化工仪表第3章5温度检测.ppt
合集下载
化工常用仪表类型及原理 ppt课件
36
第二章 压力检测及仪表
三、电气式压力计
定义
电气式压力计是一种能将压力转换成电信号进行 传输及显示的仪表。
优点
1. 该仪表的测量范围较广,分别可测7×10-5Pa至 5×102MPa的压力,允许误差可至0.2%;
2. 由于可以远距离传送信号,所以在工业生产过 程中可以实现压力自动控制和报警,并可与工业 控制机联用。
相对百分误差δ 测量范围 m测 a上 x 量 限范 值围 1下 0% 0限值
允许误差
允测仪 量表 范允 围许 上 测 的 限量 最 值范 差 大围 值 绝下 对 10限 误 % 0值
8
第一章 概述
小结
仪表的δ允越大,表示它的精确度越低;反之,仪表的 δ允越小,表示仪表的精确度越高。将仪表的允许相对百分
利用这一电势即可实现远 图3-10 霍尔片式压力传感器 距离显示和自动控制。
1—弹簧管;2 —磁钢;3 —霍尔片
41
第二章 压力检测及仪表
2.应变片压力传感器
应变片式压力传感器利用电阻应变原理构成。电阻应变片 有金属和半导体应变片两类,被测压力使应变片产生应变。当 应变片产生压缩(拉伸)应变时,其阻值减小(增加),再通 过桥式电路获得相应的毫伏级电势输出,并用毫伏计或其他记 录仪表显示出被测压力,从而组成应变片式压力计。
仪表的精度等级是衡量仪表质量优劣的重要指标之一。
精度等级数值越小,就表征该仪表的精确度等级越高,也 说明该仪表的精确度越高。0.05级以上的仪表,常用来作为 标准表;工业现场用的测量仪表,其精度大多在0.5以下。
仪表的精度等级一般可用不同的符号形式标志在仪表面板 上。
举例
如: 1.5 1.0
12
第一节 概述
石油化工自动化及仪表概论5温度检测及仪表
(5-5)
热电偶A、B在接点温度为T、T0 时的电动势EAB(T,T0), 等于热电偶A、B在接点温度为 T 、TC 和 TC 、T0 时的电动势 EAB(T,TC ) 和 EAB (TC ,T0 )的代数和。
中间温度定则为工业测温中使用补偿导线提供了理论 基础。
3. 常用工业热电偶及其分度表 1) 热电极材料的基本要求
温度是表征物体冷热程度的物理量,是物体分子运 动平均动能大小的标志。
温度不能直接加以测量,只能借助于冷热不同的物 体之间的热交换,或物体的某些物理性质随着冷热程度 不同而变化的特性间接测量。
根据测温元件与被测物体接触与否,温度测量可以 分为接触式测温和非接触式测温两大类。
1. 接触式测温 接触式测温选择合适的物体作为温度敏感元件,其某一
、集测量和自动控制
度的影响
测温时,不破坏被测温度场
低温段测量不准,环境条件 会影响测温准确度
测温范围大,适于测温度分布, 易受外界干扰,标定困难 不破坏被测温度场,响应快
5.1.2 温标
为了保证温度量值的统一和准确而建立的衡量温度的 标尺,称为温标。温标即为温度的数值表示法,它定量 地描述温度的高低,规定了温度的读数起点(零点)和 基本单位。各种温度计的刻度数值均由温标确定。 1. 经验温标
尔文量值相同,它们之间的关系为:
t90 T90 273.15
(5-2)
实际应用中,一般直接用 和T 代t 替 T和90 。t90
5.2 常用温度检测仪表
石油化工生产过程中的温度检测一般都采用接触式测 温。常用的仪表有膨胀式温度计、热电偶温度计、热电 阻温度计等,又以后两者最为常用。
5.2.1 膨胀式温度计
基于物体受热体积膨胀的性质而制成的温度计 称为膨胀式温度计。
化工仪表及自动化ppt课件
两圆筒间的电容量C
C
2L
ln D
d
D外电极的内径,d为内电极的外径。当 D 和 d 一
