 落在边AB 上,点E 落在边AC 上,若AE=2cm ,则四边形ABDE 的面积是多少A. 4cmB. 3cmC.23cmD.43cm12.如图,在正方形ABCD 中,对角线相交于点O ,BN 平分∠CBD ,交边CD 于点N ,交对角线AC 于点M ,若OM=1,则线段DN 的长是多少A. 1.5B. 2C. 2D. 22第Ⅱ卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分.13.某校春季运动会,小红参加100米和200米的比赛,每组六人分别在1--6号跑道同时进行比赛,问小红两次都抽到3号跑道的概率是 。
2020年中考数学第二次模拟考试(浙江)-数学(参考答案)
2020届九年级第二次模拟考试【浙江卷】数学·参考答案11.()()ab a b a b +- 12.200° 13.甲 14.51m 15.3-16.8717.【解析】(1)()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭=414(1)++--- =2.(2)()2(5)(23)223+---+x x x x x232=231015246-+--+-x x x x x x 32=2615-++-x x x .18.【解析】(1)∵AB =AC ,∴∠B =∠ACF ,在△ABE 和△ACF 中,AB ACB ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE =30°,∴∠CAF =∠BAE =30°, ∵AD =AC ,∴∠ADC =∠ACD , ∴∠ADC =280013︒-︒=75°,故答案为75. 19.【解析】(1)如图,△A 1B 1C 1为所作,线段BC 扫过的面积=7×4=28; (2)如图,△A 2B 2C 2为所作.20.【解析】(1)本次调查共随机抽取了:50÷25%=200(名)中学生,其中课外阅读时长“2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣30200﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣30200﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.21.【解析】证明:(1)∵点F,G,H分别是AD,AE,DE的中点,∴FH∥AE,GH∥AD,∴四边形AGHF是平行四边形;(2)当四边形EGFH是正方形时,连接EF,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=12BC=12AD=5cm,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=5cm,∴矩形ABCD 的面积=211010502ABAD cm ⨯=⨯⨯=. 22.【解析】(1)由题意,得A 、B 两地间的距离为30km .故答案为30;(2)设乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,由题意,得30=k 1,∴y 乙1=30x ;设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x +b 2,由题意,得22223002k b k b =+⎧⎨=+⎩,解得:223060k b =-⎧⎨=⎩,∴y =–30x +60. (3)由函数图象,得(30+20)x =30,解得x =0.6. 故甲、乙第一次相遇是在出发后0.6小时;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx +b ,由题意得30150.75b k b =⎧⎨=+⎩,解得:k 20b 30=-⎧⎨=⎩,y 甲1=﹣20x +30,设甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x +b 3,由题意,得333315 1.25k b 02k b =+⎧⎨=+⎩,解得:332040k b =-⎧⎨=⎩,∴y 甲2=﹣20x +40, 当20303010301510x x x -+-≤⎧⎨-⎩„时,∴25≤x ≤56;306015102x x -+-⎧⎨⎩„„,解得:76≤x ≤2.∴25≤x ≤56或76≤x ≤2.23.【解析】(1)由题意线段MN 关于点O 的关联点的是以线段MN 的中点为圆心,22为半径的圆上,所以点C 满足条件,故答案为C . (2)①如图3–1中,作NH ⊥x 轴于H .∵N(32,–12),∴tan∠NOH=33,∴∠NOH=30°,∠MON=90°+30°=120°,∵点D是线段MN关于点O的关联点,∴∠MDN+∠MON=180°,∴∠MDN=60°.故答案为60°.②如图3–2中,结论:△MNE是等边三角形.理由:作EK⊥x轴于K.∵E(3,1),∴tan∠EOK=3,∴∠EOK=30°,∴∠MOE=60°,∵∠MON+∠MEN=180°,∴M、O、N、E四点共圆,∴∠MNE=∠MOE=60°,∵∠MEN=60°,∴∠MEN=∠MNE=∠NME=60°,∴△MNE是等边三角形.③如图3–3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,易知E3,1),∴点E在直线y=–3x+2上,设直线交⊙O′于E、F,可得F(3,32),观察图象可知满足条件的点F的横坐标x的取值范围3≤x F≤3.24.【解析】(1)在抛物线y=239344x x--中,令x=0,得y=﹣3,∴C(0,﹣3),令y=0,得239x x3044--=,解得x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),令x=163,得y=231691634343⎛⎫⨯-⨯-⎪⎝⎭=193,∴M(163,193),设直线AD的解析式为y=k1x+b1,将A(﹣1,0),M(163,193)代入得1111k b01619k b33-+=⎧⎪⎨+=⎪⎩,解得11k1b1=⎧⎨=⎩,∴直线AD的解析式为y=x+1.设直线BC的解析式为y=k2x+b2,将B(4,0),C(0,﹣3)代入,得2224k b0b3+=⎧⎨=-⎩,解得223k4b3⎧=⎪⎨⎪=-⎩,∴直线BC的解析式为y=34x﹣3;(2)如图2,过点E 作EH ∥y 轴交BC 于H ,设E (t ,239344t t --),H (t ,334t -), ∴HE =233933444t t t ⎛⎫---- ⎪⎝⎭=2334t t -+ ∴12BCE S OB HE =⨯V =2134324t t ⎛⎫⨯-+ ⎪⎝⎭=2362t t -+=23(2)62t --+∵32-<0, ∴当t =2时,S △BCE 的最大值=6,此时E (2,92-),作点B 关于直线y =x +1的对称点B 1,连接B 1G ,过点F 作B 2F ∥B 1G ,且B 2F =B 1G ,∴B 1(﹣1,5),∵FG 2FG 在直线y =x +1上,∴F 可以看作是G 向左平移4个单位,向下平移4个单位后的对应点, ∴B 2(﹣5,1),当B 2、F 、E 三点在同一直线上时,BEFG 周长最小,设直线B 2E 解析式为y =mx +n ,将B 2(﹣5,1),E (2,92-)分别代入,得5m n 192m n 2-+=⎧⎪⎨+=-⎪⎩,解得11144114 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线B2E解析式为y=11411414x--,联立方程组111411414y xy x=+⎧⎪⎨=-⎪⎩,解得11565xy⎧=-⎪⎪⎨⎪=⎪⎩.∴F(115-,65-).(3)如图,分三种情况:在1y x=+中,令0x=,则1y=(0,1)D∴(1,0),(4,0)(0,3)A B C--Q,1,4,1,3,4AD OB OD OC DC∴=====2210AC AO OC∴=+=,设AC边上的高为h,根据等面积法得,1122AC h CD AO⨯=⋅⋅210510AO DChAC⋅∴===4,3OB OC==Q且OB⊥OC,4tan3OBBCDOC∴∠==①CM =MN 时,如图,过点M 作MG ⊥OC ,过点D 作DP ⊥MN 于点P4tan 3BCD ∠=Q∴设3CG a =,则3,4NG a MG a ==, 由勾股定理得,5MN MC a ==,,MNO DNP DPN MGN ∠=∠∠=∠QMGN DPN ∴∠:VMG MN DP PN∴=,即45246105a aa =- 解得,81012a -=,0a =(舍去) 405105CM a -∴==②当MC CN =时,如图,过点M 作MG ⊥OC ,过点D 作DP ⊥MN 于点P4tan 3BCD ∠=Q 设3CG a =,则4MG a =5CM CN a ∴==2GN CN CG a ∴=-=25MN a ∴=45DN DC CN a ∴=-=-DPN MGN ∆QV :DP DNMG MN∴=210455425aa a-∴=,解得:0a=(舍去),425a-=,42CM=-Q;③当CN MN=时,如图,作CQ MN⊥,NG CM⊥,4tan3BCD∠=Q设3CG a=,则4,5NG a CN MN a===3,6MG a CM a∴==45DN a∴=-MN CQ CM NG⋅=⋅Q245CQ a∴=DPN CQN∆QV:DP DNQC CN∴=,即2104552455aaa-=,解得,0a=(舍去),4105a=-2410652CM a∴==-;④当CM CN=时,过M作MG DC⊥,过点D作DP⊥MN于点P4tan 3BCD ∠=Q 设3CG a =,则4,5MG a CM CN a ===45DN a ∴=+tan MG DPPND NG NP∴∠==4553a NP a a=+NP ∴=在Rt DPN ∆中,222DN DP NP =+222(45)a ∴+=+解得,a a ==(舍去)54CM a ∴==-+综上,CM ,4245或4.。
2020年北京市东城区中考二模数学试卷含答案解析
2020年北京市东城区中考二模数学试卷一、单选题(共10小题)1.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为()A.B.C.D.考点:科学记数法和近似数、有效数字答案:A试题解析:科学记数法是把一个数表示成 a×的形式,其中1≤|a|<10,n为整数.所以3500000=3.5 .2.如图,已知数轴上的点A,O,B,C,D分别表示数﹣2,0,1,2,3,则表示数的点P应落在线段()A.AO上B.OB上C.BC上D.CD上考点:实数大小比较答案:B试题解析: , 则表示数的点P应落在线段OB上3.一个不透明的盒子中装有6个除颜色外完全相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.考点:概率及计算答案:D试题解析:摸到黄球的概率= .4.下列图案中,既是中心对称又是轴对称图形的是()A.B.C.D.考点:轴对称与轴对称图形中心对称与中心对称图形答案:A试题解析:B,是轴对称图形不是中心对称图形,C,D是中心对称图形不是轴对称图形。
而A 即是中心对称图形又是轴对称图形。
5.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A.B.C.D.考点:几何体的三视图答案:A试题解析:这个几何体的俯视图是,6.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°考点:等腰三角形答案:C试题解析:在等腰△ABC中,AB=AC,所以 ,因为 BD⊥AC,所以 ,所以 ,则。
7.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.8考点:平均数、众数、中位数答案:C试题解析:众数就是在一组数据中,出现次数最多的数据叫做这组数据的众数。
(湖北卷) 2020年中考数学第二次模拟考试-数学(参考答案)
2020届九年级第二次模拟考试【湖北卷】数学·参考答案12345678910CABBDBCD AA11.212.2.1×10813.–214.215.16.417.【解析】(a +2b )(a ﹣2b )+(a ﹣2b )2﹣2a (a ﹣b )=a 2﹣4b 2+a 2﹣4ab +4b 2﹣2a 2+2ab =﹣2ab ,∵a =6,b =13,∴原式=﹣2×6×13=﹣4.18.【解析】(1)∵AC BD ⊥,EF BD ⊥,∴ABC ∆和EDF ∆为直角三角形,∵CD BF =,∴CF BF CF CD +=+,即BC DF =,在Rt ABC ∆和Rt EDF ∆中,AB DE BC DF =⎧⎨=⎩,∴()Rt ABC Rt EDF HL ∆≅∆;(2)由(1)可知ABC EDF ∆≅∆,∴B D ∠∠=,∴//AB DE .19.【解析】(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560+=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.20.【解析】(1)证明:在AB 上截取BH ,使BH BE =,连接EH ,∵四边形ABCD 是正方形,∴AB BC =,90ABC BCD ∠=∠=︒,45BDC ∠=︒,∴45BHE BEH ∠=∠=︒,∴135+∠=∠∠=︒AHE ABC BEH ,∵//CF BD ,∴45DCF BDC ∠=∠=︒,∴135+∠=∠∠=︒ECF BCD DCF ,∴AHE ECF ∠=∠,∵90ABC AEF ∠=∠=︒,∴90BAE AEB CEF AEB ∠+∠=∠+∠=︒,∴BAE CEF ∠=∠,∵AB BC =,BH BE =,∴AB BH BC BE -=-,即AH EC =.在AHE 和ECF △中,BAE CEF AH ECAHE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴≅ AHE ECF (ASA ),∴AE EF =;(2)//CF EG 且=CF EG ;证明:∵90ABC ∠=︒,∴90CBG ABC ∠=∠=︒,在ABE △和CBG 中,AB BC ABC CBG BE BG =⎧⎪∠=∠⎨⎪=⎩,∴≅ ABE CBG (SAS ),∴BAE BCG ∠=∠,AE CG =,∵BAE CEF ∠=∠,AE EF =,∴BCG CEF ∠∠=,CG EF =,∴//CG EF ,∴四边形CFEG 是平行四边形,∴//CF EG 且=CF EG .21.【解析】(1)证明:连接O C.∴OA =OC ,∴∠ACO =∠BAC .∵CD ⊥AB ,CG ⊥AE ,∴∠CGA =∠CFA =90°,∵CG =CF ,AC =AC ,∴Rt △ACG ≌Rt △ACF ,∴∠CAG =∠CAB ,∴∠ACO =∠CAG ,∴OC ∥AG ,∴∠OCG +∠G =180°,∵∠CGA =90°,∴∠OCG =90°,即OC CG ⊥,∴CG 是⊙O 的切线.(2)过点O 作OM ⊥AE ,垂足为M ,则AM =ME =12AE =1,∠OMG =∠OCG =∠G =90°.∴四边形OCGM 为矩形,∴OC =MG =ME +EG =2.在Rt △AGC 和Rt △AFC 中,CG CFAC AC =⎧⎨=⎩,∴Rt △AGC ≌Rt △AFC ,∴AF =AG =AE +EG =3,∴OF =AF -OA =1,在Rt △COF 中,∵cos ∠COF =OF OC =12.∴∠COF =60°,CF =OC ·sin ∠COF =2×2∴S 弓形BC =2602360π⋅⋅-1223π-.22.【解析】(1)设每个A 型垃圾箱x 元,B 型垃圾箱y 元,依题意有3254032160x y y x +=⎧⎨-=⎩,解得100120x y =⎧⎨=⎩.故每个A 型垃圾箱100元,B 型垃圾箱120元;(2)设购买B 型垃圾箱m 个,则购买A 型垃圾箱(20﹣m )个,依题意有120m +100(20﹣m )≤2100,解得m ≤5.故该小区最多可以购买B 型垃圾箱5个.(3)由题知3≤m ≤5,故方案一:A 买17个,B 买3个,费用为:17×100+3×120=2060元;方案二:A 买16个,B 买4个,费用为:16×100+4×120=2080元;方案三:A 买15个,B 买5个,费用为:15×100+5×120=2100元;∴最省钱方案是A 买17个,B 买3个,费用2060元.23.【解析】(1)2(3)0b +-=,∴10a +=,30b -=,∴1a =-,3b =;(2)如图1所示,过M 作CE ⊥x 轴于E ,∵1a =-,3b =,∴A (–1,0),B (3,0),∴OA =1,OB =3,∴AB =4,∵在第三象限内有一点M (–2,m ),∴ME m m ==-,∴S △ABM =12AB ×ME =12×4×(m -)=2m -;(2)当32m =-时,点M 的坐标为(2-,32-),S △ABM =3232⎛⎫-⨯-= ⎪⎝⎭,∴PBM ABM 2236S S ==⨯= ,设直线BM 交y 轴于C 点,①当点P 在y 轴上时,如图:∵PBM MPC BPC 11PC 2PC 3622S S S =+=⨯+⨯= ,解得:PC =125,设直线BM 的解析式为y kx d =+,把点M (2-,32-),B (3,0)代入得:32203k d k d ⎧-=-+⎪⎨⎪=+⎩,解得:310910k d ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BM 的解析式为391010y x =-,当0x =时,910y =-,∴点C 的坐标为(0,910-),∴OC =910,当点P 在点C 的下方时,点P 的坐标为(0,129510--),即P (0,3310-),当点P 在点C 的上方时,点P 的坐标为(0,129510-),即1P (0,1510),②当P 在x 轴上且在点A 的左侧时,设P 点的坐标为(x ,0),如图:∵PBM ABM 2236S S ==⨯= ,∴PB =2AB ,∵B (3,0),AB =4,∴38x -=,∴5x =-,∴P 点的坐标为(5-,0),当P 在x 轴上且在点B 的D 右侧时,设P 点的坐标为(x ,0),如图:同理,PB =2AB ,∵B (3,0),AB =4,∴38x -=,∴11x =,∴P 点的坐标为(11,0),综合上述:P 点的坐标为(5-,0)或(11,0)或(0,3310-)或(0,1510).24.【解析】(1)∵抛物线y =ax 2+bx +2经过A (﹣1,0),B (4,0)两点,∴2016420a b a b -+=⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩.∴抛物线解析式为213y x x 222=-++.当y =2时,213x x 2222-++=,解得:x 1=3,x 2=0(舍去).∴点D 坐标为(3,2).(2)A ,E 两点都在x 轴上,AE 有两种可能:①当AE 为一边时,AE ∥PD ,∴P 1(0,2).②当AE 为对角线时,根据平行四边形对顶点到另一条对角线距离相等,可知P 点、D 点到直线AE (即x 轴)的距离相等,∴P 点的纵坐标为﹣2.代入抛物线的解析式:213x x 2222-++=-,解得:123x x 22-==.∴P点的坐标为(2,﹣2),(32,﹣2).综上所述:P 1(0,2);P 2(2,﹣2);P 3(32-,﹣2).(3)存在满足条件的点P ,显然点P 在直线CD 下方.设直线PQ 交x 轴于F ,点P 的坐标为(213222a a a -++,),①当P 点在y 轴右侧时(如图1),CQ =a,PQ =2213132a a 2=a a 2222⎛⎫--++- ⎪⎝⎭.又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,∴Q 'C Q 'P =CO FQ ',即213a aa 22= 2FQ '-,解得FQ ′=a ﹣3∴OQ ′=OF ﹣FQ ′=a ﹣(a ﹣3)=3,CQ=CQ 此时a,点P 的坐标为().②当P 点在y 轴左侧时(如图2)此时a <0,,213a a 222-++<0,CQ =﹣a ,(无图)PQ =2213132a a 2=a a 2222⎛⎫--++- ⎪⎝⎭.又∵∠CQ ′O +∠FQ ′P =90°,∠CQ ′O +∠OCQ ′=90°,∴∠FQ ′P =∠OCQ ′,∠COQ ′=∠Q ′FP =90°.∴△COQ ′∽△Q ′FP .∴Q 'C Q 'P =CO FQ ',即213a aa 22= 2FQ '--,解得FQ ′=3﹣A .∴OQ ′=3,CQ=CQ .此时a =,点P的坐标为(92--,).综上所述,满足条件的点P 坐标为(),(92--,).。
2020版中考数学二模考试试卷
2020版中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共29分)1. (3分)(2019·防城模拟) 若实数a、b互为相反数,则下列等式中成立的是()A . a﹣b=0B . a+b=0C . ab=1D . ab=﹣12. (3分)(2016·荆州) 如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A . 55°B . 65°C . 75°D . 85°3. (3分) (2017七下·苏州期中) 如果多项式x2+mx+16是一个二项式的完全平方式,那么m的值为()A . 4B . 8C . -8D . ±84. (3分)若关于x的一元二次方程为的解是x=1,则2013-a-b的值是()。
