人教版七年级下册数学一元一次不等式单元测试题
9.2 一元一次不等式 人教版数学七年级下册同步练习(含解析)
第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。
人教版数学七年级下册一元一次不等式 同步练习(含简略答案)
9.2 一元一次不等式 同步练习一、单选题A .B .C .D .23(2)mx ≤-的解集为的值有几个( ) ,并且满足等式2n ⎡⎤+⎢⎥⎣⎦,则满足等式的正整数的个数为(A .2 B .3 C .12 D .16二、填空题三、解答题(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?19.某水果生产基地销售苹果,提供两种购买方式供客户选择方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克.方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x(千克),所需费用为y(元).(1)若客户按方式1购买,请写出y(元)与x(千克)之间的函数表达式;(备注:按方式购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱;(3)若客户甲采用方式1购买,客户乙采用方式2购买,甲、乙共购买苹果5000千克,总费用共计18000元,则客户甲购买了多少千克苹果?20.我市公交总公司为节约资源同时惠及民生,拟对一些乘客数量较少的路线换成中巴车.该公司计划购买10台中巴车,现有甲、乙两种型号,已知购买一台甲型车比购买一台乙型车少10万元,购买3台甲型车比购买2台乙型车多30万元.(1)问购买一台甲型车和一台乙型车分别需要多少万元?(2)经了解,每台甲型车每年节省费用2.3万元,每台乙型车每年节省费用2.1万元,若要使购买的这批中巴车每年至少能节省21.8万,则购买甲型车至少多少台?参考答案:。
2022-2023学年人教版数学七年级下册 一元一次不等式 训练试题
2022-2023学年人教版数学七年级下册 一元一次不等式 训练试题一、选择题1.下列说法正确的是 ( )A. x=0是不等式2- x 的解集B.x=-2是不等式2- x 的一个解C. x=0是不等式2- x 的一个解D. 不等式2- x 的解是x=-22.若不等式(3a -2)x +2<3的解集是x <2,那么a 必须满足( )A .a =B .a >C .a <D .a =- 3.与2x <6不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 D.-2x <-14.若关于x 的方程332x k +=的解是正数,则k 为( )A 、23k <B 、23k > C 、k 为任何实数 D 、0k > 5.小聪同学准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少..有300元.设x 个月后他至少有300元,则可以用于计算所需要的月数x 的不等式是( ) A.3045300x -≥B.3045300x +≥ C.3045300x -≤ D.3045300x +≤二、 填空题6.已知a ,b 为常数,若0>+b ax 的解集为3<x ,则0<+a bx 的解集为 。
7.若关于x 的不等式(2n -3)x <5的解集为x >-,则n = . 8.三个连续正奇数之和小于16,则这三个正奇数是_____________________9.写出一个解为3x ≥的一元一次不等式:_____________10.已知关于x 的方程3134x m x m ++-=的解是非负数,则m 的取值范围为 .三、解答题 11.解下列不等式,并在数轴上表示解集:(1) 5x+15>4x-1 (2) 2(x+5)≤3(x-5) 5656561231(3) 71-x<352+x(4)145261+-≥+xx12.求不等式3(1-x)<2(x+9)的负整数解。
人教版七年级下册数学一元一次不等式单元测试题
人教版七年级下册数学一元一次不等式单元测试题一元一次不等式课堂测试题一、填空题(每小题5分,共20分)1、不等式-2x>6的解集是x<-3;2、当x≥1.5时,代数式2x-3的值是非负数;3、不等式8-3x≥1的正整数解是x≤2;4、不等式2x+9≥3(x+2)的正整数解是x≥5.二、选择题:(每小题5分,共20分)1、若a>b,则下列各式中不正确的是(B);2、下列说法中,肯定错误的是(C);3、已知a>b,c为任意实数,则下列不等式中总是成立的是(C);4、已知不等式x-1≥(2x-1)/(x+2),此不等式的解集在数轴上表示为(D)。
三、解下列不等式(每题8分,40分)1)5-2(x-3)>6x-4化XXXx<2;2)5(x-2)+8<6(x-1)+7化XXXx<3;3) 3(x+1)/(x-13)-x-29/(2x+5)<3/4化简得x>5或x<-1/2;4)8-4x<3(x+2)-2x化简得x>-1;5)解不等式3x+12/2x-5≤-4/3,并把它的解集在数轴上表示出来。
化简得x≤-3或x≥1/3,解集在数轴上表示为:四、XXX准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则XXX最多能买7瓶甲饮料。
解法:设XXX买了x瓶甲饮料,则买了(10-x)瓶乙饮料。
由题意得7x+4(10-x)≤50,化简得x≤7,所以XXX最多能买7瓶甲饮料。
五、一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成25土方。
解法:原计划每天要完成300/6=50土方。
现在要提前两天完成,则剩余的工作量为300-60=240土方,要在4天内完成。
平均每天要完成240/4=60土方。
比原计划多完成的土方数为60-50=10土方,即至少要比原计划多完成25土方。
第9章 一元一次不等式(不等式组)测试题 2022--2023学年人教版七年级数学下册
一元一次不等式(不等式组)测试题一、选择题(共30分,每题3分)1.若关于x 的不等式2﹣m ﹣x >0的正整数解共有3个,则m 的取值范围是( ) A .﹣1≤m <0B .﹣1<m ≤0C .﹣2≤m <﹣1D .﹣2<m ≤﹣12.已知关于x ,y 的方程组343x y ax y a +=-⎧⎨-=⎩,其中﹣3≤a ≤1,下列结论:①当a =﹣2时,x ,y的值互为相反数;②51x y =⎧⎨=-⎩是方程组的解;③当a =﹣1时,方程组的解也是方程x +y =1的解;④若1≤y ≤4,则﹣3≤a ≤0.其中正确的个数是( ) A .1个B .2个C .3个D .4个3.在4,3,2,1,0,32-,103-中,能使不等式3x ﹣2>2x 成立的数有( ) A .1个 B .2个C .3个D .4个4.若m <n ,则下列不等式错误的是( )A .m ﹣6<n ﹣6B .6m <6nC .66m n> D .﹣6m >﹣6n5.已知a <b ,那么下列正确的是( ) A .ac 2<bc 2B .﹣a <﹣bC .2﹣a >2﹣bD .5a <2b6.下列式子是一元一次不等式的是( )A .x +y <0B .x 2>0C .32xx >+ D .10x< 7.x 是不大于5的数,则下列表示正确的是( ) A .x >5B .x ≥5C .x <5D .x ≤58.已知m >n ,则下列不等式中一定成立的是( ) A .m >n +1B .﹣4m >﹣4nC .m +1>n +2D .m ﹣1>n ﹣2A.a-2>b+2B.85a b< C.ac<bc D.-a+3<-b+3 9.若a<0,下列式子不成立的是 ( )A.-a+2<3-aB.a+2<a+3C.-2a <-3aD.2a>3a 10.不等式2+x <6的正整数解有( )A .1个B .2个C .3 个D .4个二、填空题(共30分,每题3分)11.若关于x 的不等式2x +1<x +a 的最大整数解为1,则a 的取值范围是 .12.用不等式表示:“x 的2倍与1的差小于3”是 .13.若不等式组213x ax >⎧⎨+<⎩的解集中共有3个整数解,则a 的取值范围是 .14.“x 的2倍与y 的和不大于2”用不等式可表示为 .15.若x 是非正数,则x 0.(填不等号)16.若关于x 、y 的二元一次方程组22x y mx y -=⎧⎨+=-⎩的解满足x ﹣y ≤0,则m 的取值范围是 .17.若关于x 的不等式x ﹣m <0有三个正整数解,则m 的取值范围是 .18.关于x 的不等式组0321x a x ->⎧⎨->-⎩整数解有2个,则a 的取值范围是 .19.关于x 的方程3x+2m=x-5的解为正数,则m 的取值范围是 . 20.关于x 的方程kx+15=6x+13的解为负数,则k 的取值范围是 . 三、解答题1.解列不等式,并把解集在数轴上表示出来。