定时,电容量 C 的大小与极板的长度 L 和介质的
介电常数ε 的Leabharlann 积成比例。将探头插入被测物料中,电极浸入物料中的深度随 物位高低变化,引起电容量变化,可检测出物位。
2.液位的检测
对非导电介质液位测量的电容式液位传感器原理如下图所示。
的仪表。
按其工作原理分为
直读式物位仪表 差压式物位仪表 浮力式物位仪表 电磁式物位仪表 核辐射式物位仪表 声波式物位仪表 光学式物位仪表
二、差压式液位变送器
1.工作原理:利用容器内的液位改变时,由液柱产生的 静压也相应变化的原理而工作的。
图3-39 差压液位变送器 原理图
图3-40 压力表式液位计
迁移弹簧的作用 改变变送器的零点。
迁移和调零 都是使变送器输出的起始值与被测量起始 点相对应,只不过零点调整量通常较小,而零点迁移 量则比较大。
迁移 同时改变了测量范围的上、下限,相当于测量 范围的平移,它不改变量程的大小
举例
图3-42 正负迁移示意图
某差压变送器的测量范 围为0~5000Pa,当压差由0 变化到5000Pa时,变送器的 输出将由4mA变化到20mA, 这是无迁移的情况,如左图 中曲线a所示。负迁移如曲 线b所示,正迁移如曲线c所 示。
由端产生位移,再由齿轮放大机 构把位移变为指示值,这种温度
1—传动机构;2—刻度盘; 3—指针;计具有温包体积小,反应速度快、 4—弹簧管;5—连杆;6—接头;7— 灵敏度高、读数直观等特点
毛细管;8—温包;9—工作物质
3.辐射式温度计
辐射式高温计是基于物体热辐射作用来测量温度的仪表。 广泛用于测量高于800摄氏度的温度。
C
2L
ln D
d
D外电极的内径,d为内电极的外径。当 D 和 d 一
定时,电容量 C 的大小与极板的长度 L 和介质的
介电常数ε 的Leabharlann 积成比例。将探头插入被测物料中,电极浸入物料中的深度随 物位高低变化,引起电容量变化,可检测出物位。
2.液位的检测
对非导电介质液位测量的电容式液位传感器原理如下图所示。
的仪表。
按其工作原理分为
直读式物位仪表 差压式物位仪表 浮力式物位仪表 电磁式物位仪表 核辐射式物位仪表 声波式物位仪表 光学式物位仪表
二、差压式液位变送器
1.工作原理:利用容器内的液位改变时,由液柱产生的 静压也相应变化的原理而工作的。
图3-39 差压液位变送器 原理图
图3-40 压力表式液位计
迁移弹簧的作用 改变变送器的零点。
迁移和调零 都是使变送器输出的起始值与被测量起始 点相对应,只不过零点调整量通常较小,而零点迁移 量则比较大。
迁移 同时改变了测量范围的上、下限,相当于测量 范围的平移,它不改变量程的大小
举例
图3-42 正负迁移示意图
某差压变送器的测量范 围为0~5000Pa,当压差由0 变化到5000Pa时,变送器的 输出将由4mA变化到20mA, 这是无迁移的情况,如左图 中曲线a所示。负迁移如曲 线b所示,正迁移如曲线c所 示。
由端产生位移,再由齿轮放大机 构把位移变为指示值,这种温度
1—传动机构;2—刻度盘; 3—指针;计具有温包体积小,反应速度快、 4—弹簧管;5—连杆;6—接头;7— 灵敏度高、读数直观等特点
毛细管;8—温包;9—工作物质
3.辐射式温度计
辐射式高温计是基于物体热辐射作用来测量温度的仪表。 广泛用于测量高于800摄氏度的温度。
化工仪表基础培训ppt课件
信号线路无需共地,使得检测和控制回路信号的稳 定性和抗干扰能力大 大增强,从而提高了整个系统的可 靠性。
23
隔离式安全栅使用特处理热电偶、热电 阻、频率等信号,这是齐纳式 安全栅所无法做到的。
特点五: 隔离式安全栅可输出两路相互隔离的信号,以提供