A . 2018B . 2008C . 2014D . 20125. (3分)自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是()A . 1.49×106B . 0.149×108C . 14.9×107D . 1.49×1076. (3分) (2018七上·郑州期末) 在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x的方程符合题意的是()A . 8x+3=7x-4B . 8x-3=7x+4C . 8(x-3)=7(x+4)D . x+4= x-37. (3分)下列说法正确的是()A . 要了解全市居民对环境的保护意识,采用全面调查的方式B . 若甲组数据的方差S2甲 =0.1,乙组数据的方差S2乙 =0.2,则甲组数据比乙组稳定C . 随机抛一枚硬币,落地后正面一定朝上D . 若某彩票“中奖概率为1%”,则购买100张彩票就一定会中奖一次8. (2分)(2018·包头) 如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A .B .C .D .9. (3分)我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为 =0,x2=2.这种解法体现的数学思想是()A . 转化思想B . 函数思想C . 数形结合思想D . 公理化思想10. (3分)一个圆的周长扩大到原来的3倍,它的面积扩大到原来的()倍.A . 3倍B . 6倍C . 9倍D . 27倍二、填空题 (共5题;共14分)11. (3分)如果x+y=-4,x-y=8,那么代数式x2-y2的值是________12. (3分)(2016·怀化) 已知点P(3,﹣2)在反比例函数y= (k≠0)的图象上,则k=________;在第四象限,函数值y随x的增大而________.13. (3分) (2017七下·南江期末) 将一筐橘子分给若干个小朋友,如果每人分4个橘子,剩下9个;如果每人分6个橘子,则最后一个小朋友分得的橘子将少于3个,由以上可知共有________个小朋友分________个。
初中数学(福建专版)2020中考模拟数学复习方案单元测试02含答案及部分解析
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:已知实数a,b,若a>b,则下列结论正确的是 ( )A.a-5<b-5B.2+a<2+bC.<D.3a>3b试题2:解分式方程=4时,去分母后得( )A.3-x=4(x-2)B.3+x=4(x-2)C.3(2-x)+x(x-2)=4D.3-x=4试题3:不等式组的解集在数轴上表示正确的是 ( )试题4:不等式组的所有整数解的和是 ( )A.2B.3C.5D.6试题5:关于x的一元二次方程x2+(a2-2a)x+a-1=0的两个实数根互为相反数,则a的值为 ( )A.2B.0C.1D.2或0试题6:关于x的不等式x-m>0恰有两个负整数解,则m的取值范围可以是 ( )A.-3<m<-2B.-3≤m<-2C.-3≤m≤-2D.-3<m≤-2试题7:若关于x的方程=2-无解,则m的值为 ( )A.5B.4C.3D.2试题8:一个等腰三角形的两边长分别是方程x2-7x+10=0的两根,则该等腰三角形的周长是 ( )A.12B.9C.13D.12或9试题9:已知关于x,y的二元一次方程组若x+y>3,则m的取值范围是( )A.m>1B.m<2C.m>3D.m>5试题10:若关于x,y的方程组的解是则关于x,y的方程组的解是 ( )A. B.C. D.试题11:一元二次方程y2-y-=0配方后可化为.试题12:数学文化我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛,1个大桶、1个小桶分别可以盛酒多少斛?据此可得1个大桶可以盛酒斛,1个小桶可以盛酒斛.试题13:如果单项式-3x m y n-1和mx2n+1y m是同类项,那么n m的值是.试题14:关于x的两个方程x2-x-2=0与=有一个解相同,则a= .试题15:关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是.试题16:若2n(n≠0)是关于x的方程x2-2mx+2n=0的一个根,则m-n的值为.试题17:解分式方程:=1.试题18:解不等式组并把它的解集在数轴上表示出来.试题19:关于x的一元二次方程kx2-(2k-2)x+(k-2)=0(k≠0).(1)求证:无论k取何值时,方程总有两个不相等的实数根;(2)要使得方程的两个实数根都是整数,求整数k可能的取值.试题20:某中学现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2016年的单价为200元,2018年的单价为162元.(1)求2016年到2018年该品牌足球单价平均每年降低的百分率.(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:A商场买十送一,B商场全场九折.去哪个商场购买足球更优惠?试题21:为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送.若两车合作,各运12趟才能完成,需支付运费共4800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元.(1)分别求出甲、乙两车每趟的运费.(2)若单独租用甲车运完此堆垃圾,需运多少趟?(3)若同时租用甲、乙两车,则甲车运x趟、乙车运y趟,才能运完此堆垃圾,其中x,y均为正整数.①当x=10时,y= ;当y=10时,x= .②用含x的代数式表示y.探究:(4)在(3)的条件下:①用含x的代数式表示总运费.②要想总运费不超过4000元,甲车最多需运多少趟?试题1答案:D试题2答案:A试题3答案:A试题4答案:D试题5答案:B解析:根据“根与系数的关系”得x1+x2=-(a2-2a),∴-(a2-2a)=0,解得a1=0,a2=2,∵当a=2时,原方程x2+1=0是无解的,∴a=0.试题6答案:B试题7答案:C试题8答案:A试题9答案:D解析:①+②得:4x=4m-6,即x=,①-②×3得:4y=-2,即y=-,根据x+y>3得:>3,去分母得:2m-3-1>6,解得:m>5.试题10答案:B试题11答案:y-2=1试题12答案:试题13答案:试题14答案:-5试题15答案:解析:根据题意得a-1≠0且Δ=(-2)2-4×(a-1)×3≥0,解得a≤且a≠1,所以整数a的最大值为0.试题16答案:解析:∵2n(n≠0)是关于x的方程x2-2mx+2n=0的一个根,∴(2n)2-2m×2n+2n=0,原方程整理得:4n2-4mn+2n=0,∴2n(2n-2m+1)=0,∵n≠0,∴2n-2m+1=0,即2n-2m=-1,∴m-n=.试题17答案:解:方程两边同乘(x-3),得2-x-1=x-3,解得x=2,经检验,x=2是原方程的解.试题18答案:解:由3x≥4x-1,得x≤1,由>x-2,得x>-1,所以原不等式组的解集为-1<x≤1. 解集在数轴上表示为:试题19答案:解:(1)证明:∵kx2-(2k-2)x+(k-2)=0(k≠0),∴Δ=[-(2k-2)]2-4k(k-2)=4>0,∴无论k取何值时,方程总有两个不相等的实数根.(2)由求根公式可求得x1=1,x2=1-,要使得方程的两个实数根都是整数,则整数k为2的因数,∴k=±1或k=±2.试题20答案:解:(1)设2016年到2018年该品牌足球单价平均每年降低的百分率为x,根据题意得:200×(1-x)2=162,解得:x=0.1=10%或x=1.9(舍去).答:2016年到2018年该品牌足球单价平均每年降低的百分率为10%.(2)100×≈90.91(个),在A商场需要的费用为162×91=14742(元),在B商场需要的费用为162×100×0.9=14580(元),14742>14580.答:去B商场购买足球更优惠.试题21答案:解:(1)设甲、乙两车每趟的运费分别为m元、n元,由题意得解得答:甲、乙两车每趟的运费分别为300元、100元.(2)设单独租用甲车运完此堆垃圾,需运a趟,由题意得12=1,解得a=18. 经检验,a=18是原方程的解,且符合题意.答:单独租用甲车运完此堆垃圾,需运18趟.(3)①16 13 ②由=1,得y=36-2x.(4)①总运费:300x+100y=300x+100(36-2x)=100x+3600.②∵100x+3600≤4000,∴x≤4.答:甲车最多需运4趟.。
2020年中考数学模拟试卷(含答案解析) (2)
中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。
湖南省湘潭市2020年中考数学模拟试题(二)有答案精析
湖南省湘潭市2020年中考数学模拟试卷(二)(解析版)一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x23.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.16.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>28.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=____________.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是____________.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是____________.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为____________.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为____________元.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是____________.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=____________.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为____________.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.18.解不等式.19.先化简,再求值:÷(1+),其中x=﹣1.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?2020年湖南省湘潭市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.【考点】绝对值.【分析】根据绝对值的性质可直接求出答案.【解答】解:根据绝对值的性质可知:|﹣2|=2.故选:A.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x2【考点】幂的乘方与积的乘方.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=16x2,故选D.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.1【考点】列表法与树状图法.【分析】首先分别用A与B表示三角形与矩形,然后根据题意画树状图,由树状图求得所有等可能的结果与能拼成“小房子”(如图2)的情况,再利用概率公式求解即可求得答案,【解答】解:分别用A与B表示三角形与矩形,画树状图得:∵共有12种等可能的结果,能拼成“小房子”的有8种情况,∴任取两张纸片,能拼成“小房子”(如图2)的概率等于:=.故选A.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形是三角形即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项错误;C、主视图为长方形,故本选项错误;D、主视图为长方形,故本选项错误.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>2【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4(﹣a+)<0,然后解不等式即可.【解答】解:∵关于x的方程x2+x﹣a+=0没有实数根,∴△=12﹣4(﹣a+)<0,解得:a<2,故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)【考点】菱形的性质;坐标与图形性质.【分析】点A的横坐等于OC的长的一半,点A的纵坐标与点B的纵坐标互为相反数.【解答】解:∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是﹣1,∴A(2,1).故选D.【点评】本题综合考查了菱形的性质和坐标的确定,综合性较强.二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.【考点】三角形的面积.【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,=S△CGE+S△BGF=4.∴S阴影故答案为4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是y=.【考点】待定系数法求反比例函数解析式.【分析】已知反比例函数y=的图象经过点(2,3),则把(2,3)代入解析式就可以得到k的值.【解答】解:根据题意得:3=解得k=6,则此函数的关系式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】根据题意,求得正方形与圆的面积,相比计算可得答案.【解答】解:根据题意,针头扎在阴影区域内的概率就是圆与正方形的面积的比值;由题意可得:正方形纸边长为4cm,其面积为16cm2,圆的半径为1cm,其面积为πcm2,故其概率为.【点评】本题考查几何概率的求法:注意圆、正方形的面积计算.用到的知识点为:概率=相应的面积与总面积之比.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为500元.【考点】一元一次方程的应用.【分析】首先理解题意找出题中存在的等量关系:利润=售价﹣进价,根据此等量关系列方程即可.【解答】解:设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x﹣300=100,解得:x=500.故答案为:500.【点评】此题主要考查了一元一次方程的应用,理解利润、售价、进价三者之间的关系是解题关键.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是﹣2<x≤﹣1.【考点】一次函数与一元一次不等式.【分析】把所给两点代入一次函数解析式可得k,b的值,进而求不等式组的解集即可.【解答】解:∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣1.【点评】考查一次函数和一元一次不等式的相关问题;用待定系数法求得未知函数解析式是解决本题的突破点.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为.【考点】翻折变换(折叠问题).【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,BC=4∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故答案为:.【点评】此题主要考查了图形的翻着变换,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣2×+1=﹣+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤2,由②得,x>﹣.故不等式组的解集为:﹣<x≤2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.【考点】扇形统计图;用样本估计总体;条形统计图;中位数;众数.【分析】(1)根据A、B、C、D、E高度之比为3:4:5:6:2,求得B等和C等所占的百分比,再根据捐10元和15元的人数共27人求得总人数;根据中位数和众数的概念求解;(2)各部分所占的圆心角即为百分比×360°;(3)根据样本估计总体.【解答】解:(1)总人数=27÷=60(人);众数:20(元);中位数15(元).(2)捐款数为20元的D部分所在的扇形的圆心角的度数=×360°=108°;(3)D部分的学生人数=1000×=300(人);D部分学生的捐款总额=300×20=6000(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时也考查了中位数、众数、平均数的概念及根据样本估计总体.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)过点B作BE⊥AC于点E,在Rt△ABE中利用三角函数求出AE,由AC=AE ﹣CE,可得出答案;(2)在Rt△ABE中,求出BE,即可计算每级台阶的高度h.【解答】解:如右图,过点B作BE⊥AC于点E,(1)在Rt△ABE中,AB=3m,cos12°≈0.9781,AE=ABcos12°≈2.934m=293.4cm,∴AC=AE﹣CE=293.4﹣60=233.4cm.答:AC的长度约为233.4cm.(2)h=BE=ABsin12°=×300×0.2079=20.79≈20.8cm.答:每级台阶的高度h约为20.8cm.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是根据坡度和坡角构造直角三角形,并解直角三角形.22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】首先得出BC=EF,利用平行线的性质∠B=∠DEF,再利用AAS得出△ABC≌△DEF,即可得出答案.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.【考点】圆的综合题.【分析】(1)先根据平行线的性质和垂直的定义得出∠AED=90°,再根据矩形的性质判断出Rt△ADE≌Rt△CBK即可;(2)先利用勾股定理求出AC,再用三角形的面积公式求出BK即可.【解答】(1)∵DH∥KB,BK⊥AC,∴DE⊥AC,∴∠AED=90°,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,在△ADE和△CBK中∴Rt△ADE≌Rt△CBK,∴AE=CK.(2)在Rt△ABC中,AB=a,AD=BC=a,∴AC===,∵S△ABC=AB×BC=AC×BK,∴BK===a.【点评】此题是圆的综合题,主要考查了矩形的性质,平行线的性质,垂直的定义,勾股定理,解本题的关键是判断出Rt△ADE≌Rt△CBK.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【考点】一次函数的应用;分段函数.【分析】(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x<100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.【解答】解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x<100时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a,得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w1=(﹣x+8)(x﹣40)﹣15﹣20=﹣(x﹣60)2+5,则当x=60时,w max=5万元;当60<x<100时,w2=(﹣x+5)(x﹣40)﹣15﹣0.25×80=﹣(x﹣70)2+10,∴x=70时,w max=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,是一道综合性较强的代数应用题,能力要求比较高.。
九年级数学二模试卷2020.6
点(0,t)且平行于 x 轴的直线为 l,将图象 G 在直线 l 下方的部分沿直线 l 翻折,图象 G
在直线上方的部分不变,得到一个新函数的图象 M,若函数 M 的最大值与最小值的差不
大于 5,则 t 的取值范围是
A.﹣1≤t≤0
B.﹣1≤t 1 2
C. 1 t 0 2
九年级数学模拟试卷 第 2 页 共 7 页
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
九年级数学模拟试卷 第 4 页 共 7 页
23.(本题满分 8 分)
日期:2020/5/861 767495;学号 :22892539
B. 2 3
C. 2 5
D. 3 5
9.如图,点 A 的坐标是(-2,0),点 B 的坐标是(0,6),C 为 OB 的中点,将△ ABC 绕点 B
逆时针旋转 90°后得到 ABC .若反比例函数 y k 的图象恰好经过 AB 的中点 D,则 x
k 的值是
(▲)
A.9
B.12
C.15
D.18
10.已知二次函数 y=﹣x2+2x+3,截取该函数图象在 0≤x≤4 间的部分记为图象 G,设经过
2.答选择题必须用 2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请 用橡皮擦干净后,再选涂其他答案.答非选择题必须用 0.5 毫米黑色墨水签字笔作答,写 在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.
3.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚. 4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.
