(物理必修一)第三章知识点总结(不含答案)

合集下载

高中物理必修一第三章知识点总结

高中物理必修一第三章知识点总结

高一物理必修一知识点总结★匀速直线运动与匀变速直线运动的对比★伽利略对自由落体运动的研究1.19世纪末,意大利比萨大学的年轻学者伽利略通过逻辑推理的方法,使亚里士多德统治人们近2000多年的理论陷入困境,伽利略的猜想是( )A.重的物体下落得快B.轻的物体下落得快C.轻、重两物体下落得一样快D.以上都不是2.关于伽利略对落体运动的研究,以下说法不正确的是( )A.运用“归谬法”否定了亚里士多德关于重的物体下落快、轻的物体下落慢的论断B.提出“自由落体”是一种最简单的变速直线运动——匀变速直线运动C.通过斜面上物体的匀加速运动外推出斜面倾角为90°时,物体做自由落体运动,且加速度的大小跟物体的质量有关D.总体的思想方法是对现象的观察→提出假设→逻辑推理→实验验证→对假说进行修正和推广4.伽利略对自由落体的研究,开创了研究自然规律的科学方法,这就是( )A.对自然现象进行总结归纳的方法B.用科学实验进行探究的方法C.对自然现象进行总结归纳,并用实验进行验证的方法D.抽象思维、数学推导和科学实验相结合的方法5.伽利略用实验验证v∝t的最大困难是( )A.不能很准确地测定下落的距离B.不能测出下落物体的瞬时速度C.当时没有测量时间的仪器D.当时没有记录落体运动的数码相机6.伽利略在著名的斜面实验中,让小球分别沿倾角不同、阻力很小的斜面从静止开始滚下,他通过实验观察和逻辑推理,得到的正确结论有( )A.倾角一定时,小球在斜面上的位移与时间成正比B.倾角一定时,小球在斜面上的速度与时间成正比C.斜面长度一定时,小球从顶端滚到底端时的速度与倾角无关D.斜面长度一定时,小球从顶端滚到底端所需的时间与倾角无关7.在学习物理知识的同时,还应当十分注意学习物理学研究问题的思想和方法,从一定意义上说,后一点甚至更重要.伟大的物理学家伽利略的研究方法对于后来的科学研究具有重大的启蒙作用,至今仍然具有重要意义.请你回顾伽利略探究物体下落规律的过程,判定下列哪个过程是伽利略的探究过程( )A.猜想→问题→数学推理→实验验证→合理外推→得出结论B.问题→猜想→实验验证→数学推理→合理外推→得出结论C.问题→猜想→数学推理→实验验证→合理外推→得出结论D.猜想→问题→实验验证→数学推理→合理外推→得出结论1.C2.C3.ACD4.D5.B6.B解析:伽利略通过斜面实验,测得小球通过的位移跟所用时间的二次方之比是不变的,即===…由此证明了小球沿斜面向下的运动是匀变速运动.且小球的加速度随斜面倾角的增大而变大.结合运动学公式我们可知,倾角一定时,小球在斜面上的位移与时间的二次方成正比,选项A错误;小球在斜面上的速度与时间成正比,选项B正确;斜面长度一定时,倾角越大,加速度越大,小球到达底端时的速度越大,选项C错误;倾角越大,加速度越大,小球到达底端所需的时间越短,选项D错误.7.C解析:伽利略探究物体下落规律的过程是:先对亚里士多德对落体运动的观察得出的结论提出质疑——大小石块捆在一起下落得出与其矛盾的结论;猜想——下落的运动是最简单的运动,速度与时间成正比;数学推理——如果v∝t,则有x∝t2;实验验证——设计出斜面实验并进行研究,得出光滑斜面上滑下的物体的规律x∝t2;合理外推——将光滑斜面上滑下的物体的规律x∝t2推广到落体运动.从探究的过程看,选项C正确.①力的性质(1)物质性:力不能离开物体而独立存在,施力物体和受力物体同时存在(2)相互性:力总是成对出现(3)矢量性:既有大小又有方向,遵循平行四边形定则(4)独立性:一个物体同时受几个共点力的作用,每个力各自独自地产生作用效果,好像其他力不存在一样(5)效果性:力作用在物体上总是要产生一定作用效果的,或者使物体发生形变,或者改变物体的运动状态(6)绝对性:力与参考系的选取是无关的(7)瞬时性:力可以瞬时产生,瞬时消失,可以在瞬间突变②悬挂法、支点法支点法:用支点将薄板撑起,当薄板水平静止时,支点可认为是薄板的重心悬挂法:二次悬挂,物体所受的重力与悬线的拉力在同一竖直线上,两条竖直线的交点就是重心。

物理必修一第三章知识点总结

物理必修一第三章知识点总结

物理必修一第三章知识点总结
第三章:牛顿运动定律
一、牛顿第一定律
1、牛顿第一定律又称惯性定律,指出“物体如果没有外力作用,或外力的合力为零,物体
就保持静止或匀速直线运动的状态”。

(还可以理解为:物体不受外力作用时,它要么保
持原来的状态(包括速度为零的状态),要么不受力的物体做自由落体运动。


2、质点的惯性系和非惯性系的判断方法,非惯性系的例子。

3、坐标系的选取和表示。

二、牛顿第二定律
1、牛顿第二定律又称运动定律,明确了力的概念,即:当物体受到外力(总的力)作用时,会产生加速度,且加速度的大小与力成正比,与物体的质量成反比,加速度的方向与
力的方向相同。

用公式表达 F=ma。

2、等效力:将多个作用在物体上的力合成为一力。

3、重力和重力的计算。

4、弹力和弹力的计算。

5、摩擦力和摩擦力的计算。

三、牛顿第三定律
1、牛顿第三定律又称作用-反作用定律,明确了力的相互作用联系。

指出“两个物体相互作用时,彼此之间的作用力与受力物体方向相反,作用力和反作用力大小相等,方向相反”。

四、应用
1、在现实生活中,各种力的应用情况。

2、受力物体的运动情况。

综上所述,牛顿运动定律是物理学的基础理论之一,它揭示了物体的运动规律,对我们认
识和描述物体的运动过程有着重要意义。

通过学习牛顿运动定律,可以更好地理解和分析
物体的运动情况,更好地指导实际应用。

高二物理必修一必学必背知识点总结

高二物理必修一必学必背知识点总结

高二物理必修一必学必背知识点总结第一章机械基础1. 描述力的大小和方向的物理量称为矢量,常见的矢量有力、加速度、速度等。

2. 两个力矢量的和力可以用图矢法、力的三角法则或力的分解法来求解。

3. 牛顿第一定律:物体静止或匀速直线运动的状态,只会在外力作用下改变。

4. 牛顿第二定律:物体的加速度与作用力成正比,与物体的质量成反比;F = ma5. 牛顿第三定律:作用力和反作用力在大小上相等、方向上相反、作用在不同的物体上。

6. 力的单位是牛顿(N),1N = 1kg·m/s²。

第二章热学基础1. 温度是表征物体热平衡状态的物理量,常用单位是摄氏度(℃)和开尔文(K)。

2. 热量是物体之间或物体内部传递的能量,常用单位是焦耳(J)。

3. 热平衡是指两个物体或物体内各部分之间没有热传递的状态,热平衡温度相等。

4. 物体的温度上升是因为吸收热量,温度下降是因为释放热量,与物体的热容有关。

5. 热传递有三种方式:导热、对流和辐射。

6. 热量的传递方式可以用热传导方程、热对流方程和斯特藩-玻尔兹曼定律来描述。

7. 热力学第一定律:热量交换等于内能变化加做功,ΔQ = ΔU + W。

8. 热力学第二定律:热不会自发地从冷物体传递到热物体,熵随时间单调增加。

第三章光学基础1. 光是一种波动现象,既具有粒子性又具有波动性。

2. 光的传播速度是光速,即3 × 10^8 m/s。

3. 光的反射和折射规律可以用光线模型或光的波动模型来解释。

4. 光的反射规律是:入射角等于反射角。

5. 光的折射规律是:入射角的正弦值与折射角的正弦值成正比。

6. 光根据其波动性质可以被分为:可见光、红外线、紫外线、X射线和γ射线等。

7. 可见光在空气中的折射率为1,不同介质中的光的折射率不同。

8. 聚焦是指光线经过透镜或曲面反射后被聚集到一点上。

9. 焦距是指透镜或曲面反射器对平行光线所集聚的焦点与透镜或反射面的距离。

物理必修一第三章知识点总结

物理必修一第三章知识点总结

第三章相互作用专题一:力的概念、重力和弹力1.力的本质(1)力的物质性:力是物体对物体的作用。

提到力必然涉及到两个物体:施力物体和受力物体,力不能离开物体而独立存在,(不离开不是一定要接触)有力时物体不一定接触。

(2)力的相互性:力是成对出现的,作用力和反作用力同时存在。

作用力和反作用力总是等大、反向、共线,分别作用在两个物体上,作用效果不能抵消.(3)力的矢量性:力有大小、方向,对于同一直线上力的矢量运算,同向相加,反向相减。

(4)力作用的独立性:几个力作用在同一物体上,每个力对物体的作用效果均不会因其它力的存在而受到影响。

2.力的作用效果力对物体作用有两种效果:一是使物体发生形变,二是改变物体的运动状态。

这两种效果可各自独立产生,可同时产生。

3.力的三要素:大小、方向、作用点完整表述一个力时,三要素缺一不可。

当力F1、F2的大小、方向均相同时,我们说F1=F2。

力的大小可用弹簧秤测量,也可通过定理、定律计算,力的单位是牛顿,符号是N。

4.力的图示和力的示意图力的图示:用一条有向线段表示力的方法叫力的图示,用带有标度的线段长短表示大小,用箭头指向表示方向,作用点用线段的起点表示。

5.重力(1).重力的产生:重力是由于地球的吸收而产生的,重力的施力物体是地球。

(2).重力的大小:由G=mg计算,g为重力加速度,通常g取9.8米/秒方。

由弹簧秤测量:物体静止时弹簧秤的示数为重力大小。

(3).重力的方向:重力的方向总是竖直向下的,不一定指向地心。

(4).重力的作用点——重心物体的各部分都受重力作用,效果上,认为各部分受到的重力作用都集中于一点,叫做物体的重心。

(假设的点)重心跟物体的质量分布、物体的形状有关,重心不一定在物体上。

质量分布均匀、形状规则的物体其重心在物体的几何中心上。

(5).重力和万有引力重力是地球对物体万有引力的一个分力,万有引力的另一个分力提供物体随地球自转的向心力,同一物体在地球上不同纬度处的向心力大小不同,但由此引起的重力变化不大,一般情况可近似认为重力等于万有引力,即:mg=GMm/R2。

