列方程组解应用题---行程问题

合集下载

列方程解应用题50道

列方程解应用题50道

列方程解应用题50道一、行程问题(10道)1. 甲、乙两地相距300千米,一辆汽车从甲地开往乙地,平均每小时行60千米,行了x小时后,距离乙地还有70千米。

求汽车行驶的时间x。

- 解析:汽车行驶的路程为速度乘以时间,即60x千米。

总路程是300千米,此时距离乙地还有70千米,那么汽车行驶的路程就是300 - 70 = 230千米。

可列方程60x=230,解得x = 23/6小时。

2. 一辆客车和一辆货车同时从相距540千米的两地相对开出,客车每小时行65千米,货车每小时行55千米。

经过x小时两车相遇,求x的值。

- 解析:两车相对而行,它们的相对速度是两车速度之和,即65 + 55 = 120千米/小时。

经过x小时相遇,根据路程=速度×时间,可列方程(65 + 55)x=540,120x = 540,解得x = 4.5小时。

3. 小明和小亮在400米的环形跑道上跑步,小明每秒跑5米,小亮每秒跑3米,他们同时从同一点出发,同向而行,经过x秒小明第一次追上小亮,求x。

- 解析:同向而行时,小明第一次追上小亮时,小明比小亮多跑了一圈,即400米。

小明每秒比小亮多跑5 - 3 = 2米。

可列方程(5 - 3)x = 400,2x = 400,解得x = 200秒。

4. 甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,经过x小时两人还相距10千米,A、B两地相距100千米,求x。

- 解析:甲、乙两人x小时一共走了(8 + 6)x千米,此时两人还相距10千米,而A、B两地相距100千米,可列方程(8+6)x+10 = 100,14x+10 = 100,14x = 90,解得x = 45/7小时。

5. 一辆汽车以每小时45千米的速度从A地开往B地,另一辆汽车以每小时55千米的速度从B地开往A地,两车同时出发,经过x小时相遇,A、B两地相距400千米,求x。

五年级数学上册《列方程解决行程问题》应用题

五年级数学上册《列方程解决行程问题》应用题

五年级数学上册《列方程解决行程问题》应用题1. 小林家和小云家相距4.5km 。

周日早上9: 00两人分别从家骑自行车相向而行,小林每分钟骑250m ,小云每分钟骑200m 。

两人何时相遇?小云的路程 + 小林的路程 = 4.5km 200 × ? + 250 × ? = 4500m解:设两人x 分钟后相遇。

200x+250x=4500450x=4500450x ÷450=4500÷450x=10答:两人9: 10相遇。

总路程4.5km (4500米)小云的路程 小林的路程 相遇2.甲、乙两个工程队同时从两端开凿一条隧道,计划32天完成。

甲队计划每天完成7米,乙队每天需要完成多少米?解:设乙队每天需要完成x 米。

7×32+32x=480224+32x=48032x=256x=8答:乙队每天需要完成8米。

3.周勇和李刚两家相距600m,他们同时从自己家出发,相向而行,经过4分钟后相遇。

周勇每分钟走72m,李刚每分钟走多少米?解:设李刚每分钟走x m。

4×(72+x)=60072+x=150x=78答:李刚每分钟走150米。

4.甲、乙两地相距441km,客车每小时行50km,比货车每小时快2km,两车同时分别从甲、乙两地相对开出,经过多少小时两车相遇?解:设经过x小时两车相遇。

(50+50-2) x =44198 x =441x=4.5答:经过4.5小时两车相遇。

5.甲、乙两辆汽车同时从相距207km的两地出发,相对开出,甲车每小时行46km,乙车的速度是甲车的1.5倍,经过多长时间两车相遇?解:设经过x小时两车相遇。

(46+46×1.5) x=207115 x=207x=1.8答:经过1.8小时两车相遇。

6.每袋大米重50千克,每袋面粉重25千克。

这辆车上已装了48袋大米,还能装多少袋面粉?3吨=3000千克解:设还能装x袋面粉。

二元一次方程组的应用——行程问题

二元一次方程组的应用——行程问题

二元一次方程组的应用——行程问题行程问题是数学中常见的应用问题之一。

我们可以利用等量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度来解决问题。

列方程是解决问题的一般步骤,需要设列解验答。

例1:某车站有甲、乙两辆汽车,若甲车先出发1小时后乙车出发,则乙车出发后5小时追上甲车;若甲车先开出20km后乙车出发,则乙车出发4小时后追上甲车,求甲乙两车的速度。

设甲车每小时走x千米,乙车每小时走y千米,根据题意列出方程组,解得甲车速度为x=40km/h,乙车速度为y=50km/h。

例2:甲、乙两人在周长为400m的环形跑道上练跑,如果同时、同地相向、同向出发,经过80秒相遇;已知乙的速度是甲速度的2/3,求甲、乙两人的速度。

设甲的速度为x米/秒,乙的速度为y米/秒,根据题意列出方程组,解得甲的速度为3米/秒,乙的速度为2米/秒。

例3:甲、乙两人从相距36千米的两地相向而行。

如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果XXX比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人每小时各走多少千米。

设甲每小时走x千米,乙每小时走y千米,根据题意列出方程组,解得甲每小时走12千米,乙每小时走24千米。

本题中需要求解飞机的速度和风速,可以利用等量关系进行计算。

首先,假设飞机在顺风飞行时的速度为v1,逆风飞行时的速度为v2,风速为w,则根据题意可以列出以下两个等式:1200 = v1 × 2.5 + (v1 + w) × 3.331200 = v2 × 3.33 + (v2 - w) × 2.67将两个等式联立,消去v1和v2,得到:w = 75v1 = 450v2 = 300因此,飞机的速度为450千米/小时,风速为75千米/小时。

