100年构件荷载各系数表

合集下载

从国家标准角度看结构安全等级、设计基准期与设计使用年限

从国家标准角度看结构安全等级、设计基准期与设计使用年限

从国家标准角度看结构安全等级、设计基准期与设计使用年限一、定义1、设计基准期design reference period【《建筑结构统一标准》2.1.6】为确定可变作用及与时间有关的材料性能取值而选用的时间参数。

【理解】2010版以前规范认为:设计基准期要确定的设计要素:1、受时间影响的可变作用;2、受时间影响的材料性能。

2、设计使用年限design working life【《建筑结构统一标准》2.1.7】设计规定的结构或结构构件不需进行大修即可按预定目的使用的年限。

【理解】设计使用年限要求结构的可靠性和耐久性的时限。

3、结构安全等级structural safety grade(规范无定义,下面的定义引自“百度百科”,并参考其它文献)建筑结构安全等级(专业中简称为安全等级、结构安全等级),是为了区别在近似概率论极限状态设计方法中,针对重要性不同的建筑物,采用不同的结构可靠度而提出的。

二、出处及其规定和相关规定条文建筑结构设计中用到的“结构安全等级”、“设计基准期”与“设计使用年限”都出自于《工程结构可靠性设计统一标准》(GB50153-2008)。

相关条文:1.0.4各类工程结构设计标准和其他相关标准应遵守本标准规定的基本准则,并应制定相应的具体规定。

2.1.5设计使用年限design working life设计规定的结构或结构构件不需进行大修即可按预定目的使用的年限。

2.1.5条文说明:(部分)在2000年第279号国务院令颁布的《建筑工程质量管理条例》中,规定了基础设施工程、房屋建筑的地基基础工程和主体结构工程的最低保修期限为设计文件规定的该工程的“合理使用年限”,与国际标准《结构可靠度总原则》ISO2394:1998中,提出了“设计工作年限”(design working life)的含义相当。

《建筑结构统一标准》(GB 50068-2001)将“合理使用年限”和“设计工作年限”统一称为“设计使用年限”,本标准将这一术语推广到各类工程结构,并规定工程结构在超过设计使用年限后,应进行可靠性评估,根据评估结果,采取相应措施,并重新界定其使用年限。

荷载计算

荷载计算

3 荷载计算3.1竖向荷载计算3.1.1楼面与屋面恒荷载楼面与屋面的恒荷载包括结构构件自重和构造层重量等重力荷载,其标准值按结构构件的设计尺寸、构造层材料和设计厚度以及材料容重标准值计算。

1、 标准层楼面恒荷载标准值:水泥花砖面层,水泥粗砂打底,水泥砂浆擦缝 260.0kN/m 30厚1:2.5水泥砂浆底层纯水泥浆一道 2260.020030.0kN/m kN/m =⨯120mm 厚钢筋混凝土楼板 23312025kN/m m .kN/m =⨯ 20mm 厚混合砂浆板底抹灰 2334.002017kN/m m .kN/m =⨯合计: 254.4kN/m 2、 厨房楼面恒荷载标准值:荷载计算小瓷砖地面,水泥粗砂打底 255.0kN/m 20厚水泥砂浆结合层 2240.020020.0kN/m kN/m =⨯ 5厚聚合物水泥防水涂料 205.0kN/m 2%找坡层,最薄处15mm 2240.020020.0kN/m kN/m =⨯120mm 厚钢筋混凝土楼板 23312025kN/m m .kN/m =⨯ 20mm 厚混合砂浆板底抹灰 2334.002017kN/m m .kN/m =⨯合计: 274.4kN/m 3、 卫生间楼面恒荷载标准值:小瓷砖地面,水泥粗砂打底 255.0kN/m 20mm 水泥砂浆结合层 2240.020020.0kN/m kN/m =⨯ 5mm 厚聚合物水泥防水涂料 205.0kN/m 50mm 厚细石混凝土 2275.025050.0kN/m kN/m =⨯ 200mm 厚建筑碎料填实 22315200.0kN/m kN/m =⨯120mm 厚钢筋混凝土楼板 23312025kN/m m .kN/m =⨯ 20mm 厚混合砂浆板底抹灰 2334.002017kN/m m .kN/m =⨯合计: 254.8kN/m 4、 屋面层楼面恒荷载标准值:50mm 厚素混凝土面层 2325.10500025kN/m m .kN/m .=⨯ 1:3水泥砂浆结合层 235.002500020kN/m m .kN/m .=⨯ 80mm 厚聚苯乙烯泡沫塑料 2304.0080500kN/m m .kN/m .=⨯ 5mm 厚改性沥青 205.0kN/m 20mm 厚1:3水泥砂浆 234000200020kN/m .m .kN/m .=⨯1:6水泥焦渣找坡 239000900010kN/m .m .kN/m .=⨯120mm 厚钢筋混凝土楼板 2300.31200025kN/m m .kN/m .=⨯ 20mm 厚混合砂浆抹灰 233400200017kN/m .m .kN/m .=⨯合计: 248.6kN/m3.1.2楼面与屋面活荷载标准值根据《建筑结构荷载规范》(GB50009—2012)第5.1.1条和第5.3.1条的规定可知: 楼面活荷载标准值: 200.2kN/m 卫生间楼面活荷载标准值: 250.2kN/m 上人屋面活荷载标准值: 200.2kN/m 本设计位于攀枝花,常年无雪,故不考虑雪荷载。

钢筋混凝土轴心受压构件的稳定系数表

钢筋混凝土轴心受压构件的稳定系数表

钢筋混凝土轴心受压构件的稳定系数表1. 简介钢筋混凝土轴心受压构件是一种常见的结构形式,在建筑和桥梁等工程中广泛应用。

在设计和施工过程中,需要对轴心受压构件进行稳定性分析,以确保其在使用过程中不会发生失稳。

稳定系数是评估结构稳定性的重要指标之一。

本文将介绍钢筋混凝土轴心受压构件的稳定系数表,包括其定义、计算方法以及应用。

2. 稳定系数定义稳定系数是指结构在承受外力作用下,不发生失稳的能力。

对于钢筋混凝土轴心受压构件而言,其失稳形态主要有屈曲失稳和局部失稳两种情况。

•屈曲失稳:当轴向压力达到一定值时,构件将产生屈曲破坏。

屈曲失稳是由于材料的本构关系引起的。

•局部失稳:当轴向压力达到一定值时,构件内部会出现局部破坏,如混凝土的剥落或钢筋的屈服。

局部失稳是由于构件几何形状和边界条件引起的。

稳定系数是通过计算构件的承载能力与其失稳荷载之比来确定的。

一般情况下,稳定系数应大于1,表示结构具有足够的稳定性。

3. 稳定系数计算方法钢筋混凝土轴心受压构件的稳定系数可以通过以下步骤进行计算:步骤1:确定截面特性参数首先需要确定轴心受压构件的截面特性参数,包括截面面积、惯性矩、抗弯强度等。

这些参数可以通过结构设计软件或手工计算得出。

步骤2:确定材料特性参数其次需要确定材料特性参数,包括混凝土和钢筋的强度等级、材料本构关系等。

这些参数通常可以从设计规范或实验数据中获取。

步骤3:计算临界压力根据所选取的截面和材料特性参数,可以计算出轴心受压构件的临界压力。

临界压力是指构件在失稳前能够承受的最大轴向压力。

步骤4:计算稳定系数通过将轴向压力除以临界压力,可以得到钢筋混凝土轴心受压构件的稳定系数。

稳定系数大于1表示结构稳定,小于1表示结构失稳。

4. 稳定系数表应用钢筋混凝土轴心受压构件的稳定系数表是工程设计和施工过程中的重要参考资料。

它可以用于以下方面:设计阶段在设计阶段,工程师可以根据结构需求和荷载条件选择合适的截面形式和尺寸。

荷载得标准值.