高中物理必修一第三章知识点总结

高中物理必修一第三章知识点总结

高中物理必修一第三章知识点总结第三章:力与运动本章主要介绍了力和运动的概念,并对力的性质、受力分析、力的合成和分解等内容进行了详细的讲解,同时还介绍了平衡力和力矩的相关知识。

下面将对该章节的知识点进行总结。

1. 力的概念:力是物体相互作用产生的效应,是使物体发生形态变化、速度变化或者方向变化的原因。

2. 力的性质:- 力是矢量,具有大小和方向;- 力可以相互叠加,即合力;- 力还可以分解成多个力的合力。

3. 受力分析:- 绘制力的示意图,标明力的方向和大小;- 建立坐标系,分解力的大小和方向;- 列出受力方程,求解未知量。

4. 力的合成与分解:- 合力:若多个力作用于同一物体上,其合力等于这些力的矢量和;- 分解力:将一个力分解成两个力,使其合力等于原力。

5. 平衡力:- 物体受到多个力的作用,但它仍然保持静止或匀速直线运动,即为力的合力为零;- 平衡力的特点:合力为零,物体处于静止或匀速直线运动。

6. 力的单位:国际单位制中,力的单位为牛顿(N)。

1N表示当力的大小为1N时,1kg质量的物体受到的加速度为1m/s²。

7. 力矩:- 力对物体的转动效应,称为力矩;- 力矩的大小:力的大小与力臂的乘积,力臂是力作用点到转轴的垂直距离;- 力矩的方向:力矩的符号决定了转动方向。

8. 平衡条件:- 对于物体在水平面上的平衡:合力为零,合力矩为零;- 对于物体在斜面上的平衡:合力垂直于斜面,合力矩为零。

9. 动力学基本定律:- 牛顿第一定律(惯性定律):物体静止或匀速直线运动时,合外力为零;- 牛顿第二定律(运动定律):物体的加速度与作用力成正比,与物体质量成反比;- 牛顿第三定律(作用反作用定律):凡是对物体施加作用力的物体,物体必然对其施加大小相等、方向相反的反作用力。