扫描
K 时间、时间程序 变化速率
Q
数量
计算、累计
R
核辐射
S
速度、频率 安全
V
振动
W
重量、力
X
X轴
Y
事件、状态 Y轴
Z
位置、尺寸 Z轴
后继字母 读出功能
输出功能
指示
操作器
记录、DCS趋势 记录
开关、联锁
阀门 套管
继电、计算、转 换器
驱动器、执行元 件
LOGO
8
仪表基础知识
添加二级标题
现场应用
示例
DCS
GP型(表压力):变送器的δ 室,一侧接受被测压力信 号,另一侧则与大气压力贯通,因 此可用于测量表压力或 负压。
AP型(绝对压力):变送器的δ 室,一侧接绝对压力信号 ,另一侧被封闭成高真空基准室,可以测量排气系统、蒸馏
塔、蒸发器和结晶器等的绝对压力。
38
2.1压力变送器工作原理
压力变送器是利用压力传感器将压力信号转换为频率信号, 送到脉冲计数器,直接传递到CPU(微处理器)进行数据处理 ,经D/A转换器转换为与输入信号相对应的4-20mADC 的输出 信号,并在模拟信号上叠加一个HART数字信号进行通信的压 力检测仪表。
35
1、压力开关
压力开关是一种借助弹性元件受压后产生位移以驱动 微动开关工作的压力控制仪表。通常使用于报警或联锁保 护系统中。
23
隔离式安全栅使用特处理热电偶、热电 阻、频率等信号,这是齐纳式 安全栅所无法做到的。
特点五: 隔离式安全栅可输出两路相互隔离的信号,以提供
扫描
K 时间、时间程序 变化速率
Q
数量
计算、累计
R
核辐射
S
速度、频率 安全
V
振动
W
重量、力
X
X轴
Y
事件、状态 Y轴
Z
位置、尺寸 Z轴
后继字母 读出功能
输出功能
指示
操作器
记录、DCS趋势 记录
开关、联锁
阀门 套管
继电、计算、转 换器
驱动器、执行元 件
LOGO
8
仪表基础知识
添加二级标题
现场应用
示例
DCS
GP型(表压力):变送器的δ 室,一侧接受被测压力信 号,另一侧则与大气压力贯通,因 此可用于测量表压力或 负压。
AP型(绝对压力):变送器的δ 室,一侧接绝对压力信号 ,另一侧被封闭成高真空基准室,可以测量排气系统、蒸馏
塔、蒸发器和结晶器等的绝对压力。
38
2.1压力变送器工作原理
压力变送器是利用压力传感器将压力信号转换为频率信号, 送到脉冲计数器,直接传递到CPU(微处理器)进行数据处理 ,经D/A转换器转换为与输入信号相对应的4-20mADC 的输出 信号,并在模拟信号上叠加一个HART数字信号进行通信的压 力检测仪表。
35
1、压力开关
压力开关是一种借助弹性元件受压后产生位移以驱动 微动开关工作的压力控制仪表。通常使用于报警或联锁保 护系统中。
化工仪表培训资料[1]
灵敏度:仪表指针的线位移或角位移,与引起这 个位移的被测参数变化量之比称为仪表的灵敏度。
灵敏限:是指引起仪表指针发生动作的被测参数
的最小变化量。
PPT文档演模板
(上述指标适用
化工仪表培训资料[1]
仪表基础知识
4. 分辨力
对于数字仪表,分辨力是指数字显示器的 最末位数字间隔所代表的被测参数变化量。
PPT文档演模板
温度检测及仪表
热电偶温度计工作原理示意图
热电极A
左端称为:测 量端(工作端、 热端)
热电势 热电极B
右端称为: 自由端(参 考端、冷端)
PPT文档演模板
化工仪表培训资料[1]
温度检测及仪表
(2)补偿导线
使用时应注意: 补偿导线只能与相应型号的热电偶匹配使用; 不得将极性接反; 补偿导线与热电偶连接点的温度,不得超过规定 的使用温度范围; 两连接点温度必须相同。
PPT文档演模板
1bar≈14.5psi 1psi ≈ 6.895kPa
化工仪表培训资料[1]
压力检测及仪表
2.测压仪表