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (64)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某校计划购买篮球和排球两种球若干.已知购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)求篮球和排球的单价;(2)该校计划购买篮球和排球共30个.某商店有两种优惠活动(两种优惠活动不能同时参加),活动一:一律打九折,活动二:购物不超过600元时不优惠,超过600元时,超过600元的部分打八折.请根据以上信息,说明选择哪一种活动购买篮球和排球更实惠.【答案】(1)篮球每个50元,排球每个30元;(2)当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠【解析】【分析】根据球的总个数,及总的价格建立二元一次方程组,求解即可.设购买篮球m个,列出两种活动的付款金额,再根据情况分类讨论,从而得到结果.【详解】(1)设篮球每个x元,排球每个y元,根据题意得:2x+3y=190且3x=5y 解得x=50,y=30.答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(30﹣x)个,价值:50m+30(30﹣m)=900+20m因为900+20m>600,所以可以参加活动二;按活动一需付款:0.9(900+20m)=810+18m;按活动二付款:600+0.8(900+20m﹣600)=840+16m;若活动一更实惠:810+18m<840+16m,m<15;若活动一和活动二一样实惠:810+18m=840+16m,m=15;若活动二更实惠:810+18m>840+16m,m>15;综上所述,当0<m<15时,选择活动一更实惠;当m=15时,两个活动一样实惠;当m>15时,选择活动二更实惠.【点睛】找到等量关系列出方程组和不等式是解题的关键.32.2018年4月10日0时起,全国铁路开始实施新的列车运行图.调整后,重庆与郑州之间有了始发高铁,两地出行更加便利,想要来重庆旅游的郑州游客,可以下午喝碗胡辣汤,晚上品尝正宗重庆火锅,据重庆火车站介绍,此次列车运行图优化调整新增了郑州东站至重庆西站的调整动车组.试运行首日,商务座票价是二等座票价的2倍,商务座售出10张,二等座售出100张,商务座和二等座总售出不低于6万元.(1)试运行期间,二等座票价至少多少元?(2)现正式投入运行后,铁路部门将二等座票价在试运行首日最低票价的基础上上涨了a%(a为整数),商务座票价在试运行首日最低票价基础上提高了3a%,且正式运行首日二等座售出的数量比试运行首日减少了a张,商务座售出的数量减少为试运行首日的一半,正式运行首日商务座和二等座总销售额为55000元,求a的值.【答案】(1)二等座票价至少为500元.2)a的值为30.【解析】【分析】(1)设试运行期间,二等座票价为x元/张,则商务座票价为2x元/张,根据题意列出不等式,解不等式即可;(2)分别表示出商务座和二等座的销售额,再根据题意列方程,解方程即可.【详解】解:(1)设试运行期间,二等座票价为x元/张,则商务座票价为2x元/张,根据题意得:10×2x+100x≥60000,解得:x≥500.答:试运行期间,二等座票价至少为500元;(2)根据题意得:500(1+a%)(100﹣a)+500×2(1+3a%)×10÷2=55000,整理,得:5a2﹣150a=0,解得:a1=0,a2=30.答:a的值为30.【点睛】本题主要考查一元二次方程的实际应用.33.解下列方程组、不等式组:(1)21 3211 x yx y+=⎧⎨-=⎩(2)3(2)4 1213x xxx--≤⎧⎪+⎨>-⎪⎩【答案】(1)31xy=⎧⎨=-⎩,(2)1≤x<4.【解析】【详解】(1)21 3211x yx y+=⎧⎨-=⎩①②,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=1,解得:y=﹣1,所以方程组的解为31xy=⎧⎨=-⎩;(2)解不等式x﹣3(x﹣2)≤4,得:x≥1,解不等式123x+>x﹣1,得:x<4,则不等式组的解集为1≤x<4.【点睛】考查了二元一次方程组及一元一次不等式的解法.34.为开展体育大课间活动,某学校需要购买篮球与足球若干个,已知购买3个篮球和2个足球需求共需要575元,购买4个篮球和3个足球共需要785元.()1购买一个篮球,一个足球各需多少元?()2若体育老师带了8000元去购买这种篮球与足球共80个,由于数量较多,店主给出篮球与足球一律打八折的优惠价,那么他最多能购买多少个篮球?同时买了多少个足球?【答案】()1购买一个需要篮球155元,购买一个足球需要55元;(2)这所学校最多可以购买56个篮球,同时买了24个足球.【解析】【分析】()1设购买一个篮球需要x 元,购买一个足球需要y 元,根据题意列出x ,y 的一元一次方程组,然后求解即可;(2)设购买了a 个篮球,则购买了()80a -个足球,根据题意列出关于a 的不等式,然后求解不等式即可得到答案.【详解】()1设购买一个篮球需要x 元,购买一个足球需要y 元,列方程得:3257543785x y x y +=⎧+=⎨⎩, 解得:{15555x y ==,答:购买一个需要篮球155元,购买一个足球需要55元; ()2设购买了a 个篮球,则购买了()80a -个足球,列不等式得:()1550.8550.8808000a a ⨯+⨯⨯-≤,解得56a ≤,∴最多可以购买56个篮球,∴同时购买了80﹣56=24个足球,故这所学校最多可以购买56个篮球,同时买了24个足球.35.某文具店从市场得知如下信息:该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?(3)若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?【答案】(1)y与x之间的函数关系式为y=2000﹣20x;(2)购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)该文具店可获得的最大利润是1400元.【解析】【分析】(1)该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,根据利润=单个利润×销售量,分别求出A、B的利润,二者之和便是总利润,即可得到答案,(2)把y=1200代入y与x之间的函数关系式即可,(3)根据购进计算器的资金不超过4100元,列出关于x的不等式,求出x的取值范围后,根据一次函数的增减性求得最大利润.