糖原代谢及其调控精品PPT课件
合集下载
第四章 糖代谢与调节ppt课件
乙酰CoA H2O
CoA
柠檬酸
H2O
草酰乙酸
NADH+H H H+ NAD+
顺乌头酸
H2O
苹果酸
异柠檬酸
NAD+
H2O
延胡索酸
三羧酸循环
ATP
GTP GDP
H H+ NADH+H
H2 FADH 2 FAD
草酰琥珀酸
CO2 2
琥珀酸
α-酮戊二酸
琥珀酰CoA
CO2 NADH+H H + H
NAD+
磷酸戊糖途径:又称HMP途径(己糖磷酸支路)
根据代谢物脱下的氢的最初受体不同,分 为NADH呼吸链和FADH2呼吸链。
3、氧化磷酸化:以代谢物进行生物氧化所产 生的能量合成高能化合物(如ATP)的过程 称为氧化磷酸化。 4、P/O比值:表示氧的消耗与ATP生成的个 数间的关系,即每消耗1摩尔氧所消耗无机 磷的摩尔数,它表明每消耗1摩尔的氧所能 生成的ATP分子个数的多少。NADH呼吸链 P/O=3,FADH2 呼吸链P/O=2。
转醛酶-。
3、其它标记
在维持转酮酶缺陷的情况下,进一步诱变使菌体
带上具有高葡萄糖脱氢酶活性和丧失孢子形成能力,可
使D-核糖大量积累。
4、利用基因工程
日本岩木盾等人首先将枯草杆菌染色体 DNA 中的转
酮酶基因克隆到载体质粒PUB110中,然后将氯霉素酰基 转移酶基因插入到转酮酶基因之中,造成转酮酶基因的 不可逆失活。经限制性内切酶 Smal切后得到线状重组质 粒,将该线状重组质粒转化到枯草杆菌宿主菌中,构建 转酮酶失活的D-核糖工程菌株。其核糖产量达52g/L。小 林等人将葡萄糖脱氢酶基因克隆到载体质粒PHY300PLK中, 然后转化到枯草芽孢杆菌中去。构建扩增葡萄糖脱氢酶 的D-核糖工程菌,350C发酵80h可积累49g/LD-核糖。
糖代谢—血糖及其调节(生物化学课件)
10
模块二:物质代谢及其调节
糖代谢
目 录 CONTENTS
1 糖的消化吸收 2 糖酵解(葡萄糖的无氧分解) 3 葡萄糖的有氧分解 4 磷酸戊糖途径 5 糖异生作用 6 糖原的分解与合成 7 血糖及其调节
糖代谢
7 血糖及其调节
➢ 血糖的来源与去路 ➢ 血糖水平的调节 ➢ 血糖水平异常
激素的调节
[血糖]正常水平,肝糖元Glc,[Glc] 糖异生作用加强
[血糖]正常水平,Glc肝糖元,[Glc] 糖异生作用减弱
2.肾脏调节 肾糖阈:肾脏所能保持的最高[Glc]在160-180mg/dl,
9
血糖水平的调节
3. 神经系统的调节 4. 激素调节
1) 胰岛素 ↓ 2) 胰高血糖素 ↑ 3) 糖皮质激素 ↑ 4) 肾上腺素↑
(一)低血糖
空腹血糖浓度低于2.8 mmol/L 低血糖昏迷:血糖浓度低于2.52mmol/L
血糖水平异常
低血糖的原因:
① 胰性(胰岛β-细胞功能亢进、胰岛α-细胞功能低下等) ② 肝性(肝癌、糖原积累病等) ③ 内分泌异常(垂体功能低下、肾上腺皮质功能低下等) ④ 肿瘤(胃癌等) ⑤ 饥饿或不能进食
糖代谢
目 录 CONTENTS
1 糖的消化吸收 2 糖酵解(葡萄糖的无氧分解) 3 葡萄糖的有氧分解 4 磷酸戊糖途径 5 糖异生作用 6 糖原的分解与合成 7 血糖及其调节
糖代谢
7 血糖及其调节
➢ 血糖的来源与去路 ➢ 血糖水平的调节 ➢ 血糖水平异常
血糖水平异常
只有血糖水平持续异常或耐糖曲线 异常才可以确定为糖代谢紊乱
