高考数学 考前三个月复习冲刺 专题2 第4练 用好基本不等式课件 理

合集下载

第四节基本不等式课件高三数学一轮复习

第四节基本不等式课件高三数学一轮复习

基本不等式再理解:变形公式
ab a b (a 0,b 0) 2
和定积最大
积定和最小
2.利用基本不等式求最值问题
已知 x>0,y>0,则
(1)如果积 xy 是定值 p,那么当且仅当_x__=__y__时,x+y 有
_最___小___值是__2__p___.(简记:积定和最小)
(2)如果和 x +y 是定值 p,那么当且仅当_x_=___y__时,xy 有
答案 (1)C (2)5+2 6
某厂家拟定在 2018 年举行促销活动,经调查测算,该产 品的年销量(即该厂的年产量)x 万件与年促销费用 m(m≥0)万 元满足 x=3-m+k 1(k 为常数).如果不搞促销活动,那么该产 品的年销量只能是 1 万件.已知 2018 年生产该产品的固定投 入为 8 万元,每生产 1 万件该产品需要再投入 16 万元,厂家 将每件产品的销售价格定为每件产品平均成本的 1.5 倍. (1)将 2018 年该产品的利润 y 万元表示为年促销费用 m 万元 的函数;(产品成本包括固定投入和再投入两部分资金) (2)厂家 2018 年的促销费用投入多少万元时,厂家利润最大?
制 50≤x≤100(单位:千米/时).假设汽油的价格是每升 2 元,而汽车每小
时耗油
2+ x2 360
升,司机的工资是每小时
14
元.
(1)求这次行车总费用 y 关于 x 的表达式;
(2)当 x 为何值时,这次行车的总费用最低,并求出最低费用的值.
(1)y=m(kx2+9)=m x
x+9x
,x∈[1,10].
值,则 a=________. (2)不等式 x2+x<a+b对任意 a,b∈(0,+∞)恒成立,

基本不等式课件(共43张PPT)

基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。

高考数学(理)总复习备考指导课件:第六章 不等式、推理与证明 第4节 基本不等式

高考数学(理)总复习备考指导课件:第六章 不等式、推理与证明 第4节 基本不等式
ห้องสมุดไป่ตู้
x+y=18,
高 考


实 ·
则 xy 的最大值为(
)
验 ·


A.80
B.77
C.81
D.82
明 考



【解析】 xy≤x+2 y2=1282=81,当且仅当 x=y=9 时

探 等号成立,故选 C.


· 提
【答案】 C
时 作



菜单
高三一轮总复习理科数学 ·(安徽专用)
=5+2ba+ab≥5+4=9.


· 提 知 能
∴1+1a1+1b≥9(当且仅当 a=b=12时等号成立).
时 作 业
菜单
高三一轮总复习理科数学 ·(安徽专用)








· 固 基 础
法二 1+1a1+1b=1+1a+1b+a1b,
课 时 作 业

菜单
高三一轮总复习理科数学 ·(安徽专用)


主 落
3.常用不等式
考 体


· 固
(1)a2+b2≥2ab (a,b∈R).
· 明



(2)ab≤(a+2 b)2(a,b∈R).

典 例 探
(3)(a+2 b)2≤a2+2 b2(a,b∈R).


· 提 知
(4)ba+ab≥2(a,b 同号).



实 ·
【例 2】 已知 a>0,b>0,a+b=1,求证:

高考数学总复习基本不等式PPT课件

高考数学总复习基本不等式PPT课件

互动探究 保持例题条件不变,证明:
a+12+
b+12≤2.
证明:∵a>0,b>0,且 a+b=1,
∴ a+12+ b+12

a+12×1+
b+12×1
≤a+122+1+b+122+1=a+b2+3=42=2.
当且仅当 a+12=1,b+12=1,即 a=b=12时等号成立.
∴当 y=1,x=2,z=2 时,x+2y-z 取最大值,最大值
为 2.
(3)由 a+b+c=0 得,a=-b-c, 则 a2=(-b-c)2=b2+c2+2bc≤b2+c2+b2+c2=2(b2 +c2),
又 a2+b2+c2=1,所以 3a2≤2,解得-
6 3 ≤a≤
36,
故 a 的最大值为
6 3.
(1)将该厂家 2019 年该产品的利润 y 万元表示为年促销 费用 t 万元的函数;
(2)该厂家 2019 年的年促销费用投入多少万元时,厂家 利润最大?
[自主解答] (1)由题意有 1=4-k1, 得 k=3,故 x=4-2t+3 1. 故 y=1.5×6+x12x×x-(6+12x)-t=3+6x-t=3+ 64-2t+3 1-t=27-2t1+8 1-t(t≥0).
答案:9
3.已知函数 f(x)=4x+ax(x>0,a>0)在 x=3 时取得最小值,则 a=________.
解析:∵x>0,a>0,∴f(x)=4x+xa≥2
4x·xa=4 a,
当且仅当 4x=xa时等号成立,此时 a=4x2,由已知 x=3 时
函数取得最小值,所以 a=4×9=36.
答案:36
(2)如果和 x+y 是定值 P,那么当且仅当 x=y 时,