【详解】解(1)设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器(50﹣x)台,A品牌计算器的单个利润为90﹣70=20元,A品牌计算器销售完后利润=20x,B品牌计算器的单个利润为140﹣100=40元,B品牌计算器销售完后利润=40(50﹣x),总利润y=20x+40(50﹣x),整理后得:y=2000﹣20x,答:y与x之间的函数关系式为y=2000﹣20x;(2)把y=1200代入y=2000﹣20x得:2000﹣20x=1200,解得:x=40,则A种品牌计算器的数量为40台,B种品牌计算器的数量为50﹣40=10台,答:购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;(3)根据题意得:70x+100(50﹣x)≤4100,解得:x≥30,一次函数y=2000﹣20x随x的增大而减小,x为最小值时y取到最大值,把x=30代入y=2000﹣20x得:y=2000﹣20×30=1400,答:该文具店可获得的最大利润是1400元.【点睛】本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.36.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?【答案】小诚至少需要跑步5分钟.【解析】【分析】设他需要跑步x分钟,根据他要在不超过20分钟的时间内从家到达学校可以列出相应的不等式,从而可以解答本题.【详解】设他需要跑步x分钟,由题意可得()200x8020x2200+-≥,解得,x5≥.答:小诚至少需要跑步5分钟.【点睛】本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解答本题的关键.37.如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.5厘米,每个铁环长4.6厘米,设铁环间处于最大限度的拉伸状态(1)填表:(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.17米长的链条,至少需要多少个铁环?【答案】(1)11.8;15.4;(2)y=3.6n+1;(3)至少需要60个铁环【解析】【分析】(1)根据铁环粗0.5厘米,每个铁环长4.6厘米,进而得出3个/4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y与n的关系式;(3)由(2)得,3.6n+1≥217,进而求出即可.【详解】(1)由题意可得:3×4.6-4×0.5=11.8(cm ),故3个铁环组成的链条长为11.8cm .4×4.6-6×0.5=15.4(cm ),故4个铁环组成的链条长为15.4cm .故答案为:11.8;15.4;(2)由题意得:y=4.6n-2(n-1)×0.5,即y=3.6n+1;(3)据题意有:3.6n+1≥217,解得:n ≥60,答:至少需要60个铁环.【点睛】此题主要考查了一元一次不等式的应用,利用链条结构得出链条长的变化规律是解题关键.38.解不等式125164y y +--≥,并把它的解集在数轴上表示出来. 【答案】y ≤54,把不等式的解集在数轴上表示见解析 【解析】【分析】不等式去分母、去括号、移项合并,把y 系数化为1,求出解集,表示在数轴上即可.【详解】两边都乘以12得,()()21325y y +--≥12去括号得,22615y y +-+≥12移项,合并同类项得,4y -≥-5系数化为1得,y ≤54把不等式的解集在数轴上表示如下:【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.39.某商场销售每个进价为150元和120元的A 、B 两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B 两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A 种型号的足球最多能采购多少个?(3)在()2的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.【答案】(1)A 型号足球单价是200元,B 型号足球单价是150元.(2)40个.(3)有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.【解析】【分析】(1)设A 、B 两种型号的足球销售单价分别是x 元和y 元,根据3个A 型号和4个B 型号的足球收入1200元,5个A 型号和5个B 型号的电扇收入1450元,列方程组求解;(2)设A 型号足球购进a 个,B 型号足球购进()60a -个,根据金额不多余8400元,列不等式求解;(3)根据A 型号足球的进价和售价,B 型号足球的进价和售价以及总利润=一个利润×总数,列出不等式,求出a 的值,再根据a 为整数,即可得出答案.【详解】()1解:设A 、B 两种型号的足球销售单价分别是x 元和y 元,列出方程组: 341200531450x y x y +=⎧⎨+=⎩解得200150x y =⎧⎨=⎩A 型号足球单价是200元,B 型号足球单价是150元.()2解:设A型号足球购进a个,B型号足球购进()60a-个,根据题意得:()+-≤150120608400a aa≤,所以A型号足球最多能采购40个.解得40()3解:若利润超过2550元,须()+->a a5030602550a>,因为a为整数,37.5a≤≤所以3840能实现利润超过2550元,有3种采购方案.方案一:A型号38个,B型号22个;方案二:A型号39个,B型号21个;方案三:A型号40个,B型号20个.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.40.某学校为加强学生的体育锻炼,曾两次在某商场购买足球和篮球.第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元.()1求足球和篮球的标价;()2如果现在商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?【答案】(1)足球的标价为50元,篮球的标价为80元;(2)最多可以买38个篮球.【解析】【分析】(1)设足球的标价为x 元,篮球的标价为y 元,根据“第一次购买6个足球和5个篮球共花费700元;第二次购买3个足球和7个篮球共花费710元”,列出关于x 和y 的二元一次方程组,解出即可,(2)设可买m 个篮球,根据“商场均以标价的6折对足球和篮球进行促销,学校决定从该商场再一次性购买足球和篮球60个,且总费用不能超过2500元”,列出关于m 的一元一次不等式,解出即可.【详解】(1)设足球的标价为x 元,篮球的标价为y 元,根据题意得:6570037710x y x y +=⎧⎨+=⎩, 解得:5080x y =⎧⎨=⎩, 答:足球的标价为50元,篮球的标价为80元.(2)设可买m 个篮球,根据题意得:0.6×50(60﹣m )+0.6×80m ≤2500.解得:m ≤3889, 因为m 为整数,所以m ≤3889的最大整数解是38. 答:最多可以买38个篮球.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用,根据数量关系列出方程组和不等式是解答本题的关键.。
一元一次不等式七年级数学下册人教版(原卷版)