C.小明的三次数学成绩是 126 分,130 分,136 分,则小明这三次成绩的平均数
江苏省淮安市2020年中考数学模拟卷02(含解析)
江苏省淮安市2020年中考数学模拟卷021. 试卷分为第I 卷和第II 卷两部分,共6页,全卷满分150分,考试时间120分钟。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3. 答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置,答案写在试卷上或答题卡上规定的区域以外无效. 4. 作图要用2B 铅笔,加黑加粗,描写清楚. 5. 考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.2019-的相反数等于( ) A .2019-B .12019C .12019- D .20192.下列各式中,正确的有( ) A .325a a a +=B .32622a a a =gC .326(2)4a a -=D .824a a a ÷=3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为( ) A .947.2410⨯B .94.72410⨯C .54.72410⨯D .5472.410⨯4.如图所示几何体的左视图正确的是( )A .B .C .D .5.已知ABC ∆的三边长分别为a 、b 、c ,且()()()M a b c a b c a b c =+++---,那么( ) A .0M >B .0M …C .0M =D .0M <6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是( ) A .20分,22.5分B .20分,18分C .20分,22分D .20分,20分7.下列关于x 的一元二次方程中,有两个相等的实数根的方程是( ) A .2230x x +-=B .210x +=C .24410x x ++=D .230x x ++=8.如图,矩形ABCD 的边5AB cm =,4BC cm =动点P 从A 点出发,在折线AD DC CB --上以1/cm s 的速度向B 点作匀速运动,则表示ABP ∆的面积()S cm 与运动时间()t s 之间的函数系的图象是( )A .B .C .D .第II 卷 (非选择题 共126分)二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.) 9.分解因式:29y x y -= .10.某区10名学生参加实际汉字听写大赛,他们得分情况如下表:那么10名学生所得分数的中位数是 . 11.分式方程3104x x+=+的解为 . 12.若n 边形的外角和为(2)180n -⨯︒,则n = . 13.不等式组52124x x -⎧⎨-<⎩…的解集是 .14.圆锥的侧面展开图的圆心角是120︒,其底面圆的半径为2cm ,则其侧面积为 . 15.如图,ABC ∆中,//DE BC ,5AB =,3AC =,若BD AE =,则AD 的长为 .(第15题)(第16题)16.如图,在矩形ABCD 中,3AB =,2BC =,H 是AB 的中点,将CBH ∆沿CH 折叠,点B 落在矩形内点P 处,连接AP ,则tan HAP ∠= .三、解答题(本大题共有11小题,共102分。
2020年湖北省武汉二中广雅中学中考数学模拟试卷(二) 解析版
2020年湖北省武汉二中广雅中学中考数学模拟试卷(二)一、选择题(每小题3分,共30分)1.实数﹣的相反数是()A.B.﹣C.2D.﹣22.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2B.x>﹣2C.x≥2D.x≤23.下列事件,是必然事件的是()A.投掷一枚硬币,向上一面是正面B.射击一次,击中靶心C.天气热了,新冠病毒就消失了D.任意画一个多边形,其外角和是360°4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列立体图形中,俯视图与主视图不同的是()A.B.C.D.6.如图直线y1=x+1与双曲线y2=交于A(2,m)、B(﹣3,n)两点.则当y1>y2时,x的取值范围是()A.x>﹣3或0<x<2B.﹣3<x<0或x>2C.x<﹣3或0<x<2D.﹣3<x<27.在两个不透明的口袋中分别装有两把不同的钥匙和三把锁,其中两把钥匙分别能打开两把锁,且不能打开第三把锁,随机取出一把钥匙和一把锁,能打开的概率是()A.B.C.D.8.星期天早晨,小广,小雅两人分别从A、B两地同时出发相向跑步而行,途中两人相遇,小广到达B地后立即以另一速度按原路返回,如图是两人离A地的距离y(米)与小雅运动的时间x(分)之间的函数图象,则下列说错误的是()A.小广返回到A地时,小雅还需要8分钟到达A地B.整个运动过程中,他们遇见了2次C.A、B两地相距3000米D.小广去时的速度小于返回时的速度9.如图,以矩形ABCD对角线BD上一点O为圆心作⊙O过A点并与CD切于E点,若CD=3,BC=5,则⊙O的半径为()A.B.3C.D.10.有76个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是1,第二个数是﹣1,那么这76个数的积是()A.(﹣2)23B.(﹣2)24C.(﹣2)25D.(﹣2)26二、填空题(每小题3分,共18分)11.计算的结果是.12.下面是防“新冠”的医护人员对一辆过往班车的15名乘客测体温的数据:体温(℃)36.436.536.636.736.836.937.0人数(人)1132341这组数据的中位数是.13.计算的结果是.14.如图,将△ABC绕点B顺时针旋转得到△A'BC',使点A'落在AC上,已知∠C=40°,AC∥BC',则∠A=度.15.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象与轴的交点分别(﹣3,0),(1,0),且函数与y轴交点在(0,﹣1)的下方,现给以下结论:①abc<0:②关于方程a(x2﹣1)+b(x﹣1)+c=0始终有两个不相等的实数解;③当﹣2≤x≤3时,y的取值范围是﹣≤y≤6b;则上述说法正确的是.(填序号)16.如图,M为矩形ABCD中AD边中点,E、F分别为BC、CD上的动点,且BE=2DF,若AB=1,BC=2,则ME+2AF的最小值为.三、解答愿(共8小题,共72分)17.(8分)计算:.18.(8分)如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.19.(8分)“微信运动“被越来越多的人关注和喜爱,某兴趣小组随机调查了某市50名教师某日微信运动中的步数情况并进行统计整理,绘制了如下的统计图表(不完整),请根据以上信息,解答下列问题:(1)写出a,b的值;(2)补全频数分布直方图;(3)若该市约有40000名教师,估计日行走步数超过1.2万步(包含1.2万步)的教师约有多少名?步数(万步)频数频率0≤x<0.48a0.4≤x<0.8150.300.8≤x<1.2120.241.2≤x<1.6100.201.6≤x<230.062≤x<2.4b0.0420.(8分)请仅用无刻度的直尺按照下列要求作图.(1)如图C、D是菱形网格中的格点,作出线段CD的一个三等分点E;(2)如图是翻折后的矩形ABCD,请作出△BOD中∠BOD的角平分线;(3)以等腰Rt△ABC中AB为直径作⊙O交斜边AB于D,请作出过点D的切线.21.(8分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE、BE,DE交OA于点F.(1)求证:BC为⊙O的切线;(2)若OF=2AF,若BE=,求⊙O的半径.22.(10分)有一根直尺短边长4cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长为16cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x≤12,直尺和三角形纸板重叠部分的面积为Scm2.(1)当x=0cm时,S=;当x=4cm时,S=;当x=12cm时,S=.(2)当4<x<8(如图丙),请用含x的代数式表示S.(3)是否存在一个位置,使重叠部分面积为28cm2?若存在求出此时x的值.23.(10分)如图,等腰Rt△ABC中,∠ACB=90°,D为BC边上一点,连接AD.(1)如图1,作BE⊥AD延长线于E,连接CE,求证:∠AEC=45°;(2)如图2,P为AD上一点,且∠BPD=45°,连接CP.①若AP=2,求△APC的面积;②若AP=2BP,直接写出sin∠ACP的值为.24.(12分)如图1,抛物线y=2ax2﹣5ax﹣3a与x交于A、B两点(A在B左侧),与y轴交于点C,且3OC=2OB.(1)求抛物线的解析式;(2)如图2,连接BC,在线段BC上有一动点P,过P作y轴的平行线l1,交抛物线于点N,交x轴于点M,若以C、P、N为顶点的三角形与△BPM相似时,求P点的横坐标;(3)如图3,T(t,0)为x轴上一动点,过T作y轴的平行线l2,Q为x轴上方抛物线上任意一点,直线AQ、BQ分别交l2于点E、F,则当t为何值时,TE+TF为定值,并求出该定值.2020年湖北省武汉二中广雅中学中考数学模拟试卷(二)参考答案与试题解析一、选择题(每小题3分,共30分)1.实数﹣的相反数是()A.B.﹣C.2D.﹣2【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:实数﹣的相反数是,故选:A.2.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2B.x>﹣2C.x≥2D.x≤2【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:x﹣2≥0,解得x≥2.故选:C.3.下列事件,是必然事件的是()A.投掷一枚硬币,向上一面是正面B.射击一次,击中靶心C.天气热了,新冠病毒就消失了D.任意画一个多边形,其外角和是360°【分析】根据事件发生的可能性大小判断即可.【解答】解:A、投掷一枚硬币,向上一面是正面,是随机事件;B、射击一次,击中靶心,是随机事件;C、天气热了,新冠病毒就消失了,是不可能事件;D、任意画一个多边形,其外角和是360°,是必然事件;故选:D.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,但不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.5.下列立体图形中,俯视图与主视图不同的是()A.B.C.D.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.据此作答.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是长方形,故选项B不合题意;C.俯视图是圆(带圆心),主视图是等腰三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.6.如图直线y1=x+1与双曲线y2=交于A(2,m)、B(﹣3,n)两点.则当y1>y2时,x的取值范围是()A.x>﹣3或0<x<2B.﹣3<x<0或x>2C.x<﹣3或0<x<2D.﹣3<x<2【分析】当y1>y2时,x的取值范围就是y1的图象落在y2图象的上方时对应的x的取值范围.【解答】解:根据图象可得当y1>y2时,x的取值范围是:﹣3<x<0或x>2.故选:B.7.在两个不透明的口袋中分别装有两把不同的钥匙和三把锁,其中两把钥匙分别能打开两把锁,且不能打开第三把锁,随机取出一把钥匙和一把锁,能打开的概率是()A.B.C.D.【分析】三把锁分别用A、B、C表示,A、B对应的钥匙分别用a、b表示,画树状图展示所有6种等可能的结果数,能打开的结果数为2,然后根据概率公式计算.【解答】解:三把锁分别用A、B、C表示,A、B对应的钥匙分别用a、b表示画树状图为:共有6种等可能的结果数,随机取出一把钥匙和一把锁,能打开的结果数为2,∴随机取出一把钥匙和一把锁,能打开的概率为=;故选:B.8.星期天早晨,小广,小雅两人分别从A、B两地同时出发相向跑步而行,途中两人相遇,小广到达B地后立即以另一速度按原路返回,如图是两人离A地的距离y(米)与小雅运动的时间x(分)之间的函数图象,则下列说错误的是()A.小广返回到A地时,小雅还需要8分钟到达A地B.整个运动过程中,他们遇见了2次C.A、B两地相距3000米D.小广去时的速度小于返回时的速度【分析】根据题意可知A、B两地的距离为3000米,根据“路程,时间与速度的关系”可分别求出小广从A地到B地的速度、小雅的速度以及小广返回的速度,进而求出小广到达A地时,小雅到达A地还需要的时间.再根据函数图象对其他选项逐一判断即可.【解答】解:根据题意得,小广从A地到B地的速度为:3000÷30=100(米/分),小雅的速度为:(3000﹣100×20)÷20=50(米/分),小广返回的速度为:45×50÷(45﹣30)=150(米/分),小广到达A地时,小雅到达A地还需要的时间为:3000÷50﹣3000÷150﹣30=10(分钟).故选项A符合题意;由图象可知,整个运动过程中,他们遇见了2次,故选项B不合题意;由图象可知,A、B两地相距3000米,故选项C不合题意;由直线的陡与缓可知小广去时的速度小于返回时的速度,故选项D不合题意.故选:A.9.如图,以矩形ABCD对角线BD上一点O为圆心作⊙O过A点并与CD切于E点,若CD=3,BC=5,则⊙O的半径为()A.B.3C.D.【分析】作OF⊥AD于F,连接OE,如图,设⊙O的半径为r,利用切线的性质OE⊥CD,利用四边形ABCD为矩形得到OF=DE,DF=OE=r,再证明△DOE∽△DBC,利用相似比得到DE=r,然后在Rt△AOF中利用勾股定理得到(5﹣r)2+(r)2=r2,最后解方程即可.【解答】解:作OF⊥AD于F,连接OE,如图,设⊙O的半径为r,∵CD为切线,∴OE⊥CD,易得四边形ABCD为矩形,∴OF=DE,DF=OE=r,∵OE∥BC,∴△DOE∽△DBC,∴=,即=,解得DE=r,∴OF=r,在Rt△AOF中,OA=r,AF=5﹣r,∴(5﹣r)2+(r)2=r2,整理得9r2﹣250r+625=0,解得r1=25(舍去),r2=,即⊙O的半径为.故选:A.10.有76个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是1,第二个数是﹣1,那么这76个数的积是()A.(﹣2)23B.(﹣2)24C.(﹣2)25D.(﹣2)26【分析】首先根据题意写出前面一些数,观察分析归纳找出规律,然后根据规律求解.【解答】解:根据据题意写出前面一些数:1,﹣1,﹣2,﹣1,1,2,1,﹣1,经观察发现从左向右数每排列六个数后,从第七个数开始重复出现,即这76个数是由1,﹣1,﹣2,﹣1,1,2这6个数组成的数组重复排列而成,而1×(﹣1)×(﹣2)×(﹣1)×1×2=﹣4,又76=12×6+4,故这76个数的积是:(﹣4)12×(﹣2)=(﹣2)25.故选:C.二、填空题(每小题3分,共18分)11.计算的结果是4.【分析】根据二次根式的性质求出即可.【解答】解:=4,故答案为:4.12.下面是防“新冠”的医护人员对一辆过往班车的15名乘客测体温的数据:体温(℃)36.436.536.636.736.836.937.0人数(人)1132341这组数据的中位数是36.8.【分析】求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据从小到大的顺序排列后,处于中间位置的那个数是36.8,那么由中位数的定义可知,这组数据的中位数是36.8.故答案为:36.8.13.计算的结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=,=,=.故答案为:.14.如图,将△ABC绕点B顺时针旋转得到△A'BC',使点A'落在AC上,已知∠C=40°,AC∥BC',则∠A=70度.【分析】由平行线的性质知∠CBC′=∠ABA′=40°,根据旋转性质得出BA=BA′,从而知∠A=∠AA′B=70°,可得出答案.【解答】解:∵AC∥BC′,∠C=40°,∴∠CBC′=∠ABA′=40°,∵BA=BA′,∴∠A=∠AA′B=70°,故答案为:70.15.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象与轴的交点分别(﹣3,0),(1,0),且函数与y轴交点在(0,﹣1)的下方,现给以下结论:①abc<0:②关于方程a(x2﹣1)+b(x﹣1)+c=0始终有两个不相等的实数解;③当﹣2≤x≤3时,y的取值范围是﹣≤y≤6b;则上述说法正确的是①②.(填序号)【分析】根据题意抛物线开口向上,对称轴在y轴的左侧,与y轴交于负半轴,得到a >0,b>0,c<0,即可判断①;方程变形为ax2+bx+c=﹣c,根据二次函数的性质得到二次函数y=ax2+bx+c(a≠0)的图象与直线y=﹣c一定有两个交点,即可判断②;③根据对称轴和开口方向,得出当﹣2≤x≤3时,x=﹣1时取最小值,x=3时取最大值,代入求得最小值和最大值即可判断③.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象与轴的交点分别(﹣3,0),(1,0),且函数与y轴交点在(0,﹣1)的下方,∴开口向上,对称轴为直线x=﹣==﹣1,c<0,∴a>0,b=2a>0,∴abc<0,故①正确;把(1,0)代入y=ax2+bx+c得,a+b+c=0,∴a+b=﹣c>1,∴a(x2﹣1)+b(x﹣1)+c=0变形为ax2+bx+c=﹣c,∵二次函数y=ax2+bx+c(a≠0)的图象开口向上,与x轴有两个交点,∴二次函数y=ax2+bx+c(a≠0)的图象与直线y=﹣c一定有两个交点,∴关于方程a(x2﹣1)+b(x﹣1)+c=0始终有两个不相等的实数解,故②正确;∵二次函数的图象开口向上,对称轴为直线x=﹣==﹣1,∴抛物线的最小值为y=a﹣b+c,∴b=2a,∴最小值为y=﹣+c,当﹣2≤x≤3时,x=3时取最大值为y=9a+3b+c,即y=b+3b+c=b+c,∴当﹣2≤x≤3时,y的取值范围是﹣+c≤y≤b+c,故③错误;故答案为①②.16.如图,M为矩形ABCD中AD边中点,E、F分别为BC、CD上的动点,且BE=2DF,若AB=1,BC=2,则ME+2AF的最小值为.【分析】如图,过点M作MH⊥BC于H.设DF=x,则BE=2x.由勾股定理得到ME+2AF =+2=+,欲求ME+2AF的最小值,相当于在x轴上找一点Q(2x,0),使得点Q到J(0,4),和K(1,1)的距离之和最小(如下图),作点J关于x轴的对称点J′,连接KJ′交x轴于Q,连接JQ,此时JQ+QK的值最小,最小值=KJ′.【解答】解:如图,过点M作MH⊥BC于H.设DF=x,则BE=2x.∵四边形ABCD是矩形,∴∠BAD=∠B=∠D=90°,∵MH⊥BC,∴∠MHB=90°,∴四边形ABHM是矩形,∴AM=DM=BH=1,AB=MH=1,∴EH=1﹣2x,∴ME+2AF=+2=+,欲求ME+2AF的最小值,相当于在x轴上找一点Q(2x,0),使得点Q到J(0,4),和K(1,1)的距离之和最小(如下图),作点J关于x轴的对称点J′,连接KJ′交x轴于Q,连接JQ,此时JQ+QK的值最小,最小值=KJ′,∵J′(0,﹣4),K(1,1),∴KJ′==,∴ME+2AF的最小值为,故答案为.三、解答愿(共8小题,共72分)17.(8分)计算:.【分析】利用积的乘方的性质、单项式除以单项式法则、单项式乘以单项式法则进行计算即可.【解答】解:原式=a6•(4a4﹣12a4)=a6•(﹣8a4)=﹣a10.18.(8分)如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【分析】运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.【解答】解:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义),∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB∥CD(同旁内角互补,两直线平行).19.(8分)“微信运动“被越来越多的人关注和喜爱,某兴趣小组随机调查了某市50名教师某日微信运动中的步数情况并进行统计整理,绘制了如下的统计图表(不完整),请根据以上信息,解答下列问题:(1)写出a,b的值;(2)补全频数分布直方图;(3)若该市约有40000名教师,估计日行走步数超过1.2万步(包含1.2万步)的教师约有多少名?步数(万步)频数频率0≤x<0.48a0.4≤x<0.8150.300.8≤x<1.2120.241.2≤x<1.6100.201.6≤x<230.062≤x<2.4b0.04【分析】(1)根据频率=频数÷总数可得答案;(2)根据(1)求出b的值,即可补全统计图;(3)用样本中超过1.2万步(包含1.2万步)的频率之和乘以总人数可得答案.【解答】解:(1)a=8÷50=0.16,b=50×0.04=2;(2)根据(1)求出的频数,补全统计图如下:(3)根据题意得:40000×(0.20+0.06+0.04)=12000(名),答:估计日行走步数超过1.2万步(包含1.2万步)的教师约有12000名.20.(8分)请仅用无刻度的直尺按照下列要求作图.(1)如图C、D是菱形网格中的格点,作出线段CD的一个三等分点E;(2)如图是翻折后的矩形ABCD,请作出△BOD中∠BOD的角平分线;(3)以等腰Rt△ABC中AB为直径作⊙O交斜边AB于D,请作出过点D的切线.【分析】(1)利用平行线等分线段定理画出图形即可;(2)利用轴对称的性质画出图形即可;(3)利用圆周角定理画出图形即可.【解答】解:(1)如图所示:点E即为所求.