10. 弹力:- 弹力是一种常见的力,当物体发生形状变化时,弹力产生; - 弹簧的弹力:弹簧的弹力与形变程度成正比。

总结:力与运动是物理学中非常基础和重要的概念。

新教材 人教版高中物理选择性必修第一册 第三章 机械波 知识点考点重点难点提炼汇总

新教材 人教版高中物理选择性必修第一册 第三章 机械波 知识点考点重点难点提炼汇总

第三章机械波1 波的形成 ..................................................................................................................... - 1 -2 波的描述 ..................................................................................................................... - 7 -3 波的反射、折射和衍射............................................................................................ - 15 -4 波的干涉 ................................................................................................................... - 15 -5 多普勒效应 ............................................................................................................... - 22 -1 波的形成一、波的形成和传播1.组成介质的质点之间有相互作用,一个质点的振动会引起相邻质点的振动.机械振动在介质中传播,形成机械波.2.介质中有机械波传播时,介质本身并不随波一起传播,因此它传播的只是振动这种运动形式.3.介质中本来静止的质点,随着波的传来而发生振动,可见波是传递能量的一种方式.4.我们能用语言进行交流,说明波可以传递信息.二、横波与纵波1.横波:质点的振动方向与波的传播方向相互垂直的波,叫作横波.在横波中,凸起的最高处叫作波峰,凹下的最低处叫作波谷.2.纵波:质点的振动方向与波的传播方向在同一直线上的波,叫作纵波.在纵波中,质点分布最密的位置叫作密部,质点分布最疏的位置叫作疏部.3.声波:发声体振动时在空气中产生的声波是纵波.声波不仅能在空气中传播,也能在液体、固体中传播.但不管在哪种介质中,声波都是纵波.考点一波的形成和传播1.波的概念振动的传播称为波动,简称波.2.波源引起波动的振动体叫波源.3.介质能够传播机械振动的物质叫介质,它可以是固、液、气三态中任意一种,可以把介质看成由许多质点构成,各质点跟相邻质点互相联系.4.波的形成在介质中,波源首先振动,带动邻近的质点依次振动,形成向远处传播的波动.【实例精讲】当手握绳端上下振动时,绳端带动相邻质点,使它也上下振动.这个质点又带动更远一些的质点……绳上的质点都很快振动起来,只是后面的质点总比前面的质点迟一些开始振动.如图所示.它有以下特点:(1)振动由振源逐步向远处传播;(2)各质点相继发生振动,后一质点将重复前一质点的振动;(3)各质点的起振方向均相同;(4)各质点只在平衡位置附近做机械振动,而不随波迁移.6.波的形成条件波源通过质点间的弹力作用带动周围质点振动,故波的传播必须有弹性介质存在,即有波源和介质.【例1】(多选)如图所示,沿水平方向的介质中的部分质点,每相邻质点间的距离相等,其中0为波源,设波源的振动周期为T.自波源通过平衡位置向下振动时开始计时,经过T4,质点1开始振动,则下列说法中正确的是()A.介质中所有的质点的起振方向都竖直向下,但图中质点9起振最晚B.图中所画的质点的起振时间都是相同的,起振的位置和起振的方向是不同的C.图中质点8的振动完全重复质点7的振动,只是质点8起振后,通过平衡位置或最大位移处的时间总是比质点7通过相同位置时落后T 4D.只要图中所有的质点都已振动了,质点1与质点9的振动步调就完全一致,但如果质点1发生的是第100次振动,则质点9发生的是第98次振动【审题指导】1.波源起振后,假设介质之间没有相互作用,能形成波吗?2.波源起振后,后面的质点振动是由前面的质点带动引起的,因此各质点起振方向有什么特点?3.形成波后,沿波传播方向各质点振动的周期有什么关系?4.在同一介质中,波源振动的每个周期,波传播的距离有什么关系?【解析】从图中可知,质点9是图中距波源最远的点,尽管与振源起振方向相同,但起振时刻最晚,故A正确,B错误;质点7与质点8相比较,质点7是质点8的前一个质点,7、8两质点的振动步调相差T4,故C正确;波由质点1传播到质点9正好是2个周期的时间,质点9比质点1晚2T开始起振,一旦质点9起振后,质点1、9振动步调完全一致,故D正确.【答案】ACD考点二横波和纵波1.横波(1)概念:质点的振动方向跟波的传播方向相互垂直的波,叫作横波.(2)波形特点:凹凸相间.【说明】形成横波的各质点可在与波传播方向垂直的任意方向上振动.(3)波峰和波谷:在横波中,凸起的最高处叫作波峰,凹下的最低处叫作波谷.2.纵波(1)概念:质点的振动方向跟波的传播方向在同一直线上的波,叫作纵波.(2)波形特点:疏(疏部)密(密部)相间.(3)密部和疏部:在纵波中,质点分布最密的位置叫作密部,质点分布最疏的位置叫作疏部.3.横波和纵波的区别横波纵波概念在波动中,质点振动方向和波的传播方向互相垂直,这种波叫横波在波动中,质点的振动方向和波的传播方向在同一直线上,这种波叫纵波介质只能在固体介质中传播在固体、液体和气体介质中均能传播特征在波动中交替、间隔出现波峰和波谷在波动中交替、间隔出现密部和疏部声波是纵波,地震波既有横波又有纵波.水波比较复杂,水的内部只能传播纵波,由于表面张力作用,水的表面可以传播横波和纵波,因此水波既不是横波,也不是纵波,称为水纹波(如图所示).地震波既有横波又有纵波,所以地震时房屋上下左右摆动.【例2】关于横波和纵波,下列说法正确的是()A.振源上、下振动形成的波是横波B.振源水平振动形成的波是纵波C.波沿水平方向传播,质点上下振动,这类波是横波D.质点沿水平方向振动,波沿水平方向传播,这类波是纵波【审题指导】判断横波与纵波的方法是根据波的传播方向与质点振动方向的关系.【解析】根据纵波与横波的概念,质点振动方向与波传播方向垂直者为横波,同一直线者为纵波,并不是上、下振动与水平振动的问题.所以A、B两项错误,C正确;对于D,水平传播、水平振动还不足以说明是同一直线,则D项错误.【答案】 C考点三机械波1.机械波机械振动在介质中传播,形成机械波.【说明】生活中常见的波大部分是机械波,如声波、水波等,无线电波、光属于电磁波.2.介质与机械波的传播介质中有机械波传播时,介质中的物质并不随波一起传播,传播的只是振动这种运动形式,同时传播波源的能量和包含的信息.3.机械波的特点(1)各质点都做受迫振动,其振动的频率(或周期)都与波源的频率(或周期)相同,各质点的起振方向都与波源相同,但不同步,离波源越远的质点振动越滞后.(2)机械波传播的是波源的运动形式和波源提供的能量,介质中各质点并不随波迁移,而是在自己的平衡位置附近振动.在横波中,波动方向与振动方向垂直.均匀介质中,波动是匀速运动,振动是变速运动.(3)介质中各质点靠弹力相互作用,前一质点带动后一质点振动,后一质点跟着前一质点振动,故可通过前一质点的位置而确定后一质点的运动方向.此外,若不计能量损失,在均匀介质中各质点振动的振幅应相同.(4)机械波在传播时也传递了信息.【例3】沿绳传播的一列机械波,当波源突然停止振动时()A.绳上各质点同时停止振动,横波立即消失B.绳上各质点同时停止振动,纵波立即消失C.离波源较近的各质点先停止振动,较远的各质点稍后停止振动D.离波源较远的各质点先停止振动,较近的各质点稍后停止振动【审题指导】1.由于波源的振动依次引起后面质点的振动,从而形成机械波,试想有机械波一定存在机械振动吗?2.机械波是由波源的振动引起的,那么有机械振动一定形成机械波吗?3.如果波源停止振动,机械波能马上消失吗?为什么?4.机械波的形成是由前面的质点依次带动后面的质点形成的,那么波源停止振动后,是离波源近的质点先停止振动还是远的质点先停止振动?为什么?【解析】波形成后,如果波源停止振动,波不会立即消失,A、B错;波源的能量不断向远处传播,故离波源较近的质点先停止振动,C正确,D错.【答案】 C【例4】如图所示是以质点P为振源的机械波沿着一条固定的轻绳传播到质点Q的波形图,则质点P刚开始振动时的方向为()A.向上B.向下C.向左D.向右【审题指导】1.由题中条件可知波向哪个方向传播?2.传到Q点时,Q点向哪个方向运动?【解析】由于是波源带动了后面的质点依次振动,且后面的质点总是重复前面质点的振动状态,所以介质中各质点开始振动时的方向都与波源开始振动时的方向相同.此时波刚传播至Q点,Q点此时的振动状态即与波源P开始振动时的状态相同.由波的传播特点可知Q点此时是向上运动的,所以波源P点刚开始振动时的方向也向上.正确选项为A.理解波的形成过程可以解决质点振动方向、传播特点等问题.【答案】 A振动和波动的区别与联系(续表)A.有机械振动就一定有机械波B.机械波中各质点振幅一定相同C.机械波中各质点均做受迫振动D.机械波中各质点振动周期相同【思路分析】根据振动与波动的关系以及质点振动的特点分析问题.【解析】有机械振动不一定有机械波,故选项A错误;机械波传播中要消耗能量,所以振动幅度逐渐减小,各质点的振幅不一定相等,选项B错误;机械波传播中各质点都要受到它前面质点的作用,每个质点都在做受迫振动,各质点振动的周期相同,故选项C、D正确.【答案】CD2 波的描述一、波的图像1.波的图像的作法(1)建立坐标系:用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移.(2)选取正方向:选取质点振动的某一个方向为y轴正方向,x轴一般向右为正.(3)描点:把某一时刻所有质点的位移画在坐标系里.(4)连线:用一条平滑的曲线把坐标系中的各点连接起来就是这一时刻的波形图.2.波的图像的特点(1)波的图像也称波形图,简称波形,如果波形是正弦曲线,这样的波叫作正弦波,也叫简谐波.(2)介质中有正弦波传播时,介质中的质点做简谐运动.3.波的图像与振动图像的比较(1)波的图像表示介质中的“各个质点”在“某一时刻”的位移.(2)振动图像表示介质中“某个质点”在“各个时刻”的位移.二、波长(λ)1.定义:在波的传播方向上,振动相位总是相同的两个相邻质点间的距离.2.特征:在横波中,两个相邻波峰或两个相邻波谷之间的距离等于波长.在纵波中,两个相邻密部或两个相邻疏部之间的距离等于波长.三、波的波速、周期和频率1.波速是指机械波在介质中的传播速度.2.波的周期等于波上各质点的振动周期.3.