PPT文弹档演模板性式压力计在工业上是应用最为广泛化工的仪表一培训种资料[测1] 压仪器
压力检测及仪表
3.弹性式压力计
弹性元件
转换原理
弹性式 压力计
弹簧管 压力表
PPT文档演模板
PPT文档演模板
化工仪表培训资料[1]
温度检测及仪表
2. 温度检测方法
• 接触式测量
特点:简单、可靠、测量精度较高。但由于要达到热平衡, 因而产生了滞后。而且可能与被测介质产生化学反应。不 能应用于很高温度的测量。
• 非接触式测量(辐射热)
特点:其测温范围很广,其测温上限原则上不受限制;测 温速度比较快,而且可以对运动体进行测量,但一般测温 误差较大。
化工仪表知识课件PPT课件
压力仪表
压力仪表的特点
能够测量各种流体(气体、液体)的 压力,具有高精度、高稳定性和可靠 性,广泛应用于化工、石油、天然气 等领域。
压力仪表的分类
压力仪表的安装和使用
应安装在易于观察和维护的位置,避 免振动、高温和腐蚀等环境因素对仪 表的影响。
按测量原理可分为弹簧管压力表、电 容式压力变送器和压阻式压力传感器 等。
01
02
03
定期校准
按照规定周期对压力仪表 进行校准,确保其测量准 确性和可靠性。
检查密封性
确保压力仪表的密封性能 良好,防止气体或液体泄 漏。
清洁与润滑
定期对压力仪表进行清洁 和润滑,保证其正常运转。
温度仪表的维护与保养
防爆与隔热
在高温或易爆环境中使用 的温度仪表,应采取相应 的防爆和隔热措施。
化工仪表的作用与重要性
作用
化工仪表在化工生产中起着至关重要的作用,它们能够实时检测和记录各种参 数,如温度、压力、流量和液位等,从而确保生产过程的稳定性和安全性。
重要性
化工仪表是实现自动化生产的关键设备,能够提高生产效率、降低能耗、减少 人工干预,对于化工企业的可持续发展具有重要意义。化工仪表的发展历程与趋势
物位仪表的特点
01
能够测量各种物料(液体、固体)的位置,具有高精度、高稳
定性和可靠性,广泛应用于化工、石油和食品等领域。
物位仪表的分类
02
按测量原理可分为浮力式、电容式和超声波式等。
物位仪表的安装和使用
03
应安装在易于观察和维护的位置,避免振动、高温和腐蚀等环
境因素对仪表的影响。
03
化工仪表的常见故障与排除方法
压力仪表常见故障与排除方法
仪表专业培训(温度) ppt课件
2. 定期检查校验各项技术指标是否符合要求,校验周期一 般为1年或一个装置检修周期。
3 变送器在运行中应保持清洁、零部件完整。
PPT课件
23
1.3 故障检查
一体化温度变送器应清洁、干燥、完整,接 线柱和调整螺丝无锈蚀,连接导线的绝缘良 好。
1.3.1 首先检查接线端子是否有松动或生锈, 测温元件是否断线。
的,如一些轴流风机入口,参与机组防喘振控制的 。
PPT课件
10
3、其它形式
反应器热偶--一般指高压的、有竖装、横 装、刚性、柔性、多点、单点等形式。
加热炉炉管--刀刃式,焊接在炉管表面的 。
耐磨热偶--采用一种特殊、复合型耐磨结
构,如耐磨头堆焊Ni+Wc35,使钢的硬度提高
,表面碳化钨处理,耐磨头硬度:HRC62-65
PPT课件
8
1、按分度号分类
K-镍鉻-镍硅(镍铝) -40~1000℃,热电 势大,线性好,测温范围宽,造价低,所以 应用广泛
E-镍鉻-铜镍(康铜)-40~800℃ J-铁-铜镍(康铜) T-铜-铜镍(康铜) S-铂铑10-铂 R-铂铑13-铂 B-铂铑30-铂铑6
PPT课件
1.3.2 检查一体化温度变送器对地绝缘是否良 好。
1.3.3 检查电源电压是否稳定。
1.3.4 重新校验一体化温度变送器是否符合技
术要求。
PPT课件
24
2、智能温度变送器