(2)如图所示:OE即为所求.(3)如图所示:DF即为所求.21.(8分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE、BE,DE交OA于点F.(1)求证:BC为⊙O的切线;(2)若OF=2AF,若BE=,求⊙O的半径.【分析】(1)连接OD,由三角形的中位线和切线的判定证明即可;(2)设AF=t,OF=2t,则⊙O的半径为3t,证明△AEF∽△DBF,由相似三角形的性质得出,求出AE,由勾股定理得出,解得t=.则可求出答案.【解答】证明:(1)连接OD,∵OA=OD,∠A=45°,∴∠ADO=∠A=45°,∴∠AOD=90°,∵D是AC的中点,∴AD=CD,∴OD∥BC,∴∠ABC=∠AOD=90°,∴BC是⊙O的切线;(2)解:设AF=t,OF=2t,则⊙O的半径为3t,∵AD=BD,∴=,∴∠AOD=∠BOD=×180°=90°,∴BD=OB=3t,∵FD===t,∵∠AFE=∠BFD,∠ABD=∠FEA,∴△AEF∽△DBF,∴,∴AE=t=t,在Rt△ABE中,∵AE2+BE2=AB2,∴,解得t=.∴⊙O的半径为3t=.22.(10分)有一根直尺短边长4cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长为16cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x≤12,直尺和三角形纸板重叠部分的面积为Scm2.(1)当x=0cm时,S=8cm2;当x=4cm时,S=24cm2;当x=12cm时,S=8cm2.(2)当4<x<8(如图丙),请用含x的代数式表示S.(3)是否存在一个位置,使重叠部分面积为28cm2?若存在求出此时x的值.【分析】(1)当x=0cm时,直尺和三角形纸板重叠部分的面积是两直角边都为4厘米的三角形面积;当x=4cm时,直尺和三角形纸板重叠部分的面积=两直角边都为8厘米的三角形面积﹣两直角边都为4厘米的三角形面积;当x=12cm时,直尺和三角形纸板重叠部分的面积是两直角边都为4厘米的三角形面积;(2)过点C作CM⊥AB于点M.当4<x<6时,根据S=梯形GDMC的面积+梯形CMEF 的面积,列式计算即可求解;(3)根据阴影部分面积为28cm2,列出方程﹣x2+12x﹣8=28,解方程即可求解.【解答】解:(1)当x=0cm时,S=4×4÷2=8m2;当x=4cm时,S=8×8÷2﹣4×4÷2=24cm2;当x=12cm时,S=4×4÷2=8cm2.故答案为:8cm2;24cm2;8cm2.(2)如图所示:过点C作CM⊥AB于点M.当4<x<8时,梯形GDMC的面积=(GD+CM)×DM=(x+8)(8﹣x)=﹣x2+32,梯形CMEF的面积=(EF+CM)×ME=[16﹣(x+4)+8][(x+4)﹣8]=(20﹣x)(x﹣4)=﹣x2+12x﹣40,S=梯形GDMC的面积+梯形CMEF的面积=(﹣x2+32)+(﹣x2+12x﹣40)=﹣x2+12x﹣8.(3)当x=4时,S=24cm2,所以当S=28cm2时,x必然大于4,即﹣x2+12x﹣8=28,解得x1=x2=6,所以当x=6cm时,阴影部分面积为28cm2.23.(10分)如图,等腰Rt△ABC中,∠ACB=90°,D为BC边上一点,连接AD.(1)如图1,作BE⊥AD延长线于E,连接CE,求证:∠AEC=45°;(2)如图2,P为AD上一点,且∠BPD=45°,连接CP.①若AP=2,求△APC的面积;②若AP=2BP,直接写出sin∠ACP的值为.【分析】(1)由题意可证点A,点B,点E,点C四点共圆,可得∠AEC=∠ABC=45°;(2)①通过证明△APB∽△CEB,可求CE==,由等腰直角三角形的性质可求CF=1,即可求解;②过点B作BE⊥AD,交AD的延长线于点E,过点C作CF⊥AD于F,过点P作PH⊥AC于H,设AP=2a,则BP=a,可得CE==a,CF=EF=a,BE=PE=a,由勾股定理可求AC2,CP2,利用面积法可求PH2,即可求解.【解答】证明:(1)∵等腰Rt△ABC中,∠ACB=90°,∴AC=BC,∠ABC=∠CAB=45°,AB=BC,∵BE⊥AD,∴∠AEB=90°=∠ACB,∴点A,点B,点E,点C四点共圆,∴∠AEC=∠ABC=45°;(2)①如图2,过点B作BE⊥AD,交AD的延长线于点E,过点C作CF⊥AD于F,∵∠BPD=45°,BE⊥AD,∴∠PBE=45°=∠ABC,∴∠ABP=∠CBE,∵∠AEB=90°=∠ACB,∴点A,点B,点E,点C四点共圆,∴∠BAE=∠BCE,∠AEC=∠ABC=45°,∴△APB∽△CEB,∴,∴CE==,∵CF⊥AD,∠AEC=45°,∴∠FCE=∠CEF=45°,∴CF=EF=CE=1,∴△APC的面积=×AP×CF=1;②如图,过点B作BE⊥AD,交AD的延长线于点E,过点C作CF⊥AD于F,过点P 作PH⊥AC于H,设AP=2a,则BP=a,由①可知,CE==a,CF=EF=a,∵BP=a,∠BPE=45°,∠BEP=90°,∴BE=PE=a,∴AF=AE﹣EF=2a+a﹣a=a+a,PF=a﹣a,∴CP2=CF2+PF2=a2+(a﹣a)2=a2﹣a2,AC2=AF2+CF2=a2+(a+a)2=a2+a2,∵S△ACP=×AC×PH=×AP×CF,∴(AC•PH)2=(AP•CF)2,∴PH2=a2,∵(sin∠ACP)2===,∴sin∠ACP=,故答案为:.24.(12分)如图1,抛物线y=2ax2﹣5ax﹣3a与x交于A、B两点(A在B左侧),与y轴交于点C,且3OC=2OB.(1)求抛物线的解析式;(2)如图2,连接BC,在线段BC上有一动点P,过P作y轴的平行线l1,交抛物线于点N,交x轴于点M,若以C、P、N为顶点的三角形与△BPM相似时,求P点的横坐标;(3)如图3,T(t,0)为x轴上一动点,过T作y轴的平行线l2,Q为x轴上方抛物线上任意一点,直线AQ、BQ分别交l2于点E、F,则当t为何值时,TE+TF为定值,并求出该定值.【分析】(1)先求出点C(0,﹣3a),点A(﹣,0),点B(3,0),由3OC=2OB,可求a的值,即可求解;(2)由相似三角形的性质可得∠CNP=∠PMB=90°或∠NCP=∠PMB=90°,由平行线的性质和勾股定理可求解;(3)设点Q(m,﹣m2+m+2),分别求出直线AQ,BQ解析式,可求点E,点F 坐标,可得ET+FT=﹣mt+m+t+4=﹣m(4t﹣5)+,即可求解.【解答】解:(1)∵抛物线y=2ax2﹣5ax﹣3a与x交于A、B两点(A在B左侧),与y 轴交于点C,∴点C(0,﹣3a),点A(﹣,0),点B(3,0),∴OB=3,OA=,OC=﹣3a,∵3OC=2OB,∴﹣3a×3=6,∴a=﹣,∴抛物线解析式为:y=﹣x2+x+2;(2)∵以C、P、N为顶点的三角形与△BPM相似,∠BPM=∠CPN,∴∠CNP=∠PMB=90°或∠NCP=∠PMB=90°,若∠CNP=∠PMB=90°,∴CN∥BM,∴点N的纵坐标与点C的纵坐标相同,∴点N的纵坐标为2,∴2=﹣x2+x+2,∴x1=0(舍去),x2=,∴点N的横坐标为;若∠NCP=∠PMB=90°,∵点B(3,0),点C(0,2),∴直线BC解析式为:y=﹣x+2,设点M(c,0),则点N(c,﹣c2+c+2),点P(c,﹣c+2),∴NP2=(﹣c2+c+2+c﹣2)2=(﹣c2+4c)2,NC2=c2+(﹣c2+c)2,CP2=c2+(﹣c+2﹣2)2=c2,∵NP2=NC2+CP2,∴(﹣c2+4c)2=c2+(﹣c2+c)2+c2,∴c1=0(舍去),c2=,∴点N的横坐标为,综上所述:点N的横坐标为或;(3)设点Q(m,﹣m2+m+2),又∵点A(﹣,0),点B(3,0),∴直线AQ的解析式为y=﹣(m﹣3)(x+),直线BQ的解析式为y=﹣(2m+1)(x﹣3),当x=t时,点E[t,﹣(m﹣3)(t+)],点F[t,﹣(2m+1)(t﹣3)],∴ET=﹣(m﹣3)(t+),FT=﹣(2m+1)(t﹣3),∴ET+FT=﹣mt+m+t+4=﹣m(4t﹣5)+,∴当t=时,ET+FT有定值为.。
【真题】2020届初中初三中考数学二诊模拟真题卷含参考答案 (河南)
2020届初三中考模拟二诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )A .1B .2C .3D .42.在学校乒乓球比赛中,从甲、乙、丙、丁这四人中,随机抽签一组对手,正好抽到乙与丁的概率是( )A .110B .14C .15D .163.如图,在△ABC 中,AB =AC =10,BC =12,点D 是BC 上一点,DE ∥AC ,DF ∥AB ,则△BED 与△DFC 的周长的和为( )A .34B .32C .22D .204.下列运算结果正确的是( )A .()322x x x x x x -+÷=-B .()236a a a -⋅=C .236(2x )8x -=-D .2224a (2a)2a -=5.徐州日报社记者从市铁路运输部门获悉,清明节小长假2019年4月5日至7日期间,徐州铁路运输部门累计发送旅客17.8万人次.用科学记数法表示为( )A .17.8×105B .17.8×106C .1.78×105D .1.78×1066.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤7.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x 轴,y轴上,连OB,将纸片OABC沿OB折叠,使点A落在A′的位置,若tan∠BOC=12,则点A′的坐标()A.(45,25)B.(﹣35,25)C.(﹣35,45)D.(﹣45,35)8.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形9.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( )A .一直增大B .一直减小C .先减小后增大D .先增大后减小10.下列运算中,正确的是( )A .2222a a a =gB .339()a a =C .2a a a -=-D .22()ab ab =二、填空题(共4题,每题4分,共16分)11.如图,菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 按顺时针方向旋转90°,则图中阴影部分的面积是_____.12.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为______万元.13.如图中(1)、(2)、…(m )分别是边长均大于2的三角形、四边形、…、凸n 边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n 条弧.(1)3条弧的弧长的和为_____;(2)4条弧的弧长的和为_____;(3)求图(m)中n条弧的弧长的和(用n表示)._____14.﹣3的绝对值是_____.三、解答题(共6题,总分54分)15.已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.16.如图,BD是▱ABCD的对角线,AB⊥BD,BD=8cm,AD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD-DC运动到终点C,在BD、DC上分别以8cm/s、6cm/s的速度运动.过点Q作QM⊥AB,交射线AB于点M,连接PQ,以PQ与QM为边作□P QMN.设点P的运动时间为t(s)(t>0),▱PQMN与▱ABCD重叠部分图形的面积为S (cm2).(1)AP= cm(用含t的代数式表示).(2)当点N落在边AB上时,求t的值.(3)求S与t之间的函数关系式.(4)连结NQ,当NQ与△ABD的一边平行时,直接写出t的值.。
2020年广东省肇庆市四会中学中考数学模拟试卷(2) 解析版
2020年广东省肇庆市四会中学中考数学模拟试卷(2)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.(3分)﹣8的绝对值是()A.8B.C.﹣8D.﹣2.(3分)下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.3.(3分)华为手机MateX在5G网络下能达的理论下载速度为603 000 000B/s,3秒钟内就能下载好1GB的电影,将603 000 000用科学记数法表示为()A.603×106B.6.03×108C.60.3×107D.0.603×109 4.(3分)在实数|﹣4|,﹣,0,π中,最小的数是()A.|﹣4|B.﹣C.0D.π5.(3分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)一组数据:3、﹣1、2、1、0,则这组数据平均数和中位数是()A.1,0B.2,1C.1,2D.1,17.(3分)下列运算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.2a•3a=6a2D.(a﹣b)2=a2﹣ab+b28.(3分)如图,△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是()A.sin A=B.cos A=C.sin A=D.tan A=9.(3分)如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD 的中点,则CM的长为()A.B.2C.D.310.(3分)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为()A.B.C.D.二、填空题(本大题7小题,每小题4分,共28分)11.(4分)=.12.(4分)分解因式:25a﹣ab2=.13.(4分)不等式组的解集是.14.(4分)抛物线y=2(x﹣3)2+4的在对称轴的侧的部分上升.(填“左”或“右”)15.(4分)如图,在⊙O中,直径AB的长为4,C是⊙O上一点,∠CAB=30°,则的长为.16.(4分)如图,在Rt△ABC中,∠C=90°,将△ABC折叠,使点B与点A重合,折痕为DE,若AC=3,BC=4,则线段CD的长为.17.(4分)如图,已知A1,A2,A3,…A n是x轴上的点,且OA1=A1A2=A2A3=…=A n﹣1A n =1,分别过点A1,A2,A3,…A n作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…B n,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n=.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:|﹣3|﹣20200+4sin30°+.19.(6分)先化简,再求值:,其中x=﹣3.20.(6分)如图,在矩形ABCD中,AD=AE(1)尺规作图:作DF⊥AE于点F;(保留作图痕迹,不写作法)(2)求证:AB=DF.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)一批单价为20元的商品,若每件按30元的价格销售时,每天能卖出60件;若每件按50元的价格销售时,每天能卖出20件.假定每天销售件数y(件)与销售价格x (元/件)满足y=kx+b.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不考虑其他因素的情况下,每件商品销售价格定为多少元时才能使每天获得的利润最大?最大利润是多少?22.(8分)“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有人,条形统计图中m的值为;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:EO=DC;(2)若菱形ABCD的边长为10,∠EBA=60°,求:菱形ABCD的面积.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接P A,PC,AF,且满足∠PCA =∠ABC.(1)求证:P A是⊙O的切线;(2)证明:EF2=4OD•OP;(3)若BC=8,tan∠AFP=,求DE的长.25.(10分)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,OC=3.动点P 从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、Q的运动时间为t秒(1)当t=2秒时,求tan∠QP A的值;(2)当线段PQ与线段AB相交于点M,且BM=2AM时,求t的值;(3)连结CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式;(4)直接写出∠OAB的角平分线经过△CQP边上中点时的t值.2020年广东省肇庆市四会中学中考数学模拟试卷(2)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.(3分)﹣8的绝对值是()A.8B.C.﹣8D.﹣【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:﹣8的绝对值是8.故选:A.2.(3分)下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别结合选项判断即可得出答案.【解答】解:A、是轴对称图形形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形形,不是中心对称图形,故本选项不符合题意;C、既是中心对称图形,又是轴对称图形形,故本选项符合题意;D、是中心对称图形,不是轴对称图形形,故本选项不符合题意.故选:C.3.(3分)华为手机MateX在5G网络下能达的理论下载速度为603 000 000B/s,3秒钟内就能下载好1GB的电影,将603 000 000用科学记数法表示为()A.603×106B.6.03×108C.60.3×107D.0.603×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将603 000 000用科学记数法表示为6.03×108.故选:B.4.(3分)在实数|﹣4|,﹣,0,π中,最小的数是()A.|﹣4|B.﹣C.0D.π【分析】根据实数大小比较的法则比较即可.【解答】解:∵|﹣4|>π>0>﹣,∴最小的数是﹣,故选:B.5.(3分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选:D.6.(3分)一组数据:3、﹣1、2、1、0,则这组数据平均数和中位数是()A.1,0B.2,1C.1,2D.1,1【分析】根据平均数、中位数的意义,分别求出来,再做选择.【解答】解:平均数为:(3﹣1+2+1+0)÷5=1,从小到大排列:﹣1、0、1、2、3、处中间位置的是1,因此中位数是1.故选:D.7.(3分)下列运算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.2a•3a=6a2D.(a﹣b)2=a2﹣ab+b2【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【解答】解:∵a12÷a3=a9,故选项A错误,∵(3a2)3=27a6,故选项B错误,∵2a•3a=6a2,故选项C正确,∵,(a﹣b)2=a2﹣2ab+b2,故选项D错误,故选:C.8.(3分)如图,△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是()A.sin A=B.cos A=C.sin A=D.tan A=【分析】先根据勾股定理求出AC的长,再根据锐角三角函数的定义进行计算即可.【解答】解:∵△ABC中,∠C=90°,BC=2,AB=3,∴AC===.sin A=,cos A=,tan A==,只有选项D正确.故选:D.9.(3分)如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD 的中点,则CM的长为()A.B.2C.D.3【分析】延长BC到E使BE=AD,则四边形ACED是平行四边形,根据三角形的中位线的性质得到CM=DE=AB,根据跟勾股定理得到AB===5,于是得到结论.【解答】解:延长BC到E使BE=AD,则四边形ABED是平行四边形,∵BC=3,AD =6,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB===5,∴CM=,故选:C.10.(3分)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为()A.B.C.D.【分析】由平行四边形的性质可知BO为△ABC的中线,又EF∥AC,可知BP为△BEF 的中线,且可证△BEF∽△BAC,利用相似三角形对应边上中线的比等于相似比,得出函数关系式,判断函数图象.【解答】解:当0≤x≤4时,∵BO为△ABC的中线,EF∥AC,∴BP为△BEF的中线,△BEF∽△BAC,∴,即,解得y=,同理可得,当4<x≤8时,y=(8﹣x).故选:D.二、填空题(本大题7小题,每小题4分,共28分)11.(4分)=6.【分析】利用算术平方根的定义进行求解.【解答】解:∵62=36,∴.12.(4分)分解因式:25a﹣ab2=a(5+b)(5﹣b).【分析】首先提取公因式a,再利用平方差公式分解因式即可.【解答】解:25a﹣ab2=a(25﹣b2)=a(5+b)(5﹣b).故答案为:a(5+b)(5﹣b).13.