高三数学复习(理):第4讲 基本不等式

高三数学复习(理):第4讲 基本不等式

第4讲 基本不等式[学生用书P132]1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎛⎪⎫a +b 22(a ,b ∈R ). (4)a 2+b 22≥⎛⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它们的几何平均数.常用结论已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( ) (2)ab ≤⎝⎛⎭⎪⎫a +b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)× 二、易错纠偏 常见误区|K(1)忽视不等式成立的条件a >0且b >0;(2)忽视等号成立的条件. 1.若x <0,则x +1x ( ) A .有最小值,且最小值为2 B .有最大值,且最大值为2 C .有最小值,且最小值为-2 D .有最大值,且最大值为-2 解析:选D.因为x <0,所以-x >0, -x +1-x≥21=2,当且仅当x =-1时,等号成立, 所以x +1x ≤-2.2.若x ≥2,则x +4x +2的最小值为________.解析:设x+2=t,则x+4x+2=t+4t-2.又由x≥2,得t≥4,而函数y=t+4t-2在[2,+∞)上是增函数,因此当t=4时,t+4t -2取得最小值4+44-2=3.答案:3[学生用书P133]利用基本不等式求最值(多维探究)角度一通过拼凑法利用基本不等式求最值(1)已知0<x<1,则x(4-3x)取得最大值时x的值为________.(2)已知x<54,则f(x)=4x-2+14x-5的最大值为________.【解析】(1)x(4-3x)=13·(3x)(4-3x)≤13·⎣⎢⎡⎦⎥⎤3x+(4-3x)22=43,当且仅当3x=4-3x,即x=23时,取等号.(2)因为x<54,所以5-4x>0,则f(x)=4x-2+14x-5=-⎝⎛⎭⎪⎫5-4x+15-4x+3≤-2 (5-4x)15-4x+3≤-2+3=1.当且仅当5-4x=15-4x,即x=1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.【答案】 (1)23 (2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b 的最小值为________.【解析】 ⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b = ⎝ ⎛⎭⎪⎫2+b a ·⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号.【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1, 所以1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立.答案:4【迁移探究2】 (变条件)若本例条件变为已知a >0,b >0,4a +b =4,则⎝ ⎛⎭⎪⎫1+1a⎝ ⎛⎭⎪⎫1+1b 的最小值为________. 解析:由4a +b =4得a +b4=1,⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎪⎫1+a +b 4b =⎝ ⎛⎭⎪⎫2+b 4a ⎝ ⎛⎭⎪⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号.答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A.223B .23 C.33D.233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x .由⎩⎨⎧x >0,y >0,即⎩⎨⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223.【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.角度四 多次利用基本不等式求最值若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.【解析】 因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.【答案】 4当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.1.(2021·湖北八校第一次联考)已知x >0,y >0,且1x +9y =1,则x +y 的最小值为( )A .12B .16C .20D .24解析:选B.方法一:由题意x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=1+y x +9x y +9≥1+2y x ×9xy+9=16,当且仅当⎩⎪⎨⎪⎧x >0,y >0,1x +9y =1,y x =9x y ,即⎩⎪⎨⎪⎧x =4,y =12时取等号,故选B.方法二:由1x +9y =1得9x +y -xy =0,即(x -1)(y -9)=9,可知x >1,y >9,所以x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16,当且仅当⎩⎪⎨⎪⎧x >1,y >9,1x +9y=1,x -1=y -9=3,即⎩⎪⎨⎪⎧x =4,y =12时取等号,故选B. 2.(2021·贵阳市四校联考)已知a +b =2,且a >-1,b >0,则1a +1+1b的最小值为( )A.23 B .1 C.43D.32解析:选C.由a +b =2,得a +1+b =3.因为a >-1,所以a +1>0,所以1a +1+1b =13(a +1+b )⎝ ⎛⎭⎪⎫1a +1+1b =13⎝ ⎛⎭⎪⎪⎫2+b a +1+a +1b ≥13·⎝⎛⎭⎪⎪⎫2+2ba +1·a +1b =43,当且仅当b a +1=a +1b ,即a =12,b =32时等号成立,所以1a +1+1b 的最小值为43,故选C.3.已知x ,y 为正实数,则4x x +3y+3y x 的最小值为( )A.53 B .103 C.32 D .3解析:选 D.由题意得x >0,y >0,4x x +3y +3y x =4x x +3y +x +3y x -1≥24x x +3y ·x +3yx-1=4-1=3(当且仅当x =3y 时等号成立).基本不等式的实际应用(师生共研)某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,则每批应生产产品() A.60件B.80件C.100件D.120件【解析】若每批生产x件产品,则每件产品的生产准备费用是800x元,仓储费用是x8元,总的费用是800x+x8≥2800x·x8=20,当且仅当800x=x8,即x=80时取等号,故选B.【答案】 B利用基本不等式求解实际问题的注意事项(1)根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值.(2)设变量时一般要把求最大值或最小值的变量定义为函数.(3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.(2021·安徽安庆大观模拟)如图所示,矩形ABCD的边AB靠在墙PQ上,另外三边是由篱笆围成的.