肝糖原分解 ↑
非糖物质糖异生 ↑
血糖 ↑
合成糖原 ↓ 氧化分解 ↓
模块二:物质代谢及其调节
糖代谢
目 录 CONTENTS
1 糖的消化吸收 2 糖酵解(葡萄糖的无氧分解) 3 葡萄糖的有氧分解 4 磷酸戊糖途径 5 糖异生作用 6 糖原的分解与合成 7 血糖及其调节
糖代谢
7 血糖及其调节
➢ 血糖的来源与去路 ➢ 血糖水平的调节 ➢ 血糖水平异常
激素的调节
[血糖]正常水平,肝糖元Glc,[Glc] 糖异生作用加强
[血糖]正常水平,Glc肝糖元,[Glc] 糖异生作用减弱
2.肾脏调节 肾糖阈:肾脏所能保持的最高[Glc]在160-180mg/dl,
9
血糖水平的调节
3. 神经系统的调节 4. 激素调节
1) 胰岛素 ↓ 2) 胰高血糖素 ↑ 3) 糖皮质激素 ↑ 4) 肾上腺素↑
(一)低血糖
空腹血糖浓度低于2.8 mmol/L 低血糖昏迷:血糖浓度低于2.52mmol/L
血糖水平异常
低血糖的原因:
① 胰性(胰岛β-细胞功能亢进、胰岛α-细胞功能低下等) ② 肝性(肝癌、糖原积累病等) ③ 内分泌异常(垂体功能低下、肾上腺皮质功能低下等) ④ 肿瘤(胃癌等) ⑤ 饥饿或不能进食
糖代谢
目 录 CONTENTS
1 糖的消化吸收 2 糖酵解(葡萄糖的无氧分解) 3 葡萄糖的有氧分解 4 磷酸戊糖途径 5 糖异生作用 6 糖原的分解与合成 7 血糖及其调节
糖代谢
7 血糖及其调节
➢ 血糖的来源与去路 ➢ 血糖水平的调节 ➢ 血糖水平异常
血糖水平异常
只有血糖水平持续异常或耐糖曲线 异常才可以确定为糖代谢紊乱
肝糖原分解 ↑
非糖物质糖异生 ↑
血糖 ↑
合成糖原 ↓ 氧化分解 ↓
糖原的分解合成代谢课件
• 通过增强磷酸二酯酶活性,降低cAMP水平,从而使 糖原合酶活性增强、磷酸化酶活性降低,加速糖原合 成、抑制糖原分解。
• 通过激活丙酮酸脱氢酶磷酸酶而使丙酮酸脱氢酶激活, 加速丙酮酸氧化为乙酰CoA,从而加快糖的有氧氧化。
• 抑制肝内糖异生。这是通过抑制磷酸烯醇式丙酮酸羧 激酶的合成以及促进氨基酸进入肌组织并合成蛋白质, 减少肝糖异生的原料。
•21
激素(胰高血糖素、肾上腺素等)+ 受体
腺苷环化酶
腺苷环化酶(有活性)
(无活性) ATP
cAMP
PKA
(无活性)
PKA
(有活性)
磷酸化酶b激酶 磷酸化酶b激酶-P
Pi
磷蛋白磷酸酶-1
–
糖原合酶
糖原合酶-P
磷酸化酶b 磷酸化酶a-P
Pi
磷蛋白磷酸酶-1
–
Pi
磷蛋白磷酸酶-1
–
磷蛋白磷酸酶抑制剂-P
UDP
糖原n+1
糖原n 糖原合酶
UDPG
磷酸化酶
Pi 糖原n
PPi UDPG焦磷酸化酶
UTP
G-1-P
磷酸葡萄糖变位酶
葡萄糖-6-磷酸酶(肝)
G-6-P
G
•糖原的分解合成代谢
己糖(葡萄糖)激酶
•17
三、糖原合成与分解受到彼此相反的 调节
➢糖原的合成与分解是分别通过两条不同途径 进行的。这种合成与分解循两条不同途径进行 的现象,是生物体内的普遍规律。这样才能进 行精细的调节。
•27
血糖及其调节
The Definition, Level and Regulation of Blood Glucose
•糖原的分解合成代谢
• 通过激活丙酮酸脱氢酶磷酸酶而使丙酮酸脱氢酶激活, 加速丙酮酸氧化为乙酰CoA,从而加快糖的有氧氧化。