荷载得标准值.

2013年二级注册建筑师考点2013年二级建筑师考试辅导荷载的标准值一、民用建筑楼面均布活荷载1.楼面活荷载是房屋结构设计中的主要荷载。

《荷载规范》规定的民用建筑楼面均布活荷载标准值及其组合值、频遇值、准永久值系数如表1-2所列。

注:①本表所给各项活荷载适用于一般使用条件,当使用荷载较大或情况特殊时,应按实际情况采用。

②第6项书库活荷载当书架高度大于2m时,书库活荷载尚应按每米书架高度不小于㎡确定。

③第8项中的客车活荷载只适用于停放载人少于9人的客车;消防车活荷载是适用于满载总重为300KN 的大型车辆;当不符合本表的要求时,应将车轮的局部荷载按结构效应的等效原则,换算为等效均布荷载。

④第11项楼梯活荷载,对预制楼梯踏步平板,尚应按集中荷载验算。

⑤本表各项荷载不包括隔墙自重和二次装修荷载。

对固定隔墙的自重应按恒荷载考虑,当隔墙位置可灵活自由布置时,非固定隔墙的白重应取每延米长墙重(kN/m)的1/3作为楼面活荷载的附加值(kN/㎡)计人,附加值不小于㎡.2.设计楼面梁、墙、柱及基础时,表1-2中的楼面活荷载标准值在下列情况下应乘以规定的折减系数。

(1)设计楼面梁时的折减系数:1)第1(1)项当楼面梁从属面积超过25㎡时,应取;2)第1(2)-7项当楼面梁从属面积超过50㎡时,应取;3)第8项对单向板楼盖的次梁和槽形板的纵肋应取;对单向板楼盖的主梁应取;对双向板楼盖的梁应取;4)第9—12项应采用与所属房屋类别相同的折减系数。

(2)设计墙、柱和基础时的折减系数1)第1(1)项应按表11-5规定采用;2)第1(2)-7项应采用与其楼面梁相同的折减系数;3)第8项对单向板楼盖应取;对双向板楼盖和无梁楼盖应取;4)第9-12项应采用与所属房屋类别相同的折减系数。

注:楼面梁的从属面积应按梁两侧各延伸二分之一梁间距的范围内的实际面积确定。

二、民用建筑屋面均布活荷载房屋建筑的屋面,其水平投影面上的屋面均布活荷载,应按表1-4采用。

模板荷载计算

模板荷载计算

本方案是以木模板、钢管脚手排架的模板支撑系统为研究对象,在泵送、预拌商品混凝土、机械振捣的施工工艺条件下,对施工荷载进行了计算,并应用了统计学原理,获得不同截面梁、板的施工荷载值,不仅减化了计算工作量,并能方便查找应用。

关键词:模板钢管支撑混凝土施工荷载分项系数侧压力荷载组合1施工荷载计算的计算依据施工荷载的计算方法应符合《建筑结构荷载规范》GB50009-2001的规定。

本文仅适用于木模板、钢管脚手排架、钢管顶撑、支撑托的模板支撑系统;采用泵送、预拌商品混凝土,机械振捣的施工工艺,并依据原《混凝土结构工程施工验收规范》GB50204-92,附录中有关“普通模板及其支架荷载标准值及分项系数”的取值标准。

2模板支撑系统及其新浇钢筋混凝土自重的计算参数:模板及其支架的自重标准值应根据模板设计图确定,新浇混凝土自重标准值可根据实际重力密度确定,钢筋自重标准值可根据设计图纸确定,也可以按下表采用:钢筋混凝土和模板及其支架自重标准值和设计值统计表3施工人员及设备荷载的取值标准:施工活荷载的取值标准应根据不同的验算对象,对照下表选取,对于大型设备如上料平台、混凝土输送泵、配料机、集料斗等的施工荷载,应根据实际情况计算,并在大型设备的布置点,采取有针对性的加固措施。

施工活荷载标准值和设计值统计表4混凝土楼板的施工荷载计算:现浇混凝土楼面板的施工荷载主要有新浇混凝土、钢筋、模板和支撑系统的自重,以及施工活荷载组成,针对验算的具体对象,采用相应的荷载组合方式,现以100mm厚的混凝土楼面板举例,进行施工荷载组合设计值的计算,依此类推得到不同厚度楼板的施工荷载组合设计值,以便查表应用。

100mm楼板施工阶段恒荷载的计算与统计楼板施工活荷载的计算与统计100mm楼板的施工荷载组合计算与统计不同厚度楼板施工荷载组合设计值的统计表5混凝土梁的施工荷载计算:现浇混凝土梁的施工荷载主要有新浇混凝土、钢筋、模板和支撑系统的自重,以及振捣混凝土时产生的施工活荷载组成,通过荷载组合,作为梁底板木模板及支架的验算依据,现以300mm×700 mm的混凝土梁举例,进行施工荷载组合设计值的计算,依此类推得到不同截面的混凝土梁施工荷载的组合设计值,以便查表应用。

结构的设计使用年限与结构的重要性系数

结构的设计使用年限与结构的重要性系数

表1-7 结构的设计使用年限与结构的重要性系数注:1、要使不同设计使用年限的建筑工程完成预定的使用功能时具有足够的可靠度。

2、所对应的各种可变荷载(作用)的标准值及变异系数,材料强度设计值,设计表达式的各个分项系数,可靠指标的确定等需要配套,是一个系统工程,目前还没有解决。

3、抗震设计时,对不同的设计使用年限,可参考以下原则处理:(1)若投资方提出的所谓设计使用年限100年的功能要求仅仅是耐久性的要求,则抗震设防类别和相应的设防标准仍可按《建筑抗震设防分类标准》(2008年版)执行。

(2)不同设计使用年限的地震动参数与设计基准期(50年)的地震动参数之间的基本关系,可参阅有关的研究成果。

(3)当设计使用年限少于设计基准期(50年)时,抗震设防要求相应降低。

(4)临时性建筑(设计使用年限小于5年)可以不考虑抗震设防。

4、设计基准期和设计使用年限是两个不同的概念:各本建筑设计规范、规程采用的设计基准期均为50年,但建筑设计使用年限可依据具体情况而定,见GB50068-2001《建筑结构可靠度设计统一标准》。