若该矩形的面积为4,则围成矩形ABCD 所需要篱笆的()A .最小长度为8B .最小长度为4 2C .最大长度为8D .最大长度为4 2解析:选B.设BC =a ,a >0,CD =b ,b >0,则ab =4,所以围成矩形ABCD 所需要的篱笆长度为2a +b =2a +4a ≥22a ·4a =42,当且仅当2a =4a ,即a =2时取等号,此时长度取得最小值4 2.故选B.基本不等式的综合应用(多维探究) 角度一 与其他知识的交汇问题(2021·吉林通钢一中等三校第五次联考)在Rt △ABC 中,已知∠C =90°,CA =3,CB =4,P 为线段AB 上的一点,且CP →=x ·CA →|CA →|+y ·CB →|CB →|,则1x +1y 的最小值为( )A.76 B .712C.712+33D.76+33【解析】 因为CA =3,CB =4,即|CA →|=3,|CB →|=4, 所以CP →=x CA →|CA →|+y CB →|CB →|=x 3CA →+y 4CB →,因为P 为线段AB 上的一点,即P ,A ,B 三点共线, 所以x 3+y4=1(x >0,y >0),所以1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·⎝ ⎛⎭⎪⎫x 3+y 4=712+x 3y +y 4x ≥712+2112=712+33, 当且仅当x 3y =y 4x 时等号成立,所以1x +1y 的最小值为712+33,故选C. 【答案】 C角度二 求参数的值或取值范围已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y ≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号,所以(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,所以(a +1)2≥9恒成立. 所以a ≥4. 【答案】 4(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解. (3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.1.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( ) A .2 B .2 2 C .4D .2 3解析:选C.因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y =2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )⎝ ⎛⎭⎪⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x 3y =4,当且仅当x =3y =12时取等号,所以1x +13y 的最小值为4.故选C.2.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________.解析:a n =a 1+(n -1)d =n ,S n =n (1+n )2,所以S n +8a n =n (1+n )2+8n =12(n +16n +1) ≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.所以S n +8a n 的最小值是92.答案:923.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.解析:对任意x ∈N *,f (x )≥3恒成立, 即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,当x =8x ,即x =22时,g (x )取得最小值,又x ∈N *,则g (2)=6,g (3)=173.因为g (2)>g (3),所以g (x )min =173,所以-⎝ ⎛⎭⎪⎫x +8x +3≤-83,所以a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.答案:⎣⎢⎡⎭⎪⎫-83,+∞[学生用书P135]核心素养系列12 逻辑推理——利用基本不等式连续放缩求最值已知a >b >0,那么a 2+1b (a -b )的最小值为________.【解析】 因为a >b >0,所以a -b >0,所以b (a -b )≤⎝⎛⎭⎪⎫b +a -b 22=a 24,所以a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a 2=4,当且仅当b =a -b 且a 2=4a 2,即a =2且b =22时取等号,所以a 2+1b (a -b )的最小值为4.【答案】 4设a >b >0,则a 2+1ab +1a (a -b )的最小值是________.【解析】 因为a >b >0,所以a -b >0,所以a 2+1ab +1a (a -b )=(a 2-ab )+1(a 2-ab )+1ab+ab ≥2(a 2-ab )·1(a 2-ab )+21ab ×ab =4(当且仅当a 2-ab =1a 2-ab且1ab =ab ,即a =2,b =22时取等号).【答案】 4利用基本不等式求函数或代数式的最值时一定要注意验证等号是否成立,特别是当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.已知正实数a ,b ,c ,d 满足a +b =1,c +d =1,则1abc +1d 的最小值是( )A .10B .9C .42D.3 3解析:选B.因为a +b =1,a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=14,所以1ab ≥4,当且仅当a =b =12时取等号.又因为c +d =1,c >0,d >0,所以1abc +1d ≥4·1c +1d =(c +d )·⎝ ⎛⎭⎪⎫4c +1d =5+4d c +c d ≥5+24d c ·c d =9,当且仅当a =b =12,且c =23,d =13时取等号,即1abc +1d 的最小值为9,故选B.[学生用书P393(单独成册)][A 级 基础练]1.若正实数x ,y 满足x +y =2,则1xy 的最小值为( ) A .1 B .2 C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1.2.若a >0,b >0,a +b =ab ,则a +b 的最小值为( ) A .2 B .4 C .6D .8解析:选B.方法一:由于a +b =ab ≤(a +b )24,因此a +b ≥4或a +b ≤0(舍去),当且仅当a =b =2时取等号,故选B.方法二:由题意,得1a +1b =1,所以a +b =(a +b )(1a +1b )=2+a b +ba ≥2+2=4,当且仅当a =b =2时取等号,故选B.方法三:由题意知a =b b -1(b >1),所以a +b =b b -1+b =2+b -1+1b -1≥2+2=4,当且仅当a =b =2时取等号,故选B.3.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B .43 C .-1D .0解析:选D.f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值是0.4.