• 抑制肝内糖异生。这是通过抑制磷酸烯醇式丙酮酸羧 激酶的合成以及促进氨基酸进入肌组织并合成蛋白质, 减少肝糖异生的原料。
•21
激素(胰高血糖素、肾上腺素等)+ 受体
腺苷环化酶
腺苷环化酶(有活性)
(无活性) ATP
cAMP
PKA
(无活性)
PKA
(有活性)
磷酸化酶b激酶 磷酸化酶b激酶-P
Pi
磷蛋白磷酸酶-1
–
糖原合酶
糖原合酶-P
磷酸化酶b 磷酸化酶a-P
Pi
磷蛋白磷酸酶-1
–
Pi
磷蛋白磷酸酶-1
–
磷蛋白磷酸酶抑制剂-P
UDP
糖原n+1
糖原n 糖原合酶
UDPG
磷酸化酶
Pi 糖原n
PPi UDPG焦磷酸化酶
UTP
G-1-P
磷酸葡萄糖变位酶
葡萄糖-6-磷酸酶(肝)
G-6-P
G
•糖原的分解合成代谢
己糖(葡萄糖)激酶
•17
三、糖原合成与分解受到彼此相反的 调节
➢糖原的合成与分解是分别通过两条不同途径 进行的。这种合成与分解循两条不同途径进行 的现象,是生物体内的普遍规律。这样才能进 行精细的调节。
•27
血糖及其调节
The Definition, Level and Regulation of Blood Glucose
•糖原的分解合成代谢
糖代谢—糖原代谢(生物化学课件)
糖原合成的限速酶
一、糖原的合成 (二)糖原合成的特点
糖原合酶
消耗2ATP
关键酶
能量 代谢
小分子糖原 引物
直接 供体
UDPG
一、糖原的合成 (三)糖原合成的生理意义:
1 机体储存葡萄糖的方式,也是储存能量的一种方式。
2 对维持血糖浓度的恒定有重要意义。
维持血糖浓度 的相对稳定
糖原代谢(糖原的合成)
生物化学 B i o c h e m i s t r y
第三节 糖原代谢
糖原是以葡萄糖为基本单位聚合而成的带分支的大分子多糖。
主要分布在肝脏(肝糖原)和肌肉(肌糖原)
……O
非还原端
CH2OOH
OH
O
OH
CH2OH O
OH O
OH
CH2OH O
OH
OH O
磷酸化酶
Pi
脱
G-1-P
支
脱支酶
酶
的
作
用
脱支酶
G
一、糖原的分解
(二)糖原分解的特点
6-磷酸酶只存在 肝及肾,因此肌 糖原不能分解
关键酶
磷酸化酶
葡萄糖
一、糖原的分解
肝糖原分解为 葡萄糖,维持 不进食血糖浓 度的恒定。
(三)糖原分解的生理意义:
肌糖原分解则 为肌肉本身收 缩提供能量
糖原的合成和分解
生物化学 B i o c h e m i s t r y
一、糖原的分解 定义:肝糖原分解为葡萄糖的过程。
(一)糖原分解的过程
Gn 磷酸化酶 G-1-P
G-6-P G-6-P酶 G
பைடு நூலகம்
葡萄糖-6-磷酸酶主要存在于肝细胞,肌肉组织中不含此酶, 1 因此肌糖原不能分解为葡萄糖。
生物化学第四章糖代谢ppt课件
为单糖。
吸收机制
单糖主要通过小肠黏膜上皮细胞以 主动转运方式吸收进入血液。
影响因素
糖的消化吸收受多种因素影响,如 食物中糖的
吸收后的单糖主要通过门 静脉进入肝脏,再经血液 循环运输到全身各组织器 官。
淋巴运输
少量单糖和寡糖也可通过 淋巴管运输到血液循环中 。
06 糖原的合成与分 解
糖原的合成
合成部位
肝和肌肉是合成糖原的主要器官,其中肝糖原占总量10% ,肌糖原占90%。
合成原料
主要有葡萄糖、果糖和半乳糖等单糖。
合成过程