5、设计基准期是为确定可变作用(可变荷载)及与时间有关的材料性能取值而选用的时间参数,它不一定赞同于设计使用年限。

GB50009-2001《建筑结构荷载规范》提供的荷载统计参数,除风、雪荷载的设计基准期为10、50、100年外,其余都是按设计基准期为50年确定的。

如设计需采用其他设计基准期,则必须另行确定在该基准期内最大荷载的概率分布及相应的统计参数。

设计文件中,如无特殊要求时不需要给出设计基准期。

6、结构重要性系数γ0应按下列规定采用:(1)对安全等级为一级或设计使用年限为100年及以上的结构构件,不应小于1.1。

(2)对安全等级为二级或设计使用年限为50年的结构构件,不应小于1.0。

(3)对安全等级为三级或设计使用年限为5年的结构构件,不应小于0.9。

7、现阶段重要性增大0.1,结构的可靠指标约增加0.5。

钢筋混凝土轴心受压构件的稳定系数表

钢筋混凝土轴心受压构件的稳定系数表

钢筋混凝土轴心受压构件的稳定系数表1. 引言钢筋混凝土轴心受压构件是建筑和结构工程中常见的承载元素之一。

在设计和分析过程中,了解和计算轴心受压构件的稳定性是至关重要的。

稳定系数表是一种用于评估构件稳定性的工具,它提供了不同参数下的稳定系数值,以帮助工程师进行合理的设计和分析。

2. 稳定性分析原理在设计钢筋混凝土轴心受压构件时,需要考虑两个主要因素:弯曲和稳定。

弯曲是由于外部荷载引起的构件弯曲变形,而稳定则是指防止构件产生整体失稳或局部失稳。

对于轴心受压构件来说,局部失稳通常是最主要的问题。

轴心受压构件在受到外部荷载作用时,会发生弯矩和剪力分布。

当荷载较小或者构件尺寸较小时,这些力可以通过钢筋来承担。

然而,当荷载增加或者构件尺寸增大时,构件可能会发生局部失稳,即产生屈曲。

为了避免局部失稳,需要计算和评估构件的稳定系数。

3. 稳定系数表的编制方法稳定系数表是通过理论计算和试验结果得出的。

首先,需要根据轴心受压构件的几何形状和材料特性,采用适当的理论模型进行计算。

常见的理论模型包括欧拉公式、约束弯矩法等。

然后,通过试验验证理论计算结果的准确性,并得出一组稳定系数值。

稳定系数表通常包含以下信息: - 构件几何参数:包括截面形状、截面尺寸等。

- 材料特性:包括混凝土和钢筋的强度、弹性模量等。

- 荷载条件:包括作用在构件上的轴力、弯矩等。

- 稳定系数值:根据不同参数组合得到的稳定系数。

4. 使用稳定系数表进行设计与分析在实际工程中,可以根据给定的荷载条件和构件几何参数,在稳定系数表中查找对应的稳定系数值。

然后,将这些值与规范要求进行比较,以确定构件是否满足稳定性要求。

如果稳定系数小于规范要求的最小值,说明构件可能存在局部失稳的风险。

此时,需要采取措施来增加构件的稳定性,例如增加截面尺寸、增加钢筋配筋量等。

5. 稳定系数表的应用范围和限制稳定系数表适用于常见的轴心受压构件,例如柱子、墙体等。

然而,在某些特殊情况下,如非常大的荷载或非常细长的构件,稳定系数表可能不适用。

建筑结构荷载计算

建筑结构荷载计算

有地震作用效应组合时
SERE/RE
SE :有地震作用效应组合时,构件 截面内力(效应)组合的设计值 RE :有地震作用组合时,构件截面 承载力设计值
R E:承载力抗震调整系数
材料
结构构件
钢筋混凝土 梁
轴压比小于0.15的柱
轴压比大于0.15的柱
剪力墙
各类受剪、偏拉构件
钢(强度破 梁、柱
坏);
支撑

cu / Cu1 Cu2 cu / Cu2 Cu1
>1.0
相对受压区高度 与曲率延性比关系
轴压比大,相对受压区高度大,延性小
• 在高轴压比情况下,在水平荷载施加之 前,柱子己经产生了较大的预压应变, 预压应变降低截面的塑性转动能力,使 构件的延性变差,所以轴压比限值不能 定的过高
(4)纵向钢筋
σ/M P a
钢筋或钢材
80
60
Z12
Z13
40
Z11
20
Z8
Z9
Z10
0
ε
0.000 0.005 0.010 0.015 0.020 0.025
不同配箍特征值
不同强度等级混凝土 碳纤维约束混凝土
截面曲率延性 u /y
截面弯短—曲率关系 屈服时截面应变分布 极限状态时截面应变分布
构件位移延性 u /y
名义屈服时 y y' /0.85
y —钢筋屈服应变(小,有利)
h 0 —截面有效高度
x
' y
—混凝土受压区高度(小,有利)
截面的极限曲率 u
u cu / xu
c u —受压区边缘混凝土极限压应变
(大,有利)
x u —混凝土受压区高度(小,有利)

7.3 风荷载体型系数

7.3 风荷载体型系数

7.3 风荷载体型系数7.3.1房屋和构筑物的风载体型系数,可按下列规定采用:1. 房屋和构筑物与表7.3。

1中的体型类同时,可按该表的规定采用;2. 房屋和构筑物与表7.3.1中的体型不同时,可参考有关资料采用;3. 房屋和构筑物与表7.3.1中的体型不同且无参考资料可以借鉴时,宜由风洞试验确定;4. 对于重要且体型复杂的房屋和构筑物,应由风洞试验确定。

表7.3.1风荷载体型系数项次类别体型及体型系数μs1 封闭式落地式双坡屋面2 封闭式双坡屋面风荷载体型系数项次类别体型及体型系数μs3 封闭式落地式拱型屋面4 封闭式拱型屋面5 封闭式单坡屋面6 封闭式高低双坡屋面7 封闭式带天窗双坡屋面8 封闭式双跨双坡屋面风荷载体型系数项次类别体型及体型系数μs9 封闭式不等高不等跨的双跨双坡屋顶10 封闭式不等高不等跨的三跨双坡屋顶11 封闭式带天窗坡的双坡屋顶12 封闭式带天窗带的双坡屋顶13 封闭式不等高不等跨且中跨带天窗的三跨双屋顶风荷载体型系数项次类别体型及体型系数μs 14 封闭式带天窗的双跨双坡屋面15 封闭式带女儿墙双坡屋面16 封闭式带雨篷双坡屋面17 封闭式对立两个带雨篷双坡屋面18 封闭式带下沉天窗的双坡屋面或拱型屋面项次类别体型及体型系数μs19 封闭式带下沉天窗的双跨双坡或拱形屋面20 封闭式带天窗挡风板的屋面21 封闭式带天窗挡风板的双跨屋面22 封闭式锯齿形屋面23 封闭式复杂多跨屋面项类别体系及体型系数μs 次24 靠山式双坡屋面项次类别体系及体型系数μs25 靠山封闭式带天窗的双坡屋面26 单面开敞式双坡屋面项次类别体系及体型系数μs27 双面开敞及四面开敞式双坡屋面28 前后纵墙半开敞双坡屋面项次类别体系及体型系数μs29 单坡及双坡顶盖30 封闭式房屋和构筑物项次类别体系及体型系数μs30 封闭式房屋和构筑物31 各种截面的杆件32 桁架项次类别体系及体型系数μs33 独立墙壁及围墙34 塔架续表7.3.1项次类别体系及体型系数μs 34 塔架35 旋转壳顶项类别体系及体型系数μs 次36圆截面构筑物(包括烟囱、塔桅等)项次类别体系及体型系数μs3 7 架空管道3 8 拉索7.3.2当多个建筑物,特别是群集的高层建筑,相互间距较近时,宜考虑风力相互干扰的群体效应;一般可将单独建筑物的体型系数凡乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定;必要时宜通过风洞试验得出。