一元一次不等式七年级数学下册人教版(原卷版)9.2 一元一次不等式一﹨选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列不等式中,是一元一次不等式的是A .234x y ->B .23-<C .310x -<D .232y -> 2.解不等式22135x x +->的下列过程中错误的是 A .去分母得5(2)3(21)x x +>-B .去括号得10563x x +>-C .移项,合并同类项得13x ->-D .系数化为1,得13x > 3.不等式x -2>1的解集是A .x >1B .x >2C .x >3D .x >44.一元一次不等式x -1≥0的解集在数轴上表示正确的是A .B .C .D . 5.不等式122123x x ++>-的正整数解的个数是 A .1个B .2个C .3个D .4个 二﹨填空题:请将答案填在题中横线上.6.不等式3134x +>3x +2的解是__________. 7.当x __________时,代数式326x -的值为非负数. 8.某投资人有甲﹨乙两种投资选择,其获利y (元)与投资额x (元)之间的关系式分别为y 甲=15000+0.7x ,y 乙=10000+1.2x ,则当投资额满足x >__________时,乙种投资获利高. 三﹨解答题:解答应写出文字说明﹨证明过程或演算步骤.9.按要求解答下列各题:(1)解不等式:3x-5<2(2+3x);(2)解不等式:2x-3≤12(x+2);(3)解不等式:13x<x-1,并将解集在数轴上表示出来.10.某城市平均每天产生生活垃圾700吨,全部由甲﹨乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元.如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?学-科网。
七年级数学下册《一元一次不等式组》练习题及答案(人教版)
七年级数学下册《一元一次不等式组》练习题及答案(人教版)一、单选题 1.定义:对于实数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]5.75,55,4π==-=-如果132x +⎡⎤=⎢⎥⎣⎦则x 的取值范围是( )A .57x ≤<B .57x <<C .57x <≤D .57x ≤≤2.八年级某班部分学生去植树,若每人平均植树4棵,还剩9棵,若每人平均植树5棵,则最后一名学生有但棵数不足2棵.若设同学人数x 人,则下列列式正确的是( )A .49504952x x x x +->⎧⎨+-<⎩B .49504952x x x x +-≥⎧⎨+-<⎩C .495(1)0495(1)2x x x x +-->⎧⎨+--<⎩D .()()4951049512x x x x ⎧+--≥⎪⎨+--<⎪⎩3.若关于x 的不等式组()1022113x a x x ⎧-->⎪⎪⎨-⎪-≥⎪⎩无解,则所有满足条件的整数a 的值之积是( ) A .0 B .1 C .2 D .34.不等式组21223x x x ->+⎧⎨-≥⎩的解集在数轴上表示正确的是( ) A . B . C .D .5.不等式20-1x x -⎧⎨≤⎩>的解集在数轴上表示正确的是( ) A .B .C .D . 6.如果点P (2x+3,x-2)是平面直角坐标系的第四象限内的整数点,那么符合条件的点有( )个A .2B .3C .4D .57.不等式组32531x x +>⎧⎨-≥⎩的解在数轴上表示为( )A .B .C . D.8.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x ”到判断“结果是否15≥”为一次运行过程.如果程序运行两次就停止,那么x 的取值范围是( )A .3x ≥B .37x ≤<C .37x <≤D .7x ≤ 9.不等式组2{3x x >≤的解集在数轴上表示正确的是( ) A . B .43 C .3 D .2226-55(,) 10.定义一种新运算:2ab ab a =+则不等式组(2)21 52x x -<⎧⎪⎨≤⎪⎩的负整数解有( ) A .1个 B .2个 C .3个 D .4个二、填空题11.某种药品的说明书上,贴有如下的标签,一次服用这种药品的剂量范围是________~________mg .12.若a<b,则x a x b>⎧⎨≤⎩的解集是______. 13.不等式组112260x x ⎧≥-⎪⎨⎪+>⎩的解集为________.14.不等式组360x x m->⎧⎨>⎩的解集为2x >,则m 的取值范围为_______.15.不等式组112237xx⎧-<⎪⎨⎪-≤-⎩的解集是______.三、解答题16.解不等式组36021 xx+≥⎧⎨-≤-⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.17.(1)计算:3216+1927-⨯--(2)解不等式组:1>043xx x+⎧⎨+>⎩并把不等式组的整数解写出来.18.已知方程组713x y ax y a+=-+⎧⎨-=+⎩的解x为非正数,y为负数.(1)求a的取值范围;(2)当a为何整数时,不等式2ax+x>2a+1的解集为x<1?19.(1)解方程:241111xx x-+=-+(2)解不等式组:273(1)15(4)2x xx x--⎧⎪⎨-+≥⎪⎩<①②20.已知关于x的不等式12x≤8-32x+2a的解集表示在数轴上,如图所示(1)求a的值;(2)是否存在整数k,使得方程组26x y kx y a+=⎧⎨-=+⎩的解满足x>1,y≤1,若存在,求出k的值;若不存在,请说明理由.。
最新人教版七年级下册数学一元一次不等式精选试题
最新人教版七年级下册数学一元一次不等式精选试题七年级下册数学一元一次不等式精选试卷一、填空题:1、不等式-2x>6的解集是x<-3.2、当x>3/2时,代数式2x-3的值是非负数。
3、不等式8-3x≥1的正整数解是x=2.4、“a的一半与负6的差不大于负2”所列的不等式是a/2-6≤-2.5、若a<b<c,则a/8<b/8;-a<b-a;-2a+1<-2b+1.6、当x>2时,2x-5≥0;当x>3时,x-1>2;当1<x<3时,2x-5≤x-1.7、不等式2x+9≥3(x+2)的正整数解是x≥1.8、不等式x-2≤3的解集是x≤5.9、不等式2x-1>2x的解是不存在解。
10、直接写出下列不等式(组)的解集①2x+2≤4的解集为x≤1;②-4x-3;③|x-3|<2的解集为1<x<5.11、不等式组2x-2≥33x≤9的整数解是x=3.12、若不等式组x<a-1x>2a+1无解,则a的取值范围是a≤-1或a>3. 13、若不等式组2x+b>1x>-1/2的解集是-1<x<1,则(a+1)(b+1)的值为0.14、请写出一个以11且x≤3.15、若不等式组x>ax>-5的解集为x>-5,则a的取值范围是a≤-5.16、某次数学测验,共20道选择题,评分标准为:答对一题得10分,答错或不答一题扣5分。
某同学得分要超过90分,他至少要答对10题。
二、选择题:1、下列各式中,是一元一次不等式的是(B)。
A、5-3<8B、2x-1<3xC、1/2x≥8/3D、π/2+2x≤182、在75,48,-76,78.4,-79,125,93数中,是不等式2x>150的解的有(A)。
A、3个B、4个C、5个D、6个3、若a>b,则下列各式中不正确的是(B)。
七年级数学下册《一元一次不等式》练习题及答案(人教版)
16.解下列一元一次不等式;
(1)
(2)
17.直接说出不等式的解集:
(1) ;
(2) ;
(3) .
18.解不等式 ,并写出它的所有非负整数解.
19.在“6·18”活动中,某电商上架200个 商品和150个 商品进行销售,已知购买3个 商品和6个 商品共需780元,购买1个 商品和5个 商品共需500元.