在波动中,各个质点的振动周期(或频率)是相同的,它们都等于波源的振动周期(或频率).4.周期T和频率f互为倒数,即f=1/T.5.在一个周期的时间内,振动在介质中传播的距离等于一个波长.6.公式:v=λT,它还等于波长和频率的乘积,公式为v=λf,这两个公式虽然是从机械波得到的,但也适用于我们以后将会学到的电磁波.7.波速的决定因素:机械波在介质中的传播速度由介质本身的性质决定,在不同的介质中,波速是不同的.另外,声速还与温度有关.考点一波的图像1.图像的建立(1)波传播时各质点都在各自平衡位置附近振动,而且振动有先有后,某一时刻,各质点处于一定的位置,如果用各质点离开平衡位置的位移来表达它们所在的位置,就可以得到关于某时刻各质点位置情况的一条图线.(2)用横坐标x表示波的传播方向上各介质的平衡位置,纵坐标y表示某一时刻各个质点偏离平衡位置的位移,在xOy平面上,画出多个质点的平衡位置x与多个质点偏离平衡位置的位移y的各点(x,y),用平滑的曲线把各点连接起来就得到了波的图像,如图所示.2.简谐波(1)定义:波源做简谐运动时,介质的各个质点随波源做简谐运动,所形成的波叫作简谐波.(2)简谐波的图像:正弦或余弦曲线.(3)简谐波是一种最基本、最简单的波,其他的波可以看做是由若干简谐波合成的.3.波的图像的特点(1)波的图像并不是实际运动的波形图,但某时刻横波的图像形状与波在该时刻的实际波形很相似,波形中的波峰对应波的图像中的位移正向最大值,波谷对应图像中位移负向最大值.波形中的平衡位置也对应图像中的平衡位置.(2)波的图像的周期性在波的传播过程中,各质点都在各自的平衡位置附近振动,不同时刻,质点的位移不同,则不同时刻,波的图像不同.质点振动位移做周期性变化,则波的图像也做周期性变化,经过一个周期,波的图像复原一次.相隔时间为周期整数倍的两个时刻,波形相同.(3)波的传播方向的双向性如果只知道波沿x轴传播,那么波的传播方向有可能沿x轴正向,也有可能沿x轴负向.4.物理意义描述在波的传播方向上的介质中的各质点在某一时刻离开平衡位置的位移.5.对波的图像的理解(1)直接获得的信息①从图像上可直接读出振幅,如图所示,波的图线上,纵坐标的最大值的绝对值即为振幅A,A=4 cm.②可确定任一质点在该时刻的位移,如图所示,图线上各点纵坐标表示各质点在该时刻的位移,例如图中M点的位移为2 cm.(2)间接获得的信息①因加速度方向和位移方向相反,可确定任一质点在该时刻的加速度方向.②若已知波的传播方向,可确定各质点在该时刻的振动方向,并判断位移、加速度、速度、动能的变化.如上图所示,如要确定图线上N点的振动方向,可以根据波的传播方向和波的形成过程,知道质点N开始振动的时刻比它左侧相邻质点M要滞后一些,所以质点M在此时刻的位移值是质点N在下一时刻的位移值,由此判断出质点N此时刻的速度方向应沿y轴正方向,即向上振动.如果这列波的传播方向改为自右向左,则质点M开始振动的时刻比它右侧相邻质点N要滞后一些,所以质点N此时刻的位移值将是质点M在晚些时刻的位移值,由此判断出质点M此时刻的速度方向应沿y轴负方向,即向下振动.总之,利用波的传播方向确定质点的运动方向的方法是要抓住波动的成因,即先振动的质点(即相邻两点中离波源比较近的质点)总是要带动后面的质点(即相邻两点中离波源比较远的质点)运动.6.振动图像和波的图像的比较振动图像和波的图像从形状上看都是正弦曲线,但图像的物理意义、坐标中描述的物理量、研究的内容等方面有着本质的不同,现用图表做如下比较.振动图像波的图像研究对象一个振动质点沿波传播方向上若干质点坐标横轴表示时间,纵轴表示质点的位移横轴表示波线上各质点平衡位置,纵轴表示各质点对各自平衡位置的位移振动图像波的图像研究一个质点的位移随时间的变化规某时刻所有质点的空间分布规律内容律图像图像意义表示一个质点在各个时刻的位移表示某时刻图线上各质点的位移图像变化随时间推移,原有图像形状不变,只是沿t轴延续(如图中虚线)随时间推移,图像整体沿波的传播方向平移,不同时刻波形不同(如图中虚线)运动情况质点做简谐运动,属非匀变速运动波在同一均匀介质中匀速传播,介质的质点做简谐运动图像信息(1)由纵坐标可知振幅,由横坐标可知周期;(2)由图像的切线斜率可知速度的大小及方向的变化情况;(3)由位移的变化情况可知加速度的大小及方向的变化情况(1)由纵坐标可知振幅,由横坐标可知波长(下节学);(2)可根据波的传播方向确定各质点某时刻的运动方向;也可根据某质点的运动方向确定波的传播方向;(3)由位移情况可确定质点在某一时刻加速度的大小及方向情况向,下列说法正确的是()A.此时刻C点振幅为负值B.此时刻质点B、E的速度相同C.此时刻质点C、F的加速度、速度都为零D.此时刻D点正沿y轴负方向运动【审题指导】1.在简谐横波中,各质点做什么运动?2.从波的图像中可获取哪些信息?3.判断波传播方向与各质点的振动方向的关系有哪些方法?【解析】振幅在波形图上为纵坐标最大值的绝对值,A错;由同侧法可判断B沿+y方向运动,E、D均沿-y方向运动,故B错,D正确;又C、F加速度均为最大值,故C错,只选D.【答案】 D考点二波长、频率和波速1.波长(1)定义:在波的传播方向上,振动相位总是相同的两个相邻质点间的距离叫作波长,用λ表示.(2)对波长的认识①在波的传播方向上相位相同(即状态相同)的质点有很多个,只有相邻的两质点间的距离才等于波长.②对于横波,两个相邻波峰或相邻波谷之间的距离等于波长,相邻的波峰和波谷所对应的平衡位置相距半个波长(如图所示);对于纵波,两个相邻密部或相邻疏部之间的距离等于波长,相邻的密部和疏部相距半个波长.③因为相邻波长内对应点的状态相同,所以在波的传播方向上,质点的振动状态随位置变化而出现周期性变化,波长实质上反映了波的传播在空间上的周期性.④相距λ整数倍的两质点振动步调总是相同的;相距λ/2的奇数倍的两质点振动步调总是相反的.2.周期和频率(1)定义:在波动中,各个质点的振动周期或频率是相同的,它们都等于波源的振动周期或频率,这个周期或频率也叫作波的周期或频率.周期用T表示,频率用f表示.波源振动一个周期,其他被波源带动的质点也刚好完成一次全振动,且波在介质中往前传播一个波长.(2)波的空间周期性和时间周期性:每隔n个波长的距离,波形就重复出现;每隔n个周期的时间,波形恢复原来的形状,这就是波的空间周期性和时间周期性.3.波速(1)定义:波传播的速度称为波速.波速反映了振动在介质中传播的快慢程度,可以用公式v=xt来计算,其中x为波传播的距离,t为传播这段距离所用的时间.(2)波速与质点的振动速度不同波速是振动形式传播的速度,始终沿着波的传播方向,在同一均匀介质中波速大小不变.质点的振动速度是质点在平衡位置附近振动的速度,大小和方向均随时间发生周期性变化.(3)波速的大小的决定因素波速由介质的性质决定,同一列波在不同介质中传播速度不同,但同一类机械波在同一均匀介质中传播速度相同.如声波,在空气中不管哪种频率的波传播速度相同.【例2】(多选)下图所示的是一列简谐波在某一时刻的波形图像,下列说法中正确的是()A.质点A、C、E、G、I在振动过程中位移总是相同B.质点B、F在振动过程中位移总是相等C.质点D、H的平衡位置间的距离是一个波长D.质点A、I在振动过程中位移总是相同,它们的平衡位置间的距离是一个波长【解析】从图像中可以看出质点A、C、E、G、I在该时刻的位移都是零,由于波的传播方向是向右的,容易判断出质点A、E、I的速度方向是向下的,而质点C、G的速度方向是向上的,因而这五个点的位移不总是相同,A项错误;质点B、F是同处在波峰的两个点,它们的振动步调完全相同,在振动过程中位移总是相等,B项正确;质点D、H是处在相邻的两个波谷的点,它们的平衡位置之间的距离等于一个波长,C项正确;虽然质点A、I在振动过程中位移总是相同,振动步调也完全相同,但由于它们不是相邻的振动步调完全相同的两个点,它们的平衡位置之间的距离不是一个波长(应为两个波长),D项错误.【答案】BC考点三波长、频率和波速之间的关系1.波长、频率和波速之间的关系在一个周期的时间内,振动在介质中传播的距离等于一个波长,因而可以得到波长λ、频率f(或周期T)和波速v三者的关系为:v=λT.根据T=1f,则有v=λf.【注意】①关系式v=λT和v=λf不仅对机械波适用,对后面要学习的电磁波及光波也适用.②波速的计算既可用v=xt求,也可以根据v=λT或v=λf求,计算时注意波的周期性所造成的多解.2.波长、频率、波速之间的决定关系(1)周期和频率,只取决于波源,而与v、λ无直接关系.(2)速度v取决于介质的物理性质,它与T、λ无直接关系.只要介质不变,v 就不变;反之如果介质改变,v也一定改变.(3)波长λ取决于v和T(f),或者说取决于波源和介质.只要v和T(f)其中一个发生变化,由于v=λT(v=λf),波长λ也一定发生变化.【注意】公式v=λT和v=λf只是几个物理量之间的数量关系,而不是决定关系.【例3】(多选)对机械波,关于公式v=λf,下列说法正确的是()A.v=λf适用于一切波B.由v=λf知,f增大,则波速v也增大C.v、λ、f三个量中,对同一列波来说,在不同介质中传播时保持不变的只有fD.由v=λf知,波长是4 m的声音为波长是2 m的声音传播速度的2倍【审题指导】公式v=λf适用于一切波,公式中v、f都有其特定的决定因素,即介质决定机械波的波速,波源决定频率.由v=λf可知,波速、频率确定的同时,也确定了波长.【解析】机械波从一种介质进入另一种介质,波源没变,波的频率不变;介质的变化导致了波速和波长的改变.波长也是波的周期性的体现,它体现的是波在空间上的周期性.【答案】AC机械波的多解问题造成波动问题多解的主要因素:1.周期性(1)时间的周期性:时间间隔Δt与周期T的关系不明确.(2)空间的周期性:波传播距离Δx与波长λ的关系不明确.2.双向性(1)传播方向双向性:波的传播方向不确定.(2)振动方向双向性:质点振动方向不明确.由于波动问题的多解性的出现,从而导致了求解波动问题的复杂性,而最容易失误的往往是漏解,因此在解决振动和波动问题时一定要考虑全面,尤其是对题设条件模糊,没有明确说明的物理量,一定要考虑其所有可能性.如说质点达到最大位移处,则有正向最大位移与负向最大位移两种可能;质点由平衡位置起振,起振方向有向上向下两种可能;只告诉波速不说传播方向,应考虑沿两个方向传播的可能;若给出两时刻的波形,则有可能是波形重复多次后又变至题目所给的相应的后一种波形.解决此类问题时,往往采用从特殊到一般的思维方法,即找到一个周期内满足条件的特例,在此基础上,时间关系加nT(n=0,1,2,…);空间关系加nλ(n=0,1,2,…).总之,只要有多解意识,再根据题意仔细分析,就能得到全部的解.【典例2】如图所示,实线是某时刻的波形图像,虚线是0.2 s后的波形图.(1)若波向左传播,求它的可能周期和最大周期;(2)若波向右传播,求它的可能传播速度;(3)若波速是45 m/s,求波的传播方向.【解析】在已知两个时刻的波形图来求波的周期或波速时,一定要考虑到两个方面:一个是波传播的双向性;一个是它的周期性带来的多解性.。