结构构件上的荷载及支座反力计算

结构构件上的荷载及支座反力计算

(3)风荷载标准值
k z s z0
Байду номын сангаас 2、可变荷载准永久值
定义:在设计基准期内经常达到或超过的那部份荷载值(总的 持续时间不低于25年),称为可变荷载准永久值。
可变荷载准永久值可表示为ψqQk ,其中Qk为可变荷载标准
值,ψq为可变荷载准永久值系数。ψq值见附表C2、C3。
3、可变荷载组合值
定义:两种或两种以上可变荷载同时作用于结构上时,除主导 荷载(产生最大效应的荷载)仍可以其标准值为代表值外,其 他伴随荷载均应以小于标准值的荷载值为代表值,此即可变荷 载组合值。
2.5
(3)消防疏散楼梯、其他民用建筑
3.5
阳台:
12 (1)一般情况 (2)当人群有可能密集时
2.5 3.5
0.7 0.5 0.4 0.7 0.6 0.5 0.7 0.5 0.3
0.7 0.6 0.5
注:①本表所列各项活荷载适用于一般使用条件,当使用荷载大时,应按实际情况采用。 ②本表各项荷载不包括隔墙自重和二次装修荷载。
2.5
0.7
(1)礼堂、剧场、影院、有固定座位的看
3
台 (2)公共洗衣房
3.0
0.7
3.0
0.7
(1)商店、展览厅、车站、港口、机场大
4
厅及其旅客等候室 (2)无固定座位的看台
3.5
0.7
3.5
0.7
频偶 值系
Ψf
准永久 值系数
Ψq
0.5
0.4
0.6
0.5
0.6
0.5
0.5
0.3
0.6
0.5
0.6
0.5
(2)可变荷载标准值 (民用楼面均布活荷载标准值按下表采用)

风荷载取值

风荷载取值

3.1.3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照荷载规范第7章执行;1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式3.1-2计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照荷载规范7.4要求取值;多层建筑,建筑物高度<30m,风振系数近似取1; 1风荷载体型系数µS风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照荷载规表3.1.10 建筑物体型系数取值表注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照高层规程中附录A 采用、或由风洞试验确定;注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应;一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定;W W z s z k μμβ=)21.3(-注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0;注4:验算表面围护结构及其连接的强度时,应按照荷载规范7.3.3规定,采用局部风压力体型系数;2风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用;对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按荷载规范7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求;表3.1.11 风压高度变化系数关于地面粗糙程度的分类:A 类:近海海面、海岛、海岸、湖岸及沙漠地区;B 类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C 类:有密集建筑群的城市市区;D 类:有密集建筑群和且房屋较高的城市市区; 3基本风压值W 0基本风压值W 0,单位kN/m 2,以当地比较空旷平坦场地上离地10m 高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照荷载规范附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表;2、基本风压的取值年限荷载规范在附录D 中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限:① 临时性建筑物:取n=10年一遇的基本风压标准值;② 一般的工业与民用建筑物:取n=50年一遇的基本风压标准值;③ 特别重要的建筑物、或对风压作用比较敏感的建筑物建筑物高度大于60m :取表3.1.12 浙江省主要城镇基本风压kN/m 2取值参考表n=100年一遇的基本风压标准值;在没有100年一遇基本风压标准值的地区,可近似将50年一遇的基本风压值标准值乘以1.1经验系数以后采用;3、关于风荷载作用的方向问题建筑物受到的风荷载作用来自各个方向,风荷载的主要作用方向与建筑物所在地的风玫瑰图方向一致全国主要城市风玫瑰图,可以查相应的建筑设计资料;工程设计中,一般按照风荷载作用的最大值,来计算建筑物受到的风荷载作用效应;对于抗侧力构件相互垂直布置的建筑物:一般按照两个相互垂直的主轴方向来考虑风荷载的作用效应,详图3.1.3a所示;图3.1.3a 抗侧力构件垂直布置示意图图3.1.3b 抗侧力构件多向布置示意图对于抗侧力构件多向布置的建筑物:一般按照抗侧力构件布置方向,沿着相互垂直的主轴方向次依考虑风荷载的作用效应,详图3.1.3b所示;注意:同一方向,左风荷载作用效应和右风荷载作用效应要分别进行计算;4、风洞试验高层规程3.2.8明确,对于特别重要的建筑物、特别不规则的建筑物,风荷载标准值计算公式3.1-2中的相关计算参数有必要通过风洞试验来确定,以便较精确地计算建筑物受到的风荷载作用效应,确保建筑结构的抗风能力;一般建筑物高度大于200m 、或建筑物高度大于150m 但存在下列情况之一时,宜采用风洞试验来确定建筑物的风荷载作用参数;① 平面形状不规则,立面形状复杂; ② 立面开洞或连体建筑;③ 规范或规程中没有给出体型系数的建筑物; ④ 周围地形或环境较复杂;风洞试验通常由有试验能力和试验资质的高等院校、科研院所完成,按照一定比例制作的建筑物模型置于人工模拟的风环境中,模型上不同部位埋设一定数量的电子测压孔,通过压力传感器输出电流信号、通过数据采集仪自动扫描记录并转为相关的数字信号,再经过一系列的计算机数据处理、模拟分析,可以得到建筑物受到的平均风压力和波动风压力值,供设计采用;多层建筑物,房屋高度小,风荷载作用影响较小,一般不做风洞试验; 5、梯度风基本风压与风速有关,一般风速由地面为零沿高度方向按照曲线逐渐增大,直至距离地面某一高度处达到最大值,上层风速度受地面影响较小,风速较为稳定;不同的地表面粗糙度使风速沿高度增加的梯度速率不同,详图3.1.4所示,风速变化的这种规律,称为梯度风;图3.1.4 风速随高度变化示意图6、特殊情况下基本风压的取值① 当重现期为任意年限R 时,相应风压值可按照公式3.1-2a 进行近似计算:式中:X R ——重现期为R 年的风压值kN /m 2;X 10——重现期为10年的风压值kN /m 2;X 100——重现期为100年的风压值kN /m 2; ② 当城市或建设地点的基本风压值在“全国基本风压分布图”上没有给出时,可根据附近地区规定的基本风压或长期观测资料,通过气象或地形条件的对比分析确定;在分析当地的年最大风速时,往往会遇到其实测风速的条件不符合基本风压规定的标准)21.3(a -)110ln ln )((1010010--+=RX X X X R条件,因而必须将实测的风速资料换算为标准条件的风速资料,然后再进行分析;情形一:当实测风速的位置不是l0m 高度时,标准条件风速的换算原则上应由气象台站根据不同高度风速的对比观测资料,并考虑风速大小的影响,给出非标准高度风速的换算系数,以确定标准条件高度的风速资料;当缺乏相应的观测资料时,可近似按照公式3.1-2b 进行换算:式中:ν——标准条件下l0m 高度处、时距为10分钟的平均风速值m /s ;νz ——非标准条件下z 高度m 处、时距为10分钟的平均风速值m /s ; α——实测风速高度换算系数,可根据设计手册,近似按表3.1.13取值;表3.1.13 实测风速高度换算系数参考表情形二:当最大风速资料不是时距10分钟的平均风速时,标准条件风速的换算虽然世界上不少国家采用基本风压标准值中的风速基本数据为10分钟时距的平均风速,但也有一些国家不是这样;因此对某些国外工程需要按照我国规范设计时,或国内工程需要与国外某些设计资料进行对比时,会遇到非标准时距最大风速的换算问题;实际上时距10分钟的平均风速与其它非标准时距的平均风速的比值是不确定的,表3.1.14给出了非标准时距平均风速与时距10分钟平均风速的换算系数,必要时可按照公式3.1-2c 做近似换算:式中:ν——时距为10分钟的平均风速值m /s ;νt ——时距为t 分钟的平均风速值m /s ;β——换算系数,可根据设计手册,近似按表3.1.14取用;表3.1.14 不同时距与10分钟时距风速换算系数参考表情形三:当已知风速重现期为T 年时,标准条件风压的换算当已知10分钟时距平均风速最大值的重现期为T 年时,其基本风压与重现期为50年的基本风压的关系,可按照公式3.1-2d 进行简单换算:式中:W 0——重现期为50年的基本风压值kN /m 2;W ——重现期为T 年的基本风压值kN /m 2;γ——换算系数,可根据设计手册,近似按表3.1.15取用;表3.1.15 不同重现期与重现期为50年的基本风压的换算系数参考表③ 山区的基本风压zv v α=β/t v v =γ/0W W =)21.3(b -)21.3(c -)21.3(d -山区的基本风压应通过调查后确定,如无实际资料,可按照当地邻近空旷平坦地面的基本风压值,乘以一放大系数后采用;任何情况下,山区的基本风压值不得小于0.3kN/m 2;7、围护结构的风荷载计算计算围护结构上作用的风荷载值,必须考虑阵风的影响,按照公式3.1-2e 进行:W K ——风荷载标准值,单位kN/m 2;W 0——基本风压值,单位kN/m 2,取值要求同前;βgz ——高度Z 处的阵风系数,按照荷载规范7.5要求取值;µS ——风荷载体型系数,按照荷载规范7.3.3要求取值;对于檐沟、雨蓬、遮阳板等突出构件,风力作用垂直向上,风荷载体型系数为2;µz ——风压高度变化系数,取值要求同前; 8、玻璃幕墙的风荷载计算玻璃幕墙作为围护结构的一种表现形式,在民用建筑中应用较多,其抗风设计必须满足围护结构风荷载标准值的计算要求;由于玻璃幕墙单块受荷面积较小,根据玻璃幕墙工程技术规范JGJ102-96规定,垂直于玻璃幕墙表面上的风荷载标准值,可近似按照公式3.1-2f 计算:公式中有关高度变化系数µz 、基本风压W 0的计算取值要求同前,对于体型系数µS 的取值要求如下:竖直幕墙外表面按照±1.5取用;斜玻璃幕墙可根据实际情况按照荷载规范要求取用;当建筑物进行了风洞试验时,直接根据风洞试验结果确定;任何情况下,设计玻璃幕墙用风荷载标准值W k 不得小于1.0kN/m 2;0W W z s gz K μμβ=025.2W W z s K μμ=)21.3(f -)21.3(e -。