(4分)不等式组的解集是x>2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣x<0,得:x>2,解不等式3x+6>0,得:x>﹣2,则不等式组的解集为x>2,故答案为:x>2.14.(4分)抛物线y=2(x﹣3)2+4的在对称轴的右侧的部分上升.(填“左”或“右”)【分析】由a=2>0可得出抛物线开口向上,进而即可得出在抛物线对称轴右侧y随x 增大而增大,此题得解.【解答】解:∵a=2>0,∴抛物线开口向上,∴在抛物线对称轴右侧,y随x增大而增大.故答案为:右.15.(4分)如图,在⊙O中,直径AB的长为4,C是⊙O上一点,∠CAB=30°,则的长为.【分析】如图,连接OC,利用圆周角定理和邻补角的定义求得∠BOC的度数,然后利用弧长公式进行解答即可.【解答】解:如图,连接OC,∵∠CAB=30°,∴∠BOC=2∠CAB=60°,又直径AB的长为4,∴半径OB=2,∴的长是:=π.故答案是:π.16.(4分)如图,在Rt△ABC中,∠C=90°,将△ABC折叠,使点B与点A重合,折痕为DE,若AC=3,BC=4,则线段CD的长为.【分析】由勾股定理得出AB=5,由折叠的性质知,AD=BD,设CD=x,则AD=BD =4﹣x,在Rt△ACD中,由勾股定理得出方程,解方程即可.【解答】解:∵AC=3,BC=4,∠C=90°,∴AB==5,由折叠的性质知,AD=BD,设CD=x,则AD=BD=4﹣x,在Rt△ACD中,由勾股定理得:AC2+CD2=AD2,即:32+x2=(4﹣x)2,解得:x=;故答案为:.17.(4分)如图,已知A1,A2,A3,…A n是x轴上的点,且OA1=A1A2=A2A3=…=A n﹣1A n =1,分别过点A1,A2,A3,…A n作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…B n,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n=.【分析】由OA1=A1A2=A2A3=…=A n﹣1A n=1可知B1点的坐标为(1,y1),B2点的坐标为(2,y2),B3点的坐标为(3,y3)…B n点的坐标为(n,y n),把x=1,x=2,x=3代入反比例函数的解析式即可求出y1、y2、y3的值,再由三角形的面积公式可得出S1、S2、S3…S n的值,故可得出结论.【解答】解:∵OA1=A1A2=A2A3=…=A n﹣1A n=1,∴设B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n),∵B1,B2,B3…Bn在反比例函数y=(x>0)的图象上,∴y1=1,y2=,y3=…y n=,∴S1=×1×(y1﹣y2)=×1×(1﹣)=(1﹣);S2=×1×(y2﹣y3)=×(﹣);S3=×1×(y3﹣y4)=×(﹣);…S n=(﹣),∴S1+S2+S3+…+S n=(1﹣+﹣+﹣+…+﹣)=.故答案为:.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:|﹣3|﹣20200+4sin30°+.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=3﹣1+4×+2=3﹣1+2+2=6.19.(6分)先化简,再求值:,其中x=﹣3.【分析】原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=﹣,当x=﹣3时,原式=﹣=﹣.20.(6分)如图,在矩形ABCD中,AD=AE(1)尺规作图:作DF⊥AE于点F;(保留作图痕迹,不写作法)(2)求证:AB=DF.【分析】(1)利用基本作图作DF⊥AE于F点即可;(2)证明△ABE≌△DF A即可.【解答】(1)解:如图,F点为所作;(2)证明:∵四边形ABCD为矩形,∴AD∥BC,∠B=90°,∴∠DAE=∠AEB,∵DF⊥AE,∴∠AFD=90°,在△ABE和△DF A中,∴△ABE≌△DF A(AAS),∴AB=DF.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)一批单价为20元的商品,若每件按30元的价格销售时,每天能卖出60件;若每件按50元的价格销售时,每天能卖出20件.假定每天销售件数y(件)与销售价格x (元/件)满足y=kx+b.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不考虑其他因素的情况下,每件商品销售价格定为多少元时才能使每天获得的利润最大?最大利润是多少?【分析】(1)待定系数法求解可得;(2)根据“总利润=每件利润×销售量”列出函数解析式,再配方成顶点式可得答案.【解答】解:(1)根据题意,得:,解得:.因此y与x的函数关系式为y=﹣2x+120;(2)设每件商品销售价格定为x元时,每天获得的利润为w元,根据题意,得w=(x﹣20)(﹣2x+120)=﹣2x2+160x﹣2400=﹣2(x﹣40)2+800,答:当销售单价定为40元时,每天获得的利润最大,最大利润是800元.22.(8分)“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有60人,条形统计图中m的值为10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为96°;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为1020人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.【分析】(1)用“基本了解”的人数除以它所占的百分比得到调查的总人数;(2)用360°乘以扇形统计图中“了解很少”部分所占的比例即可;(3)用总人数1800乘以达到“非常了解”和“基本了解”程度的人数所占的比例即可;(4)画树状图展示所有12种等可能的结果数,找出恰好抽到1个男生和1个女生的结果数,然后利用概率公式求解.【解答】解:(1)接受问卷调查的学生共有30÷50%=60(人),m=60﹣4﹣30﹣16=10;故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数=360°×=96°;故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:1800×=1020(人);故答案为:1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种,∴恰好抽到1名男生和1名女生的概率为=.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:EO=DC;(2)若菱形ABCD的边长为10,∠EBA=60°,求:菱形ABCD的面积.【分析】(1)首先证明四边形AEBO是平行四边形,再证明是矩形可得EO=AB,又因为AB=CD,所以EO=DC,问题得证;(2)根据菱形ABCD的面积=△ABD的面积+△BCD的面积=2×△ABD的面积计算即可.【解答】(1)证明:∵BE∥AC,AE∥BD∴四边形AEBO是平行四边形又∵菱形ABCD对角线交于点O∴AC⊥BD即∠AOB=90°∴四边形AEBO是矩形∴EO=AB∵菱形ABCD∴AB=DC∴EO=DC.…(5分)(2)解:由(1)知四边形AEBO是矩形∴∠EBO=90°∵∠EBA=60°∴∠ABO=30°在Rt△ABO中,AB=10,∠ABO=30°∴AO=5,BO=5∴BD=10∴菱形ABCD的面积=△ABD的面积+△BCD的面积=2×△ABD的面积=2××10×5=50.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接P A,PC,AF,且满足∠PCA =∠ABC.(1)求证:P A是⊙O的切线;(2)证明:EF2=4OD•OP;(3)若BC=8,tan∠AFP=,求DE的长.【分析】(1)先判断出P A=PC,得出∠P AC=∠PCA,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠P AC=90°,即可得出结论;(2)先判断出Rt△AOD∽Rt△POA,得出OA2=OP•OD,进而得出EF2=OP•OD,即可得出结论;(3)在Rt△ADF中,设AD=2a,得出DF=3a.OD=BC=4,AO=OF=3a﹣4,最后用勾股定理得出OD2+AD2=AO2,即可得出结论.【解答】(1)证明∵D是弦AC中点,∴OD⊥AC,∴PD是AC的中垂线,∴P A=PC,∴∠P AC=∠PCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠P AC=90°,即AB⊥P A,∴P A是⊙O的切线;(2)证明:由(1)知∠ODA=∠OAP=90°,∴Rt△AOD∽Rt△POA,∴,∴OA2=OP•OD.又OA=EF,∴EF2=OP•OD,即EF2=4OP•OD.(3)解:在Rt△ADF中,设AD=2a,则DF=3a.OD=BC=4,AO=OF=3a﹣4.∵OD2+AD2=AO2,即42+4a2=(3a﹣4)2,解得a=,∴DE=OE﹣OD=3a﹣8=.25.(10分)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,OC=3.动点P 从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、Q的运动时间为t秒(1)当t=2秒时,求tan∠QP A的值;(2)当线段PQ与线段AB相交于点M,且BM=2AM时,求t的值;(3)连结CQ,当点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数关系式;(4)直接写出∠OAB的角平分线经过△CQP边上中点时的t值.【分析】(1)当t=2s时,可知P与点B重合,在Rt△ABQ中可求得tan∠QP A的值;(2)用t可表示出BP和AQ的长,由△PBM∽△QAM可得到关于t的方程,可求得t 的值;(3)当点Q在线段OA上时,S=S△CPQ;当点Q在线段OA上,且点P在线段CB的延长线上时,由相似三角形的性质可用t表示出AM的长,由S=S四边形BCQM=S矩形OABC﹣S△COQ﹣S△AMQ,可求得S与t的关系式;当点Q在OA的延长线上时,设CQ交AB于点M,利用△AQM∽△BCM可用t表示出AM,从而可表示出BM,S=S△CBM,可求得答案.(4)先利用待定系数法求出直线AD解析式,再由C(0,3),P(2t,3),Q(t,0)知CP的中点坐标为(t,3),CQ中点坐标为(,),PQ中点坐标为(t,),继而分别代入计算可得.【解答】解:(1)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QP A==;(2)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(3)当0≤t≤2时,如图3,由题意可知CP=2t,∴S=S△PCQ=×2t×3=3t;当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,∴S=S四边形BCQM=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,∴S=S△BCM=×4×=;综上可知S=;(4)如图6,∵∠OAD=∠OAB=45°,OA=4,∴D(0,4),设直线AD解析式为y=kx+b,代入,得:,解得,∴直线AD解析式为y=﹣x+4,由题意知C(0,3),P(2t,3),Q(t,0),∴CP的中点坐标为(t,3),CQ中点坐标为(,),PQ中点坐标为(t,),若直线AD经过CP中点,则﹣t+4=3,解得t=1;若直线AD经过CQ中点,则﹣+4=,解得t=5;若直线AD经过PQ中点,则﹣t+4=,解得t=;综上,∠OAB的角平分线经过△CQP边上中点时的t值为1或5或.。
2020届中考模拟南京市联合体中考数学二模试卷(含参考答案)
江苏省南京市联合体中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.|﹣2|的值是()A.﹣2 B.2 C.D.﹣2.已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A.8.9×10﹣5B.8.9×10﹣4C.8.9×10﹣3D.8.9×10﹣23.计算a3•(﹣a)2的结果是()A.a5B.﹣a5C.a6D.﹣a64.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是()A. +1 B.C.﹣1 D.1﹣5.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四6.在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A.1 B.5 C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.计算:()﹣2+(+1)0= .8.因式分解:a3﹣4a= .9.计算: = .10.函数y=的自变量x的取值范围是.11.某商场统计了去年1~5月A,B两种品牌冰箱的销售情况.A品牌(台)1517161314B品牌(台)1014151620则这段时间内这两种品牌冰箱月销售量较稳定的是(填“A”或“B”).12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.13.已知m、n是一元二次方程ax2+2x+3=0的两个根,若m+n=2,则mn= .14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程.15.如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为.16.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:x…﹣1013…y…﹣3131…现给出下列说法:①该函数开口向下.②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.③当x=2时,y=3.④方程ax2+bx+c=﹣2的正根在3与4之间.其中正确的说法为.(只需写出序号)三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解不等式:1﹣≥,并写出它的所有正整数解.18.化简:÷(x+2﹣)19.(1)解方程组(2)请运用解二元一次方程组的思想方法解方程组.20.网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出如图两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人,并请补全条形统计图;(2)扇形统计图中18﹣23岁部分的圆心角的度数是度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.21.初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.22.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.23.如图,两棵大树AB、CD,它们根部的距离AC=4m,小强沿着正对这两棵树的方向前进.如果小强的眼睛与地面的距离为1.6m,小强在P处时测得B的仰角为20.3°,当小强前进5m达到Q处时,视线恰好经过两棵树的顶端B和D,此时仰角为36.42°.(1)求大树AB的高度;(2)求大树CD的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)24.把一根长80cm的铁丝分成两个部分,分别围成两个正方形.(1)能否使所围的两个正方形的面积和为250cm2,并说明理由;(2)能否使所围的两个正方形的面积和为180cm2,并说明理由;(3)怎么分,使围成两个正方形的面积和最小?25.如图,正比例函数y=2x的图象与反比例函数y=的图象交于点A、B,AB=2,(1)求k的值;(2)若反比例函数y=的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C的坐标.26.如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE ⊥CD垂足为E.(1)求∠BCE的度数;(2)求证:D为CE的中点;(3)连接OE交BC于点F,若AB=,求OE的长度.27.在△ABC中,用直尺和圆规作图(保留作图痕迹).(1)如图①,在AC上作点D,使DB+DC=AC.(2)如图②,作△BCE,使∠BEC=∠BAC,CE=BE;(3)如图③,已知线段a,作△BCF,使∠BFC=∠A,BF+CF=a.江苏省南京市联合体中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.|﹣2|的值是()A.﹣2 B.2 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A.8.9×10﹣5B.8.9×10﹣4C.8.9×10﹣3D.8.9×10﹣2【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.008 9=8.9×10﹣3.故选:C.3.计算a3•(﹣a)2的结果是()A.a5B.﹣a5C.a6D.﹣a6【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】原式利用幂的乘方与积的乘方运算法则,以及单项式乘单项式法则计算即可得到结果.【解答】解:原式=a3•a2=a5,故选A.4.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是()A. +1 B.C.﹣1 D.1﹣【考点】实数与数轴;勾股定理.【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示﹣1,可得E 点表示的数.【解答】解:∵AD长为2,AB长为1,∴AC==,∵A点表示﹣1,∴E点表示的数为:﹣1,故选:C.5.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四【考点】一次函数图象与系数的关系.【分析】分两种情况讨论即可.【解答】解:一次函数y=ax﹣x﹣a+1=(a﹣1)x﹣(a﹣1),当a﹣1>0时,﹣(a﹣1)<0,图象经过一、三、四象限;当a﹣1<0时,﹣(a﹣1)>0,图象经过一、二、四象限;所以其函数图象一定过一、四象限,故选D.6.在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A.1 B.5 C.D.【考点】切线的性质.【分析】以AC为直径作⊙O,当BC为⊙O的切线时,即BC⊥AC时,∠B最大,根据勾股定理即可求出答案.【解答】解:以AC为直径作⊙O,当BC为⊙O的切线时,即BC⊥AC时,∠B最大,此时BC===.故选D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.计算:()﹣2+(+1)0= 10 .【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=9+1=10,故答案为:108.因式分解:a3﹣4a= a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).9.计算: = ﹣1 .【考点】二次根式的乘除法.【分析】根据二次根式的乘除法,即可解答.【解答】解:,故答案为:﹣1.10.函数y=的自变量x的取值范围是x≥1 .【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】当函数表达式是二次根式时,被开方数为非负数.即x﹣1≥0.【解答】解:依题意,得x﹣1≥0,解得x≥1.11.某商场统计了去年1~5月A,B两种品牌冰箱的销售情况.A品牌(台)1517161314B品牌(台)1014151620则这段时间内这两种品牌冰箱月销售量较稳定的是 A (填“A”或“B”).【考点】方差.【分析】先利用方差公式分别计算出A、B品牌的方差,然后根据方差的意义判断这两种品牌冰箱月销售量的稳定性.【解答】解:A品牌的销售量的平均数为=15,B品牌的销售量的平均数为=15,A品牌的方差= [(13﹣15)2+(14﹣15)2+(15﹣15)2+(16﹣15)2+[(17﹣15)2]=2,B品牌的方差= [(10﹣15)2+(14﹣15)2+(15﹣15)2+(16﹣15)2+[(20﹣15)2]=10.4,因为10.4>2,所以A品牌的销售量较为稳定A,故答案为A.12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为35 °.【考点】平行线的性质;余角和补角.【分析】根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2+90°=∠3.【解答】解:如图:∵∠3=180°﹣∠1=180°﹣55°=125°,∵直尺两边互相平行,∴∠2+90°=∠3,∴∠2=125°﹣90°=35°.故答案为:35.13.已知m、n是一元二次方程ax2+2x+3=0的两个根,若m+n=2,则mn= ﹣3 .【考点】根与系数的关系.【分析】根据根与系数的关系得到m+n=2,mn=,然后利用整体代入的方法计算即可.【解答】解:根据题意得m+n=﹣=2,∴a=﹣1,∴mn=﹣3,故答案为﹣3.14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程=.【考点】由实际问题抽象出一元一次方程.