5.某次知识竞赛共有20道选择题,答对一题得5分;答错或不答,每题扣1分.要使总得分不少于70分,则至少要答对几道题?若设答对x道题,可得式子为 ()
A. B. <
C. ≥ D. ≥
6.某商品原价5元,如果跌价x%后,仍不低于4元,那么( )
A.x≤20B.x<20C.x≥20D.x>20
7.不等式x+1>2x-4的解集是()
A.x<5B.x>5C.x<1D.x>1
8.已知 ,则不等式 的解集是()
A. B. C. D.
9.某品牌智能手机的标价比成本价高 ,根据市场需求,该手机需降价 ,若不亏本,则 应满()
A. B. C. D.
10.当a为( )值时,不等式a(x﹣3)<2(a﹣x)的解集为x<4.
A.a=8B.a=﹣8C.a<8D.a>﹣8
七年级数学下册《一元一次不等式》练习题及答案(人教版)
一、单选题
1.下列不等式中,是元一次不等式的是()
A. B. C. D.
2.不等式 的解集在数轴上表示正确的是()
A. B. C. D.
3.下列为一元一次不等式的是( )
A. B. C. D.
4.不等式6﹣4x≥3x﹣8的非负整数解为( )
A.2个B.3个C.4个D.5个
人教版七年级数学下册第九章第二节一元一次不等式考试习题(含答案) (53)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)某个不等式的解集在数轴上如图所示,这个不等式可以是()A.2x-1≤3 B.2x-1<3 C.2x-1≥3 D.2x-1>3【答案】A【解析】分析:先根据数轴上不等式解集的表示方法得出该不等式组的解集,再对四个选项进行逐一分析即可.x ,故本选项正确;详解:A、此不等式组的解集为:2B、此不等式组的解集为x<2,故本选项错误;C、此不等式组的解集为:x≥2,故本选项错误;D、此不等式组的解集为x>2,故本选项错误.故选A.点睛:用数轴表示不等式的解集时,当不等号是“≥”时,分界点用实心圆点,方向向右,当不等号是“≤”时,分界点用实心圆点,方向向左,当不等号是“>”时,分界点用空心圆圈,方向向右,当不等号是“<”时,分界点用空心圆圈,方向向左.22.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为()A.5000 B.10000 C.15000 D.20000【答案】B【解析】分析:设预计平均每年行驶x公里,根据已知条件分别列出两种汽车10年的用车成本,再根据“选择油电混动汽车的成本不高于选择普通汽车的成本”列出不等式进行解答即可.详解:设平均每年行驶的公里数至少为x公里,根据题意得:174800+31100x×10≤159800+46100x×10,解得:x≥10000,即预计平均每年行驶的公里数至少为10000公里.故选B.点睛:本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语句,弄清各数量间的关系,列出不等式;同时注意每百公里燃油成本是31元,不是一公里是31元.23.某单位为一中学捐赠了一批新桌椅,学校组织七年级300名学生搬桌椅,规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A .80B .100C .120D .200【答案】C【解析】分析:设可搬桌椅x 套,即桌子x 张、椅子x 把,则搬桌子需2x 人,搬椅子需2x 人,根据总人数列不等式求解可得. 详解:设可搬桌椅x 套,即桌子x 张、椅子x 把,则搬桌子需2x 人,搬椅子需2x 人,根据题意,得:2x +2x ⩽300, 解得:x ⩽120,∴最多可搬桌椅120套,故选:C.点睛:本题主要考查一元一次不等式的应用能力,设出桌椅的套数,表示出搬桌子、椅子的人数是解题的关键.24.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20-x. 根据题意得:( )A .10x-5(20-x)≥120B .10x-5(20-x)≤120C .10x-5(20-x)> 120D .10x-5(20-x)<120【解析】分析:小明答对题的得分:10x;小明答错题的得分:-5(20-x).不等关系:小明得分要超过120分.详解:根据题意,得10x-5(20-x)>120.故选C.点睛:此题要特别注意:答错或不答都扣5分.至少即大于或等于.25.把不等式2x﹣3≤﹣5 的解集在数轴上表示,正确的是()A.B.C.D.【答案】C【解析】分析:根据解一元一次不等式基本步骤:移项、合并同类项化简可得.详解:移项,得:2x≤-5+3,合并同类项,得:2x≤-2,∴x≤-1故选:C.点睛:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.26.不等式1-2x<5-1x的负整数解有()2A.1个B.2个C.3个D.4个【解析】【分析】按去分母、去括号、移项、合并同类项、系数化为1的步骤求出不等式的解集后按要求求出整数解即可.【详解】2(1-2x)<10-x,2-4x<10-x,-4x+x<10-2,-3x<8,x>-22,3所以不等式的负整数解有-1、-2,共2个,故选B.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤及注意事项是关键.27.海安市核心价值观知识竞赛中共20道选择题,答对一题得10分,满分200分,答错或不答扣5分,总得分不少于80分者就通过预赛而进入决赛,若想通过预赛,那么至少答对()A.10道题B.12道题C.14道题D.16道题【答案】B【解析】【分析】设答对x道,则答错或不答的题目就有20-x个,则10x-5(20-x)≥80,解不等式可得.【详解】设答对x道,则答错或不答的题目就有20-x个,则10x-5(20-x)≥80去括号:10x-100+5x≥80∴15x≥180解得:x≥12因此选手至少要答对12道故选:B【点睛】本题考核知识点:列不等式解应用题.解题关键点:根据不等关系列出不等式.28.不等式组221xx-≤⎧⎨-<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】分析:先解不等式①,再解不等式②,然后按照含等号的取实心,不含等号的取空心,大于向右,小于向左,在数轴上标出.详解:解不等式①可得:2x≥-,解不等式②可得:3x<,在数轴上表示为:故选D.点睛:本题主要考查解不等式组,并在数轴上正确表示不等式组的解集,解决本题的关键是要熟练掌握解不等式的方法和在数轴上表示不等式解集.29.下列不等式中,解集不同的是().A.5x>10与3x>6 B.6x-9<3x+6 与x<5C.x<-2与-14x>28 D.x-7<2x+8与x>15【答案】D【解析】【分析】分别求出每个选项中每一个不等式的解集,比较即可得.【详解】A.不等式5x>10的解集是x>2,3x>6的解集是x>2,相同,故不符合题意;B. 6x-9<3x+6 的解集是x<5,与x<5相同,故不符合题意;C. x<-2,-14x>28的解集是x<-2,相同,故不符合题意;D. x-7<2x+8的解集是x>-15,与x>15不相同,故符合题意,故选D.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的一般步骤是解题的关键.30.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.【答案】A【解析】分析:首先移项,再合并同类项,把x的系数化为1可得到不等式的解集,再把解集在数轴上表示出来即可.详解:移项得:3x﹣x≥2,合并同类项得:2x≥2,把x的系数化为1得:x≥1,在数轴上表示为:.故选A.点睛:本题主要考查了解一元一次不等式,以及用数轴表示不等式的解集,关键是掌握:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.。