高一物理必修一知识点总结

高一物理必修一知识点总结

高一物理必修一知识点总结第一章:运动的描述1.1 质点- 定义:有质量但不存在体积与形状的点。

- 条件:当物体的大小和形状在研究的问题中能忽略,物体可以看成质点。

1.2 参考系- 定义:研究物体运动时,被选定做为参考、假定为不动的其他物体。

- 选择:一般情况下,选择地面或地面上的物体作为参考系。

1.3 位置、位移和路程- 位置:物体所在的空间位置。

- 位移:从初位置到末位置的有向线段,矢量。

- 路程:运动轨迹的实际长度,标量。

1.4 速度和平均速度- 速度:位移与时间的比值,矢量。

- 平均速度:总位移与总时间的比值。

1.5 加速度- 定义:速度变化量与时间的比值,矢量。

- 表达式:a = Δv/Δt第二章:力和运动2.1 力的概念- 定义:物体对物体的作用。

- 分类:接触力(如弹力、摩擦力)、非接触力(如重力、电场力、磁场力)。

2.2 牛顿运动定律- 第一定律(惯性定律):物体总保持静止状态或匀速直线运动状态,除非作用在它上面的外力迫使它改变这种状态。

- 第二定律(加速度定律):F = ma,其中F为合外力,m为质量,a为加速度。

- 第三定律(作用与反作用定律):任何两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。

2.3 摩擦力- 定义:两个互相接触的物体,当它们要发生或已经发生相对运动时,会在接触面上产生一种阻碍相对运动的力,这种力就叫做摩擦力。

- 分类:静摩擦力、滑动摩擦力、滚动摩擦力。

2.4 重力- 定义:由于地球的吸引而使物体受到的力。

- 表达式:F = mg,其中g为重力加速度,约为9.8 m/s²。

第三章:能量与动量3.1 功和能量- 功:力与力的方向上发生位移的乘积。

- 能量:物体对外做功的能力。

3.2 动能和势能- 动能:物体由于运动而具有的能量。

- 势能:物体由于位置而具有的能量。

3.3 动量和冲量- 动量:质量与速度的乘积,矢量。

- 冲量:力与力的作用时间的乘积。

第三章 相互作用--力 单元总结(2020-2021学年上学期高一物理(新教材人教版必修第一册)

第三章  相互作用--力 单元总结(2020-2021学年上学期高一物理(新教材人教版必修第一册)