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2 B .2 C .2 2D .4解析:选C.因为1a +2b =ab ,所以a >0,b >0, 由ab =1a +2b ≥21a ×2b =22ab ,所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2. 5.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B .12 C .1D.32解析:选A.y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A.6.(2021·四省八校第二次质量检测)已知a =(1,x ),b =(y ,1),x >0,y >0.若a ∥b ,则xyx +y的最大值为( ) A.12 B .1 C. 2D .2解析:选 A.方法一:a ∥b ⇒xy =1,所以y =1x ,所以xy x +y =1x +y =1x +1x≤12x ×1x =12(当且仅当x =1x ,即x =1时取等号),所以xy x +y的最大值为12,故选A.方法二:a ∥b ⇒xy =1,又x >0,y >0,所以xy x +y =1x +y ≤12xy=12(当且仅当x =y =1时取等号),所以xy x +y的最大值为12,故选A.7.(2020·高考天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.解析:依题意得12a +12b +8a +b =a +b 2ab +8a +b =a +b 2+8a +b≥2a +b 2×8a +b =4,当且仅当⎩⎪⎨⎪⎧a >0,b >0,ab =1,a +b 2=8a +b ,即⎩⎪⎨⎪⎧ab =1,a +b =4时取等号.因此,12a +12b +8a +b 的最小值为4.答案:48.(2020·高考江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是__________.解析:方法一:由5x 2y 2+y 4=1得x 2=15y 2-y 25,则x 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即y 2=12时取等号,则x 2+y 2的最小值是45.方法二:4=(5x 2+y 2)·4y 2≤⎣⎢⎡⎦⎥⎤(5x 2+y 2)+4y 222=254·(x 2+y 2)2,则x 2+y 2≥45,当且仅当5x 2+y 2 =4y 2=2,即x 2=310,y 2=12时取等号,则x 2+y 2的最小值是45.答案:459.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎪⎫3-2x 2+83-2x +32. 当x <32时,有3-2x >0, 所以3-2x 2+83-2x ≥23-2x 2·83-2x=4,当且仅当3-2x 2=83-2x ,即x =-12(x =72舍去)时取等号. 于是y ≤-4+32=-52, 故函数的最大值为-52. (2)因为0<x <2,所以2-x >0, 所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, 所以当x =1时,函数y =x (4-2x )取最大值,为 2.10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0, 则1=8x +2y ≥2 8x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x ≥10+22x y ·8yx =18. 当且仅当x =12,y =6时等号成立, 所以x +y 的最小值为18.[B 级 综合练]11.已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24解析:选B.由3a +1b ≥ma +3b,得m ≤(a +3b )⎝ ⎛⎭⎪⎫3a +1b =9b a +ab +6.又9b a +ab +6≥29+6=12,当且仅当9b a =ab ,即a =3b 时等号成立, 所以m ≤12,所以m 的最大值为12. 12.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A .3B .5C.7 D.9解析:选C.因为x>0,y>0.且1x+1+1y=12,所以x+1+y=2⎝⎛⎭⎪⎫1x+1+1y(x+1+y)=2(1+1+yx+1+x+1y)≥2⎝⎛⎭⎪⎪⎫2+2yx+1·x+1y=8,当且仅当yx+1=x+1y,即x=3,y=4时取等号,所以x+y≥7,故x+y的最小值为7,故选C.13.若a+b≠0,则a2+b2+1(a+b)2的最小值为________.解析:a2+b2+1(a+b)2≥(a+b)22+1(a+b)2≥212=2,当且仅当a=b=2-34时,a2+b2+1(a+b)2取得最小值 2.答案: 214.某厂家拟定在2021年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用m(m≥0)万元满足x=3-km+1(k为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2021年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的 1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2021年的促销费用投入多少万元时,厂家利润最大?解:(1)由题意知,当m=0时,x=1(万件),所以1=3-k⇒k=2,所以x=3-2m+1(m≥0),每件产品的销售价格为1.5×8+16xx(元),所以2021年的利润y=1.5x×8+16xx-8-16x-m=-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)因为m ≥0时,16m +1+(m +1)≥216=8, 所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3时,y max =21.故该厂家2021年的促销费用投入3万元时,厂家的利润最大,为21万元.[C 级 提升练]15.已知角α,β的顶点都为坐标原点,始边都与x 轴的非负半轴重合,且都为第一象限的角,α,β终边上分别有点A (1,a ),B (2,b ),且α=2β,则1a +b 的最小值为( )A .1B . 2 C. 3D .2解析:选C.由已知得,a >0,b >0,tan α=a ,tan β=b2,因为α=2β,所以tan α=tan 2β,所以a =2·b 21-⎝ ⎛⎭⎪⎫b 22=4b 4-b 2,所以1a +b =4-b 24b +b =1b +3b 4≥21b ·3b4=3,当且仅当1b =3b 4,即b =233时,取等号.故1a +b 的最小值为 3.16.(2021·江西吉安期末)已知函数f (x )=sin 2xsin x +2,则f (x ) 的最大值为________.解析:设t =sin x +2,则t ∈[1,3],则sin 2x =(t -2)2,则g (t )=(t -2)2t =t +4t -4(1≤t ≤3),由“对勾函数”的性质可得g (t )在[1,2)上为减函数,在(2,3]上为增函数,又g (1)=1,g (3)=13,所以g (t )max =g (1)=1.即f (x )的最大值为1.答案:1。