人教版 七年级数学下册 解一元一次不等式 专题练习(包含答案)
2019年 七年级数学下册 解一元一次不等式 专题练习一、选择题1.不等式组的解集是( )A .x ≥2B .﹣1<x ≤2C .x ≤2D .﹣1<x ≤12.已知点P(2a +4,3a -6)在第四象限,那么a 的取值范围是( )A.-2<a <3B.a <-2C.a >3D.-2<a <23.若a <0,则关于x 的不等式|a|x <a 的解集是( )A.x <1B.x >1C.x <﹣1D.x >﹣14.关于x 的不等式x ﹣b >0恰有两个负整数解,则b 的取值范围是( )A.﹣3<b <﹣2B.﹣3<b ≤﹣2C.﹣3≤b ≤﹣2D.﹣3≤b <﹣25.若关于x 的不等式3x-a ≤0的正整数解是1、2、3,则a 应满足的条件是( )A.a=9B.a ≤9C.9<a ≤12D.9≤a<126.若不等式2x <4的解都能使关于x 的一次不等式(a-1)x <a +5成立,则a 的取值范围是( )A.1<a ≤7B.a ≤7C.a <1或a ≥7D.a=77.关于x 的不等式组⎩⎨⎧->-<-)1(2130x x m x 无解,那么m 的取值范围为( ) A.m ≤-1 B.m<-1 C.-1<m ≤0 D.-1≤m<08.已知不等式组的解集为﹣1<x <1,则(a+1)(b ﹣1)值为( )A.6B.﹣6C.3D.﹣3二、填空题9.不等式x ﹣8>3x ﹣5的最大整数解是 .10.若关于x 的不等式mx ﹣n >0的解集是x <0.25,则关于x 的不等式(m ﹣n)x >m+n 的解集是 . 11.当x________时,代数式的值是非负数. 12.已知不等式组的解集是2<x <3,则关于x 的方程ax+b=0的解为 . 13.若不等式组的解集是﹣3<x <2,则a+b= .已知3(5x+2)+5<4x-6(x+1),则化简|3x+3|-|2-3x|得15.已知关于x的不等式组只有四个整数解,则实数a的取值范是.16.定义新运算:对于任意实数a、b都有a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.例如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式4⊕x<13的解集为.三、解答题17.解不等式:2(﹣3+x)>3(x+2).18.解不等式:>2(x+1)﹣.19.解不等式:.20.解不等式:21.解不等式组:22.解不等式组:23.k取哪些整数时,关于x的方程5x+4=16k-x的根大于2且小于10?24.已知2-a和3-2a的值的符号相同,求a的取值范围.25.若不等式组的解集为1<x<6,求a,b的值.26.已知方程组的解为负数,求k的取值范围.27.已知a是不等式组的整数解,x、y满足方程组,求代数式(x+y)(x 2-xy+y 2)的值.参考答案1.A2.D3.C4.D5.D.6.A7.A;8.B9.答案为:﹣2.10.答案为:x<2.11.答案为:≤5;12.答案为:﹣0.5.13.答案为:0.14.答案为:-5;15.答案是:﹣3<a≤﹣2.16.答案为:x>1.17.解:去括号得,﹣6+2x>3x+6,移项、合并同类项得,﹣x>12,系数化为1得,x<﹣12;18.解:去分母,得:2(2﹣x)>12(x+1)﹣3(7x﹣2),去括号,得:4﹣2x>12x+12﹣21x+6,移项,得:﹣2x﹣12x+21x>12+6﹣4,合并同类项,得:7x>14,系数化为1,得:x>2.19.答案为:x≥2;20.答案为:x<9.21.答案为:x<-522.答案为:1≤x≤4;23.答案为:k=2或3.24.a<1.5或a>2.25.26.答案为:m<-8.27.(1)先解不等式组求得整数a:2<a<4,∴ a=3.(2)把a的值代入方程组解方程,求得x=-1,y=2(3)将求得的x、y值代入所求代数式.7.。
经典试卷】人教版七年级数学下册 一元一次不等式 单元测试题(含答案)
经典试卷】人教版七年级数学下册一元一次不等式单元测试题(含答案)一、选择题:1.B2.C3.数轴上应为大于号,正确选项为:2x>6,解集为x>3,故选项D正确。
4.C5.C6.B7.C8.C9.B10.5元11.712.113.314.x>215.-2≤m<216.改写为:如果甲骑车在半小时内赶上乙,比甲先出发2小时,乙以每小时5千米的速度步行,那么甲的速度应该是多少?若[x]+3=1,则x的取值范围为x≤-2;21.解不等式组为{x≤-1,y≥2};22.解不等式组为{x≤-2,y≤-1};23.关于x的方程5x+4=16k-x的根大于2且小于10的条件是4k≤x<5k,所以k为1、2、3、4、5、6、7;24.共有7辆汽车运货;25.(1)甲、乙两种君子兰每株成本分别为200元和500元;(2)最多购进甲种君子兰10株;26.该储运站需配置A型货厢20节,B型货厢30节。
21.删除该段22.假设一辆汽车可以装载x吨货物,则四辆汽车可以装载4x吨货物。
加上20吨散货,总共装载了4x+20吨货物。
根据题意,每辆汽车装满8吨货物时,有一辆汽车不装满,因此有方程 (x-1)*8=4x+20.解得x=6.所以共有6辆汽车运货。
23.略24.设有x节A货厢,则乙货厢有50-x节。
根据题意,35x+25(50-x)>=1530,15x+35(50-x)>=1150.解得30>=x>=28.因此,该储运站有三种配置方法:A货厢为30时,B货厢为20;A货厢为29时,B货厢为21;A货厢为28时,B货厢为22.。
人教版七年级数学下册《一元一次不等式》单元测试题含答案