第三章相互作用--力单元总结知识要点一:弹力和摩擦力的区别弹力摩擦力产生条件(1)相互接触(2)发生弹性形变(1)相互挤压(2)接触面粗糙(3)两物体有相对运动或相对运动趋势方向与物体发生弹性形变的方向相反:(1)支持力、压力的方向垂直于接触面(2)绳子拉力沿绳与相对运动或相对运动趋势的方向相反大小(1)弹簧弹力:胡克定律(2)发生微小形变物体的弹力:二力平衡(1)静摩擦力用二力平衡判断(2)滑动摩擦力:F=μF N2.弹力或摩擦力的有无及方向的判断方法(1)假设法.(2)结合物体运动状态判断.(3)效果法.知识要点如图所示,倾角为θ的斜面体C置于水平地面上,小物块B置于斜面上,通过细绳跨过光滑的定滑轮与物体A相连接,连接B的一段细绳与斜面平行,已知A、B、C都处于静止状态.则()A.B受到C的摩擦力一定不为零B.C受到水平地面的摩擦力一定为零C.斜面体C有沿地面向右滑动的趋势,一定受到地面向左的摩擦力D.将细绳剪断,若B物体依然静止在斜面上,此时水平面对C的摩擦力为零【答案】CD【解析】若绳对B的拉力恰好与B的重力沿斜面向下的分力平衡,则B与C间的摩擦力为零,A项错误;将B和C看成一个整体,则B和C受到细绳向右上方的拉力作用,故C有向右滑动的趋势,一定受到地面向左的摩擦力,B项错误,C项正确;将细绳剪断,若B物体依然静止在斜面上,利用整体法判断,B、C 系统在水平方向不受其他外力作用处于平衡状态,则水平面对C的摩擦力为零,D项正确.(1)静摩擦力大小与压力大小无关,根据物体的状态进行判断.(2)无弹力,就无摩擦力;有弹力,未必有摩擦力;有摩擦力、必有弹力.知识要点二:摩擦力的大小和方向1.判断摩擦力方向应注意以下四点:(1)在判断摩擦力方向时,弄清物体相对运动或相对运动趋势的方向是关键.(2)相对运动(趋势)是指受力物体相对于所接触的物体的运动(趋势),不一定是相对于地面的运动.(3)摩擦力的方向与相对运动(趋势)方向相反,不是与运动方向相反.(4)具体判断时,可灵活运用假设法、二力平衡法或反推法进行.2.摩擦力大小的计算方法(1)计算摩擦力时,应先判断是静摩擦力还是滑动摩擦力.(2)滑动摩擦力用公式F f=μF N求解,静摩擦力的大小只能根据物体的运动状态和物体的受力情况来求解.如果物体处于静止状态,或做匀速直线运动时,可利用二力平衡条件求解静摩擦力.(3)计算静摩擦力时,还要注意理解静摩擦力与最大静摩擦力的区别.(4)正压力相同时,最大静摩擦力比滑动摩擦力略大,如不加说明,可以认为最大静摩擦力近似等于滑动摩擦力,因此最大静摩擦力也可由公式F max=μF N求得.如图所示,一个M=2 kg的物体放在μ=0.2的粗糙水平面上,用一条质量不计的细绳绕过定滑轮和一个m0=0.1 kg的小桶相连.已知M的最大静摩擦力F m=4.5 N,滑轮上的摩擦不计,g=10 N/kg,求在以下情况中,M受到的摩擦力的大小.(1)只挂m0,处于静止状态时;(2)只挂m0,但在M上再放一个M′=3 kg的物体时;(3)只在桶内加入m1=0.33 kg的沙子时;(4)只在桶内加入m2=0.5 kg的沙子时.【答案】(1)1 N(2)1 N(3)4.3 N(4)4 N【解析】(1)因为m0g=1 N<F m,M处于静止状态,所以受静摩擦力作用,由二力平衡得F f1=m0g=1 N.(2)在M上再放一个M′=3 kg的物体,M仍静止,故受静摩擦力F f2=F f1=m0g=1 N.(3)因为(m0+m1)g=4.3 N<F m,故M处于静止状态,所受静摩擦力F f3=(m0+m1)g=4.3 N.(4)因为(m0+m2)g=6 N>F m,故物体M运动,受到滑动摩擦力作用,由公式知F f4=μF N=μMg=4 N.(1)注意区分滑动摩擦力与静摩擦力,并要注意摩擦力的方向.(2)注意滑动摩擦力的计算公式F f=μF N,特别需要注意对产生滑动摩擦力的两个物体之间的正压力F N的分析,不要草率地认为正压力F N的大小就是某个物体的重力大小.知识要点三:物体受力分析问题受力分析就是把指定物体(研究对象)在特定的物理情境中所受到的所有外力找出来,并画出受力图.物体运动状态的变化,是由它受力的情况决定的.对物体进行正确的受力分析,是研究物体运动状态变化的基础,也是学好力学的先决条件.1.受力分析的步骤2.受力分析的方法——整体法和隔离法(1)整体法:以系统整体为研究对象进行受力分析的方法一般用来研究不涉及系统内部某物体的力和运动.(2)隔离法:将所确定的研究对象从周围物体中隔离出来进行分析的方法,一般用来研究系统内物体之间的作用及运动情况.3.受力分析时要注意的问题(1)只分析研究对象所受的力,不分析研究对象对其他物体施加的力.不要把作用在其他物体上的力错误地通过“力的传递”作用在研究对象上.(2)如果一个力的方向难以确定,可以用假设法分析.(3)合力和分力不能重复地列为物体所受的力.因为合力与分力是等效替代关系.(4)受力分析一定要结合物体的运动状态,特别是物体处于临界状态的受力分析.如图所示,固定斜面上有一光滑小球,分别与一竖直轻弹簧P和一平行斜面的轻弹簧Q连接着,小球处于静止状态,则关于小球所受力的个数不可能的是()A .1B .2C .3D .4【答案】A【解析】设斜面倾角为θ,小球质量为m ,假设轻弹簧P 对小球的拉力大小恰好等于mg ,则小球受二力平衡;假设轻弹簧Q 对小球的拉力等于mg sin θ,小球受到重力、弹簧Q 的拉力和斜面的支持力作用,三力平衡;如果两个弹簧对小球都施加了拉力,那么除了重力,小球只有再受到斜面的支持力才能保证小球受力平衡,即四力平衡;小球只受单个力的作用,合力不可能为零,小球不可能处于静止状态.在未知某力是否存在时,可先对其作出存在或不存在的假设,然后再就该力存在与不存在对物体运动状态是否产生影响来判断该力是否存在. 知识要点四:动态平衡问题的分析 1.对平衡状态的理解(1)两种平衡状态:共点力作用下的平衡状态包括静止状态和匀速直线运动状态. (2)“静止”和“v =0”的区别与联系v =0⎩⎪⎨⎪⎧a =0时,是静止,是平衡状态a ≠0时,不是平衡状态总之,平衡状态是指a =0的状态. 2.动态平衡及其分析方法动态平衡是指物体的状态发生缓慢变化,可以认为任一时刻都处于平衡状态.分析此类问题时,常用方法有:(1)图解法:对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下力的矢量图(画在同一个图中),然后根据有向线段(表示力)长度的变化判断各个力的变化情况.(2)解析法:对研究对象的任一状态进行受力分析,建立平衡方程,求出因变参量与自变参量的一般函数,然后根据自变参量的变化确定因变参量的变化.如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的弹力大小为F N1,木板对球的弹力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中()A.F N1始终减小,F N2始终增大B.F N1始终减小,F N2始终减小C.F N1先增大后减小,F N2始终减小D.F N1先增大后减小,F N2先减小后增大【答案】B【解析】解法一:解析法如图甲所示,由平衡条件得F N1=mgtan θ,F N2=mgsin θ,随θ逐渐增大到90°,tan θ、sin θ都增大,F N1、F N2都逐渐减小,所以选项B正确.甲解法二:图解法对球受力分析,球受3个力,分别为重力G、墙对球的弹力F N1和板对球的弹力F N2.当板逐渐放至水平的过程中,球始终处于平衡状态,即F N1与F N2的合力F始终竖直向上,大小等于球的重力G,如图乙所示,由图可知F N1的方向不变,大小逐渐减小,F N2的方向发生变化,大小也逐渐减小,故选项B正确.](2019-2020学年·湖南衡阳高一月考)如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M、N上的a、b两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态.如果只人为改变一个条件,当衣架静止时,下列说法正确的是()A.绳的右端上移到b′,绳子拉力不变B.将杆N向右移一些,绳子拉力变大C.绳的两端高度差越小,绳子拉力越小D.若换挂质量更大的衣服,则衣架悬挂点右移【答案】AB【解析】如图所示两个绳子是对称的,与竖直方向夹角是相等的.假设绳子的长度为x,两竖直杆间的距离为L,则x cos θ=L,绳子一端在上下移动的时候,绳子的长度不变,两杆之间的距离不变,则θ角度不变;两个绳子的合力向上,大小等于衣服的重力,由于夹角不变,所以绳子的拉力不变,A正确,C错误;当杆向右移动后,根据x cos θ=L,即L变大,绳长不变,所以θ角度减小,绳子与竖直方向的夹角变大,绳子的拉力变大,B正确;绳长和两杆距离不变的情况下,θ不变,所以挂的衣服质量变化,不会影响悬挂点的移动,D错误.如图所示,小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是()A.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大【答案】D【解析】如图所示,先对小球进行受力分析,重力mg、支持力F N、拉力F T组成一个闭合的矢量三角形,由于重力不变、支持力F N方向不变,斜面向左移动的过程中,拉力F T与水平方向的夹角β减小,当F T⊥F N 时,细绳的拉力F T最小,由图可知,随β的减小,斜面的支持力F N不断增大,F T先减小后增大,故选项D正确,A、B、C错误.光滑半球面上的小球被一通过定滑轮的力F由底端缓慢拉到顶端的过程中,试分析绳的拉力F及半球面对小球的支持力F N的变化情况(如图所示).【答案】F减小F N不变【解析】如图所示,作出小球的受力示意图,注意弹力F N总与球面垂直,从图中可得到相似三角形.设球体半径为R,定滑轮到球面最高点的距离为h,定滑轮与小球间绳长为L,根据三角形相似得F L=mgh+R,F N R=mg h+R由以上两式得绳中的张力F=mg Lh+R球面的弹力F N=mg Rh+R由于在拉动过程中h、R不变,L变小,故F减小,F N不变.动态平衡问题的常见解题思路:适用于三力平衡问题(1)若已知一个力不变,另一个力F1方向不变大小变,则用三角形法(或图解法)处理问题,另一个力F2有最小值的条件为F1⊥F2.(2)若已知一个力不变,另一个力大小不变方向变,则用画图法处理问题.(3)若已知一个力不变,另一个力大小、方向都变,则采用相似三角形法处理问题.解决问题时,要寻找一个力的三角形和一个边的三角形,根据对应边比例相等求解.知识要点五:实验:探究弹力和弹簧伸长量的关系一、实验原理和方法1.弹簧弹力F的确定:弹簧下端悬挂钩码,静止的钩码处于平衡状态,弹力大小与所挂钩码的重力大小相等.2.弹簧的伸长量x的确定:弹簧的原长l0与挂上钩码后弹簧的长度l可以用刻度尺测出,弹簧的伸长量x =l-l0.3.图象法处理实验数据:作出弹簧弹力F与弹簧伸长量x的关系图象,根据图象可以分析弹簧弹力和弹簧伸长量的关系.二、实验器材铁架台、毫米刻度尺(米尺)、轻弹簧、钩码(一盒)、三角板、铅笔、坐标纸等.三、实验步骤1.按如图所示安装实验装置,记下弹簧下端不挂钩码时弹簧的长度l0.2.在弹簧下端悬挂一个钩码,平衡时记下弹簧的总长度,并记下钩码的重力.3.增加钩码的个数,重复上述实验过程,将数据填入表格.以F 表示弹力,l 表示弹簧的总长度,x =l -l 0表示弹簧的伸长量.四、数据处理1.以弹力F (大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量x 为横坐标,用描点法作图.连接各点,得出弹力F 随弹簧伸长量x 变化的图线,如图所示.2.以弹簧伸长量为自变量,写出弹力和弹簧伸长量之间的函数关系,函数表达式中常数即为弹簧的劲度系数,这个常数也可据F ­x 图线的斜率求解,k =ΔFΔx.3.得出弹力和弹簧伸长量之间的定量关系,解释函数表达式中常数的物理意义. 五、误差分析1.偶然误差:由于读数和作图不准产生的误差,为了减小偶然误差要尽量多测几组数据.2.系统误差:弹簧竖直悬挂时未考虑弹簧重力的影响产生的误差,为减小系统误差,应使用较轻的弹簧. 六、注意事项1.所挂钩码不要过重,以免弹簧被过分拉伸,超出它的弹性限度.2.测量弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,刻度尺要保持竖直并靠近弹簧,以免增大误差.3.