(整理)活荷载取值

(整理)活荷载取值

3.1.2 活荷载活荷载:又称可变荷载,在结构使用期间内,荷载的大小随时间的推移而变化、或其变化与其平均值相比较不可以忽略。

如楼面活荷载、屋面活荷载、积灰荷载、吊车荷载、雪荷载、风荷载、安装检修荷载等。

3.1.2.1 楼面活荷载(1)民用建筑楼面活荷载取值①楼面活荷载取值楼面活荷载取值与建筑物房间的使用性质、使用功能有关,按照《荷载规范》4.1.1查用,表3.1.5为常用房间楼面活荷载数值参考表。

表3.1.5 常用建筑楼面活荷载标准值(kN/m2)及其组合值、频遇值和准永久值系数续表3.1.5②楼面梁设计时活荷载的折减系数《荷载规范》4.1.2明确,在设计楼面梁时,表3.1.5中的楼面活荷载在下列情况下应乘以规定的折减系数:第1项中第①项:当楼面梁从属面积超过25m2时,折减系数为0.9;第1项中第②项~第7项:当楼面梁从属面积超过50m2时,折减系数为0.9;第8项,对单向板楼盖的次梁和槽型板的纵肋,折减系数为0.8;对单向板楼盖的主梁,折减系数为0.8;对双向板楼盖的梁,折减系数为0.8;第9项~第12项:采用与所属房屋类别相同的折减系数。

注:楼面梁从属面积,为梁两侧各延伸二分之一梁间距范围内的实际面积。

③墙、柱及基础设计时活荷载的折减系数《荷载规范》4.1.2明确,在设计墙、柱及基础时,表3.1.5中的楼面活荷载在下列情况下应乘以规定的折减系数:第1项中第①项:按照表3.1.6规定采用;第1项中第②项~第7项:采用与其楼面梁相同的折减系数;第8项,对单向板楼盖:折减系数为0.5;对双向板楼盖和无梁楼盖,折减系数为0.8;第9项~第12项:采用与所属房屋类别相同的折减系数。

表3.1.6 活荷载按楼层的折减系数2、工业建筑楼面活荷载(包括吊车荷载等)取值根据设备使用的要求,工业建筑楼面活荷载由工艺专业(或设备产生厂家)提出,如缺乏资料,对于一般的金工车间、仪器仪表生产车间、半导体器件生产车间、棉纺织造生产车间、轮胎厂准备车间和粮食加工车间等,可按照《荷载规范》附录C查用,工程设计中工业建筑楼面活荷载取值通常≧4.0 kN/m2。