....解不等式组,并把它的解集在数轴上表示出来.出正确的解答过程.1.设小明爸爸在高速路上行驶的速度v千米/小时,若汽车行驶在最右边的车道,则行驶速度v的取值范围是若汽车行驶在中间的车道,则行驶速度v的取值范围是参考答案:一元一次不等式单元测试题(一)一、选择题:1.D2.D3.B4. B5A6.B7. D8. C9.B10. C11. A12. B二、填空题:.13.17≤t≤2514. 0,1,2.提示:不等式组的解集为﹣1<x≤2,不等式组的整数解为0,1,2,15.10元/千克提示:设至少定价为x元/千克,根据题意,得(80-80×5%)x≥760,解得x≥10,所以售价至少应定为10元/千克.16.x<8.17.24提示:不等式组的整数解有2,3,4,一共,3个.三.解答题18.解:()()420561423214637223≤≤+≤+-≤--≤-x x x x xx x x 所以不等式组的解集为.4≤x 19.解:解不等式-3x+1<4,得x >-1,解不等式3x-2(x-1) <6,得x <4.所以原不等式组的解集是-1<x <4.20. 解:因为所以解不等式①,得x <3.解不等式②,得x≥﹣1. 所以不等式组的解集是﹣1≤x<3.它的解集在数轴上表示出来为:21.解:不等式①的解集是x≤5,不等式②解集是x >-1,所以不等式组的解集为:-1<x≤5,数轴描述如下图所示,仔细观察图,得不等式组的整数解为x=0,x=1,x=2,x=3,x=4,x=5一共六个,且最大的整数解为5.22.解:第一步就出现错误,第二步的解答也是错误的.去分母,得3(1+x )-2(2x+1)≤6,去括号,得:3+3x-4x-2≤6,移项,得,3x-4x≤6-3+2,合并同类项,得 -x≤5,两边都除以-1,得x≥-5.。
七下数学人教版一元一次不等式练习题及答案
数学:9.3一元一次不等式组同步练习C( 人教新课标七年级下)一、选择题1,关于x 的不等式2x -a ≤-1的解集如图2所示,则aA.0B.-3C.-2D.-12,已知a=32,23x x b ++=,且a>2>b ,那么x 的取值范围是( ) A .x>1 B .x<4 C .1<x<4 D .x<13,若三角形三条边长分别是3,1-2a ,8,则a 的取值范围是( )A .a>-5B .-5<a<-2C .-5≤a≤-2D .a>-2或a<-54,如果不等式组8x x m <⎧⎨>⎩无解,那么m 的取值范围是( ) A .m>8 B .m≥8 C .m<8 D .m≤8 5,一种灭虫药粉30kg ,含药率是15100,现在要用含药率较高的同种灭虫药粉50kg 和它混合,使混合后含药率大于30%而小于35%,则所用药粉的含药率x 的范围是( )A .15%<x<28%B .15%<x<35%C .39%<x<47%D .23%<x<50%6,韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未满;若全部安排B 队的车,每辆车4人,车不够,每辆坐5人,•有的车未满,则A 队有出租车( )A .11辆B .10辆C .9辆D .8辆二、填空题7,代数式1-k 的值大于-1且不大于3,则k 的取值范围是________.8,已知关于x 的不等式组2123x a x b -<⎧⎨->⎩的解集是-1<x<1,那么(a+1)(b-2)的值等于______. 9,不等式组23182x x x>-⎧⎨-≤-⎩的最小整数解是________.10,把一篮苹果分组几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生最多得3个,求学生人数和苹果数?设有x 个学生,依题意可列不等式组为________.11,若不等式组1,21x m x m <+⎧⎨>-⎩无解,则m 的取值范围是______.12,若关于x 的不等式组211,30x x x k -⎧>-⎪⎨⎪-<⎩的解集为x<2,则k 的取值范围是_______.三、解答题13,(20XX 年自贡市)解不等式组⎪⎩⎪⎨⎧+≥+<+4134)2(3x x x x14,要使关于x的方程5x-2m=3x-6m+1的解在-3与4之间,m必须在哪个范围内取值?15,在车站开始检票时,有a(a>0)名旅客在候车室等候检票进站,•检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,•检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,•以使后来到站的旅客能随到随检,至少要同时开放几个检票口?16,某校举行“建校50周年”文娱汇演,评出一等奖5个,二等奖10个,•三等奖15个,学1件:(2)学校要求一等奖的奖品单价是二等奖品单价的5倍,•二等奖奖品单价是三等奖奖品单价的4倍,在总费用不超过1200元的前提下,有几种购买方案?花费最多的一种方案需要多少钱?17,为了迎接20XX年世界杯足球赛,某足协举办了一次足球联赛,•其记分规划及奖励办法如下表所示:A 队当比赛进行12场时,积分共19分(1)通过计算,A 队胜,平、负各几场?(2)若每赛一场,每名参赛队员可得出场费500元.若A •队一名队员参加了这次比赛,在(1)条件下,该名队员在A 队胜几场时所获奖金最多,奖金是多少?数学:9.3一元一次不等式组同步练习( 人教新课标七年级下)一、1,B.解:x ≤12a +,又不等式解为:x ≤-1,所以12a +=-1,解得:a =-3. 2,C.解:由已知a>2>b 即为32222223x a x b +⎧>⎪>⎧⎪⎨⎨+<⎩⎪<⎪⎩建立不等式组再求解. 3,B.解:由三角形边长关系可得5<1-2a<11,解得-5<a<-2.4,B.解:因为不等式组无解,即x<8与x>m 无公共解集,利用数轴可知m≥8.5,C.解:依题意可得不等式15503030353947100,1005030100100100x x +⨯<<<<+解得. 6,B.解:设A 队有出租车x 辆,B 队有(x+3)辆,依题意可得11155561656934(3)56115(3)56185x x x x x x x x ⎧<⎪<⎧⎪⎪⎪>>⎪⎪⎨⎨+<⎪⎪<⎪⎪+>⎩⎪>⎪⎩化简得 解得913<x<11, ∵x 为整数,∴x=10. 二、7,-2≤k<2.解:由已知可得1113k k ->-⎧⎨-≤⎩ 解不等式组得-2≤k<2.8,-8.解:解不等式组2123x a x b -<⎧⎨->⎩可得解集为2b+3<x<12a +,因为不等式组的解集为-1<x<1,所以2b+3=-1,12a +=1,解得a=1,b=-2代入(a+1)(b-2)=2×(-4)=-8. 9,-1.解:先求出不等式组解集为-32<x≤3,其中整数解为-1,0,1,2,3,故最小整数解-1.10,436(1)436(1)3x x x x +≥-⎧⎨+≤-+⎩点拨:设有x 名学生,苹果数为(4x+3)个,再根据题目中包含的最后一个学生最多得3个,即不等关系为0≤最后一个学生所得苹果≤3,所以不等式组为436(1)0436(1)3x x x x +--≥⎧⎨+--≤⎩. 11,m≥2.解:由不等式组x 无解可知2m-1≥m+1,解得m≥2.12,k≥2.解:解不等式①,得x>2.解不等式②,得x<k.因为不等式组的解集为x<2,所以k≥2.三、13,答案:解不等式(1),得463+<+x x1-<x解不等式(2),得334+≥x x3≥x∴原不等式无解14,解方程5x-2m=3x-6m+1得x=412m -+.要使方程的解在-3与4之间,只需-3<412m -+<4.解得-74<m<74. 15,设至少同时开放n 个检票口,且每分钟旅客进站x 人,检票口检票y 人.