描点画线时,所描的点不一定都落在一条曲线上,但应注意一定要使各点均匀分布在曲线的两侧.4.记录数据时要注意弹力及弹簧伸长量的对应关系及单位.某同学探究弹力与弹簧伸长量的关系.(1)将弹簧悬挂在铁架台上,将刻度尺固定在弹簧一侧.弹簧轴线和刻度尺都应在____________方向(选填“水平”或“竖直”).(2)弹簧自然悬挂,待弹簧______时,长度记为L0;弹簧下端挂上砝码盘时,长度记为L x;在砝码盘中每次增加10 g砝码,弹簧长度依次记为L1至L6,数据如表所示:(3)如图是该同学根据表中数据作的图,纵轴是砝码的质量,横轴是弹簧长度与________的差值(选填“L0”或“L x”).(4)由图可知弹簧的劲度系数为________N/m;通过图和表可知砝码盘的质量为________ g(结果保留两位有效数字,重力加速度取9.8 N/kg).【答案】(1)竖直(2)静止L3 1 mm(3)L x (4)4.910【解析】(1)为保证弹簧的形变只由砝码和砝码盘的重力引起,所以弹簧轴线和刻度尺均应在竖直方向. (2)弹簧静止时,记录原长L 0;表中的数据L 3与其他数据有效数字位数不同,所以数据L 3不规范,标准数据应读至cm 位的后两位,最后一位应为估计值,精确至mm 位,所以刻度尺的最小分度为1 mm. (3)由题图知所挂砝码质量为0时,x 为0,所以x =L 1-L x . (4)由胡克定律F =k Δx 知,mg =k (L -L x ),即mg =kx , 所以图线斜率即为劲度系数k =Δmg Δx =(60-10)×10-3×9.8(12-2)×10-2 N/m =4.9 N/m , 同理砝码盘质量m =k (L x -L 0)g =4.9×(27.35-25.35)×10-29.8kg =0.01 kg =10 g.在“探究弹簧的弹力与伸长量之间关系”实验中,所用装置如图甲所示,将轻弹簧的一端固定,另一端与力传感器连接,其伸长量通过刻度尺测得,某同学的实验数据列于表中:(1)以x 为横坐标、F 为纵坐标,在图乙的坐标纸上描绘出能正确反映这一弹簧的弹力与伸长量之间的关系图线.(2)由图线求得这一弹簧的劲度系数为________.(结果保留三位有效数字) 【答案】:(1)见解析图 (2)75.0 N/m 【解析】:(1)描点作图,如图.(2)根据图象,该直线为过原点的一条倾斜直线,即弹力与伸长量成正比,图象的斜率表示弹簧的劲度系数,k =ΔFΔx=75.0 N/m.(1)F ­x 图象应是过原点的直线,直线的斜率等于弹簧的劲度系数.(2)F ­l 图象是不过原点的直线,其与横轴的截距等于弹簧的原长,斜率仍然等于弹簧的劲度系数. 知识要点六:实验:验证力的平行四边形定则 一、实验原理和方法1.合力F ′的确定:一个力F ′的作用效果与两个共点力F 1与F 2共同作用的效果都是把橡皮条拉伸到某点,则F ′为F 1和F 2的合力.2.合力理论值F 的确定:根据平行四边形定则作出F 1和F 2的合力F 的图示.3.平行四边形定则的验证:在实验误差允许的范围内,比较F ′和F 是否大小相等、方向相同. 二、实验器材方木板、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(若干)、铅笔. 三、实验步骤1.仪器的安装:用图钉把白纸钉在水平桌面上的方木板上.用图钉把橡皮条的一端固定在A 点,橡皮条的另一端拴上两个细绳套,如图所示.2.操作与记录(1)两力拉:用两个弹簧测力计分别钩住两个细绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O(如图所示).用铅笔描下结点O的位置和两条细绳套的方向,并记录弹簧测力计的读数.(2)一力拉:只用一个弹簧测力计,通过细绳套把橡皮条的结点拉到与前面相同的位置O,记下弹簧测力计的读数和细绳套的方向.(3)改变两弹簧测力计拉力的大小和方向,再重做两次实验.四、数据处理1.用铅笔和刻度尺从结点O沿两条细绳方向画直线,按选定的标度作出这两只弹簧测力计的拉力F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F 的图示.2.用刻度尺从O点按同样的标度沿记录的方向作出实验步骤(2)中弹簧测力计的拉力F′的图示.3.比较F与F′是否完全重合或几乎完全重合,从而验证平行四边形定则.五、误差分析(1)读数误差:弹簧测力计数据在允许的情况下,尽量大一些,读数时眼睛一定要正视,要按有效数字正确读数和记录.(2)作图误差.⊥结点O的位置和两个弹簧测力计的方向画得不准确,造成作图误差.⊥两分力的起始夹角α太大,如大于120°,再重复做两次实验,为保证个结点O位置不变(即保证合力不变),则α变化范围不大,因而弹簧测力计示数变化不显著,读数误差较大,导致作图产生较大误差.⊥作图比例不恰当、不准确等造成作图误差.六、注意事项1.正确使用弹簧测力计(1)测量前应首先检查弹簧测力计的零点是否准确,注意使用中不要超过其弹性限度.(2)实验时,弹簧测力计必须保持与木板平行,且拉力应沿轴线方向.弹簧测力计的指针、拉杆都不要与刻度板和刻度板末端的限位孔发生摩擦.(3)读数时应正对、平视刻度,估读到最小刻度的下一位.2.规范实验操作(1)位置不变:在同一次实验中,将橡皮条拉长时结点的位置一定要相同.(2)角度合适:两个弹簧测力计所拉细绳套的夹角不宜太小,也不宜太大,以60°~100°为宜.(3)在不超出弹簧测力计量程及在橡皮条弹性限度内的前提下,测量数据应尽量大一些.(4)细绳套应适当长一些,便于确定力的方向.不要直接沿细绳套方向画直线,应在细绳套两端画个投影点,去掉细绳套后,连直线确定力的方向.3.规范合理作图:在同一次实验中,画力的图示选定的标度要相同,并且要恰当选定标度,使力的图示稍大一些.(2019-2020学年·城北校级一模)“探究求合力的方法”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳,图乙是在白纸上根据实验结果画出的图示.(1)某次实验中,拉OC细绳的弹簧秤指针位置如甲图所示,其读数为________ N;乙图中的F与F′两力中,方向一定沿AO方向的是________.(2)关于此实验,下列说法正确的是________.A.与橡皮筋连接的细绳必须等长B.用两只弹簧秤拉橡皮筋时,应使两弹簧秤的拉力相等,以便算出合力的大小C.用两只弹簧秤拉橡皮筋时,结点位置必须与用一只弹簧秤拉时结点的位置重合D.拉橡皮条的细绳要长些,标记同一细绳方向的两点要短一些【答案】:(1)2.60F′(2)C【解析】:(1)由图可知,甲图所示弹簧秤的最小分度为0.1 N,则读数为2.60 N;F是通过作图的方法得到合力的理论值,而F′是通过一个弹簧秤沿AO方向拉橡皮条,使橡皮条伸长到O点,使得一个弹簧秤的拉力与两个弹簧秤的拉力效果相同,测量出的合力.故方向一定沿AO方向的是F′,由于误差的存在,F和F′方向并不重合.(2)与橡皮筋连接的细绳是为了确定细绳拉力的方向,两绳的长度不一定相等,故A错误;用两只弹簧秤拉橡皮筋时,只要使两弹簧秤拉力的合力与一只弹簧秤拉力的效果相同就行,两弹簧秤的拉力不需要相等,故B错误;为了保证效果相同,两次拉橡皮筋时,需将橡皮筋结点拉至同一位置,故C正确;标记同一细绳方向的两点要长一些,这样引起的拉力方向的误差会小些,故D错误..“验证力的平行四边形定则”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳,图乙是在白纸上根据实验结果画出的图示.(1)图乙中的F与F′两力中,方向一定沿AO方向的是力________.(2)本实验采用的主要科学方法是________.A.理想实验法B.等效替代法C.控制变量法D.建立物理模型法(3)实验中可减小误差的措施是________.A.两个分力F1、F2的大小要越大越好B.两个分力F1、F2间的夹角应越大越好C.拉橡皮筋时,弹簧测力计、橡皮筋、细绳应贴近木板且与木板平面平行D.A、O间距离要适当,将橡皮筋拉至结点O时,拉力要适当大些【答案】:(1)F(2)B(3)CD【解析】:(1)用一个弹簧测力计拉橡皮筋时,拉力的方向沿AO方向即F,而F′是F1、F2合力的理论值,与实际值间存在误差,所以不一定沿AO方向.(2)本实验利用了一个力作用的效果与两个力共同作用的效果相同即等效替代的科学方法.(3)在本实验中两个分力F1、F2的大小及两个分力F1、F2间夹角适当大些就好,不是越大越好,所以A、B 错误;作图时,是在白纸中作图,作出的是水平力的图示,若拉力倾斜,则作出的图中的力的方向与实际力的方向有较大差别,故应使各力尽量与木板面平行,所以C正确;力大些,测量误差减小,所以D正确.(1)为使合力的作用效果与两个分力共同作用效果相同,每次实验必须保证结点位置保持不变.(2)利用平行四边形定则求得的合力与实际的合力往往不相同,但实际的合力一定沿橡皮筋伸长的方向.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点通传奇学校第三章知识点总结考点一重力、弹力的分析与计算1.重力的理解(1)产生:由于而使物体受到的力.注意:重力不是万有引力,而是万有引力竖直向下的一个分力.(2)大小:G=mg,可用测量.注意:①物体的质量不会变;②G的变化是由在地球上不同位置处g的变化引起的.(3)方向:总是的.注意:竖直向下是和水平面垂直,不一定和接触面垂直,也不一定指向地心.(4)重心:物体的每一部分都受重力作用,可认为重力集中作用于一点即物体的重心.①影响重心位置的因素:物体的;物体的分布.②不规则薄板形物体重心的确定方法:法.注意:重心的位置不一定在物体上.2.弹力有无的判断(1)条件法:根据物体是否直接并发生来判断是否存在弹力.此方法多用来判断形变较明显的情况.(2)假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否保持原有的状态,若运动状态不变,则此处,若运动状态改变,则此处.(3)状态法:根据物体的运动状态,利用牛顿第二定律或共点力判断弹力是否存在.3.弹力方向的判断(1)根据物体所受弹力方向与施力物体形变的方向判断.(2)根据共点力的平衡条件或牛顿第二定律确定弹力的方向.4.弹力大小计算的三种方法(1)根据力的平衡条件进行求解.(2)根据牛顿第二定律进行求解.(3)根据胡克定律进行求解.①内容:弹簧发生时,弹力的大小F跟弹簧伸长(或缩短)的长度x成.②表达式:F=kx.k是弹簧的,单位为N/m;k的大小由弹簧决定.x是弹簧长度的,不是弹簧形变以后的长度.2.如图1所示,一重为10 N的球固定在支撑杆AB的上端,今用一段绳子水平拉球,使杆发生弯曲,已知绳的拉力为7.5 N,则AB杆对球的作用力方向及大小为多少?图1答案AB杆对球作用力与水平方向夹角为53°,大小为12.5 N1.[弹力有无的判断]如图所示,A、B均处于静止状态,则A、B之间一定有弹力的是()2.[弹力方向的判断](多选)如图2所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球.下列关于杆对球的作用力F的判断中,正确的是()图2A.小车静止时,F=mg sin θ,方向沿杆向上B.小车静止时,F=mg cos θ,方向垂直于杆向上C.小车向右匀速运动时,一定有F=mg,方向竖直向上D.小车向右匀加速运动时,一定有F>mg,方向可能沿杆向上3.[含弹簧类弹力的分析与计算]三个质量均为1 kg的相同木块a、b、c和两个劲度系数均为500 N/m的相同轻弹簧p、q用轻绳连接,如图3所示,其中a放在光滑水平桌面上.开始时p弹簧处于原长,木块都处于静止状态.现用水平力F缓慢地向左拉p弹簧的左端,直到c 木块刚好离开水平地面为止,g取10 m/s2.该过程p弹簧的左端向左移动的距离是()图3A.4 cm B.6 cm C.8 cm D.10 cm弹力方向的判定技巧和易错提醒1.几种常见的弹力方向考点二轻绳模型与轻杆模型1.轻绳模型(1)活结模型:跨过滑轮、光滑杆、光滑钉子的细绳为同一根细绳,其两端张力大小.(2)死结模型:如几个绳端有“结点”,即几段绳子系在一起,谓之“死结”,那么这几段绳子的张力.2.轻杆模型(1)“死杆”:即轻质固定杆,它的弹力方向,作用力的方向需要结合平衡方程或牛顿第二定律求得.(2)“活杆”:即一端有铰链相连的杆属于活动杆,轻质活动杆中的弹力方向.4.