课后拓展:1、如果飞机的速度不变,风速变为150千米/小时,从A市飞往B市需要多长时间?2、如果飞机的速度变为500千米/小时,风速仍为75千米/小时,从A市飞往B市需要多长时间?。

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)

小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)

列方程解应用题(行程问题)专题解析相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度×时间=路程。

今天,我们学习此类问题。

例1 AB两地相距352千米.甲乙两辆汽车从A、B两地相对开出.甲车每小时行36千米,乙车每小时行44千米.乙车因有事,在甲车开出32千米后才出发,再出多少小时两车相遇?分析解答:要想求出两车的相遇时间,必须找到速度和、时间和总路程的数量关系式。

速度和×时间+甲先行的路程=总路程,其中甲车的速度,乙车的速度,甲先行的路和总路程已知,所以只要设时间为X小时,就可以列出方程。

解:设X小时两车相遇。

(36+44)×x+32=35280x+32=35280x=320x=4答:4小时后两车相遇。

随堂练习:甲乙两地相距300千米,客车从甲地开往乙地,每小时行40千米。

1小时后,货车从乙地开往甲地,每小时行60千米。

货车出发几小时后与客车相遇?例2 甲乙两人从A、B两地相向而行,甲乙两人从AB两地同时出发相向而行,甲每分钟行52米,乙每分钟行48米,两人走了10分钟后交叉而过,且相距64米,甲从A地到B地需多少分钟?分析解答:这道题目要求甲从A地到B地需要的时间,就发必须知道A、B两地相距的路程和甲的速度,现在甲的速度已知,所以这道题目的键就在于通过列方程求出A、B两地的相距的路程。

解:设A、B两会相距x米(52+48)×10-x=641000-x=64x=936936÷52=18(分)答:甲从A地到B地需18分钟。

随堂练习从A地到B地,水路比公路近40千米。

上午8时,一艘轮船从A地驶向B地,3小时后一辆汽车从A地到B地,它们同时到达B 地,轮船的速度是每小时24千米,汽车的速度是每小时40千米,求A地到B地水路、公路是多少千米?例3 小明和小童分别从一座桥的两端同时相向出发,往返于两端之间小明每分钟走60米,小童每分钟走75米,经过6分钟两人第二次相遇,这座桥长多少米?分析解答:第一次相遇就是行了一个全程,第二次相遇就是行了三个全程。

列方程解应用题-行程问题专题

列方程解应用题-行程问题专题

列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速【典型例题】例1、某队伍长450 ,以的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A城顺流而下,乙船到B地时接到通知,需立即返回到C地执行任务,甲船继续顺流航行。

已知甲、乙两船在静水中的速度都是,水流速度为每小时,A、C两地间的距离为。

如果乙船由A地经B地再到达C地,共用了4 ,问乙船从B地到C地时甲船驶离B地有多远?例3、甲、乙两人在400 长的环形跑道上练习百米赛跑,甲的速度是14 ,乙的速度是16 。

(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。

类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。

类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

列方程解应用题行程问题

列方程解应用题行程问题

列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速∴ 顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速∴ 顺水速度-逆水速度=2×水速【典型例题】例1、 某队伍长450m ,以s m 5.1的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是s m 3,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A 城顺流而下,乙船到B 地时接到通知,需立即返回到C 地执行任务,甲船继续顺流航行。

已知甲、乙两船在静水中的速度都是h km 5.7,水流速度为每小时km 5.2,A 、C 两地间的距离为km 10。

如果乙船由A 地经B 地再到达C 地,共用了4h ,问乙船从B 地到C 地时甲船驶离B 地有多远?例3、甲、乙两人在400m长的环形跑道上练习百米赛跑,甲的速度是14m,乙的速度是16m。

(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。

初中列方程解应用题(行程问题)专题

初中列方程解应用题(行程问题)专题

初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。

我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度。

行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。

原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手.下面我们将行程问题归归类,由易到难,逐步剖析.1. 单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。

甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100。

【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间。

【列出方程】310080=-x x 。

例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40.求火车的速度和长度。

【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图:【等量关系式】火车min 1行驶的路程=桥长+火车长;火车s 40行驶的路程=桥长—火车长 【列出方程组】⎩⎨⎧-=+=yx y x 100040100060举一反三:1.小明家和学校相距km 15。

小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。

2.根据我省“十二五"铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260。

列方程解应用题4--行程问题

列方程解应用题4--行程问题

3.3 实际问题(行程问题)导学案学生自主学习基本量之间的关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间常见题型:例1.(直线型)甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?分析:此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

练1、(相遇问题)甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。

已知甲的速度为15千米/小时,乙的速度为45千米/小时。

(1)经过多少时间两人相遇?(2)相遇后经过多少时间乙到达A地?2、(追及问题)绵外实校学生步行到郊外旅行。

(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时。

前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。

(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距3千米?(4)两队何时相距8千米?作业:1、甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。