智能温度变送器以微处理器为基础单元,可用于 接收不同的热电偶和热电阻温度传感器输入-毫 伏或欧姆输入信号,输出带有符合DE协议或 HART协议的4~20 mA DC电流信号。
6.6 测量热电势,对照“分度表”查出标准温度。
化工仪表及自动化课件第五节 温度检测及仪表
室外温度传感器 装配式热电偶
一、 膨胀式温度计
膨胀式温度计是基于物体受热时体积膨胀的
性质制成的,测温敏感元件在受热后尺寸或体积
发生变化,采取一些简便方法,测出它的尺寸或
体积变化的大小。
分类:液体膨胀式、固体膨胀式
一、玻璃管温度计
(一)工作原理
4
利用玻璃管内液体的体积随温度
的升高而膨胀的原理。
化进行测量。
温包:传热、容纳膨
抗 震 压 力 表
胀介质;
毛细管:传递压力; 弹簧管:显示压力
(温度)。
(二)使用方法与特点
对毛细管采取保护措施,防
止损坏;注意安装方式与位
置对精度的影响。
特点:结构简单,价格便宜, 刻度清晰,防爆。精度差, 示值滞后时间长,毛细管易 损坏。
河北凯瑞贺仪表厂压力式温度计
注意
当A、B材料相同时, E(t、t0)= 0 当t=t0, E(t、t0)= 0
四、插入第三根导线的问题
在热电偶回路中引入第三种 导体,只要第三种导体两端 的温度相同,则此第三种导 体的引入不会影响热电偶的 热电势。
t A t
0
B
t0
t
0
t0
t
t0 t
t0 t
C
实用价值:可在热电 偶回路中接入连接导 线和测量仪表。 可采用分立的热电偶 测量固态金属表面温 度和 液态金属温度。
(2)华式温标(F)
华式温标规定在标准大气压下,水的冰点为32度,水的沸 点为212度,在这两个固定点之间划分180等份,每一份称为 华式一度。华式温标与摄氏温标有如下的关系: m=1.8n+32(F) 式中,m、n分别表示华式温度值和摄氏温度值。
1检测仪表基本知识
检测仪表的品质指标
举例
例3 某台测温仪表的测温范围为200~700℃,校验该表时 得到的最大绝对误差为±4℃,试确定该仪表的相对百分误 差与准确度等级。
解 该仪表的相对百分误差为
4 10 % 00.8%
70 2 000
如果将该仪表的δ去掉“±பைடு நூலகம்号与“%”号,其数值为 0.8。由于国家规定的精度等级中没有0.8级仪表,同时,该 仪表的误差超过了0.5级仪表所允许的最大误差,所以,这 台测温仪表的精度等级为1.0级。
2020/3/28
★ 测量方法---按照测量方式分类
1、直接测量
用标定的仪器、仪表进行测量,从而直接测得待测量的数值 优点:测量过程简单迅速。 缺点:测量精度不高。
2、间接测量 被测量本身不易直接测量,但可以通过与被测量有一定有关系 的其他量(一个或几个),来求出被测量的数值。 例如测量某固体的密度时,可以通过称重、量出其几何尺 寸,计算出体积,再计算密度。
标尺 x x 标 上 0 尺 限 1 下 值 % 0 0 限 Sx p 1值 % 00
δ——引用误差 SP ——仪表量程
■ 最大引用误差(满度误差)—用于确定仪表的精度
m a x X Y m a x 1 0 0 % , Y Y m a x Y m in
2020/3/28
概述
4、按误差出现的原因分类
温度计、标准仪器、测试带(语音、图象) (4)、标称值 测量器具上所标定的数值。灯泡:220V100W 标称值并不一定等于他的真值或实际值
(5)、示值/测量值(X) 由测量器具指示的被测量的值。
2020/3/28
3、误差的表示方法
绝对误差
绝对误差指仪表指示值与被测参数真值之间的 差值,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
报警与自控