建筑结构荷载规范

建筑结构荷载规范

建筑结构荷载规范G B50009-200 1第1章总则第1.0.1条为了适应建筑结构设计的需要,以符合安全实用、经济合理的要求,特制订本规范。

第1.0.2条本规范适用于工业与民用房屋和一般构筑物的结构设计。

第1.0.3条本规范是根据《建筑结构设计统一标准》(GB50068-2001)规定的原则制订的。

第 1.0.4条建筑结构设计中涉及的作用包括直接作用(荷载)和间接作用(如地基变形、混凝土收缩、焊接变形、温度变化或地震等引起的作用)。

本规范仅对荷载作出规定。

第1.0.5条本规范采用的设计基准期为50年.第1.0.6条建设结构设计中涉及的作用或荷载,除按本规范执行外,尚应符合现行的其他国家标准的规定.第2章建筑结构荷载规范2.1 术语第2.1.1条永久荷载permanent load在结构使用期间,其值不随时间变化,或其变化与平均值相比可以忽略不计,或其变化是单调的并能趋于限值的荷载.第2.1.2条可变荷载vaiable load在结构使用期间,其值随时间变化,且其变化与平均值相比在可以忽略不计的荷载.第2.1.3条偶然荷载accidental load在结构使用期间不一定出现,一旦出现,其值很大且持续时间很短的荷载.第2.1.4条荷载代表值reprsentative values of a load设计中用以验算极限状态所采用的荷载量值,例如标准值.组合值.频遇值和准永久值.第2.1.5条设计基准期design reference period为确定可变荷载代表值而选用的时间参数.第2.1.6条标准值characteristic value/nominal value荷载的基本代表值,为设计基准期内最大荷载统计分布的特征值(例如均值.众值.中值或某个分位值).第2.1.7条组合值combination value对可变荷载,使组合后的荷载效应在设计基准期内的超越概率,能与该荷载单独出现时的相应概率趋于一致的荷载值;或使组合后的结构具有统一规定的可靠指标的荷载值.第2.1.8条频遇值frequent value对可变荷载,在设计基准期内,其超越的总时间为这规定的较小比率或超越频率为规定频率的荷载值.第2.1.9条准永久值quasi-permanet value对可变荷载,在设计基准期内,其超越的总时间约为设计基准期一半的荷载值.第条荷载设计值design value of a load荷载代表值与荷载分项系数的乘积.第条荷载效应load effect由荷载引起结构或结构构件的反应,例如内力,变形和裂缝等.第条荷载组合load combination按极限状态设计时,为保证结构的可靠性而对同时出现的各种荷载设计值的规定.第条基本组合fundamental combination承载能力极限状态计算时,永久作用和可变作用的组合.第条偶然组合accidental combination承载能力极限状态计算时,永久作用,可变作用和一个偶然作用的组合.第条标准组合characteristic/nominal combination正常使用极限状态计算时,采用标准值或组合值为荷载代表值的组合.第条频遇组合frequnt combinations正常使用极限状态计算时,对可变荷载采用频遇值或永久值为荷载代表值的组合.第条准永久组合quasi-permanent combinations正常使用极限状态计算时,对可变荷载采用准永久值为荷载代表值的组合.第条等效均布荷载equivalent uniform live load结构设计时,楼面上下连续分布的实际荷载,一般采用均布荷载代替;等效均布荷载系指其要结构上所得的荷载效应能与实际的荷载效应保持一致的均布的均布荷载.第条从属面积tributary area从属面积是在计算梁柱构件时采用,它是指所计算构件负荷的楼面面积,它应由楼板的零线划分,在实际应用中可作适当简化.第条动力系数dynamic coeffcient承受动力荷载的结构或构件,当按静力设计时采用的系数,其值为结构或构件的最大动力效应与相应静力效应的比值.第条基本雪压reference snow pressure雪荷载的基准压力,一般按当地空旷平坦地面上积雪自重的观测数据,经概率统计得出50年一遇最大值确定.第条基本风压reference wind pressure第条地面粗糙度terrain roughness风在到达结构以前吹越过2km范围内的地面时,描述该地面上不规则障碍物分布状况的等级.2.2 符号第2.2.0条 G k---永久荷载的标准值;Q k---可变荷载的标准值;G Gk---永久荷载效应的标准值;S Qk---可变荷载效应的标准值;S---荷载效应组合设计值;R---结构构件抗力的设计值;S A---顺风向风荷载效应;S C---横风向风荷载效应;T---结构自振周期;H---结构顶部高度;B---结构迎风面宽度;R e---雷诺数;S t---斯脱罗哈数;s k---雪荷载标准值;s0---基本雪压;w k---风荷载标准值;w0---基本风压;νcr---横风向共振的临界风速;α---坡度角;βz---高度z处的阵风系数;βgz---高度z处的阵风系数;γ0---结构重要性系数;γG---永久荷载的分项系数;γQ---可变荷载的分项系数;ψc---可变荷载的组合值系数;ψf---可变荷载的频遇值系数;ψq---可变荷载的准永久值系数;μr---屋面积雪分布系数;μz---风压高度变化系数;μs---风荷载体型系数;η---风荷载地形,地貌修正系数;ξ---风荷载脉动增大系数;ν---风荷载脉动影响系数;φz---结构振型系数;ζ---结构阻尼比.第3章建筑结构荷载规范3.1 荷载分类和荷载代表值第3.1.1条结构上的荷载,可分为下列三类:1.永久荷载,例如结构自重、土压力,预应力等。

建筑构件受力计算各种参数

建筑构件受力计算各种参数

一、材料的力学性能参数木材的力学性能参数:弹性模量E=9000N/mm2,抗弯强度f m=13.00N/mm2,抗剪强度f v=1.400N/mm2钢材的力学性能参数:弹性模量E=20600N/mm2,抗弯强度f m=205.00N/mm2,抗剪强度f v=120.00N/mm2二、荷载标准值计算:1、模板及支架自重标准值:每平米平板模板及小楞的重量:0.3kN/m2每平米楼板模板重量(包括梁模板):0.5 kN/m2每平米楼板模板及其支架重量(层高4m以下):0.75 kN/m22、新浇混凝土自重标准值:24kN/m33、钢筋自重标准值:楼板1.1 kN/m2,梁1.5 kN/m24、施工人员及设备荷载标准值:计算模板及支撑小楞结构构件时,对均布荷载取2.5 kN/m2,另以集中荷载进行验算,取二者弯矩值较大者采用计算直接支撑小楞结构构件时,均布活荷载取1.5 kN/m2计算支架立柱及其它结构构件时,均布活荷载取1.0 kN/m25、振捣混凝土产生的荷载:水平模板可采用2.0 kN/m2,竖向模板可采用4.0 kN/m26、新浇混凝土侧压力:F1=0.22c ·tο·β1β2V0.5F2=γc·H (此公式类似于计算水压力)F:新浇混凝土对模板的最大侧压力(KN/㎡)γc:新浇混凝土的重力密度(KN/m³)(一般取24kn/m3)t0:新浇混凝土的初凝时间(h),可按实测确定。

当缺乏试验资料时,可采用t=200/(T+15)计算T:混凝土的入模温度,一般取20~30度。

H:混凝土侧压力计算位置至新浇筑混凝土顶面时的高度(m)β1:外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2β2:混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时取1.15v:混凝土浇筑速度,一般取2.5米/小时F1、F2取小值有效压头高度:混凝土侧压力设计值/混凝土容重:h=F/γ c7、倾倒混凝土产生的荷载标准值:用导管输出砼时取2.0 kN/m2三、荷载设计值计算:四:模板及其支架荷载组合计算:五、相关参数计算公式截面抵抗抗拒W=bh2/6,(bh为截面长宽:b与受力方向垂直边长,h与受力方向相同边长)截面惯性矩I= bh3/12,(bh为截面长宽:b与受力方向垂直边长,h与受力方向相同边长)1、抗弯强度验算单跨简支梁均布荷载弯矩计算公式:M= ql2(q均布荷载,l梁长度)连续简支梁均布荷载弯矩计算公式:M max=K M ql2(K M弯矩系数,可通过查表获得)抗弯强度σ= M max/W2、抗剪强度验算剪力最大值:V max=K v ql,( K v为抗剪系数可通过查表获得,q为均布荷载,l为梁长度,)抗剪强度τ=3/2*(V max /bh),(b截面宽度,h截面厚度)3、挠度验算最大挠度值υmax=Kυql4/(100EI),( Kυ挠度系数,q作用在模板上的侧压力线荷载,l计算跨度(竖楞间距)) 最大容许挠度值υ=L/250,( υmax必须小于等于υ)六、柱箍受力计算1、柱箍所受最大集中荷载计算公式:P=(1.2*q1*0.9+1.4*q2*0.9)*l*1/(n-1)q1:新浇混凝土侧压力标准值,q2:倾倒混凝土产生的荷载,l:集中荷载最大间距(即竖楞最大间距),n:计算简图跨数,0.9为荷载折减系数。