出发后经3 小时两人相遇。

已知在相遇时乙比甲多行了90千米,相遇后经 1小时乙到达A 地。

问甲、乙行驶的速度分别是多少?2、甲,乙两人登一座山,甲每分钟登高10米,并且先出发30分钟,乙每分钟登高15米,两人同时登上山顶。

沪教版五年级下册数学列方程解应用题行程问题经典题每日一练

沪教版五年级下册数学列方程解应用题行程问题经典题每日一练

行程问题是数学中常见的应用题类型之一,通过列方程解决行程问题可以锻炼学生的逻辑思维和数学运算能力。

下面将介绍一些经典的行程问题,并且每天给出一道练习题,帮助学生巩固所学知识。

1.题目:小明骑自行车从A地到B地,全程120公里。

如果他骑了2个小时,这段路程的平均速度是多少?解答:我们可以使用速度=路程÷时间的公式来解决这个问题。

设小明的平均速度为v,则有v=120÷2=<<120/2=60>>60公里/小时。

2.题目:小红和小蓝分别从A地和B地同时出发,相向而行。

小红的速度是每小时40公里,小蓝的速度是每小时30公里。

如果他们相遇的时间为3小时,求A地到B地的距离是多少?解答:设A地到B地的距离为d,则小红和小蓝的速度之和是v=40+30=70公里/小时。

根据时间=距离÷速度的公式,可得3小时=d÷70公里/小时,两边同时乘以70得到d=3×70=<<3*70=210>>210公里。

3.题目:小明从A地到B地骑自行车,全程120公里。

他骑了一半的距离后,发现前轮爆了,于是他只能步行到达终点B地,步行速度是每小时5公里。

他总共用了10小时到达B地,求他骑自行车的速度是多少?解答:设小明骑自行车的速度为v,则他骑自行车的时间是t=60÷v 小时(120公里是全程的一半);步行的时间是10-t小时。

根据时间=距离÷速度的公式,可得:v=60÷t5=60÷(10-t)通过解方程组,可以求出v的值。

每日一练:一架飞机从A地到B地,全程800公里。

飞机的速度是每小时400千米。

如果它运行了2个小时,这段路程的剩余部分还要运行多少时间?解答:设剩余部分的时间为t小时,则根据速度=路程÷时间的公式,可得:400=800÷(2+t)通过解方程,可以求出t的值。

列方程解应用题-有趣的行程问题

列方程解应用题-有趣的行程问题

列方程解应用题——有趣的行程问题例1、某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A、C两地的距离为10千米,则A、B两地的距离为_______千米.例2、如图,甲乙两人沿着边长为90米的正方形,按A→B→C→D→A...方向,甲从A以65米/分的速度,乙从B以72米/分的速度行走,当乙第一次追上甲时在正方形的()A.AB边上B.DA边上C. BC边上D.CD边上例3、已知某一铁路桥长1000米,现有一列火车从桥上通过,小亮和小芳分别从不同的角度进行了观测.小亮说:火车从开始上桥到完全通过共用了1分钟,小芳说:整个火车完全在桥上的时间为40秒钟.请根据以上信息求出火车的长度和火车的速度.例4、父亲和儿子在100米的跑道上进行赛跑,已知儿子跑5步的时间父亲能跑6步,儿子跑7步的距离和父亲跑4步的距离相等.现在儿子站在100米的中点处,父亲站在100米跑道的起点处同时开始跑.问父亲能否在100米的终点处超过儿子?并说明理由.例5、甲、乙两人分别从A、B两地同时出发,在距离B地6千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达B 地、A地后,立刻返回,又在距A地4千米处相遇,求A、B两地相距多少千米?例6、8个人乘相同速度的两辆小汽车同时赶往火车站,每辆车乘4人(不包括司机),其中一辆小汽车在距火车站15千米的地方出现故障,此时,距停止检票的时间还有42分钟,这时,唯一可利用的交通工具是另一辆小汽车,已知包括司机在内这两辆车限乘5人,且这辆车的平均速度为60千米/时,人步行的平均速度是5千米/时,试设计两种方案,通过计算说明这8个人能够在停止检票前赶到火车站.1、某人以4千米/小时的速度步行由甲地到乙地,然后又以6千米/小时的速度从乙地返回甲地,那么此人往返一次的平均速度是____千米/小时.2、在公路上,汽车A、B、C、D分别以每小时80千米、70千米、50千米的速度匀速行驶,A从甲站开往乙站,同时,B、C从乙站开往甲站.A在与B相遇两小时后与C相遇,则甲、乙两站相距____千米.3、汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是______米.4、现在是4点5分,再过_____分钟,分针和时针第一次重合.5、甲、乙两人同时从A地到B地,如果乙的速度v保持不变,而甲1v的速度到达B地,则下列结论中先用2v的速度到达中点,再用2正确的是( ).A.甲、乙两人同时到达B地B.甲先到B地C.乙先到B地D.无法确定谁先到6、甲与乙比赛登楼,他俩从36层的长江大厦底层出发,当甲到达6楼时,乙刚到达5楼,按此速度,当甲到达顶层时,乙可到达().A.31层B.30层C.29层D.28层7、小明爸爸骑着摩托车带着小明在公路上匀速行驶,下面是小明每隔1小时看到的里程情况,你能确定小明在12:00时看到的里程表上的数吗?12:00,是一个两位数,它的两个数字之和为7;13:00十位与个位数字与12:00所看到的正好颠倒了;14:00比12:00时看到的两位数中间多了个0.8、如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B 同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后____分钟时,甲、乙两人第一次在正方形的顶点处相遇.(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是_____.9、某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,求此人此时骑摩托车的速度应该是多少?10、甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是____秒.11、甲、乙两人从两地同时出发,若相向而行,a小时相遇;若相向而行,则b小时甲追及乙,那么甲、乙两人的速度之比为____. 12、某商场有一部自动扶梯匀速由下而上运动,甲、乙两人都急于上楼办事,因此在乘扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间内乙登梯级数是甲的2倍),他登了60级后到达楼上,那么,由楼下到楼上自动扶梯级数为_____.13、甲乙两人同时从A地出发沿同一条线路到B地,若甲用一半的时间以a千米/时的速度行走,另一半时间以b千米/时的速度行走;而乙用a千米/时的速度走了一半的路程,另一半的路程以b千米/时的速度行走(a≠b),则().A.甲先到达B地B.乙先到B地C.甲、乙同时到达B地D.甲、乙谁先到达不能确定14、如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环形,乙点依逆时针方向环形,若乙的速度是甲的速度的4倍,则它们第2007次相遇在边()上.A.ABB.BCC.CDD.DA15、铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6千米/小时,骑车人速度10.8千米/小时,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒,问这列火车的车身长为多少米?16、某出租汽车停车站已停有6辆出租汽车.第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆.问:第一辆出租汽车开车后,经过最少多少时间,车站不能正点发车?。