【分析】设计划做x个“中国结”,根据小组人数不变列出方程.【解答】解:设计划做x个“中国结”,根据题意得=.故答案为=.15.如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为12.【考点】正多边形和圆.【分析】根据题意得到图中阴影部分的面积=S△ABC +3S△ADE,代入数据即可得到结论.【解答】解:如图,∵“六芒星”图标是由圆的六等分点连接而成,∴△ABC与△ADE是等边三角形,∵圆的半径为2,∴AH=3,BC=AB=6,∴AE=2,AF=,∴图中阴影部分的面积=S△ABC +3S△ADE=6×3+2×=12,故答案为:12.16.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:x…﹣1013…y…﹣3131…现给出下列说法:①该函数开口向下.②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.③当x=2时,y=3.④方程ax2+bx+c=﹣2的正根在3与4之间.其中正确的说法为①③④.(只需写出序号)【考点】二次函数的性质.【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对①进行判断;利用x=0和x=3时函数值相等可得到抛物线的对称轴方程,则可对②进行判断;利用抛物线的对称性可得x=1和x=2的函数值相等,则可对③进行判断;利用抛物线的对称性可得x=﹣1和x=4的函数值相等,则可对④进行判断.【解答】解:∵二次函数值先由小变大,再由大变小,∴抛物线的开口向下,所以①正确;∵抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线x=,所以②错误;点(1,3)和点(2,3)为对称点,所以③正确;∵x=﹣1时,y=﹣3,∴x=4时,y=﹣3,∴二次函数y=ax2+bx+c的函数值为﹣2时,﹣1<x<0或3<x<4,即方程ax2+bx+c=﹣2的负根在﹣1与0之间,正根在3与4之间,所以④正确.故答案为①③④.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解不等式:1﹣≥,并写出它的所有正整数解.【考点】一元一次不等式的整数解;解一元一次不等式.【分析】去分母,去括号,移项,合并同类项,系数化为1即可求得不等式的解集,然后确定正整数解即可.【解答】解:去分母,得:6﹣2(2x+1)≥3(1﹣x),去括号,得:6﹣4x+2≥3﹣3x,移项,合并同类项得:﹣x≥﹣5,系数化为1得:x≤5.它的所有正整数解1,2,3,4,5.18.化简:÷(x+2﹣)【考点】分式的混合运算.【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【解答】解:÷(x+2﹣)=÷()=•=.故答案为.19.(1)解方程组(2)请运用解二元一次方程组的思想方法解方程组.【考点】解一元二次方程﹣因式分解法;解二元一次方程组.【分析】(1)把①代入②得:3x﹣2(x+1)=﹣1,求出解x=1,再把x=1代入①得:y=2即可,(2)由①得:x=1﹣y ③,再把③代入②得:1﹣y+y 2=3,解得:y 1=﹣1,y 2=2,把y 1=﹣1,y 2=2分别代入③得:x 1=2,x 2=﹣1即可. 【解答】解:(1)把①代入②得:3x ﹣2(x+1)=﹣1, 解得:x=1.把x=1代入y ①得:y=2. ∴方程组的解为,(2)由①得:x=1﹣y ③把③代入②得:1﹣y+y 2=3, 解得:y 1=﹣1,y 2=2,把y 1=﹣1,y 2=2分别代入③得: 得:x 1=2,x 2=﹣1, ∴方程组的解为或.20.网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出如图两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了 1500 人,并请补全条形统计图; (2)扇形统计图中18﹣23岁部分的圆心角的度数是 108 度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数. 【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据30﹣35岁的人数除以所占的百分比,可得调查的人数;根据有理数的减法,可得12﹣17岁的人数;(2)根据18﹣23岁的人数除以抽查的人数乘以360°,可得答案;(3)根据总人数乘以12﹣23岁的人数所占的百分比,可得答案.【解答】解:(1)这次抽样调查中共调查了330÷22%=1500(人),12﹣17岁的人数为:1500﹣450﹣420﹣330=300(人),补全条形图如图:(2)扇形统计图中18﹣23岁部分的圆心角的度数是×360°=108°;(3)2000×=1000(万人),答:估计其中12﹣23岁的人数约1000万人.故答案为:(1)1500;(2)108.21.初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.【考点】列表法与树状图法.【分析】(1)直接根据概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出恰好选中甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)另外1人恰好选中副班长的概率是;(2)画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙的结果数为2,所以恰好选中班长和副班长的概率==.22.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.【考点】全等三角形的判定;菱形的判定.【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA判定△ABE≌△AD′F;(2)四边形AECF是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【解答】(1)证明:由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE和△AD′F中∵∴△ABE≌△AD′F(ASA).(2)解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.23.如图,两棵大树AB、CD,它们根部的距离AC=4m,小强沿着正对这两棵树的方向前进.如果小强的眼睛与地面的距离为1.6m,小强在P处时测得B的仰角为20.3°,当小强前进5m达到Q处时,视线恰好经过两棵树的顶端B和D,此时仰角为36.42°.(1)求大树AB的高度;(2)求大树CD的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)【考点】解直角三角形的应用﹣仰角俯角问题;视点、视角和盲区.【分析】(1)在Rt△GEB中,得到EG==,在Rt△GBF中,得到FG==,根据已知条件即可得到结论;(2)根据(1)的结论得到FH=FG+GH=9,根据三角函数的定义即可得到结论.【解答】解:(1)解:在Rt△BEG中,BG=EG×tan∠BEG,在Rt△BFG中,BG=FG×tan∠BFG,设FG=x米,(x+5)0.37=0.74x,解得x=5,BG=FG×tan∠BFG=0.74×5=3.7,AB=AG+BG=3.7+1.6=5.3米,答:大树AB的高度为5.3米.(2)在Rt△DFG中,DH=FH×tan∠DFG=(5+4)×0.74=6.66米,CD=DH+HC=6.66+1.6=8.26米,答:大树CD的高度为8.26米.24.把一根长80cm的铁丝分成两个部分,分别围成两个正方形.(1)能否使所围的两个正方形的面积和为250cm2,并说明理由;(2)能否使所围的两个正方形的面积和为180cm2,并说明理由;(3)怎么分,使围成两个正方形的面积和最小?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(20﹣x)cm,就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于250cm2建立方程求出其解即可;(2)根据题意建立方程x2+(20﹣x)2=180,再判定该一元二次方程是否有解即可;(3)设所围面积和为y cm2,则有y=x2+(20﹣x)2,再求二次函数最值即可.【解答】解:(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(20﹣x)cm,由题意得:x2+(20﹣x)2=250,解得x1=5,x2=15,当x=5时,4x=20,4(20﹣x)=60,当x=15时,4x=60,4(20﹣x)=20,答:能,长度分别为20cm与60cm;(2)x2+(20﹣x)2=180,整理:x2﹣20x+110=0,∵b2﹣4ac=400﹣440=﹣40<0,∴此方程无解,即不能围成两个正方形的面积和为180cm2;(3)设所围面积和为y cm2,y=x2+(20﹣x)2,=2 x2﹣40x+400=2( x﹣10)2+200,当x=10时,y最小为200.4x=40,4(20﹣x)=40,答:分成40cm与40cm,使围成两个正方形的面积和最小为200 cm.25.如图,正比例函数y=2x的图象与反比例函数y=的图象交于点A、B,AB=2,(1)求k的值;(2)若反比例函数y=的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)过点A 作AD ⊥x 轴,垂足为D ,由点A 、B 的对称性可知OA=,根据点在直线上,设点A 的坐标为(a ,2a ),在Rt △OAD 中,通过勾股定理即可求出点A 的坐标,由点A 的坐标利用待定系数法即可求出结论;(2)由点A 、B 的对称性结合点A 的坐标求出点B 的坐标,根据点C 在反比例函数图象上,设出点C 的坐标为(n ,),分△ABC 三个角分别为直角来考虑,利用“两直线垂直斜率之积为﹣1(斜率都存在)”求出点C 的坐标.【解答】解:(1)过点A 作AD ⊥x 轴,垂足为D ,如图1所示.由题意可知点A 与点B 关于点O 中心对称,且AB=2,∴OA=OB=.设点A 的坐标为(a ,2a ),在Rt △OAD 中,∠ADO=90°,由勾股定理得: a 2+(2a )2=()2,解得:a=1,∴点A 的坐标为(1,2).把A (1,2)代入y=中得:2=, 解得:k=2.(2)∵点A 的坐标为(1,2),点A 、B 关于原点O 中心对称, ∴点B 的坐标为(﹣1,﹣2). 设点C 的坐标为(n ,), △ABC 为直角三角形分三种情况: ①∠ABC=90°,则有AB ⊥BC ,•=﹣1,即n 2+5n+4,解得:n 1=﹣4,n 2=﹣1(舍去),此时点C 的坐标为(﹣4,﹣); ②∠BAC=90°,则有BA ⊥AC ,•=﹣1,即n 2﹣5n+4=0,解得:n 3=4,n 4=1(舍去), 此时点C 的坐标为(4,); ③∠ACB=90°,则有AC ⊥BC ,•=﹣1,即n 2=4,解得:n 5=﹣2,n 6=2,此时点C 的坐标为(﹣2,﹣1)或(2,1).综上所述:当△ABC 为直角三角形,点C 的坐标为(﹣4,﹣)、(4,)、(﹣2,﹣1)或(2,1).26.如图,在⊙O 的内接四边形ACDB 中,AB 为直径,AC :BC=1:2,点D 为弧AB 的中点,BE ⊥CD 垂足为E . (1)求∠BCE 的度数; (2)求证:D 为CE 的中点; (3)连接OE 交BC 于点F ,若AB=,求OE 的长度.【考点】圆的综合题.【分析】(1)连接AD ,由D 为弧AB 的中点,得到AD=BD ,根据圆周角定理即可得到结论; (2)由已知条件得到∠CBE=45°,根据圆内接四边形的性质得到∠A=∠BD ,根据相似三角形的性质得到DE :AC=BE :BC ,即可得到结论.(3)连接CO ,根据线段垂直平分线的判定定理得到OE 垂直平分BC ,由三角形的中位线到现在得到OF=AC,根据直角三角形的性质得到EF=BC,由勾股定理即可得到结论.【解答】(1)解:连接AD,∵D为弧AB的中点,∴AD=BD,∵AB为直径,∴∠ADB=90°,∴∠DAB=∠DBA=45°,∴∠DCB=∠DAB=45°;(2)证明:∵BE⊥CD,又∵∠ECB=45°,∴∠CBE=45°,∴CE=BE,∵四边形ACDB是圆O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDE+∠BDC=180°,∴∠A=∠BD,又∵∠ACB=∠BED=90°,∴△ABC∽△DBE,∴DE:AC=BE:BC,∴DE:BE=AC:BC=1:2,又∵CE=BE,∴DE:CE=1:2,∴D为CE的中点;(3)解:连接CO,∵CO=BO,CE=BE,∴OE垂直平分BC,∴F为OE中点,又∵O为BC中点,∴OF为△ABC的中位线,∴OF=AC,∵∠BEC=90°,EF为中线,∴EF=BC,在Rt△ACB中,AC2+BC2=AB2,∵AC:BC=1:2,AB=,∴AC=,BC=2,∴OE=OF+EF=1.5.27.在△ABC中,用直尺和圆规作图(保留作图痕迹).(1)如图①,在AC上作点D,使DB+DC=AC.(2)如图②,作△BCE,使∠BEC=∠BAC,CE=BE;(3)如图③,已知线段a,作△BCF,使∠BFC=∠A,BF+CF=a.【考点】作图—复杂作图.【分析】(1)根据垂直平分线性质作AB的垂直平分线即可解决问题.(2)作线段AB、BC的垂直平分线,以及△ABC的外接圆即可解决问题.(3)按照(2)的方法找到点E,再以点E为圆心,以EC或EB长为半径作圆,再以点B为圆心,a长为半径作圆,两圆的交点为点H,再连接BH,交△ABC的外接圆于点F,则点F为所求.【解答】解:(1)作AB的垂直平分线EF交AC于点D,此时DB+DC=AC,如图1所示,(2)作线段AB、BC的垂直平分线交于点O,以O为圆心,OA为半径作⊙O,交BC的垂直平分线于E,LJ EC、EB,△BCE就是所求是三角形.如图2所示,(3)按照(2)的方法找到点E,再以点E为圆心,以EC或EB长为半径作圆,再以点B为圆心,a长为半径作圆,两圆的交点为点H和H′,再连接BH或BH′交△ABC的外接圆于点F,则点F或F′为所求.如图3所示,.。
2020年上海市奉贤区中考数学二模试卷 (解析版)
2020年中考数学二模试卷一、选择题(本题共6题)1.下列计算中,结果等于a2m的是()A.a m+a m B.a m•a2C.(a m)m D.(a m)22.下列等式成立的是()A.()2=3B.=﹣3C.=3D.(﹣)2=﹣3 3.如果关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么实数m的值可以是()A.0B.1C.2D.34.甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数(秒)及方差S2(秒2)如表所示.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是()甲乙丙丁777.57.5S2 2.1 1.92 1.8A.甲B.乙C.丙D.丁5.四边形ABCD的两条对角线AC、BD互相平分.添加下列条件,一定能判定四边形ABCD 为菱形的是()A.∠ABD=∠BDC B.∠ABD=∠BAC C.∠ABD=∠CBD D.∠ABD=∠BCA 6.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN二、填空题(本大题共12题,每题4分,满分48分)7.计算:9a3b÷3a2=.8.如果代数式在实数范围内有意义,那么实数x的取值范围是.9.方程=4的解是.10.二元一次方程x+2y=3的正整数解是.11.从分别写有数字1,2,4的三张相同卡片中任取两张,如果把所抽取卡片上的两个数字分别作为点M的横坐标和纵坐标,那么点M在双曲线y=上的概率是.12.如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而.(填“增大”或“减小”)13.据国家统计局数据,2019年全年国内生产总值接近100万亿,比2018年增长6.1%.假设2020年全年国内生产总值的年增长率保持不变,那么2020年的全年国内生产总值将达到万亿.14.已知平行四边形ABCD,E是边AB的中点.设,,那么=.(结果用、表示).15.某校计划为全体1200名学生提供以下五种在线学习的方式:在线听课、在线答题、在线讨论、在线答疑和在线阅读.为了解学生需求,该校随机对部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成扇形统计图(如图).由这个统计图可知,全校学生中最喜欢“在线答疑”的学生人数约为人.16.如图,一艘轮船由西向东航行,在A处测得灯塔P在北偏东60°的方向,继续向东航行40海里后到B处,测得灯塔P在北偏东30°的方向,此时轮船与灯塔之间的距离是海里.17.在矩形ABCD中,AB=5,BC=12.如果分别以A、C为圆心的两圆外切,且圆A与直线BC相交,点D在圆A外,那么圆C的半径长r的取值范围是.18.如图,在Rt△ABC中,∠ACB=90°,∠B=35°,CD是斜边AB上的中线,如果将△BCD沿CD所在直线翻折,点B落在点E处,联结AE,那么∠CAE的度数是度.三、解答题(本大题共7题,满分78分)19.计算:.20.先化简,再求值:,其中x=.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与y 轴的正半轴交于点B,与反比例函数y=(x>0)的图象交于点C,且AB=BC,点C 的纵坐标为4.(1)求直线AB的表达式;(2)过点B作BD∥x轴,交反比例函数y=的图象于点D,求线段CD的长度.22.如图1,由于四边形具有不稳定性,因此在同一平面推矩形的边可以改变它的形状(推移过程中边的长度保持不变).已知矩形ABCD,AB=4cm,AD=3cm,固定边AB,推边AD,使得点D落在点E处,点C落在点F处.(1)如图2,如果∠DAE=30°,求点E到边AB的距离;(2)如图3,如果点A、E、C三点在同一直线上,求四边形ABFE的面积.23.已知:如图,在梯形ABCD中,CD∥AB,∠DAB=90°,对角线AC、BD相交于点E,AC⊥BC,垂足为点C,且BC2=CE•CA.(1)求证:AD=DE;(2)过点D作AC的垂线,交AC于点F,求证:CE2=AE•AF.24.如图,在平面直角坐标系xOy中,抛物线y=x2+bx经过点A(2,0).直线y=x﹣2与x轴交于点B,与y轴交于点C.(1)求这条抛物线的表达式和顶点的坐标;(2)将抛物线y=x2+bx向右平移,使平移后的抛物线经过点B,求平移后抛物线的表达式;(3)将抛物线y=x2+bx向下平移,使平移后的抛物线交y轴于点D,交线段BC于点P、Q,(点P在点Q右侧),平移后抛物线的顶点为M,如果DP∥x轴,求∠MCP的正弦值.25.如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.参考答案一、选择题(本大题共6题,每题4分,满分24分)1.下列计算中,结果等于a2m的是()A.a m+a m B.a m•a2C.(a m)m D.(a m)2【分析】直接利用合并同类项法则、同底数幂的乘法运算法则、幂的乘方运算法则分别计算得出答案.解:A、a m+a m=2a m,故此选项不合题意;B、a m•a2=a m+2,故此选项不合题意;C、(a m)m=,故此选项不合题意;D、(a m)2=a2m,故此选项符合题意.故选:D.2.下列等式成立的是()A.()2=3B.=﹣3C.=3D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简,判断即可.解:()2=3,A正确;=3,B错误;==3,C错误;(﹣)2=3,D错误;故选:A.3.如果关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么实数m的值可以是()A.0B.1C.2D.3【分析】利用判别式的意义得到△=(﹣2)2﹣4m>0,解不等式得到m的范围,然后对各选项进行判断.解:根据题意得△=(﹣2)2﹣4m>0,解得m<1,所以m可以取0.故选:A.4.甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数(秒)及方差S2(秒2)如表所示.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是()甲乙丙丁777.57.5S2 2.1 1.92 1.8A.甲B.乙C.丙D.丁【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.解:∵乙的平均分最好,方差最小,最稳定,∴应选乙.故选:B.5.四边形ABCD的两条对角线AC、BD互相平分.添加下列条件,一定能判定四边形ABCD 为菱形的是()A.∠ABD=∠BDC B.∠ABD=∠BAC C.∠ABD=∠CBD D.∠ABD=∠BCA 【分析】先由对角线AC、BD互相平分得出四边形ABCD是平行四边形,再按照平行四边形基础上菱形的判定方法:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形,逐个选项分析即可.解:如图所示,设四边形ABCD的两条对角线AC、BD交于点O,∵AC、BD互相平分,∴四边形ABCD是平行四边形.选项A,由平行四边形的性质可知AB∥DC,则∠ABD=∠BDC,从而A不符合题意;选项B,∠ABD=∠BAC,则AO=BO,再结合对角线AC、BD互相平分,可知AC=BD,从而平行四边形ABCD是矩形,故B不符合题意;选项C,由平行四边形的性质可知AD∥BC,从而∠ADB=∠CBD,当∠ABD=∠CBD时,∠ADB=∠ABD,故AB=AD,由一组邻边相等的平行四边形的菱形可知,C符合题意;选项D,∠ABD=∠BCA,得不出可以判定四边形ABCD为菱形的条件,故D不符合题意.