[轻绳活结与轻杆死杆模型]如图4所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg的物体,∠ACB=30°,g 取10 m/s2,求:图4(1)轻绳AC段的张力F AC的大小;(2)横梁BC对C端的支持力的大小及方向.5.[轻绳死结与轻杆活杆模型]若上题中横梁BC换为水平轻杆,且B端用铰链固定在竖直墙上,如图5所示,轻绳AD拴接在C端,求:(计算结果保留三位有效数字)图5(1)轻绳AC段的张力F AC的大小;(2)轻杆BC对C端的支持力.“轻绳”和“轻杆”模型1.两类模型(1)绳与杆的一端连接为结点,轻绳属于“死结”.(2)绳跨过光滑滑轮或挂钩,动滑轮挂在绳子上,绳子就属于“活结”,如图6,此时BC绳的拉力等于所挂重物的重力,轻绳属于“活结”模型.图62.铰链连接三角形支架常见类型和受力特点图7(1)图7甲、乙中AB 杆可用轻绳来代替; (2)研究对象为结点B ,三力平衡;(3)两杆的弹力均沿杆的方向,可用轻绳代替的AB 杆为拉力,不可用轻绳代替的BC 杆为支持力.考点三 摩擦力的分析与计算1.2.静摩擦力有无及其方向的判定方法(1)假设法:假设法有两种,一种是假设接触面光滑,不存在摩擦力,看所研究物体是否改变原来的运动状态.另一种是假设摩擦力存在,看所研究物体是否改变原来的运动状态.(2)状态法:静摩擦力的大小与方向具有可变性.明确物体的运动状态,分析物体的受力情况,根据平衡方程或牛顿第二定律求解静摩擦力的大小和方向.(3)牛顿第三定律法:此法的关键是抓住“力是成对出现的”,先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力的方向.[思维深化]1.摩擦力一定与接触面上的压力成正比吗?摩擦力的方向一定与正压力的方向垂直吗?答案 (1)滑动摩擦力与接触面上的压力成正比,而静摩擦力的大小与正压力无关,通常由受力平衡或牛顿第二定律求解. (2)由于正压力方向与接触面垂直,而摩擦力沿接触面的切线方向,因此二者一定垂直.6.[关于摩擦力的理解](多选)关于摩擦力,以下说法中正确的是( )A .运动物体可能受到静摩擦力作用,但静止物体不可能受到滑动摩擦力作用B .静止物体可能受到滑动摩擦力作用,但运动物体不可能受到静摩擦力作用C .正压力越大,摩擦力可能越大,也可能不变D .摩擦力方向可能与速度方向在同一直线上,也可能与速度方向不在同一直线上7.[静摩擦力的分析](多选)如图8所示,用一水平力F 把A 、B 两个物体挤压在竖直的墙上,A 、B 两物体均处于静止状态,下列判断正确的是( )图8A .B 物体对A 物体的静摩擦力方向向下 B .F 增大时,A 和墙之间的摩擦力也增大C .若B 的重力大于A 的重力,则B 受到的摩擦力大于墙对A 的摩擦力D .不论A 、B 的重力哪个大,B 受到的摩擦力一定小于墙对A 的摩擦力8.[摩擦力的分析与计算]如图9所示,固定在水平地面上的物体P ,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m =4 kg 的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N ,作用在物块2的水平力F =20 N ,整个系统处于平衡状态,取g =10 m/s 2,则以下说法正确的是( )图9A.1和2之间的摩擦力是20 NB.2和3之间的摩擦力是20 NC.3与桌面间的摩擦力为20 ND.物块3受6个力作用考点四摩擦力的突变问题摩擦力“突变”的三种模型1.“静静”突变:物体在摩擦力和其他力的作用下处于静止状态,当作用在物体上的其他力的合力发生变化时,如果物体仍然保持静止状态,则物体受到的静摩擦力的和将发生突变.2.“动静”突变:在摩擦力和其他力作用下,做减速运动的物体突然停止滑行时,物体将不受摩擦力作用,或滑动摩擦力“突变”成.3.“静动”突变:物体在摩擦力和其他力作用下处于静止状态,当其他力变化时,如果物体不能保持静止状态,则物体受到的静摩擦力将“突变”成.9.[“静静”突变]一木块放在水平桌面上,在水平方向共受到三个力即F1、F2和摩擦力的作用,木块处于静止状态,如图10所示,其中F1=10 N,F2=2 N,若撤去F1,则木块受到的摩擦力为()图10A.10 N,方向向左B.6 N,方向向右C.2 N,方向向右D.010.[“动静”突变]如图11所示,质量为1 kg的物体与地面间的动摩擦因数μ=0.2,从t=0开始以初速度v0沿水平地面向右滑行,同时受到一个水平向左的恒力F=1 N的作用,取g=10 m/s2,向右为正方向,该物体受到的摩擦力F f随时间t变化的图象是(最大静摩擦力等于滑动摩擦力)()11.[“静动”突变]表面粗糙的长直木板的上表面的一端放有一个木块,如图12所示,木板由水平位置缓慢向上转动(即木板与地面的夹角α变大,最大静摩擦力大于滑动摩擦力),另一端不动,则木块受到的摩擦力F f随角度α变化的图象是下列图中的()图1212.[“静动”突变](多选)在探究静摩擦力变化的规律及滑动摩擦力变化的规律的实验中,设计了如图13甲所示的演示装置,力传感器A与计算机连接,可获得力随时间变化的规律,将力传感器固定在光滑水平桌面上,测力端通过细绳与一滑块相连(调节传感器高度使细绳水平),滑块放在较长的小车上,小车一端连接一根轻绳并跨过光滑的轻定滑轮系一只空沙桶(调节滑轮使桌面上部细绳水平),整个装置处于静止状态.实验开始时打开传感器同时缓慢向沙桶里倒入沙子,小车一旦运动起来,立即停止倒沙子,若力传感器采集的图象如图乙所示,则结合该图象,下列说法正确的是()图13A.可求出空沙桶的重力B.可求出滑块与小车之间的滑动摩擦力的大小C.可求出滑块与小车之间的最大静摩擦力的大小D.可判断第50秒后小车做匀速直线运动(滑块仍在车上)1.(2014·广东·14)如图14所示,水平地面上堆放着原木,关于原木P在支撑点M、N处受力的方向,下列说法正确的是()图14A.M处受到的支持力竖直向上B.N处受到的支持力竖直向上C.M处受到的静摩擦力沿MN方向D.N处受到的静摩擦力沿水平方向2.如图15所示,物体A、B用细绳与弹簧连接后跨过滑轮.A静止在倾角为45°的粗糙斜面上,B悬挂着.已知质量m A=3m B,不计滑轮摩擦,现将斜面倾角由45°减小到30°,那么下列说法中正确的是()图15A.弹簧的弹力将减小B.物体A对斜面的压力将减小C.物体A受到的静摩擦力将减小D.弹簧的弹力及物体A受到的静摩擦力都不变3.如图16所示,小车内有一固定光滑斜面,一个小球通过细绳与车顶相连,细绳始终保持竖直,关于小球的受力情况,下列说法中正确的是()图16A.若小车静止,绳对小球的拉力可能为零B.若小车静止,斜面对小球的支持力一定为零C.若小车向右运动,小球一定受两个力的作用D.若小车向右运动,小球一定受三个力的作用4.如图17所示,斜面固定在地面上,倾角为θ=37°(sin 37°=0.6,cos 37°=0.8).质量为1 kg的滑块以初速度v0从斜面底端沿斜面向上滑行(斜面足够长,该滑块与斜面间的动摩擦因数为0.8),则该滑块所受摩擦力F f随时间变化的图象是下图中的(取初速度v0的方向为正方向,g=10 m/s2)()5.(多选)如图18所示,将两相同的木块a、b置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁.开始时a、b均静止,弹簧处于伸长状态,两细绳均有拉力,a所受摩擦力F f a≠0,b所受摩擦力F f b=0.现将右侧细绳剪断,则剪断瞬间()图18A.F f a大小不变B.F f a方向改变C.F f b仍然为零D.F f b方向向右6.如图19所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2>v1,则()图19A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离达到最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用练出高分基础巩固1.下列关于重心、弹力和摩擦力的说法,正确的是()A.物体的重心一定在物体的几何中心上B.劲度系数越大的弹簧,产生的弹力越大C.动摩擦因数与物体之间的压力成反比,与滑动摩擦力成正比D.静摩擦力的大小是在零和最大静摩擦力之间发生变化2.如图1所示,壁虎在竖直玻璃面上斜向上匀速爬行,关于它在此平面内的受力分析,下列图示中正确的是()3.如图2所示,杆BC的B端用铰链固定在竖直墙上,另一端C为一滑轮.重物G上系一绳经过滑轮固定于墙上A点处,杆恰好平衡.若将绳的A端沿墙缓慢向下移(BC杆、滑轮、绳的质量及摩擦均不计),则()图2A.绳的拉力增大,BC杆受绳的压力增大B.绳的拉力不变,BC杆受绳的压力增大C.绳的拉力不变,BC杆受绳的压力减小D.绳的拉力不变,BC杆受绳的压力不变4.如图3所示,一斜面体静止在粗糙的水平地面上,一物体恰能在斜面体上沿斜面匀速下滑,可以证明此时斜面体不受地面的摩擦力作用.若沿平行于斜面的方向用力F向下推此物体,使物体加速下滑,斜面体依然和地面保持相对静止,则斜面体受地面的摩擦力()图3A.大小为零B.方向水平向右C.方向水平向左D.大小和方向无法判断5.如图4所示,两个等大的水平力F分别作用在B和C上,A、B、C都处于静止状态,各接触面与水平地面平行.A、C间的摩擦力大小为F f1,B、C间的摩擦力大小为F f2,C与地面间的摩擦力大小为F f3,则()图4A.F f1=0,F f2=0,F f3=0 B.F f1=0,F f2=F,F f3=0C.F f1=F,F f2=0,F f3=0 D.F f1=0,F f2=F,F f3=F6.如图5所示,沿直线运动的小车内悬挂的小球A和车水平底板上放置的物块B都相对车厢静止.关于物块B受到的摩擦力,下列判断中正确的是()图5A.物块B不受摩擦力作用B.物块B受摩擦力作用,大小恒定,方向向左C.物块B受摩擦力作用,大小恒定,方向向右D.因小车的运动方向不能确定,故物块B受的摩擦力情况无法判断7.(多选)下列关于摩擦力的说法中,正确的是()A.作用在物体上的滑动摩擦力只能使物体减速,不可能使物体加速B.作用在物体上的静摩擦力只能使物体加速,不可能使物体减速C.作用在物体上的滑动摩擦力既可能使物体减速,也可能使物体加速D .作用在物体上的静摩擦力既可能使物体加速,也可能使物体减速8.(多选)如图6所示,A 、B 、C 三个物体质量相等,它们与传送带间的动摩擦因数相同.三个物体随传送带一起匀速运动,运动方向如图中箭头所示.则下列说法正确的是( )图6A .A 物体受到的摩擦力不为零,方向向右B .三个物体只有A 物体受到的摩擦力为零C .B 、C 受到的摩擦力大小相等,方向相同D .B 、C 受到的摩擦力大小相等,方向相反综合应用9.如图7所示,用平行于斜面体A 的斜面的轻弹簧将物块P 拴接在挡板B 上,在物块P 上施加沿斜面向上的推力F ,整个系统处于静止状态.下列说法正确的是( )图7A .物块P 与斜面之间一定存在摩擦力B .弹簧的弹力一定沿斜面向下C .地面对斜面体A 的摩擦力水平向左D .若增大推力,则弹簧弹力一定减小10.(多选)如图8所示,将一劲度系数为k 的轻弹簧一端固定在内壁光滑、半径为R 的半球形容器底部O ′处(O 为球心),弹簧另一端与质量为m 的小球相连,小球静止于P 点.已知容器与水平面间的动摩擦因数为μ,OP 与水平方向间的夹角为θ=30°.下列说法正确的是( )图8A .水平面对容器有向右的摩擦力B .弹簧对小球的作用力大小为12mgC .容器对小球的作用力大小为mgD .弹簧原长为R +mgk11.用弹簧测力计测定木块A 和木块B 间的动摩擦因数μ,有如图9所示的两种装置.(1)为了能够用弹簧测力计读数表示滑动摩擦力,图示装置的两种情况中,木块A 是否都要做匀速运动? (2)若木块A 做匀速运动,甲图中A 、B 间的摩擦力大小是否等于拉力F a 的大小?(3)若A 、B 的重力分别为100 N 和150 N ,甲图中当物体A 被拉动时,弹簧测力计的读数为60 N ,拉力F a =110 N ,求A 、B 间的动摩擦因数μ.图912.如图10所示,斜面倾角为θ=30°,一个重20 N 的物体在斜面上静止不动.弹簧的劲度系数为k =100 N/m ,原长为10 cm ,现在的长度为6 cm.图10(1)试求物体所受的摩擦力大小和方向.(2)若将这个物体沿斜面上移6 cm ,弹簧仍与物体相连,下端仍固定,物体在斜面上仍静止不动,那么物体受到的摩擦力的大小和方向又如何呢?。

相关文档
最新文档