列方程(组)解应用题

列方程(组)解应用题

---------------------------------------------------------------最新资料推荐------------------------------------------------------列方程(组)解应用题列方程(组)解应用题 (三年中考、模拟试题汇编) 行程问题1、一列火车从北京出发到广州大约需要 15 小时,火车出发后按原来的时间匀速行驶 8 小时后到达武汉,由于 2009 年 12 月世界时速最高铁路武广高铁正式投入运营,现在从武汉到广州平均时速是原来的 2 倍还多 50 公里,所需要时间比原来缩短了 4 个小时,求从北京到武汉的平均时速和提速后武汉到广州的平均时速。

2、小明乘坐火车从某地到上海去参观世博园,已知此次行程为 2160 千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用 6小时.求小明乘坐动车组到上海需要的时间.3、九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校 120 千米,一部分学生乘慢车先行,出发 1 小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的 1.5 倍,求慢车的速度.4、京通公交快速通道开通后,为响应市政府绿色出行的号召,家住通州新城的小王上班由自驾车改为乘坐公交车。

已知小王家距上班地点 18 千米。

他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的 2 倍还多 9 千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 3/7。

小王用自驾车方式上班平均每小时行驶多少千米? 5、 .在1 / 92019 年春运期间,我国南方发生大范围冻雨灾害,导致某地电路出现故障,该地供电局组织电工进行抢修。

供电局距离抢修工地 15 千米,抢修车装载着所需材料先从供电局出发, 15 分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地。

10.列方程解应用题──有趣的行程问题(含答案)+

10.列方程解应用题──有趣的行程问题(含答案)+

10.列方程解应用题──有趣的行程问题(含答
案)+
有趣的行程问题
一、问题描述
小明打算去旅行,他主要选择骑自行车或者搭乘公交车两种方式进行。

根据不同的目的地和时间,他需要分别列出合适的方程来解决行程问题。

二、骑自行车行程问题
小明打算去朋友家玩,他骑自行车的速度是每小时20公里。

假设朋友家距离小明家60公里,我们设从小明家出发的时间为0点,求小明几点能到达朋友家。

解答:
设小明到达朋友家的时间为t小时,则高度H与t之间存在线性关系,即H = 20t。

根据题意可得到方程20t = 60,解得t = 3。

因此小明将于3点到达朋友家。

三、公交车行程问题
小明打算搭乘公交车去游乐园,按照公交车时刻表,公交车每隔15分钟一班。

假设小明家距离游乐园10公里,公交车的速度是每小时30公里,求小明什么时候出门才能保证不需要等待公交车。

解答:
设小明等待公交车的时间为t分钟,则高度H与t之间存在线性关系,即H = 30t。

又公交车每隔15分钟一班,因此小明需要等待的时间必须是15的倍数。

将H代入方程可得到30t = 10,解得t = 20。

因此小明将在20分钟时出门,正好赶上下一趟公交车。

四、总结
通过以上两个行程问题的解答,我们可以看到列方程解应用题在解决行程问题时起到了重要的作用。

通过设定适当的方程,在已知条件下求解未知数,可以帮助我们找到最佳的解决方案。

希望通过这个简单的应用题,能够让大家对列方程解应用题有更深的理解。

答案:
一、小明将在3点到达朋友家。

二、小明将在20分钟时出门。

二元一次方程组的应用——行程问题 (解析版)

二元一次方程组的应用——行程问题 (解析版)