综上,只有选项C一定能判定四边形ABCD为菱形.故选:C.6.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN【分析】根据三角形的高的概念得到AD⊥BC,根据垂线段最短判断.解:∵线段AN是△ABC边BC上的高,∴AD⊥BC,由垂线段最短可知,AM≥AN,故选:B.二、填空题(本大题共12题,每题4分,满分48分)7.计算:9a3b÷3a2=3ab.【分析】直接利用整式的除法运算法则计算得出答案.解:原式=3ab.故答案为:3ab.8.如果代数式在实数范围内有意义,那么实数x的取值范围是x≠3.【分析】根据分式有意义的条件是分母不为0求解可得.解:根据题意知3﹣x≠0,解得x≠3,故答案为:x≠3.9.方程=4的解是x=15.【分析】将无理方程化为一元一次方程,然后求解即可.解:原方程变形为:x+1=16,∴x=15,x=15时,被开方数x+1=16>0‘∴方程的解为x=15.故答案为x=15.’10.二元一次方程x+2y=3的正整数解是.【分析】把y看做已知数求出x,即可确定出正整数解.解:方程x+2y=3,变形得:x=﹣2y+3,当y=1时,x=1,则方程的正整数解为,故答案为:11.从分别写有数字1,2,4的三张相同卡片中任取两张,如果把所抽取卡片上的两个数字分别作为点M的横坐标和纵坐标,那么点M在双曲线y=上的概率是.【分析】列表得出所有等可能的情况,然后判断落在双曲线上点的情况数,即可求出点M在双曲线y=上的概率.解:列表如下:1241(2,1)(4,1)2(1,2)(4,2)4(1,4)(2,4)所有可能的情况有6种;落在双曲线y=上的点有:(1,4),(4,1)共2个,则P==.12.如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小.(填“增大”或“减小”)【分析】根据正比例函数的性质进行解答即可.解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小.13.据国家统计局数据,2019年全年国内生产总值接近100万亿,比2018年增长6.1%.假设2020年全年国内生产总值的年增长率保持不变,那么2020年的全年国内生产总值将达到106.1万亿.【分析】利用增长率的意义得到2020年全年国内生产总值100×(1+6.1%),然后进行计算即可.解:根据题意得:100×(1+6.1%)=106.1(万亿),答:2020年的全年国内生产总值将达到106.1万亿;故答案为:106.1.14.已知平行四边形ABCD,E是边AB的中点.设,,那么=﹣+.(结果用、表示).【分析】由三角形法则可知:=+,只要求出,即可解决问题.解:如图,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC∴==,∵E是AB的中点,∴AE=AB=,∵=+,∴=﹣+,故答案为:﹣+.15.某校计划为全体1200名学生提供以下五种在线学习的方式:在线听课、在线答题、在线讨论、在线答疑和在线阅读.为了解学生需求,该校随机对部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成扇形统计图(如图).由这个统计图可知,全校学生中最喜欢“在线答疑”的学生人数约为360人.【分析】先根据各部分所占百分比之和为1求出D类型人数所占百分比,再乘以总人数即可得.解:∵最喜欢“在线答疑”的学生人数占被调查人数的百分比为1﹣(20%+25%+15%+10%)=30%,∴全校学生中最喜欢“在线答疑”的学生人数约为1200×30%=360(人),故答案为:360.16.如图,一艘轮船由西向东航行,在A处测得灯塔P在北偏东60°的方向,继续向东航行40海里后到B处,测得灯塔P在北偏东30°的方向,此时轮船与灯塔之间的距离是40海里.【分析】根据已知方向角得出∠P=∠PAB=30°,进而得出对应边关系即可得出答案.解:如图所示:由题意可得,∠PAB=30°,∠DBP=30°,故∠PBE=60°,则∠P=∠PAB=30°,可得:AB=BP=40海里.故答案为:40.17.在矩形ABCD中,AB=5,BC=12.如果分别以A、C为圆心的两圆外切,且圆A与直线BC相交,点D在圆A外,那么圆C的半径长r的取值范围是1<r<8.【分析】四边形ABCD是矩形,可得∠B=90°,AD=BC=12,AB=5,根据勾股定理,得AC=13,分别以A、C为圆心的两圆外切,且圆A与直线BC相交,点D在圆A外,根据圆与圆相切的性质即可求出r的取值范围.解:如图,∵四边形ABCD是矩形,∴∠B=90°,AD=BC=12,AB=5,根据勾股定理,得AC==13,∵分别以A、C为圆心的两圆外切,且圆A与直线BC相交,∴13﹣5=8,∵点D在圆A外,∴13﹣12=1,∴1<r<8,所以圆C的半径长r的取值范围是1<r<8.故答案为:1<r<8.18.如图,在Rt△ABC中,∠ACB=90°,∠B=35°,CD是斜边AB上的中线,如果将△BCD沿CD所在直线翻折,点B落在点E处,联结AE,那么∠CAE的度数是125度.【分析】依据折叠的性质即可得到∠DAE的度数,再根据三角形内角和定理即可得到∠BAC的度数,进而得出∠CAE的度数.解:如图所示,∵CD是斜边AB上的中线,∴CD=BD=AD,∴∠BCD=∠B=35°,∴∠BDC=110°,由折叠可得,∠CDE=∠CDB=110°,DE=DB=AD,∴∠BDE=360°﹣110°×2=140°,∴∠DAE=∠BDE=70°,又∵Rt△ABC中,∠BAC=90°﹣35°=55°,∴∠CAE=55°+70°=125°,故答案为:125.三、解答题(本大题共7题,满分78分)19.计算:.【分析】直接利用二次根式的性质和零指数幂的性质、绝对值的性质分别化简得出答案.解:原式==﹣2++1=﹣1.20.先化简,再求值:,其中x=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.解:原式==,当时,原式=.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与y 轴的正半轴交于点B,与反比例函数y=(x>0)的图象交于点C,且AB=BC,点C 的纵坐标为4.(1)求直线AB的表达式;(2)过点B作BD∥x轴,交反比例函数y=的图象于点D,求线段CD的长度.【分析】(1)过点C作CH⊥x轴,垂足为H,如图,利用平行线分线段成比例得到==1,则OH=OA=2,则点C的坐标为(2,4),然后利用待定系数法求直线AB 的解析式;(2)把C点坐标代入y=中求出m=8,再利用直线解析式确定点B的坐标为(0,2),接着利用BD∥x轴得到点D纵坐标为2,根据反比例解析式确定点D坐标,然后根据两点间的距离公式计算CD的长.解:(1)过点C作CH⊥x轴,垂足为H,如图,∴==1,∵A(﹣2,0),∴AO=2,∴OH=OA=2,∵点C的纵坐标为4,∴点C的坐标为(2,4),设直线AB的表达式y=kx+b(k≠0),把A(﹣2,0),C(2,4)代入得,解得,∴直线AB的表达式y=x+2;(2)∵反比例函数y=的图象过点C(2,4),∴m=2×4=8,∵直线y=x+2与y轴的正半轴交于点B,∴点B的坐标为(0,2),∵BD∥x轴,∴点D纵坐标为2,当y=2时,=2,解得x=4,∴点D坐标为(4,2),∴CD==2.22.如图1,由于四边形具有不稳定性,因此在同一平面推矩形的边可以改变它的形状(推移过程中边的长度保持不变).已知矩形ABCD,AB=4cm,AD=3cm,固定边AB,推边AD,使得点D落在点E处,点C落在点F处.(1)如图2,如果∠DAE=30°,求点E到边AB的距离;(2)如图3,如果点A、E、C三点在同一直线上,求四边形ABFE的面积.【分析】(1)过点E作EH⊥AB轴,垂足为H,根据矩形的性质得到∠DAB=90°,AD∥EH,根据平行线的性质得到∠DAE=∠AEH,求得∠AEH=30°,解直角三角形即可得到结论;(2)过点E作EH⊥AB,垂足为H.根据矩形的性质得到AD=BC.得到BC=3cm.根据勾股定理得到cm,根据平行线分线段成比例定理得到cm,根据四边形的性质得到AD=AE=BF,AB=DC=EF.求得四边形ABCD是平行四边形,于是得到结论.解:(1)如图2,过点E作EH⊥AB轴,垂足为H,∵四边形ABCD是矩形,∴∠DAB=90°,∴AD∥EH,∴∠DAE=∠AEH,∵∠DAE=30°,∴∠AEH=30°.在直角△AEH中,∠AHE=90°,∴EH=AE•cos∠AEH,∵AD=AE=3cm,∴cm,即点E到边AB的距离是cm;(2)如图3,过点E作EH⊥AB,垂足为H.∵四边形ABCD是矩形,∴AD=BC,∵AD=3cm,∴BC=3cm,在直角△ABC中,∠ABC=90°,AB=4cm,∴cm,∵EH∥BC,∴,∵AE=AD=3 cm,∴,∴cm,∵推移过程中边的长度保持不变,∴AD=AE=BF,AB=DC=EF,∴四边形ABCD是平行四边形,∴cm2.23.已知:如图,在梯形ABCD中,CD∥AB,∠DAB=90°,对角线AC、BD相交于点E,AC⊥BC,垂足为点C,且BC2=CE•CA.(1)求证:AD=DE;(2)过点D作AC的垂线,交AC于点F,求证:CE2=AE•AF.【分析】(1)根据相似三角形的判定定理得到△BCE∽△ACB,根据相似三角形的性质得到∠CBE=∠CAB,根据等角的余角相等得到∠BEC=∠DAE,根据等腰三角形的判定定理证明;(2)根据平行线分线段成比例定理得到,,得到,整理得到CE2=AE•EF,根据等腰三角形的三线合一得到AF=EF,证明结论.【解答】证明:(1)∵BC2=CE•CA,∴,又∠ECB=∠BCA,∴△BCE∽△ACB,∴∠CBE=∠CAB,∵AC⊥BC,∠DAB=90°,∴∠BEC+∠CBE=90°,∠DAE+∠CAB=90°,∴∠BEC=∠DAE,∵∠BEC=∠DEA,∴∠DAE=∠DEA,∴AD=DE;(2)∵DF⊥AC,AC⊥BC,∴∠DFE=∠BCA=90°,∴DF∥BC,∴,∵DC∥AB,∴,∴,∴CE2=AE•EF,∵AD=DE,DF⊥AC,∴AF=EF,∴CE2=AE•AF.24.如图,在平面直角坐标系xOy中,抛物线y=x2+bx经过点A(2,0).直线y=x﹣2与x轴交于点B,与y轴交于点C.(1)求这条抛物线的表达式和顶点的坐标;(2)将抛物线y=x2+bx向右平移,使平移后的抛物线经过点B,求平移后抛物线的表达式;(3)将抛物线y=x2+bx向下平移,使平移后的抛物线交y轴于点D,交线段BC于点P、Q,(点P在点Q右侧),平移后抛物线的顶点为M,如果DP∥x轴,求∠MCP的正弦值.【分析】(1)根据待定系数法即可求得抛物线的解析式,化成顶点式即可求得顶点坐标;(2)根据图象上点的坐标特征求得B(4,0),然后分两种情况讨论求得即可;(3)设向下平移后的抛物线表达式是:y=x2﹣2x+n,得点D(0,n),即可求得P(2,n),代入y=x﹣2求得n=﹣1,即可求得平移后的解析式为y=x2﹣2x﹣2.求得顶点坐标,然后解直角三角形即可求得结论.解:(1)由题意,抛物线y=x2+bx经过点A(2,0),得0=4+2b,解得b=﹣2,∴抛物线的表达式是y=x2﹣2x.∵y=x2﹣2x=(x﹣1)2﹣1,∴它的顶点C的坐标是(1,﹣1).(2)∵直线与x轴交于点B,∴点B的坐标是(4,0).①将抛物线y=x2﹣2x向右平移2个单位,使得点A与点B重合,此时平移后的抛物线表达式是y=(x﹣3)2﹣1.②将抛物线y=x2﹣2x向右平移4个单位,使得点O与点B重合,此时平移后的抛物线表达式是y=(x﹣5)2﹣1.(3)设向下平移后的抛物线表达式是:y=x2﹣2x+n,得点D(0,n).∵DP∥x轴,∴点D、P关于抛物线的对称轴直线x=1对称,∴P(2,n).∵点P在直线BC上,∴.∴平移后的抛物线表达式是:y=x2﹣2x﹣2.∴新抛物线的顶点M的坐标是(1,﹣2).∴MC∥OB,∴∠MCP=∠OBC.在Rt△OBC中,,由题意得:OC=2,,∴.即∠MCP的正弦值是.25.如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.【分析】(1)如图1,连接EO,交弦CD于点H,根据垂径定理得EO⊥AB,由勾股定理计算,可得EH的长,证明∠HPE=∠HGE=45°,则PE=GE.从而可得结论;(2)如图2,连接OE,证明△PEH∽△EFO,列比例式可得结论;(3)如图3,作PQ⊥AB,分别计算PE和EF的长,利用三角形面积公式可得结论.解:(1)连接EO,交弦CD于点H,∵E为弧CD的中点,∴EO⊥AB,∵CD∥AB,∴OH⊥CD,∴CH=,连接CO,∵AB=10,CD=8,∴CO=5,CH=4,∴,∴EH=EO﹣OH=2,∵点F与点B重合,∴∠OBE=∠HGE=45°,∵PE⊥BE,∴∠HPE=∠HGE=45°,∴PE=GE,∴PH=HG=2,∴CP=CH﹣PH=4﹣2=2;(2)如图2,连接OE,交CD于H,∵∠PEH+∠OEF=90°,∠OFE+∠OEF=90°,∴∠PEH=∠OFE,∵∠PHE=∠EOF=90°,∴△PEH∽△EFO,∴,∵EH=2,FO=y,PH=4﹣x,EO=5,∴,∴.(3)如图3,过点P作PQ⊥AB,垂足为Q,∵GP=GF,∴∠GPF=∠GFP,∵CD∥AB,∴∠GPF=∠PFQ,∵PE⊥EF,∴PQ=PE,由(2)可知,△PEH∽△EFO,∴,∵PQ=OH=3,∴PE=3,∵EH=2,∴,∴,∴,∴.。
2020年北京市中考数学各地区模拟试题分类(北京专版)(二)——统计与概率
2020年北京市中考数学各地区模拟试题分类(北京专版)(二)——统计与概率一.选择题1.(2020•大兴区一模)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.B.C.D.2.(2020•北京一模)为了解高校学生对5G移动通信网络的消费意愿,从在校大学生中随机抽取了1000人进行调查,下面是大学生用户分类情况统计表和大学生愿意为5G套餐多支付的费用情况统计图(例如,早期体验用户中愿意为5G套餐多支付10元的人数占所有早期体验用户的50%).用户分类人数A:早期体验用户(目前已升级为5G用户)260人B:中期跟随用户(一年内将升级为5G用户)540人C:后期用户(一年后才升级为5G用户)200人下列推断中,不合理的是()A.早期体验用户中,愿意为5G套餐多支付10元,20元,30元的人数依次递减B.后期用户中,愿意为5G套餐多支付20元的人数最多C.愿意为5G套餐多支付10元的用户中,中期跟随用户人数最多D.愿意为5G套餐多支付20元的用户中,后期用户人数最多3.(2020•石景山区一模)某地区经过三年的新农村建设,年经济收入实现了翻两番(即是原来的22倍).为了更好地了解该地区的经济收入变化情况,统计了该地区新农村建设前后的年经济收入构成结构如图,则下列结论中不正确的是()A.新农村建设后,种植收入减少了B.新农村建设后,养殖收入实现了翻两番C.新农村建设后,第三产业收入比新农村建设前的年经济收入还多D.新农村建设后,第三产业收入与养殖收入之和超过了年经济收入的一半4.(2020•大兴区一模)众志成城,抗击疫情,救助重灾区.某校某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):100,45,100,40,100,60,155.下面有四个推断:①这7名同学所捐的零花钱的平均数是150;②这7名同学所捐的零花钱的中位数是100;③这7名同学所捐的零花钱的众数是100;④由这7名同学所捐的零花钱的中位数是100,可以推断该校全体同学所捐的零花钱的中位数也一定是100.所有合理推断的序号是()A.①③B.②③C.②④D.②③④5.(2020•东城区一模)党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.以下是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.年份人数地区2017 2018 2019东部300 147 47中部1112 181西部1634 916 323(以上数据来源于国家统计局)根据统计图表提供的信息,下面推断不正确的是()A.2018年中部地区农村贫困人口为597万人B.2017﹣2019年,农村贫困人口数量都是东部最少C.2016﹣2019年,农村贫困人口减少数量逐年增多D.2017﹣2019年,虽然西部农村贫困人口减少数量最多,但是相对于东、中部地区,它的降低率最低6.(2020•丰台区三模)某校在“爱护地球,绿化祖国”的活动中,组织同学开展植树造林活动,为了了解同学的植树情况,学校抽查了初一年级所有同学的植树情况(初一年级共有两个班),并将调查数据整理绘制成如下所示的部分数据尚不完整的统计图表.下面有四个推断:初一年级植树情况统计表棵树/棵 1 2 3 4 5人数7 33 a12 3①a的值为20;②初一年级共有80人;③一班植树棵数的众数是3;④二班植树棵数的是中位数2.其中合理的是()A.①③B.②④C.②③D.②③④7.(2020•丰台区一模)某区响应国家提出的垃圾分类的号召,将生活垃圾分为厨余垃圾、可回收物、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为了解居民生活垃圾分类的情况,随机对该区四类垃圾箱中总计1000吨生活垃圾进行分拣后,统计数据如表:“厨余垃圾”箱“可回收物”箱“有害垃圾”箱“其他垃圾”箱垃圾箱种类垃圾量垃圾种类(吨)厨余垃圾400 100 40 60可回收物30 140 10 20有害垃圾 5 20 60 15其他垃圾2515 20 40下列三种说法:(1)厨余垃圾投放错误的有400t;(2)估计可回收物投放正确的概率约为;(3)数据显示四类垃圾箱中都存在各类垃圾混放的现象,因此应该继续对居民进行生活垃圾分类的科普.其中正确的个数是()A.0 B.1 C.2 D.3 8.(2020•朝阳区一模)一个不透明的袋中装有8个黄球,m个红球,n个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列m与n的关系一定正确的是()A.m=n=8 B.n﹣m=8 C.m+n=8 D.m﹣n=8 9.(2020•顺义区一模)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是()A.①③B.②④C.②③D.①④10.(2020•顺义区一模)箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以毎次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()A .B .C .D.11.(2020•通州区一模)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要的支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A种支付方式和仅使用B种支付方式的学生的支付金额a(元)的分布情况如下:0<a≤1000 1000<a≤2000 a>2000 支付金额a(元)支付方式仅使用A18人9人3人仅使用B10人14人1人下面有四个推断:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率大于他使用B支付方式的概率;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有400人;③样本中仅使用A种支付方式的同学,上个月的支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数一定不低于1000元.其中合理的是()A.①③B.②④C.①②③D.①②③④12.(2020•朝阳区一模)生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m 天数据,整理后绘制成统计表进行分析.日均可回收物回收量(千吨)1≤x<2 2≤x<3 3≤x<4 4≤x<5 5≤x≤6 合计频数 1 2 b 3 m频率0.05 0.10 a0.15 1 表中3≤x<4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b 的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④13.(2020•朝阳区校级模拟)下列事件属于随机事件的是()A.随便翻开一本书,页码是偶数B.任意画一个三角形,至少有两个内角是锐角C.通常情况下,水的密度小于冰的密度D.在平面内,一条直线与一个圆有三个交点14.(2020•海淀区校级模拟)从2020年5月1日起,北京正式施行“垃圾分类”,如图是生活中的四个不同的垃圾分类投放桶.小明投放了两袋垃圾.不同类的概率是()A.B.C.D.15.(2020•西城区校级模拟)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分时间t人数学生类别0≤t<10 10≤t<2020≤t<3030≤t<40t≥40性别男7 31 25 30 4女8 29 26 32 8 学段初中25 36 44 11高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5h~25.5h之间;②这200名学生参加公益劳动时间的中位数在20h~30h之间;③这200名学生中的高中生参加公益劳动时间的中位数可能在20h~30h之间;④这200名学生中的初中生参加公益劳动时间的中位数一定在20h~30h之间.所有合理推断的序号是()A.①②③④B.①②④C.①②③D.①④16.