基本不等式及其应用ppt课件

基本不等式及其应用ppt课件
【解析】 x+x-4 1=(x-1)+x-4 1+1≥ 2 x-1·x-4 1+1=5.(当且仅当 x=3 时取等号)
易错点睛:(1)忽略基本不等式成立的前提条件致误. (2)忽略“定值”致误.
课堂考点突破
——精析考题 提升能力
考点一 利用基本不等式求最值
角度 1:拼凑法求最值
2
【例 1】 (1)已知 0<x<1,则 x(4-3x)取得最大值时 x 的值为_3_______.
A.5
B.6
C.7
D.8
【解析】 因为每台机器生产的产品可获得的总利润 s(单位:万元)与机器运转时间
t(单位:年,t∈N*)的关系为 s=-t2+23t-64,所以年平均利润 y=st=-t-6t4+23=-
t+6t4+23≤-2 t·6t4+23=7,当且仅当 t=8 时等号成立,故要使年平均利润最大,则 每台机器运转的时间 t 为 8,故选 D.
即该厂家 2022 年的促销费用投入 3 万元时,厂家的利润最大,最大为 21 万元.
『变式训练』
4.某公司购买了一批机器投入生产,若每台机器生产的产品可获得的总利润 s(单位:
万元)与机器运转时间 t(单位:年,t∈N*)的关系为 s=-t2+23t-64,要使年平均利润最
大,则每台机器运转的时间 t 为( D )
【解析】 (1)因为函数 f(x)=4x3-ax2-2bx 在 x=1 处有极值,所以 f ′(1)=12-2a -2b=0,即 a+b=6,又 a>0,b>0,则4a+1b=16(a+b)·4a+1b=165+ab+4ab≥5+6 4=32 当且仅当ab=4ab,即a=2b=4时取“=”,故选 C.
【解析】 解法一(换元消元法): 由已知得 x+3y=9-xy, 因为 x>0,y>0,所以 x+3y≥2 3xy, 所以 3xy≤x+23y2,当且仅当 x=3y,即 x=3,y=1 时取等号,即(x+3y)2+12(x+3y) -108≥0. 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.

基本不等式ppt课件

基本不等式ppt课件

a+b
当且仅当a
2
= b时,等号成立.
思考:如图,是圆的直径,点是上一点, = ,
D
= .过点作垂直于的弦,连接,.
a+b
ab
2
半径 = _______________,则
= _______________
与大小关系怎么样?
a+b

(1)当积xy等于定值P时,

2
证明:∵ x,y都是正数, ∴
1 2
时,积有最大值 .
4
xy.
p, ∴ x + y ≥ 2 p,
积定和最小
当且仅当x = y时,上式等号成立.
于是,当x = y时,和x + y有最小值2 p.
(2)当和x + y等于定值S时, xy ≤
S
,∴xy
2
当且仅当x = y,上式等号成立.
2
2
∴x +
4
]
2−x
4
,得x
2−x
4
的最大值为−2.
x−2
+ 2 ≤ −2 (2 − x)(
4
)
2−x
+ 2 = −2,
= 0或x = 4(舍去),即x = 0时等号成立.
练习巩固
练习2:已知0 < < 1,求 1 − 的最大值.
解:∵0 < < 1,∴ 1 − x > 0
∴ 1 − ≤
∴x +
4
x+4
− 4 ≥ 2 (x + 4) ∙
4
,即x
x+4
4
的最小值为0.