包括活化、缩合、分支和交联等步骤,最终形成具有高度 分支结构的糖原分子。
糖原的分解
01
分解部位
主要在肝脏和肌肉中进行。
02 03
分解过程
柠檬酸循环
在线粒体中,丙酮酸经过一系列反应生成CO2、 H2O和大量ATP。
糖有氧氧化的生理意义
1 2
能量供应
糖有氧氧化是体内主要的能量供应途径,为细胞 活动提供ATP。
物质代谢枢纽
糖有氧氧化连接糖、脂肪和蛋白质三大物质代谢 ,实现能量转换和物质转化。
3
维持血糖水平
通过糖有氧氧化,可以维持血糖水平在正常范围 内。
糖有氧氧化的调节
激素调节
胰岛素促进糖有氧氧化,而胰高血糖素和肾上腺素则抑制该过程 。
底物水平调节
细胞内糖浓度升高时,可促进糖有氧氧化;反之,则抑制该过程。
酶活性调节
关键酶的活性受到磷酸化和去磷酸化的共价修饰调节,从而控制糖 有氧氧化的速率。
05 磷酸戊糖途径
磷酸戊糖途径的过程
磷酸戊糖的形成
在磷酸戊糖途径中,葡萄糖首先经过磷酸化反应生成葡萄糖6-磷酸,随后经过异构化反应生成果糖-6-磷酸。果糖-6-磷 酸再经过磷酸化反应生成果糖-1,6-二磷酸,最终裂解成两个 磷酸丙糖分子。
吸收机制
单糖主要通过小肠黏膜上皮细胞以 主动转运方式吸收进入血液。
影响因素
糖的消化吸收受多种因素影响,如 食物中糖的
吸收后的单糖主要通过门 静脉进入肝脏,再经血液 循环运输到全身各组织器 官。
淋巴运输
少量单糖和寡糖也可通过 淋巴管运输到血液循环中 。
06 糖原的合成与分 解
糖原的合成
合成部位
肝和肌肉是合成糖原的主要器官,其中肝糖原占总量10% ,肌糖原占90%。
合成原料
主要有葡萄糖、果糖和半乳糖等单糖。
合成过程
包括活化、缩合、分支和交联等步骤,最终形成具有高度 分支结构的糖原分子。
糖原的分解
01
分解部位
主要在肝脏和肌肉中进行。
02 03
分解过程
柠檬酸循环
在线粒体中,丙酮酸经过一系列反应生成CO2、 H2O和大量ATP。
糖有氧氧化的生理意义
1 2
能量供应
糖有氧氧化是体内主要的能量供应途径,为细胞 活动提供ATP。
物质代谢枢纽
糖有氧氧化连接糖、脂肪和蛋白质三大物质代谢 ,实现能量转换和物质转化。
3
维持血糖水平
通过糖有氧氧化,可以维持血糖水平在正常范围 内。
糖有氧氧化的调节
激素调节
胰岛素促进糖有氧氧化,而胰高血糖素和肾上腺素则抑制该过程 。
底物水平调节
细胞内糖浓度升高时,可促进糖有氧氧化;反之,则抑制该过程。
酶活性调节
关键酶的活性受到磷酸化和去磷酸化的共价修饰调节,从而控制糖 有氧氧化的速率。
05 磷酸戊糖途径
磷酸戊糖途径的过程
磷酸戊糖的形成
在磷酸戊糖途径中,葡萄糖首先经过磷酸化反应生成葡萄糖6-磷酸,随后经过异构化反应生成果糖-6-磷酸。果糖-6-磷 酸再经过磷酸化反应生成果糖-1,6-二磷酸,最终裂解成两个 磷酸丙糖分子。
生物化学-糖代谢PPT课件
6-磷酸果糖激酶-1
特点:不可逆反应。需ATP提供磷酸基和能量 磷酸果糖激酶-1 是糖酵解最重要的限速酶之一
(4) 1,6-二磷酸果糖裂解成2个磷酸丙糖
(5) 3-磷酸甘油醛氧化为1,3-二磷酸酸甘 油酸
3-磷酸甘油醛脱氢酶催化,该途径唯一的氧 化步骤
(6)1,3-二磷酸甘油酸转变成3-磷酸甘油酸
5-磷酸核酮糖
NADP+
NADPH + H+ +CO2
2. 5-磷酸核酮糖的基团转移反应过程:
在此阶段,经由5-磷酸核酮糖的异构可生成 5-磷酸核糖 5-磷酸核酮糖经一系列基团转移及差向异构 反应生成3-磷酸甘油醛和6-磷酸果糖。 基团转移阶段的所有反应均为可逆反应。
5-磷酸核酮糖(C5) ×3
三羧酸循环的特点
②循环反应在线粒体(mitochondrion)中进行,是 单向反应体系,为不可逆反应。 ③三羧酸循环中有两次脱羧反应,生成两分子CO2; 有四次脱氢反应,生成三分子NADH和一分子FADH2。 有一次底物水平磷酸化,生成一分子GTP。
⑤三羧酸循环是机体主要的产能方式,每完成一次 循环,氧化分解掉一分子乙酰基,可生成10分子 ATP。
糖代谢
Metabolism of Carbohydrates
第一节 概 述
Section 1 Introduction
生物化学
➢糖的概念
糖(carbohydrates)即碳水化合物,其化 学本质为多羟醛或多羟酮及其衍生物。如葡 萄糖、蔗糖、淀粉、糖原、糖复合物等。
食物中的糖主要是淀粉,经消化为葡萄 糖吸收入血后进行代谢,故糖代谢主要指葡 萄糖代谢。
5.红细胞中的糖酵解存在2,3-二磷酸甘
油酸支路
特点:不可逆反应。需ATP提供磷酸基和能量 磷酸果糖激酶-1 是糖酵解最重要的限速酶之一
(4) 1,6-二磷酸果糖裂解成2个磷酸丙糖
(5) 3-磷酸甘油醛氧化为1,3-二磷酸酸甘 油酸
3-磷酸甘油醛脱氢酶催化,该途径唯一的氧 化步骤
(6)1,3-二磷酸甘油酸转变成3-磷酸甘油酸
5-磷酸核酮糖
NADP+
NADPH + H+ +CO2
2. 5-磷酸核酮糖的基团转移反应过程:
在此阶段,经由5-磷酸核酮糖的异构可生成 5-磷酸核糖 5-磷酸核酮糖经一系列基团转移及差向异构 反应生成3-磷酸甘油醛和6-磷酸果糖。 基团转移阶段的所有反应均为可逆反应。
5-磷酸核酮糖(C5) ×3
三羧酸循环的特点
②循环反应在线粒体(mitochondrion)中进行,是 单向反应体系,为不可逆反应。 ③三羧酸循环中有两次脱羧反应,生成两分子CO2; 有四次脱氢反应,生成三分子NADH和一分子FADH2。 有一次底物水平磷酸化,生成一分子GTP。
⑤三羧酸循环是机体主要的产能方式,每完成一次 循环,氧化分解掉一分子乙酰基,可生成10分子 ATP。
糖代谢
Metabolism of Carbohydrates
第一节 概 述
Section 1 Introduction
生物化学
➢糖的概念
糖(carbohydrates)即碳水化合物,其化 学本质为多羟醛或多羟酮及其衍生物。如葡 萄糖、蔗糖、淀粉、糖原、糖复合物等。
食物中的糖主要是淀粉,经消化为葡萄 糖吸收入血后进行代谢,故糖代谢主要指葡 萄糖代谢。
5.红细胞中的糖酵解存在2,3-二磷酸甘
油酸支路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内质网腔
Glc质膜载体 毛 细 血 管
6
H13.4
§2. 糖原合成
- High [Pi] in cell favors glycogen breakdown & prevents from glycogen synthesis in vivo.
- Needs another way to activate Glc for transferring to glycogen chain.