2011年3月29日荷载分项系数

2011年3月29日荷载分项系数

所谓对结构有利就是指施加在结构上的荷载会将对结构不利的效应抵消一部分甚至全部。

例如一个简支梁在均布荷载作用下梁底将有正弯矩,其值应为q*L*L/8,此时如果在跨中施加一方向向上的集中力,则这个集中力将使梁底正弯矩减小,甚至完全抵消掉,那么这个集中力就是对结构有利的荷载,如果其是活荷载,一般来讲其分项系数应取1.0,这样的计算结果才偏于安全。

标准值: 各种基本作用的基本代表值。

(说白了就是,是多重的荷载就是多少。

比如构件自重,就用构件材料密度*构件尺寸就可以了)频遇组合设计值:结构上时常出现的较大荷载值,小于标准组合(标准组合是所有的都算上,但实际不一定是同时出现所有的情况,比如所有楼层都有人,外边还刮大风)。

准永久组合设计值:使用年限内可变荷载经常出现的效应,即长期作用的荷载。

荷载分项系数与荷载设计值1.荷载分项系数荷载分项系数是在设计计算中,反映了荷载的不确定性并与结构可靠度概念相关联的一个数值。

对永久荷载和可变荷载,规定了不同的分项系数。

永久荷载分项系数γG:当永久荷载对结构产生的效应对结构不利时,对由可变荷载效应控制的组合取γG=1.2;对由永久荷载效应控制的组合,取γG=1.35。

当产生的效应对结构有利时,般情况下取γG=1.0;当验算倾覆、滑移或漂浮时,取γG=0.9;对其余某些特殊情况,应按有关规范采用。

可变荷载分项系数γQ:般情况下取γQ=1.4;但对工业房屋的楼面结构,当其活荷载标准值4kN/?时,考虑到活荷载数值已较大,则取γQ=1.3。

2.荷载设计值荷载设计值等于荷载标准值乘以荷载分项系数。

按承载能力极限状态计算荷载效应时,需考虑荷载分项系数;按正常使用极限状态计算荷载效应时,由于对正常使用极限状态的可靠度比对承载能力极限状态的可靠度要求可以适当放松,因此可以不考虑分项系数,即分项系数:1.0。

材料强度指标的取值1.强度标准值材料强度标准值为结构设计时采用的材料性能的基本代表值,具有95%的保证率。

对荷载规范第4.1.2条楼面活荷载折减系数的理解与应用

对荷载规范第4.1.2条楼面活荷载折减系数的理解与应用

规 范 解 读对荷载规范第4.1.2条楼面活荷载折减系数的理解与应用朱炳寅(中国建筑设计研究院 北京 100044)1 对第4.1.2条楼面活荷载折减系数规定的理解该条规定可从如下角度进行理解:1)支承结构构件不同,楼面活荷载的折减系数也不同。

2)楼面活荷载的类型及数值不同,楼面活荷载的折减系数也不同。

3)上述梁、墙、柱、基础的活荷载折减均是对楼面活荷载(规范表4.1.1)标准值的折减。

具体归纳为表1,2。

设计楼面梁时的折减系数 表1建筑使用部位及类别 梁从属面积(m 2)折减系数 表4.1.1第1(1)项 >25 0.9 表4.1.1第1(2)~7项>500.9单向板楼盖的次梁和槽形板的纵肋 0.8单向板楼盖的主梁 0.6表4.1.1 第8项 双向板楼盖的梁0.8 表4.1.1第9~12项 同所属房屋类别的折减系数值设计墙、柱和基础时的折减系数 表2部位折减系数计算截面以上的层数1 2~3 4~5 6~8 9~20>20表 4.1.1第1(1)项计算截面以上各楼层活荷载总和的折减系数1.0(0.9)0.85 0.70 0.65 0.60 0.55表4.1.1第1(2)~7项 0.9 单向板楼盖0.5表4.1.1第8项 双向板楼盖和无梁楼盖 0.8 表4.1.1第9~12项同所属房屋类别的折减系数值2 结构设计的相关问题(1)现行结构电算程序多数无法区分规范表4.1.1中第1(1)项与第1(2)~12项,因此,很难实现荷载规范根据不同活荷载种类采用不同的楼面活荷载折减系数的要求。

(2)多数程序不具有完全按表1和2的要求对楼面荷载进行折减的功能,程序中不区分不同的楼面活荷载类型,一般均按表4.1.1中第1(1)项的楼面活荷载类型考虑并取相应的折减系数,因此,结构计算程序对楼面活荷载的折减是粗略和不全面的。

(3)由于活荷载折减系数多、数值变化大且需分构件考虑,故一般仅适合于手算。

现以消防车荷载为例进行说明,见表3, 4。

荷载、结构静力计算表

荷载、结构静力计算表

2 常用结构计算2-1 荷载与结构静力计算表2-1-1 荷载1.结构上的荷载结构上的荷载分为下列三类:(1)永久荷载如结构自重、土压力、预应力等。

(2)可变荷载如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪活载等。

(3)偶然荷载如爆炸力、撞击力等。

建筑结构设计时,对不同荷载应采用不同的代表值。

对永久荷载应采用标准值作为代表值。

对可变荷载应根据设计要求,采用标准值、组合值、频遇值或准永久值作为代表值。

对偶然荷载应按建筑结构使用的特点确定其代表值。

2.荷载组合建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,并应取各自的最不利的效应组合进行设计。

对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合。

γ0S≤R (2-1)式中γ0——结构重要性系数;S——荷载效应组合的设计值;R——结构构件抗力的设计值。

对于基本组合,荷载效应组合的设计值S应从下列组合值中取最不利值确定:(1)由可变荷载效应控制的组合(2-2)式中γG——永久荷载的分项系数;γQi——第i个可变荷载的分项系数,其中Y Q1为可变荷载Q1的分项系数;S GK——按永久荷载标准值G K计算的荷载效应值;S QiK——按可变荷载标准值Q ik计算的荷载效应值,其中S Q1K为诸可变荷载效应中起控制作用者;ψci——可变荷载Q i的组合值系数;n——参与组合的可变荷载数。

(2)由永久荷载效应控制的组合(2-3)(3)基本组合的荷载分项系数1)永久荷载的分项系数当其效应对结构不利时:对由可变荷载效应控制的组合,应取1.2;对由永久荷载效应控制的组合,应取1.35;当其效应对结构有利时:一般情况下应取1.0;对结构的倾覆、滑移或漂浮验算,应取0.9。