基本不等式(共43张)ppt课件

基本不等式(共43张)ppt课件

解法步骤与技巧
01
02
03
移项
将不等式两边的同类项进 行合并,并把未知数移到 不等式的一边,常数移到 另一边。
合并同类项
将移项后的不等式两边的 同类项进行合并。
系数化为1
将不等式两边的系数化为 1,得到不等式的解集。
解法步骤与技巧
注意不等号的方向
在解不等式时,要注意不等号的方向,特别是在乘以或除以一个负数时,不等 号的方向要发生变化。
基本不等式(共43张)ppt课件
目录
• 基本不等式概念及性质 • 一元一次不等式解法 • 一元二次不等式解法 • 绝对值不等式解法 • 分式不等式和无理不等式解法 • 基本不等式在几何中的应用 • 基本不等式在函数中的应用 • 总结回顾与拓展延伸
01
基本不等式概念及性质
不等式定义与分类
不等式定义
根);
04
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
04
绝对值不等式解法
绝对值概念及性质
绝对值定义
对于任意实数$x$,其绝对值$|x|$定义为:若$x geq 0$,则$|x| = x$;若$x < 0$,则$|x| = -x$。
绝对值的性质
非负性、对称性、三角不等式。
绝对值不等式解法步骤
将不等式左边进行因式分解,找出不 等式的临界点。
无理不等式解法
第一步
确定无理不等式的定义域,即根 号内的表达式必须大于等于零。
第二步
通过平方消去根号,将无理不等式 转化为有理不等式。
第三步
利用有理不等式的解法,求解转化 后的不等式,得到原无理不等式的 解集。
综合应用举例
例1

基本不等式课件——2025届高三数学一轮复习

基本不等式课件——2025届高三数学一轮复习

核心考点
课时分层作业
[跟进训练]
1.(1)(多选)(2024·河北沧州模拟)下列函数中,函数的最小值为4的是(
A.y=x(4-x)
1

C.y= +
B.y=
1
(0<x<1)
1−
)
2 +9
2 +5
D.y= +
4

(2)(2024·重庆巴蜀中学模拟)已知x>0,y>0,且xy+x-2y=4,则2x+y的最小
是(
)
2 +2
B.ab≤
2
2 + 2
+ 2
C.

2
2

A.


+ ≥2

BC

[当 <0时,A不成立;当ab<0时,D不成立.]

D.
2

+

4.(人教A版必修第一册P46例3(2)改编)一段长为30 m的篱笆围成一个一边靠墙的矩
形菜园,墙长18
15
15
m,当这个矩形的长为________m,宽为________m时,菜园面积
由x+y=xy得,(x-1)(y-1)=1,

2
1
2
1
于是得
+
=1+ +2+ =3+
−1
−1
−1
−1
−1
=3+2
1
2
2,当且仅当 = ,
−1 −1
2
2
即x=1+ ,y=1+ 2时取“=”,

2
+
的最小值为3+2
−1
−1

高三总复习数学课件 基本不等式

高三总复习数学课件 基本不等式

A.3 B.4 C.5 D.6
()




x

2


x

2

0


y

ห้องสมุดไป่ตู้
x

4 x-2

(x

2)

4 x-2

2≥2
x-2·x-4 2+2=6,当且仅当 x-2=x-4 2,即 x=4 时取等号,∴函数 y
=x+x-4 2的最小值为 6. 答案:D
2.已知 0<x<3,则 2x(3-x)的最大值为
1.(苏教版必修第一册 P57·T8 改编)设 a>0,则 9a+1a的最小值为 A.4 B.5 C.6 D.7
()
解析:9a+1a≥2 9a×1a=6.当且仅当 9a=1a,即 a=13时等号成立.
答案:C
2.(人教 B 版必修第一册 P73·例 1 改编)若 x<0,则 x+1x A.有最小值,且最小值为2 B.有最大值,且最大值为2 C.有最小值,且最小值为-2 D.有最大值,且最大值为-2
4.利用基本不等式求最值问题
已知x>0,y>0,则: (1)如果积xy是定值p,那么当且仅当 x=y 时,x+y有最小值是 2 p .(简
记:积定和最小)
(2)如果和x+y是定值p,那么当且仅当 x=y
p2 时,xy有最大值是 4 .(简
记:和定积最大)
(1)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满 足基本不等式中“正”“定”“等”的条件.
等号成立,A 选项正确;
对于 B 选项,由基本不等式可得a+12b+2a1+b=13(3a+3b)a+12b+2a1+b=13[(a

高考数学复习考点知识专题讲解课件第4讲 基本不等式

高考数学复习考点知识专题讲解课件第4讲 基本不等式
2
4.若a>0,b>0,则1 1≤
+

+
≤ ≤
2

时,等号成立.

2 +2
,当且仅当a=b时,等号成立.
2
课前基础巩固
◈ 对点演练 ◈
题组一 常识题
1
±1
2
1. [教材改编] 当x=
时,x + 2 取得最小值 2 .

[解析]
1
2
x+

≥2
2
2

×
1
1
2
=2,当且仅当x=±1时,等号成立,则x
ABD )
1
2
2
A.a +b ≥
1
a-b
B.2 >
C.log2a+log2b≥-2
D. + ≤ 2
2
2
+ 2
1
1
对于C,log2a+log2b=log2(ab)≤log2
=log2 =-2,当且仅当a=b= 时,等号成立,
2
4
2
故C不正确;
对于D,因为a>0,b>0,( +
2
) =1+2

8
-7,当且仅当-2x= ,即x=-2时,等号成立,∴f(x)的最大值为-7.