糖原磷酸化酶 断裂(14)
游离异头C (还原端)
- 该过程可重复进 行至离某个分支 点相隔 4 Glc
- Ionized G1P can’t diffuse out of cell - Glc is phosphorylated: no ATP needs to be
consumed to permit entry into glycolysis
directly adding to a chain like this, or needing a primer with at least 8/6 Glc residues
⊿G’o = -13.4 kJ/mol
9
15-9
• Branch synthesis in glycogen
= 糖原分支酶从一段至少有11 Glc残基的分 支上转移6~7个残基给该分支或邻近分支 还原端某个残基的C6上以形成新的分支
activity 1 = 糖基转移酶 脱
支 酶 activity 2 = (16)糖苷酶
4
15-5
• 磷酸葡糖变位酶作用机制
(cf. Fig. 13-7)
- 该酶需以活性位点的Ser 残基已被磷酸化的形式 参与反应
- 先由酶将其磷酰基转移 给G1P而生成G-1,6-BP
- 再由G-1,6-BP将其C1位 磷酰基转移给酶并释出 G6P
= O– on the sugar phosphate
attacking nucleophilicly P of NTP and displacing PPi, which hydrolysis pulling
the reaction forward and
irreversibly
核苷二磷酸糖 ⊿G’o ≈ 0 kJ/mol 焦磷酸化酶
(0.01 μM Glycogen ~ 0.4M Glc)
1
15-3
§1. 糖原分解 = removal of a terminal Glc residue
from the nonreducing end of a
glycogen by glycogen phosphorylase
磷酸解使糖苷键的 部分能量被保存在 形成的磷酸酯键中
much better leaving group
糖原 合酶
磷酸葡糖变位酶 UDP-Glc 焦磷酸化酶
UDP-Glc
Luis Leloir 1906-1987 1970 NP in Chem.
糖原代谢中Glc激活方式不同:
- 降解时磷酸解成G1P - 合成时核苷酰化成UDP-7Glc
15-7
自学
• 核苷二磷酸糖/糖核苷酸的形成
自学
(cf. phosphoglycerate mutase with His in Glycolosis ⑧) 5
15-6
自学
• 肝糖元降解可以补充血糖
G6P酶仅存在于肝脏和肾脏,为内质网 膜上的整合蛋白(可能有九个跨膜螺旋区 段),活性点位于腔内侧(why?)
T1/G6P酶的任一遗传 缺失均将导致糖原代 谢紊乱并最终引发Ia 型糖原贮积病
- 支链淀粉亦可在 淀粉磷酸化酶的 作用下以类似的 方式降解
2
G15.15
Structure of Glycogen Phosphorylase
monomer (842 AA)
别构剂 结合点
与另一亚基的 别构部位接触
PLP
自学 dimer
糖原颗粒 结合位点
催化 部位
磷酸化位点: 高活性a型 磷酸化 低活性b型 去磷酸化
- Debranching enzyme
phospho-
= bifunctional enzyme glucomutase
(as PFK-2)
磷酸葡糖
G6P 变位酶
- G6P去路 肝、肾细胞中水解成Glc 脑、肌细胞中直接进入酵解
(without G6Pase) - 糖原颗粒不会被完全分解,
一般是分支减少/分子变小
辅基磷酸吡哆醛(PLP) 共价结合于Lys680,其 磷酰基以广义酸-碱催化 方 糖式 苷键促进(Pcfi.攻Fi击g. 13(-15→) 4)3
15-4
• 糖原脱分支
- Product of glycogen degradation = G1P (85%) & free Glc (15%)
G1P
断裂(1→4)键
糖原分支的生物学意义 增加糖原的可溶性 - 增加非还原端数量
糖原分支酶
形成(1→6)键
10
20-16(3rd)
⊿G’o = -20~27 kJ/mol
8
15-8
• Glycogen synthesis = glycogen chain elongated
by glycogen synthase
糖原合酶不能从头开始而将两个游 离的UDP-Glc直接连接起来
transferring the Glc residue from UDP-Glc to the nonreducing end of a glycogen branch to make a new (1→4) linkage
LW-1
代谢调节原则:糖原代谢
- 糖原是动物和细菌内糖的贮存形式
以颗粒状存在于胞质中(~55k Glc & 2k非还原端) 含有合成、降解酶和调节蛋白
- 糖原贮备的生物学意义:可迅速动用以供急需
(尤其是大脑和红细胞等)
- 主要贮存器官:肝脏和肌肉
肝糖原(~10% DM) 血糖的主要来源
肌糖原(1~2% DM) 肌肉剧烈收缩时供能
- 核苷二磷酸糖在寡糖和多糖 的生物合成中作为糖基供体
- UDP-Glc for glycogen synthesis in animals
- ADP-Glc for starch synthesis in plants and glycogen synthesis in bacteria
(无机)焦磷酸酶