二元一次方程组的应用——行程问题一、追及、相遇问题1、小蕾、大洋两人匀速在400米环形跑道上跑步,同时同地出发,如果相向而行,每隔1分钟相遇一次;如果同向而行,每隔5分钟相遇一次,已知小蕾比大洋的速度快.设小蕾每分钟跑x 米,大洋每分钟跑y 米,根据题意,列出方程组正确的是( ).A. 6060400300300400x y x y +=⎧⎨-=⎩B. 40055400x y x y +=⎧⎨-=⎩C. 6060400300300400x y x y +=⎧⎨-+=⎩D. 40055400x y x y +=⎧⎨-+=⎩2、《九章算术》是我国古代第一部数学专著,其中有这样一道名题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几步及之?”意思是说:走路快的人走100步的时候,走路慢的才走了60步,走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少部才能追上?若设走路快的人要走x 步才能追上走路慢的人,此时走路慢的人又走了y 步,根据题意可列方程组为( ).A. 10060100xy x y ⎧=⎪⎨⎪-=⎩B. 60100100xy x y ⎧=⎪⎨⎪-=⎩C. 10060100xy x y ⎧=⎪⎨⎪+=⎩D. 60100100xy x y ⎧=⎪⎨⎪+=⎩3、两人在400m 环形跑道上练习赛跑,方向相反时,每32s 相遇一次;方向相同时,每3分钟相遇一次,若设两人的速度分别为x 米/秒、y 米/秒,依题意可列方程组为________.4、小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是______分钟.5、某车站有甲、乙两辆汽车.若甲车先出发1h 后乙车出发,则乙车出发后5h 追上甲车;若甲车先开出20 km 后乙车出发,则乙车出发4h 后追上甲车,求甲乙两车的速度.6、小方、小程两人相距6千米,两人同时相向而行,1小时相遇.两人同时出发同向而行,小方3小时可追上小程,两人的平均速度各是多少?7、列方程或方程组解应用题:A、B两地之间的路程是36 km,小丽从A地骑自行车到B地,小明从B地骑自行车到A 地,两人同时出发,相向而行,经过1h后两人相遇;再过0.5h,小丽余下的路程是小明余下路程的2倍.小明和小丽骑车的速度各是多少?8、甲乙二人分别从相距20千米的A,B两地出发,相向而行.如果甲比乙早出发半小时,那么在乙出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米,求甲乙二人每小时各走多少千米?9、甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇.求甲、乙两人每小时各走多少千米?10、A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2h后二人在途中相遇.相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙二人的速度.11、甲、乙两人在400米的环形跑道上同一起点同时背向起跑,40秒后相遇,若甲先从起跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过3分钟后乙追上甲,求甲、乙两人的速度.12、利用二元一次方程组解应用题:甲、乙两地相距160 km,一辆汽车和一辆拖拉机同时由两地以各自的速度匀速相向而行,113小时后相遇,相遇后,拖拉机已其原速继续前进,汽车在相遇处停留1小时后掉转头以其原速返回,在汽车再次出发半小时追上拖拉机,这时,汽车、拖拉机各自走了多少路程?二、多种路段问题13、甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是().A. 24 km/h,8 km/hB. 22.5 km/h,2.5 km/hC. 18 km/h,24 km/hD. 12.5 km/h,1.5 km/h14、甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是().A.()()1836024360x yx y⎧+=⎪⎨-=⎪⎩B.()()1836024360x yx y⎧+=⎪⎨+=⎪⎩C.()()1836024360x yx y⎧-=⎪⎨-=⎪⎩D.()()1836024360x yx y⎧-=⎪⎨+=⎪⎩15、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为().A.35120016x yx y+=⎧⎨+=⎩B.351.2606016x yx y⎧+=⎪⎨⎪+=⎩C.35 1.216x yx y+=⎧⎨+=⎩D.351200606016x yx y⎧+=⎪⎨⎪+=⎩16、从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3 km,平路每小时走4 km,下坡每小时走5 km,那么从甲地到乙地需54 min,从乙地到甲地需42 min.设从甲地到乙地上坡与平路分别为x km,y km,依题意,所列方程组正确的是().A.543460425460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.543460424560x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.54344245x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.54344254x yx y⎧+=⎪⎪⎨⎪+=⎪⎩17、小明新买了一辆“和谐”牌自行车,说明书中关于轮胎的使用说明如下:小明看了说明书后,和爸爸讨论:小明经过计算,得出这对轮胎能行驶的最长路程是().A. 9.5千公里B. 千公里C. 9.9千公里D. 10千公里18、一条船顺流航行每小时行40 km,逆流航行每小时行32 km,设该船在静水中的速度为每小时x km,水流速度为每小时y km,则可列方程组为________________________.19、某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了多少______千米.20、为响应“低碳出行”的号召,某初中决定举行周日徒步郊游活动,打算从A地前往B地,已知前13路段为山路,其余路段为平地.已知队伍在山路上的行进速度为6 km/h,在平地上行进的速度为10 km/h,队伍从A地到B地一共行进了2.2h.队伍在山路和平路上各行进多少小时?若设队伍在山路上行进x小时,在平路上行进y小时,根据题意,可列出二元一次方程组________________________.21、某校组织学生乘汽车去自然保护区野营,先以60 km/h的速度走平路,后又以30 km/h 的速度爬坡,共用了6.5h;汽车以40 km/h的速度下坡,又以50 km/h的速度走平路,共用了6h,平路有______m,坡路有______m.(汽车以原路返回)22、一船顺水航行48 km需要3h,逆水航行70 km需要5h,求船在静水中的速度和水流的速度各是多少?23、青岛和大连相距360千米,一轮船往返于两地之间,顺水行船用18小时,逆水行船用24小时,那么船在静水中的速度是多少?