课前基础巩固
4
当x≥2时,x+ 的最小值为
+2
5.
3 .
4
4
4
[解析]设x+2=t,则x+ =t+ -2.由x≥2得t≥4,而函数y=t+ -2在[4,+∞)上单调

高考数学复习-《基本不等式》

高考数学复习-《基本不等式》
当且仅当a=b时,等号成立。
注意: (1)两个不等式的适用范围不同,而等号成立的条件相同
(2) a b 称为正数a、b的几何平均数
a b 称为它们的算术平均数。 2
精选课件ppt
4
基本不等式的几何解释: D
A
aCb B
E 半弦CD不大于半径
精选课件ppt
5
应用一:利用基本不等式判断代数式的大小关系
精选课件ppt
7
例3、(1)用篱笆围一个面积为100m2的矩形菜园,
问这个矩形的长、宽各为多少时,所用篱笆最短。最 短篱笆是多少? (2)一段长为36m的篱笆围成一矩形菜园,问这个矩 形的长、宽各为多少时,菜园的面积最大。最大面积 是多少?
精选课件ppt
8
例4、某工厂要建造一个长方形无盖贮水池, 其容积为4800立方米,深为3米,如果池底 每平方米的造价为150元,池壁每平方米的 造价为120元,怎样设计水池能使总造价最 低?最低总造价是多少?
§3.4基本不等式: ab a b
2
精选课件ppt
1
ICM2002会标
精选课件ppt
赵爽:弦图
2
D
D
a2 b2
b
G Fa
C
a
A
E
A E(FGH)
b
C
H
B
B
基本不等式1: 一般地,对于任意实数a、b,我们有
a2b2 2ab
当且仅当a=b时,等号成立。
精选课件ppt
3
基本不等式2:
abab(a0,b0) 2
A、 yx5(xR,x0) 5x
C、 y3x3x(xR)
B、ylgx 1 (1x10) lgx

2025届高中数学一轮复习课件《基本不等式》ppt

2025届高中数学一轮复习课件《基本不等式》ppt
(2)2a+a+3 b+a-2 b=(a+b)+(a-b)+a+3 b+a-2 b,∵a>b>0,∴a+b+a+3 b≥2 3,
当且仅当 a+b= 3时等号成立,a-b+a-2 b≥2 2,当且仅当 a-b= 2时等号成立,联
立aa-+bb==
3, 2,
a= 解得
b=
3+ 2
3- 2
2, 2,
a= ∴当
高考一轮总复习•数学
第25页
维度 3 常数代换法求最值
典例 3(1)(2024·湖南长沙一中模拟)已知 p,q 为正实数且 p+q=3,则p+1 2+q+1 1的最
小值为( )
A.23
B.53
C.74
D.95
(2)(多选)(2024·山东菏泽模拟)已知 a>0,b>0,且1a+1b=1,则下列说法正确的是( )
高考一轮总复习•数学
第17页
(3)当 x≥2 时,易知 y=4x-2+4x-1 5单调递增, x≥2 时,函数的单调性怎么确定呢?转化为复合函数. 即:y=t+1t +3,t=4x-5,这 里 t≥3. 由复合函数易知其单调递增. ∴ymin=4×2-2+4×12-5=139.
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 基本不等式a+2 b≥ ab 1.基本不等式成立的条件: a>0,b>0 . 2.等号成立的条件:当且仅当 a=b 时,等号成立.
3.其中a+2 b叫做正数 a,b 的 算术平均数 , ab叫做正数 a,b 的 几何平均数 .
高考一轮总复习•数学
当且仅当1a=1b,即 a=b=2 时,等号成立,故 A 错误;因为 a>0,b>0,所以 a+b= (a+b)1a+1b=2+ba+ab≥2+2 ba·ab=4,当且仅当ba=ab,即 a=b=2 时,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.结构调整与应用基本不等式 基本不等式在解题时一般不能直接应用,而是需要根据已知 条件和基本不等式的“需求”寻找“结合点”,即把研究对 象化成适用基本不等式的形式.常见的转化方法有 (1)x+x-b a=x-a+x-b a+a (x>a). (2)若ax+by=1,则 mx+ny=(mx+ny)×1=(mx+ny)·ax+by ≥ma+nb+2 abmn(字母均为正数).
例1(1)(2015·山东)定义运算“⊗”:x⊗y= x2-y2 (x,y∈R, xy
xy≠0),当x>0,y>0时,x⊗y+(2y)⊗x的最小值为_____2___. x2-y2 2y2-x2
解析 由题意,得 x⊗y+(2y)⊗x= xy + 2yx =x2+2xy2y2≥2 2xx2·y2y2= 2,
常考题型精析 高考题型精练
常考题型精析
题型一 利用基本不等式求最大值、最小值 题型二 基本不等式的综合应用
题型一 利用基本不等式求最大值、最小值
1.利用基本不等式求最值的注意点 (1)在运用基本不等式求最值时,必须保证“一正,二定, 三相等”,凑出定值是关键. (2)若两次连用基本不等式,要注意等号的取得条件的一致 性,否则就会出错.
故k·2m=1,
∴直线 AB 的方程为 y-m=21m(x-m), 即x-2my+2m2-m=0.
x-2my+2m2-m=0,
由y2=x
消去 x,
整理得y2-2my+2m2-m=0, ∴Δ=4m-4m2>0,y1+y2=2m,y1y2=2m2-m.
从而|AB|=
1+k12·|y1-y2|
= 1+4m2· 4m-4m2
又 r=21(f(a)+f(b))=21(ln a+ln b)
=12ln
a+12ln
b=ln(ab)
1 2
=f( ab)=p.
故p=r<q.选C. 答案 C
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
1.(2014·重庆)若 log4(3a+4b)=log2 ab,则 a+b 的最小值是
P(1,1)到抛物线C:y2=2px(p>0)的准线的
2 距离为
5
.点M(t,1)是C上的定点,A,B是
4
C上的两动点,且线段AB的中点Q(m,n)
在直线OM上.
①求曲线C的方程及t的值;
解 y2=2px(p>0)的准线 x=-2p,
∴1-(-p2)=45,p=21, ∴抛物线C的方程为y2=x. 又点M(t,1)在曲线C上, ∴t=1.
A.60件
B.80件
C.100件
D.120件
解析
平均每件产品的费用为
y