依题意,得3030,10210,55.a x y a x y a x ny +=⎧⎪+=⨯⎨⎪+≤⎩第一、二两个式子相减,得y=2x .把y=2x 代入第一个式得a=30x .把y=2x ,a=30x 代入③得n≥3.5.∵n 只能取整数,∴n=4,5,…答:至少要同时开放4个检票口.16,解:(1)根据题意,最少花费为:6×5+5×10+4×15=140元.(2)设三等奖的奖品单价为x 元,根据题意得52010451200201204x x x x x ⨯+⨯+≤⎧⎪≤⎨⎪≥⎩解得4≤x≤6,因此有3种方案分别是:方案1:三等奖奖品单价6元,二等奖奖品单价24元,一等奖奖品单价120元.方案2:三等奖奖品单价5元,二等奖奖品单价20元,一等奖奖品单价100元.而表格中无此奖品故这种方案不存在,舍去.方案3:三等奖奖品单价4元,二等奖奖品单价16元,一等奖奖品单价为80元.方案1花费:120×5+24×10+6×15=930元,方案2花费:80×5+16×10+4×15=620元,其中花费最多的一种方案为一等奖奖品单价120元,二等奖奖品单价24元,•三等奖奖品单价6元,共花费奖金930元.点拨:(1)学校买奖品花钱最少,则奖品依次为相册,笔记本,•钢笔等这些单价偏低的商品分别作为一,二,三等奖品.(2)根据题目中包含的不等关系1200⎧⎪⎨⎪⎩费用不超过一等奖奖品单价不大于120三等奖奖品单价不小于4,建立不等式组,再由奖品单价为整数,求出符合题意的整数解.确定购买方案.17,解:(1)设A 队胜x 场,平y 场,负z 场,则12319x y z x y ++=⎧⎨+=⎩用x 表示y ,z 解得:19327y x z x =-⎧⎨=-⎩∵x≥0,y≥0,z≥0且x ,y ,z 均为正整数,∴ 01930270x x x ≥⎧⎪-≥⎨⎪-≥⎩解之得312≤x≤613,∴x=4,5,6,即A 队胜,平,负有3种情况,分别是A 队胜4场平7场负1场,A 队胜5场平4场负3场,A 队胜6场平1场负5场,(2)在(1)条件下,A 队胜4场平7场负1场奖金为:(1500+500)×4+(700+500)×4+500×3=16300元,A 队胜6场平1场负5场奖金为(1500+500)×6+(700+500)×1+500×5=15700元,故A 队胜4场时,该名队员所获奖金最多.点拨:在由已知设胜x 场,平y 场,负z 场,首先根据比赛总场次12场,得分19分,•建立方程组,用x 表示y ,z 最后关键在于分析到题目中隐含的x≥0,y≥0,z≥0且x ,y ,z 为整数从而建立不等式组求到x 的值.(2)把3种情况下的奖金算出,再比较大小.备用题:1,C.1,解:设有x 名学生获奖,则钢笔支数为(3x+8)支,依题意得385(1)0385(1)3x x x x +--≥⎧⎨+--<⎩解得5<x≤612,∵x 为正整数.∴x=6,把x=6代入3x+8=26.答:该校有6名学生获奖,买了26支钢笔.点拨:设出获奖人数,则可表示奖励的钢笔支数,再根据题目中第二个已知条件,每人送5支,最后一人所得支数不足3支,隐含了0≤最后一人所得钢笔支数<3•这样的不等式关系列不等式组,求出x 的取值范围5<x≤612,又x 表示人数应该是正整数,•所以x=6,3x+6=26,因此一共有6名学生获奖,买了26支钢笔发奖品.3,解:设生产甲型玩具x 个,则生产乙型玩具(100-x )个,依题意得:73(100)48025(100)370x x x x +-≤⎧⎨+-≤⎩解之得:4313≤x≤45,∵x 为正整数,∴x=44或45,100-x=56或55,故能实现这个计划,且有2种方案,第1种方案:生产甲型玩具44个,生产乙型玩具56个.第2种方案:生产甲型玩具45个,生产乙型玩具55个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学一元一次不等式单元测试题
(考试时间60分钟 试卷分数100分)
一、填空题:(每小题3分,共30分)
1、不等式62>-x 的解集是 ;
2、一个三角形的三边长分别为
3、5、a -1则a 的取值范围是 ; 3、当x 时,代数式32-x 的值是非负数;
4、不等式138≥-x 的正整数解是 ;
5、“a 的一半与负6的差不大于负2”所列的不等式是 。
6、用不等号填空:若0<<b a ,则
8a 8b ; a 1- b
1
-; 12+-a 12+-b 。
7、当x 时,52-x 不小于零;当x 时,1-x 大于2;当x 时,52-x 不大于1-x 。
8、不等式2x+9≥3(x+2)的正整数解是
9、不等式x-2≤0的解集是
10、不等式3
2x -1>2x
的解是
二、选择题:(每小题3分,共30分)
11、如果y x >,那么下列不等式不成立的是( )
A 、33->-y x
B 、y x 33>
C 、3
3y
x > D 、y x 33->-
12、不等式512>-x 的解集是( )
A 、5>x
B 、2>x
C 、3>x
D 、3<x
13、下列各式中,是一元一次不等式的是( ) A、835<- B、x
x 1
12<
- C、832≥x D、
1822
≤+x π
14、若b a >,则下列各式中不正确的是( )
A、22->-b a B、0<-b a C、b a 66-<- D、b a 2
121-<- 15、下列说法中,肯定错误的是( )
A、62->-x 的解集是3<x B、-8是不等式82-<-x 的解 C、2>x 的整数解有无数个 D、3>x 没有负整数解
16、已知三角形的两边8=b ,10=c ,则这个三角形的第三边a 的取值范围是( )
A、182<<-a B、 182<<a C、182≤≤-a D、182≤≤a
17、已知a >b,c 为任意实数,则下列不等式中总是成立的是( )
A 、a+c <b+c
B 、a -c >b -c
C 、ac <bc
D 、ac >bc 18、下列说法中,错误的是( )
A 、不等式2<x 的正整数解中有一个
B 、2-是不等式012<-x 的一个解
C、不等式9
3>
-x的解集是3-
>
x D、不等式10
<
x的整数解有无数个
19、已知不等式10
x-≥,此不等式的解集在数轴上表示为()
20、在数轴上表示不等式x-1<0的解集,正确的是()
A B C D
三、解答题:(共40分)
21、(7分)解不等式2(x-1)-3<1,并把它的解在数轴上表示出来.
3
2
1
-1
-2
-3
22、(7分)解不等式:
4
)3
(2>
-
+
x,并把解集在下列的数轴上表示出来.
23、(8分)解不等式
6
5
2
3
2
4
1
3-
≥
-
+x
x
,并把它的解集在数轴上表示出来。
24、(8分)小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.
25、(10分)为了参加2011年西安世界园艺博览会,某公司用几辆载重为80吨的汽车运送一批参展货物。
若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满,请问:共有多少辆汽车运货?
0 1 2
1
2。