水流速度是多少?24、小张从家里到学校的路是一段平路和一段下坡路,如果他始终保持平路的速度为60m/ min,下坡路的速度为80m/ min,上坡的速度为40m/ min,那么他从家里到学校需10 min,从学校到家需15 min,请问小张家离学校有多远?25、从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3 km,平路每小时走4 km,下坡每小时走5 km,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟,甲地到乙地全程是多少km?参考答案一、追及、相遇问题 1、答案:B解答:根据题意列出方程组为40055400x y x y +=⎧⎨-=⎩.2、答案:A解答:设走路快的人要走x 步才能追上走路慢的人,此时走路慢的人又走了y 步,根据题意,得10060100xy x y ⎧=⎪⎨⎪-=⎩.3、答案:()()32400180400x y x y ⎧+⨯=⎪⎨-⨯=⎪⎩.解答:设两人的速度分别为x 米/秒、y 米/秒,由题意得:()()32400180400x y x y ⎧+⨯=⎪⎨-⨯=⎪⎩, 故答案为:()()32400180400x y x y ⎧+⨯=⎪⎨-⨯=⎪⎩.4、答案:4解答:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 6x -6y =s .①每隔3分钟从迎面驶来一辆18路公交车,则 3x +3y =s .②由①②得,s =4x ,所以sx=4.即18路公交车总站发车间隔的时间是4分钟. 5、答案:25 km/h ,30 km/h .解答:设甲的速度为x km/h ,乙的速度为y km/h , 根据题意可得:564204y x y x =⎧⎨=+⎩,解得2530x y =⎧⎨=⎩.甲的速度为25 km/h ,乙的速度为30 km/h .6、答案:小方和小程的平均速度分别为为4千米/时和2千米/时. 解答:设小方平均速度为V 1千米/时, 小程平均速度为V 2千米/时,由题意知,()()12121636V V V V ⎧+⨯=⎪⎨-⨯=⎪⎩,解得:1242V V =⎧⎨=⎩,答:小方平均速度为4千米/时, 小程平均速度为2千米/时.7、答案:小明骑车的速度是20 km/h ,小丽骑车的速度是16 km/h . 解答:设小明骑车的速度为x km/h ,小丽骑车的速度为y km/h ,()36236 1.536 1.5x y x y+=⎧⎨-=-⎩,解得2016x y =⎧⎨=⎩. 答:小明骑车的速度是20 km/h ,小丽骑车的速度是16 km/h . 8、答案:甲每小时各走4千米,乙每小时各走5千米. 解答:设甲每小时各走x 千米,乙每小时各走y 千米,由题意得:522021120y x x y ⎧+=⎪⎨⎪++=⎩,解得:45x y =⎧⎨=⎩.答:甲每小时各走4千米,乙每小时各走5千米. 9、答案:甲每小时走6千米,乙每小时走3.6千米.解答:设甲每小时走x 千米,乙每小时走y 千米.根据题意,列方程组2 2.5 2.53632336x x y x y y ++=⎧⎨++=⎩, 解这个方程组,得63.6x y =⎧⎨=⎩.答:甲每小时走6千米,乙每小时走3.6千米.10、答案:甲的速度为5.5千米/小时,乙的速度为4.5千米/小时. 解答:设甲的速度为x 千米/小时,乙的速度为y 千米/小时,由题意得,()220222x y x y ⎧+=⎨-=⎩,解得: 5.54.5x y =⎧⎨=⎩,答:甲的速度为5.5千米/小时,乙的速度为4.5千米/小时.11、答案:甲的速度为6013m /s ,乙的速度为7013m /s . 解答:设甲、乙二人的速度分别为xm /s 、ym /s ,由题意得:()4040036030360x y x x y ⎧+=⎨⨯+=⨯⎩,解得:60137013x y ⎧=⎪⎪⎨⎪=⎪⎩, 答:甲的速度分别为6013m /s ,乙的速度分别为7013m /s . 12、答案:汽车行驶165千米,拖拉机行驶85千米.解答:设汽车的速度是x 千米每小时,拖拉机速度y 千米每小时,根据题意得:()416031322x y x y⎧=⎪+⎪⎨⎪=⎪⎩,解得:9030x y =⎧⎨=⎩, 则汽车汽车行驶的路程是:(43+12)×90=165(千米),拖拉机行驶的路程是:(43+32)×30=85(千米).答:汽车行驶165千米,拖拉机行驶85千米. 二、多种路段问题 13、答案:B解答:设这艘轮船在静水中的船速为x 千米/小时,水流速度为y 千米/小时, 由题意得,()41005100x y x y ⎧+=⎨-=⎩(),解得:22.52.5x y =⎧⎨=⎩.14、答案:A解答:根据题意可得,顺水速度=x +y ,逆水速度=x -y , ∴根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,选A. 15、答案:B解答:设小颖上坡用了x 分钟,下坡用了y 分钟,由题意得:35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩.选B. 16、答案:A解答:设从甲地到乙地上坡与平路分别为x km ,y km ,根据题意得543460425460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,∴A 选项正确. 17、答案:C解答:设一只轮胎在前轮用x 千公里,在后轮用y 千公里.根据题意,有111x +19y =111y +19x =1, 解可得,x =y =9920=4.95,则x +y =2x =9.9. 18、答案:4032x y x y +=⎧⎨-=⎩解答:4032x y x y +=⎧⎨-=⎩.19、答案:20解答:设平路有x 千米,上坡路有y 千米,根据题意得:4x +3y +6y +4x =5,即2x +2y=5, 则x +y =10(千米),这5小时共走的路=2×10=20(千米). 故答案为:20.20、答案: 2.22610x y x y +=⎧⎨⨯=⎩解答:略. 21、答案:150;120解答:平路有x 千米,坡路有y 千米,由题意得:6.5603065040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:150120x y =⎧⎨=⎩, 答:平路和坡路各有150米、120米22、答案:x =15,y =1解答:设静水x ,水流速y .()()348570x y x y ⎧+=⎪⎨-=⎪⎩. x =15,y =1.23、答案:船在静水中的速度是17.5 km/h ,水流速度是2.5 km/h . 解答:设船在静水中的速度是x km/h ,水流速度是y km/h ,由题意得()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,解得:17.52.5x y =⎧⎨=⎩. 答:船在静水中的速度是17.5 km/h ,水流速度是2.5 km/h .24、答案:小张离学校700米.解答:设小张从家到学校的平路为x 米,下坡路为y 米. ∴106080156040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①整理得8x +6y =4800③,②整理得4x +6y =3600④,③-④得4x =1200,x =300.将x =300代入④得4×300+6y =3600,y =400.∴方程组的解为300400x y =⎧⎨=⎩,∴x +y =300+400=700,答:小张离学校700米.25、答案:3110km.解答:设甲地到乙地的上坡路长x km,平路长y km,根据题意得:543460424560x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,解得:3285xy⎧=⎪⎪⎨⎪=⎪⎩,∴x+y=32+85=3110∴甲地到乙地全程是3110km.。