(2020•朝阳区模拟)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s2=39.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变17.(2020•东城区校级模拟)新型冠状病毒肺炎侵袭全国,全国人民团齐心协力共抗疫情.小明同学一直关注疫情的变化,期待疫情结束早日复课,他主要关注近一个月新增确诊病例和现有病例的情况,如图1、图2所示,反映的是2020年2月22日至3月23日的新增确诊病例和现有病例的情况.对近一个月内数据,下面有四个推断:①全国新增境外输入病例呈上升趋势;②全国一天内新增确诊人数最多约650人;③全国新增确诊人数增加,现有确诊病例人数也增加;④全国一日新增确诊人数的中位数约为200.所有合理推断的序号是()A.①②B.①②③C.②③④D.①②④18.(2020•朝阳区校级二模)某商场一名业务员12个月的销售额(单位:万元)如下表:则这组数据的众数和中位数分别是()月份(月) 1 2 3 4 5 6 7 8 9 10 11 12 销售额(万元) 6.2 9.8 9.8 7.8 7.2 6.4 9.8 8 7 9.8 10 7.5 A.10,8 B.9.8,9.8 C.9.8,7.9 D.9.8,8.1二.填空题19.(2020•顺义区二模)数学活动课上,老师拿来一个不透明的袋子,告诉学生里面装有4个除颜色外均相同的小球,并且球的颜色为红色和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成的三个小组各摸球20次的结果,请你估计袋中有个红球.摸到红球的次数摸到白球的次数一组13 7二组14 6三组 15 520.(2020•东城区二模)在“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲同学成绩的方差是15,乙同学成绩的方差是3,由此推断甲、乙两人中成绩稳定的是 .21.(2020•丰台区二模)一个不透明的盒子中装有3个黄球,6个红球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是黄球的概率为 .22.(2020•房山区二模)已知一组数据x 1,x 2,x 3,…,x n 的方差是S 2,那么另一组数据x 1﹣3,x 2﹣3,x 3﹣3,…,x n ﹣3的方差是 .23.(2020•海淀区二模)如表记录了一名篮球运动员在罚球线上投篮的结果:投篮次数n 48 82 124 176 230 287 328 投中次数m 335983 118 159 195 223 投中频率0.69 0.720.670.670.690.680.68根据如表,这名篮球运动员投篮一次,投中的概率约为 .(结果精确到0.01) 24.(2020•丰台区一模)某研究所发布了《2019年中国城市综合实力排行榜》,其中部分城市的综合实力、GDP 和教育科研与医疗的排名情况如图所示,综合实力排名全国第5名的城市,教育科研与医疗排名全国第 名.25.(2020•平谷区一模)某公司计划招募10名技术人员,他们对20名面试合格人员进行了测试,测试包括理论知识和实践操作两部分,20名应聘者的成绩排名情况如图所示,下面有3个推断:①甲测试成绩非常优秀,入选的可能性很大; ②乙的理论知识排名比实践操作排名靠前;③位于椭圆形区域内的应聘者应该加强该专业理论知识的学习;其中合理的是.(写序号)26.(2020•石景山区一模)一个不透明的盒子中装有4个黄球,3个红球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是红球的概率是.27.(2020•大兴区一模)甲、乙两人参加射击比赛,每人各射击10次,两人所得环数的平均数相同,其中甲所得环数的方差为15,乙所得环数的方差为18,那么成绩较为稳定的是(填“甲”或“乙”).28.(2020•门头沟区一模)抗击肺炎期间,小明准备借助网络评价选取一家店铺,购置防护用品.他先后选取三家店铺,对每家店铺随机选取了1000条网络评价,统计结果如表:评价等级评价频数店铺一星二星三星四星五星合计甲93 30 54 338 485 1000乙80 56 69 340 455 1000丙92 128 125 155 500 1000 小明选择在(填“甲”“乙”“丙”)店铺购买防护用品,能获得良好的购物体验(即评价不低于四星)的可能性最大.三.解答题29.(2020•密云区二模)“垃圾分类就是新时尚”.树立正确的垃圾分类观念,促进青少年养成良好的文明习惯,对于增强公共意识,提升文明素质具有重要意义.为了调查学生对垃圾分类知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制,单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a.甲、乙两校学生样本成绩频数分布表及扇形统计图如图:甲校学生样本成绩频数分布表(表1)成绩m(分)频数频率50≤m<60 a0.1060≤m<70 b c70≤m<80 4 0.2080≤m<90 7 0.3590≤m≤100 2 d合计20 1.0b.甲、乙两校学生样本成绩的平均分、中位数、众数、方差如表所示:(表2)学校平均分中位数众数方差甲76.7 77 89 150.2乙78.1 80 n135.3 其中,乙校20名学生样本成绩的数据如下:54 72 62 91 87 69 88 79 80 62 80 84 93 67 87 87 90 71 6891请根据所给信息,解答下列问题:(1)表1中c=;表2中的众数n=;(2)乙校学生样本成绩扇形统计图中,70≤m<80这一组成绩所在扇形的圆心角度数是度;(3)在此次测试中,某学生的成绩是79分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)若乙校1000名学生都参加此次测试,成绩80分及以上为优秀,请估计乙校成绩优秀的学生约为人.30.(2020•平谷区二模)疫情期间某校学生积极观看网络直播课程,为了了解全校500名学生观看网络直播课程的情况,随机抽取50名学生,对他们观看网络直播课程的节数进行收集,并对数据进行了整理、描述和分析,下面给出了部分信息.观看直播课节数的频数分布表节数x频数频率0≤x<10 8 0.1610≤x<20 10 0.2020≤x<30 16 b30≤x<40 a0.24x≥40 4 0.08总数50 1其中,节数在20≤x<30这一组的数据是:20 20 21 22 23 23 23 23 25 26 26 26 27 28 28 29请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)随机抽取的50名学生观看直播课节数的中位数是;(4)请估计该校学生中观看网络直播课节数不低于30次的约有人.31.(2020•门头沟区二模)自从开展“创建全国文明城区”工作以来,门头沟区便掀起了“门头沟热心人”志愿服务的热潮,区教委也号召各校学生积极参与到志愿服务当中.为了解甲、乙两所学校学生一周志愿服务情况,从这两所学校中各随机抽取40名学生,分别对他们一周的志愿服务时长(单位:分钟)数据进行收集、整理、描述和分析.下面给出了部分信息:a.甲校40名学生一周的志愿服务时长的扇形统计图如图(数据分成5组:20≤x<40,40≤x<60,60≤x<80,80≤x<100,100≤x<120,120≤x<140):b.甲校40名学生一周志愿服务时长在60≤x<80这一组的是:60 60 62 63 65 68 70 72 73 75 75 76 80 80c.甲、乙两校各抽取的40名学生一周志愿服务时长的平均数、中位数、众数如下:学校平均数中位数众数甲校75 m90乙校75 76 85根据以上信息,回答下列问题:(1)m=;(2)根据上面的统计结果,你认为①所学校学生志愿服务工作做得好(填“甲”或“乙”),理由②;(3)甲校要求学生一周志愿服务的时长不少于60分钟,如果甲校共有学生800人,请估计甲校学生中一周志愿服务时长符合要求的有人.32.(2020•东城区二模)教育未来指数是为了评估教育系统在培养学生如何应对快速多变的未来社会方面所呈现的效果.现对教育未来指数得分前35名的国家和地区的有关数据进行收集、整理、描述和分析后,给出了部分信息.a.教育未来指数得分的频数分布直方图(数据分成7组:20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤t≤90);b.教育未来指数得分在60≤x<70这一组的是:61.2 62.8 64.6 65.2 67.2 67.3 67.5 68.5c.35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图如图:d.中国和中国香港的教育未来指数得分分别为32.9和68.5.(以上数据来源于《国际统计年鉴(2018)》和国际在线网)根据以上信息,回答下列问题:(1)中国香港的教育未来指数得分排名世界第;(2)在35个国家和地区的人均国内生产总值和教育未来指数得分情况统计图中,包括中国香港在内的少数几个国家和地区所对应的点位于虚线l的上方,请在图中用“〇”画出代表中国香港的点;(3)在教育未来指数得分比中国高的国家和地区中,人均国内生产总值的最大值约为万美元;(结果保留一位小数)(4)下列推断合理的是.(只填序号即可)①相交于点A,C所代表的国家和地区,中国的教育未来指数得分还有一定差距,“十三五”规划提出“教育优先发展,教育强则国家强”的任务,进一步提高国家教育水平;②相交于点B,C所代表的国家和地区,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.33.(2020•朝阳区二模)为了解某地区企业信息化发展水平,从该地区中随机抽取50家企业调研,针对体现企业信息化发展水平的A和B两项指标进行评估,获得了它们的成绩(十分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A项指标成绩的频数分布直方图如图(数据分成6组:4≤x<5,5≤x<6,6≤x<7,7≤x<8,8≤x<9,9≤x≤10):b.A项指标成绩在7≤x<8这一组的是:7.2,7.3,7.5,7.67,7.7,7.71,7.75,7.82,7.86,7.9,7.92,7.93,7.97.c.A,B两项指标成绩的平均数、中位数、众数如下:平均数中位数众数A项指标成绩7.37 m8.2B项指标成绩7.21 7.3 8 根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次调研评估中,某企业A项指标成绩和B项指标成绩都是7.5分,该企业成绩排名更靠前的指标是(填“A“或“B”),理由是;(3)如果该地区有500家企业,估计A项指标成绩超过7.68分的企业数量.参考答案一.选择题1.解:∵袋子中装有6个黑球3个白球,共有9个球,∴摸到白球的概率为=;故选:C.2.解:早期体验用户:支付10元人数:260×50%=130,支付20元人数260×35%=91,支付30元人数260×15%=39,中期跟随用户:支付10元人数55%×540=297,支付20元人数540×40%=216,支付30元人数540×5%=27,后期用户:支付10元人数200×40%=80,支付20元人数200×56%=112,支付30元人数200×4%=8,A、早期体验用户中,愿意为5G套餐多支付10元,20元,30元的人数依次递减,说法正确,故此选项不合题意;B、后期用户中,愿意为5G套餐多支付20元的人数最多,说法正确,故此选项不合题意;C、愿意为5G套餐多支付10元的用户中,中期跟随用户人数最多,说法正确,故此选项不合题意;D、愿意为5G套餐多支付20元的用户中,后期用户人数最多,说法不正确,应为中期跟随用户最多,故此选项符合题意;故选:D.3.解:设建设前经济收入为a,建设后经济收入为4a.A、建设后,种植收入为30%×4a=120%a,建设前,种植收入为55%a,故新农村建设后,种植收入增加了,故A项符合题意;B、建设后,养殖收入为30%×4a=120%a,建设前,养殖收入为30%a,故120%a÷30%a=4,故B项不符合题意;C、建设后,第三产业收入为32%×4a=128%a,故第三产业收入比新农村建设前的年经济收入还多,故C项不符合题意;D、建设后,养殖收入与第三产业收入总和为(30%+32%)×4a=248%a,经济收入的一半为2a,故248%a>2a,故D项不符合题意.故选:A.4.解:①这7名同学所捐的零花钱的平均数是,错误;②这7名同学所捐的零花钱的中位数是100,正确;③这7名同学所捐的零花钱的众数是100,正确;④由这7名同学所捐的零花钱的中位数是100,不能推断该校全体同学所捐的零花钱的中位数一定是100,错误;故选:B.5.解:A、2018年中部地区农村贫困人口为:1660﹣147﹣916=597(万人).故A的说法正确;B、由统计表可知B选项说法正确;C、∵4335﹣3046=1289,3046﹣1660=1386,1660﹣551=1109,∴1109<1289<1386,故C不正确,D、∵≈0.843,≈0.837,≈0.802,∴0.802<0.837<0.843,∴D说法正确.∴只有C推断不正确.故选:C.6.解:①由折线图与统计表可知,a=20+5=25,故①错误;②由统计表可知,初一年级两个班共有7+33+25+12+3=80(人),故②正确;③由题意可知,初一年级两个班每人种树1棵与5棵的人数和为7+3=10(人),∴37<一班人数<47,33<二班人数<43,又∵一班每人种树3棵树的有20人,人数最多,所以一班植树棵数的众数是3,故③正确;④∵二班人数<43,且二班每人种树2棵树的有21人,∴二班植树棵数的是中位数2,故④正确.故选:D.7.解:(1)厨余垃圾投放错误的有100+40+60=200t;故错误;(2)估计可回收物投放正确的概率约为=;故正确;(3)数据显示四类垃圾箱中都存在各类垃圾混放的现象,因此应该继续对居民进行生活垃圾分类的科普,故正确.故选:C.8.解:∵一个不透明的袋中装有8个黄球,m个红球,n个白球,∴任意摸出一个球,是黄球的概率为:,不是黄球的概率为:,∵是黄球的概率与不是黄球的概率相同,∴=,∴m+n=8.故选:C.9.解:①这5期的集训共有:5+7+10+14+20=56(天),故正确;②小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,故正确;④从测试成绩看,两人的最好的平均成绩是小明在第三期,小聪在第四期出现,建议集训时间定为10∽14天.故错误;故选:A.10.解:因为毎次摸到一球后记下颜色将球再放回,所以箱子内总装有除颜色外均相同的28个白球及2个红球,所以第28次摸球时,小芬摸到红球的概率==.故选:C.11.解:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率为=0.3,使用B支付方式的概率为=0.25,此推断合理;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有1000×=400(人),此推断合理;③样本中仅使用A种支付方式的同学,第15、16个数据均落在0<a≤1000,所以上个月的支付金额的中位数一定不超过1000元,此推断合理;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数无法估计,此推断不正确.故推断正确的有①②③,故选:C.12.解:①1÷0.05=20.故表中m的值为20,是合理推断;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15故这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D.13.解:A、随便翻开一本书,页码是偶数,是随机事件,符合题意;B、任意画一个三角形,至少有两个内角是锐角,是必然事件,不符合题意;C、通常情况下,水的密度小于冰的密度,是不可能事件,不符合题意;D、在平面内,一条直线与一个圆有三个交点,是不可能事件,不符合题意;故选:A.14.解:四个不同的垃圾桶分别记为A,B,C,D表示,根据题意画图如下:由树状图知,小明投放的垃圾共有16种等可能结果,其中小明投放的两袋垃圾不同类的有12种结果,所以小明投放的两袋垃圾不同类的概率为=;故选:D.15.解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5~25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为 15,60,51,62,12,则中位数在20~30 之间,故②正确.③由统计表计算可得,高中学段栏各时间段人数分别为 0﹣15,35,15,18,1,当0≤t<10时间段人数为 0 时,中位数在 10~20 之间;当 0≤t<10时间段人数为 15 时,中位数在 10~20 之间,故③错误.④由统计表计算可得,初中学段栏0≤t<10 的人数在 0~15 之间,当人数为 0 时中位数在 20~30 之间;当人数为 15 时,中位数在 20~30 之间,故④正确.故选:B.16.解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.17.解:由折线图可得:①全国新增境外输入病例呈上升趋势,正确;②全国一天内新增确诊人数最多约650人,正确;③全国新增确诊人数增加,现有确诊病例人数在减少,错误;④全国一日新增确诊人数的中位数约为100,错误故选:A.18.解:这组数据的众数是9.8,6.2,6.4,7,7.2,7.5,7.8,8,9.8,9.8,9.8,9.8,10,中位数是=7.9,故选:C.二.填空题(共10小题)19.解:∵三个小组摸到红球的次数为13+14+15=42(次),∴摸到红球的概率为=,∴估计袋中有4×≈3个红球.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年九年级数学中考模拟试卷二
班级 姓名 学号 成绩
一、精心选一选
1.2的倒数是( ) A.2-
B.
12
C.12
-
D.1
2.反比例函数()0k
y k x
=≠的图像经过点()13-,
,则k 的值为( ) A.3-
B.3 C.13 D.1
3
-
3.数据24457,,,,的众数是( ) A.2
B.4
C.5
D.7
4.不等式组10
30
x x ->⎧⎨-<⎩的解集是( )
A.1x >
B.3x <
C.13x <<
D.无解
5.下列图形中,不是..轴对称图形的是( )
6.随着新农村建设的进一步加快,湖州市农村居民人均纯收入增长迅速.据统计,2005年本市农村居民人均纯收入比上一年增长14.2%.若2004年湖州市农村居民人均纯收入为a 元,则2005年本市农村居民人均纯收入可表示为( ) A.14.2a 元 B.1.42a 元 C.1.142a 元
D.0.142a 元
7.如图,在O e 中,AB 是弦,OC AB ⊥,垂足为C ,若16AB =,6OC =,则O e 的半径OA 等于( ) A.16
B.12
C.10
D.8
8.如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a
在展开前所对
A.
B.
C.
D.
(第7题)
的面的数字是( ) A.2
B.3
C.4
D.5
9.下列各式从左到右的变形正确的是( )
A.
122122
x y
x y x y x y -
-=++ B.
0.220.22a b a b
a b a b ++=++
C.11
x x x y x y
+--
=-- D.
a b a b
a b a b
+-=-+ 10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( ) A.1
B.
1
2
C.
13
D.
23
11.已知一次函数y kx b =+(k b ,是常数,0k ≠),x 与y 的部分对应值如下表所示:
那么不等式0
kx b +<
的解集是( ) A.0x <
B.0x >
C.1x < D.1x >
12.已知二次函数()2
111y x bx b =-+-≤≤,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( ) A.先往左上方移动,再往左下方移动 B.先往左下方移动,再往左上方移动 C.先往右上方移动,再往右下方移动
D.先往右下方移动,再往右上方移动
二、细心填一填
13.请你写出一个..
比0.1小的有理数 . (第10题 图1)
(第10题 图2)
14.分解因式:322________a a a -+=.
15.分式方程12
1
x x =+的解是______x =.
16.如图,O e 的半径为4cm ,直线l OA ⊥,垂足为O ,
则直线l 沿射线OA 方向平移 cm 时与O e 相切.
17.为了测量校园内水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底()8.4B 米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得 2.4DE =米,观察者目高 1.6CD =米,则树()AB 的高度约为 米.(精确到0.1米)
18.一青蛙在如图88⨯的正方形(每个小正方形的边长为1)网格的格点(小正方形的顶点)上跳跃,青蛙每次所跳的最远距离为5,青蛙从点A 开始连续跳六次正好跳回到点A ,则所构成的封闭图形的面积的最大值是 .
三、开心用一用
19.计算:()
()2
1
3
22
-+-
.
(第17题)
A
B
C
D E
(第18题)
A (第16题)
A
O
l
答案:
一、选择题
二、填空题
13.略(答案不唯一)14.()21
a a-15.116.417.5.618.12
三、解答题(共60分)
19.(本小题8分)
解:原式
1
31
2
=-+
1
2
2
=.。