2)可变荷载的分项系数一般情况下应取1.4;对标准值大于4kN/m2的工业房屋楼面结构活荷载应取1.3。

结构的设计使用年限与结构重要性系数

结构的设计使用年限与结构重要性系数

— 21260 01428 — — 21840 01554 —
315
1119
8815
注 : ①任意时点楼面活荷载 ,对于办公楼 、住宅系 10 年时段最大楼面活荷 载 ,对于商店系 1 年时段最大楼面活荷载 ;
② L k =μL T +ασL T ,α———系数 。
根据 Turkstra 组合规则 ,由表 2 可以看出 ,设计基准期 最大活荷载 L T ,由任意时点持久性活荷载 L i 与设计基准期 最大临时性活荷载 L rT相组合得到 ,即
可偏安全地将 γT 提高设计荷载值的功能赋予 γ0 ,即结构重 要性系数按结构构件的安全等级及结构设计使用年限确定 。
新的《建筑结构可靠度设计统一标准》(报批稿) 71013
条规定结构重要性系数 γ0 可按下列规定采用 : (1) 对安全等级为一级或设计使用年限为 100 年及以
上的结构构件 ,不应小于 111 ;
[ Abstract] According to t he properties of extreme value type I probability distribution , t he load values on t he different distribu2 tions of variable load , which have t he same probability of exceedance , were calculated in t he paper , while t he probability of ex2 ceedance of t he characteristic value of variable load wit hin t he design reference period was taken as reference datum. Besides , t he rela2 tion between t he calculated values and t he importance factor of structure is also discussed.

建筑荷载规范

建筑荷载规范

民用建筑荷载标准值(自重):住宅办公楼旅馆医院标准值 KN/m2食堂餐厅 KN/m2礼堂剧场影院 KN/m2商店车站 KN/m2健身房舞厅 KN/m2书房储藏室 KN/m2KN是千牛kg是千克。

1KN=1000N,1Kg=。

纠正以下kn指节(用于航海).在物理中牛顿(Newton,符号为N)是力的公制单位。

它是以发现经典力学的艾萨克·牛顿(Sir Isaac Newton)命名。

般住宅就用两种级别规格的板就可以了,就是所说的一级板和二级板,一级板就是说可以承受的活荷载是1KN/M2,二级板,可以承受的活荷载是2KN/M2,西南地区已经规定了最小为四级板,即可以承受活荷载是4KN/M2。

商品楼一般是10CM的厚度,200KG/M3的承重设计,280KG/M3的安全系数还是有的,但是实际上可以承重多少就不知道了,至少我们没有听说过谁家来了10多个客人把楼板踩塌的新闻。

但是有一点要注意,东西放上去不塌,不代表楼板就可以承受这种重量,长期承受超过楼板负载的重量肯定会导致楼板开裂变形的。

另外每平方米200公斤的承重是平均承重不是一点上的承重能力,不然的话一个50KG的人单脚站立的话就该把楼板踩踏了,按照我的理解这应该是一个空间内每方米都承受200KG 的重量后中心点所能够承受的最大负载。

如果有比较沉重的东西,比如说浴缸、大书柜什么的只要靠承重墙摆放还是比较安全的。

PS:以上纯属个人理解,非专业一般情况下住宅楼板板厚最小取100mm(视楼板跨度大小有可能取更厚,一般楼板板厚是取 1/40 的楼板跨度)。

除阳台,卫生间楼面均布活荷载标准值为250KG/m^2。

其他房间的楼面布活活荷载标准值均为200KG/m^2。

活荷载设计值=活荷载标准值所指荷载为均布荷载。

注意均布二字牛顿是一个国际单位制导出单位,它是由kgms2的国际单位制基本单位导出。

1千克力=牛顿1牛顿=千克力1mpa=1000000pa=1000000N/m2=100N/cm2=(100/kg/cm2=cm21kg/cm2=1*cm2=cm2=98000N/m2=98000pa=框架结构设计框架结构设计工程概况:本工程建设地点在保定,为多层工业厂房。

精品建筑施工之荷载与结构静力计算表

精品建筑施工之荷载与结构静力计算表

建筑施工之荷载与结构静力计算表2-1-1 荷载1.结构上的荷载结构上的荷载分为下列三类:(1)永久荷载如结构自重、土压力、预应力等。

(2)可变荷载如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪活载等。

(3)偶然荷载如爆炸力、撞击力等。

建筑结构设计时,对不同荷载应采用不同的代表值。

对永久荷载应采用标准值作为代表值。

对可变荷载应根据设计要求,采用标准值、组合值、频遇值或准永久值作为代表值。

对偶然荷载应按建筑结构使用的特点确定其代表值。

2.荷载组合建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,并应取各自的最不利的效应组合进行设计。

对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合。

γ0S≤R (2-1)式中γ0——结构重要性系数;S——荷载效应组合的设计值;R——结构构件抗力的设计值。

对于基本组合,荷载效应组合的设计值S应从下列组合值中取最不利值确定:(1)由可变荷载效应控制的组合(2-2)式中γG——永久荷载的分项系数;γQi——第i个可变荷载的分项系数,其中Y Q1为可变荷载Q1的分项系数;S GK——按永久荷载标准值G K计算的荷载效应值;S QiK——按可变荷载标准值Q ik计算的荷载效应值,其中S Q1K为诸可变荷载效应中起控制作用者;ψci——可变荷载Q i的组合值系数;n——参与组合的可变荷载数。

(2)由永久荷载效应控制的组合(2-3)(3)基本组合的荷载分项系数1)永久荷载的分项系数当其效应对结构不利时:对由可变荷载效应控制的组合,应取1.2;对由永久荷载效应控制的组合,应取1.35;当其效应对结构有利时:一般情况下应取1.0;对结构的倾覆、滑移或漂浮验算,应取0.9。

2)可变荷载的分项系数一般情况下应取1.4;对标准值大于4kN/m2的工业房屋楼面结构活荷载应取1.3。

对于偶然组合,荷载效应组合的设计值宜按下列规定确定:偶然荷载的代表值不乘分项系数;与偶然荷载同时出现的其他荷载可根据观测资料和工程经验采用适当的代表值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表4.2-2 荷载工况组合及分项系数表
注:括号内数字表示该荷载在对结构有利时的分项系数取值,计算强度时,可变荷载组合值系数取0.7或0.9,按包络设计可取0.9;计算裂缝及变形时准永久值系数根据荷载规范取0.5~0.8,按包络设计可取0.8;抗震荷载作用下构件强度验算时分项系数取1.2(1.0),在计算重力荷载代表时永久荷载组合值系数取1.0,可变荷载组合值系数取0.5。

关于动力系数:根据建筑结构荷载规范(GB50009—2012)第5.6.2条:搬运和装卸重物以及车辆启动和刹车的动力系数,可采用1.1~1.3,动力荷载只传递至楼板和梁;第5.6.3条:直升机在屋面上的荷载,也应乘以动力系数,对具有液压轮胎超落架的直升机可取 1.4;动力荷载只传递至楼板和梁。

地铁设计规范只是要求要考虑,但没有具体的动力系数规定。

关于盾构端墙处的施工临时荷载,取75kpa时,应按照建筑结构荷载规范(GB50009—2012)第5.5.3条的规定:施工荷载、检修荷载及栏杆荷载的组合值系数应取0.7、频遇值系数0.5、准永值系数应取0。

此时重要性系数可取0.9。

1。

相关文档
最新文档