列方程解应用题—行程问题

列方程解应用题—行程问题
相遇问题中的相等关系:甲的路程+乙的路程=总路程 (甲的速度+乙的速度)x 时间=路程 追及问题中的相等关系: (1)同时不同地:慢者行驶的路程=快者行驶的路程 (2)同地不同时:快者行驶的路程-慢者行驶的路程=间隔路程
2. 圆上的相遇追及问题 例2:一条环形跑道长400米,甲练习骑自行车,平均 每分钟行550米;乙练习跑步,平均每分钟跑250米. 两人同时同地出发. (1)若两人背向而行,则他们经过多长时间首次相遇? (2)若两人同向而行,则他们经过多长时间首次相遇?
飞行问题中的相等关系:顺风速度=无风速度+风速 逆风速度=无风速度-风速 变式:顺风速度-风速=逆风速度+风速
例3:一船从甲码头到乙码头顺流航行,用了4小时; 从乙码头返回甲码头逆流航行,用了5小时, 已知水流的速度是3千米/时,求船在静水中的速度.
课后巩固练习:
1. A,B两站间的路程为448km,一列慢车从A站出发,没小时行驶 60km;一列快车从B站出发,每小时行驶80km. (1)两车同时开出,相向而行,出发后多少小时相遇? (2)两车同时开出,相向而行,慢车先开出28min,快车开出多少 小时两车相遇? (3)两车相向而行,如果慢车在前,出发后多少小时快车追上慢 车?
2. 甲,乙两人在一条长400米的环形跑道上跑步, 甲的速度是360米/分,乙的速度是240米/分. (1)两人同时反向跑,问几秒后两人第一次相遇? (2)两人同时同向跑,问第一次相遇时,两人一共跑了 几圈?
课后巩固练习:
3. 甲,乙两人在300米环形跑道上练习长跑,甲的速度是6米/秒, 乙的速度是7米/秒. (1)如果甲,乙两人同地背向跑,乙先跑2秒,经过多少秒后二人 相遇? (2)如果甲,乙两人同地同向跑,乙跑几圈后能首次追上甲? (3)如果甲,乙两人同地同向跑,乙在甲前面6米,经过多少秒后 两人第二次相遇?

五年级列方程解应用题(行程问题)

五年级列方程解应用题(行程问题)
240+40x=70x
30x=240
x=8
答:8小时后乙车追上甲车.
解答:设乙车每小时行x千米,
85×2.4+2.4x=456
பைடு நூலகம்204+2.4x=456
2.4x=252
x=105
答:乙车每小时行105千米.
4、甲乙两列火车分别从相距600千米的两地同时相向而行,2.5小时后两车还相距220千米。已知甲车每小时行80千米,乙车每小时行多少千米?
解答:设乙车每小时行x千米,由题意得,
1、甲乙两地相距300千米,一辆汽车由甲地开出5小时后,距离乙地还有74.5千米,这辆汽车平均每小时行多少千米?
解:设这辆汽车平均每小时行x千米,
5x+74.5=300
5x+74.5-74.5=300-74.5
5x=225.5
5x÷5=225.5÷5
x=45.1
所以x=45.1是方程的解。
答:这辆汽车平均每小时行45.1千米.
80×2.5+2.5x+220=600,
200+2.5x+220=600,
2.5x+420=600,
2.5x=600﹣420,
2.5x=180,
x=72
答:乙车每小时行72千米。
5、两个码头之间相距100千米,甲、乙两艘轮船分别同时从两个码头出发向相反方面开出,甲船每小时行38千米,乙船每小时行32千米。经过几小时两船相距450千米?(列方程解)
2、两地铁路长568千米,甲乙两列火车同时从两地相对开出,甲火车每小时行驶154千米,乙火车每小时行驶130千米,经过几小时两车相遇?(列方程解答)
解答:设经过x小时相遇

列方程解应用题(行程问题)

列方程解应用题(行程问题)