800+x82 x

x

x 8
≥2 80x0×8x=20, 当且仅当80x0=8x,即 x=80 时取等号.
所以每批应生产产品80件,才能使平均到每件产品的生产
准备费用与仓储费用之和最小.
答案 B
(2)如图所示 ,在 直角 坐标 系xOy中 ,点
变式训练 2 (2015·陕西)设 f(x)=ln x,0<a<b,若 p=f( ab),
q=fa+2 b,r=21(f(a)+f(b)),则下列关系式中正确的是(
)
A.q=r<p C.p=r<q
B.q=r>p D.p=r>q
解析 ∵0<a<b,
∴a+2 b> ab,
又∵f(x)=ln x在(0,+∞)上为增函数, 故 fa+2 b>f( ab),即 q>p.
专题2 不等式与线性规划
第4练 用好基本不等式
题型分析·高考展望
基本不等式是解决函数值域、最值、不等式证明、参数范围 问题的有效工具,在高考中经常考查,有时也会对其单独考 查.题目难度为中等偏上.应用时,要注意“拆、拼、凑”等 技巧,特别要注意应用条件,只有具备公式应用的三个条件 时,才可应用,否则可能会导致结果错误.
所以 y=t+41t +1≤51, 即 y 的最大值为15(当 t=2,即 x=5 时 y 取得最大值).
答案
1 5
点评 求条件最值问题一般有两种思路:一是利用函数单调 性求最值;二是利用基本不等式.在利用基本不等式时往往都 需要变形,变形的原则是在已知条件下通过变形凑出基本不 等式应用的条件,即“和”或“积”为定值.等号能够取得.
变式训练1 (2015·重庆)设a,b>0,a+b=5,则 a+1+ b+3的最大值为________.
解析 ∵a,b>0,a+b=5, ∴( a+1+ b+3)2=a+b+4+2 a+1 b+3≤a+b+4 +( a+1)2+( b+3)2=a+b+4+a+b+4=18, 当且仅当 a=27,b=23时,等号成立,
=2 1+4m2m-m2 ∴d= 1|A+B4| m2=2 m1-m≤m+(1-m)=1,
当且仅当 m=1-m,即 m=12时,上式等号成立, 又 m=12满足 Δ=4m-4m2>0. ∴d的最大值为1.
点评 基本不等式及不等式性质应用十分广泛,在最优化实 际问题,平面几何问题,代数式最值等方面都要用到基本不 等式,应用时一定要注意检验“三个条件”是否具备.
当且仅当x=y时取等号.
x-1 (2)函数 y=x+3+ x-1的最大值为________.
解析 令 t= x-1≥0,则 x=t2+1, 所以 y=t2+1+t 3+t=t2+tt+4. 当t=0,即x=1时,y=0; 当 t>0,即 x>1 时,y=t+4t1+1,
因为 t+4t ≥2 4=4(当且仅当 t=2 时取等号),
②记 d= 1|+AB4|m2,求 d 的最大值. 解 由①知,点M(1,1),从而n=m,即点Q(m,m), 依题意,直线AB的斜率存在,且不为0, 设直线AB的斜率为k(k≠0). 且A(x1,y1),B(x2.y2), 由yy2122==xx12,, 得(y1-y2)(y1+y2)=x1-x2,
则 a+1+ b+3≤3 2,即 a+1+ b+3最大值为 3 2. 答案 3 2
题型二 基本不等式的综合应用
例2 (1)某车间分批生产某种产品,每批的生产准备费用为
800元,若每批生产x件,则平均仓储时间为 x 天,且每件产 8
品每天的仓储费用为1元,为使平均到每件产品的生产准备
费用与仓储费用之和最小,每批应生产产品( )
相关文档
最新文档