一、行程问题1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?(6.5千米)3.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间的路程.(108)4.京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?(200千米/小时)5.已知有12名旅客要从A地赶往40千米外的火车站B乘车外出旅游,列车还有3个小时从B站出站,且他们只有一辆准载4人的小汽车可以利用.设他们的步行速度是每小时4千米,汽车的行驶速度为每小时60千米.(1)若只用汽车接送,12人都不步行,他们能完全同时乘上这次列车吗?(不能)(2)试设计一种由A地赶往B站的方案,使这些旅客都能同时乘上这次列车.按此方案,这12名旅客全部到达B站时,列车还有多少时间就要出站?(所设方案若能使全部旅客同时乘上这次列车即可.若能使全部旅客提前20分钟以上时间到达B站,可得2分加分,但全卷总分不超过100分.)(8.75分)注:用汽车接送旅客时,不计旅客上下车时间.6.一辆客车以30千米/小时的速度从甲地出发驶向乙地,经过45分钟后,一辆货车以每小时比客车快10千米的速度从乙地出发向甲地.若两车刚好在甲乙两地的中点相遇,求甲乙两地的距离.(180)7.A、B两地间的距离为360km,甲车从A地出发开往B地,每小时行驶72km;甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自仍按原速度、原方向继续行驶,求相遇以后两车相距100km时,甲车共行驶了多少小时?(4小时)11.甲步行上午6时从A地出发于下午5时到达B地,乙骑自行车上午10时从A地出发,于下午3时到达B地,问乙是什么时间追上甲的?(下午1点20分)8.李明同学喜欢自行车和长跑两项运动,在某次训练中,他骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5000米,用时15分钟.求自行车路段和长跑路段的长度.(3000,2000)9.A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.(3 或3+2/3)10.学校田径队的小翔在400米跑测试时,先以6米/秒的速度跑完大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分5秒,问小翔在离终点处多远时开始冲刺?(40米)。

二元一次方程组应用题题及答案

二元一次方程组应用题题及答案

二元一次方程组应用题题及答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:+2)x+=363x+(3+2)y=36解得: x=6,y=答:甲的速度是6千米/每小时,乙的速度是千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司请你说明理由. 解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:类型四:列二元一次方程组解决——银行储蓄问题【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息元.已知两种储蓄年利率的和为%,问这两种储蓄的年利率各是百分之几(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是%-X,则有:2000*X*(1-20%)+1000*%-X)*(1-20%)=即:1600X+=800X=18X=%%%=%所以,2000的存款利率是%,1000的存款的利息率是%.法二:也可用二元一次方程组解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《列二元一次方程组解应用题----行程问题》导案
学校:编制人:
第一标:设置目标
【课堂目标】(示标、读标、释标,组织课堂)
1、通过实际问题情境,确定问题中的已知量和未知量,找出等量关系,列出二元一次方程组,解决问题。(重难点)
2、在列二元一次方程组解应用题的过程中,体会建立数学模型的思想。
【相关要求】
【选做题】
小亮、小莹二人在一环形场地上从A点同时同向匀速跑步,小亮的速度是小莹的2.5倍,4分钟后两人首次相遇,此时小莹还需要跑300米才跑完第一圈,求小亮、小莹二人的速度及环形场地的周长。
【反思升华】
1、本节课的目标是否达成?有几种方法?
这样的追及问题可以用线段示意图进行分析。
1、请以饱满的精神、积极乐观的心态、严谨科学的态度投入到学习中。
2、按“先自主,后合作”的原则,完成今天的学习任务。
第二标:达成目标
【问题】
有若干只鸡和兔放在同一个笼子里。从上面看,有35个头;从下面看,有94只脚。问笼子里有几只鸡?几只兔?
【任务1】 (例题精讲)
小亮和小莹练习赛跑。如果小亮让小莹先跑10米,那么小亮跑5秒就追上小莹。如果小亮让小莹先跑2秒,那么小亮跑4秒就追上小莹。两人每秒各跑多少米?
思考:1、此题中的已知量是什么?未知量是什么?
2、你能找出其中的等量关系吗?
3、尝试列出方程组。
解:设小亮每秒跑____米,小莹每秒跑____米,根据题意,得:
解这个方程组,得:
经检验,方程组的解符合题意。
答:小亮每秒跑____米,小莹每秒跑____米。
小结:列二元一次方程组解应用题的步骤有哪些?
【任务2】 (试一试)
1.小亮家和小莹家相距240米,小亮从家出发步行去超市,小莹从家出发步行去书店,小亮的速度是小莹的速度的2倍,两人同时出发,相背而行,经过5分钟两人相距540米。两人每分钟各走多少米?
2.小亮家和小莹家相距240米,小亮从家出发步行去书店,小莹从家出发步行去超市,小亮的速度是小莹的速度的2倍,两人同时出发,相向而行,经过4分钟两人相距40米。两人每分钟各走多少米?
读题时,注意抓住关键信息。
第三标:反馈目标
【当堂检测】
1、小亮、小莹两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行,小亮3小时可追上小莹。设小亮的速度为x千米/时,小莹的速度为y千米/时,则下列方程组正确的是()
A B
C D
2、西昌到成都全长420千米,小亮开小汽车和小莹坐客车同时从西昌和成都两地相向出发,小亮比小莹多行驶70千米,2.5小时后相遇,设小亮的平均速度为x千米/时,小莹的平均速度为y千米/时,列出二元一次方程组:
________________________。
3、小亮、小莹两人开车自西向东行驶,小莹的速度比小亮的速度每小时慢24千米,小莹开出30分钟后小亮开出,1小时后小亮追上小莹,求两人的速度。
【布置作业】
课本P69 T1、T3;
课本P70 T11.
相关文档
最新文档