量点不超过 10米
测量精度高 ,便于远距离、 结构复杂、不能测量高温 ,由
多点、集中测量和自动控制 于体积大 ,测点温度较困难
测温范围广 ,精度高 ,便于 需冷端温度补偿 ,在低温段测
远距离、多点、集中测量和 自动控制
量精度较低
-30 ~ 600 液体型 0 ~ 250 蒸汽型
-200 ~ 600 铂电阻 -50 ~ 150 铜电阻 -50 ~150(180)镍电阻 -100 ~200(300)热敏电阻 0 ~1300(1600)铂铑10-铂 -50 ~1000(1200)镍铬-镍硅
热电偶:两种不同的金属A和B构成闭合回路, 当两个接触端T﹥T0时,回路中会产生热电势。
热电势由两种材料的接触电势 和单一材料的温差电势决定
图3-57 热电现象
(1)接触电势
接触电势 不同金属材料内部的自由电子密度不同,当A和B材料接触
是,自由电子要从密度大的地方扩散到密度小的地方,从 而产生自由电子扩散现象。 自由电子从A扩散到B,扩散平衡时,A失去电子带正电荷, B得到电子带负电荷,因此在A、B接触处形成一定电位差, 即接触电势(帕尔帖电势)。
赛贝克(Seebeck)效应(热电效应)
1821年赛贝克发现了铜、铁这两种金属的温差电现象。 即在这两种金属构成的闭合回路中,对两个接头的中一个 加热即可产生电流。在冷接头处,电流从铁流向铜。由于 冷、热两个端(接头)存在温差而产生的电势差e,就是温 差热电势。 这种由两种不同的金属构成的能产生温差热电势的装置称 为热电偶。a
非接触测温
温度敏感元件不与被测对象接触,而是通过辐射能量进行热 交换,由辐射能的大小来推算被测物体的温度。 常用的非接触式测温仪表:
(1) 辐射式温度计:基于普朗克定理 光电高温计,辐射传感器,比色温度计。
(2) 光纤式温度计:光纤的温度特性、传光介质。 光纤温度传感器,光纤辐射温度计。
优点:不与被测物体接触,不破坏原有的温度场,在被测物 体为运动物体时尤为适用。
缺点:精度一般不高。
红外热像仪
一、概述
1.应用热膨胀原理测温
利用液体或固体受热时产生热膨胀的原理,可以制成膨胀式 温度计。
图3-52 双金属片
图3-53 双金Biblioteka 温度信号器1—双金属片;2—调节螺钉; 3—绝缘子;4—信号灯
一、概述
2.应用压力随温度变化的原理测温 3.应用热阻效应测温 4.应用热电效应测温 5.应用热辐射原理测温
二、热电偶温度计
热电偶
热电偶温度计是以热电效应为基础的测温仪表。
热电偶温度计由三部分组成:热电偶;测量仪表;连接热 电偶和测量仪表的导线。
图3-55 热电偶温度计测温系统示意图 1—热电偶;2—导线;3—测量仪表
图3-56 热电偶示意图
二、热电偶温度计
1.热电现象及测温原理
热电偶也叫温差电偶 是最早出现的一种热电探测器件
非接 触式 测温 仪表
光学高温 计
辐射高温 计
携带用、可测量高温、测温
时不破坏被测物体温度场
测温元件不破坏被测物体温 度场 ,能作远距离测量、报 警和自控、测温范围广
测量时 ,必须经过人工调整 ,有 人为误差 ,不能作远距离测量 , 记录和自控
只能测高温,低温段测量不准, 环境条件会影响测量精度,连续 测高温时须作水冷却或气冷却
化工仪表及自动化
第五节 温度检测及仪表
内容提要
概述
测温仪表的分类 温度检测的基本原理
热电偶温度计
热电偶 补偿导线与冷端温度补偿
热电阻温度计
测温原理 常用热电阻
内容提要
温度变送器 电动温度变送器 一体化温度变送器 智能式温度变送器
一、 概述
一、测温仪表的分类
反映了物体冷热的程度,与自然界中的各种物 理和化学过程相联系。 温度概念的建立及测量:以热平衡为基础的; 温度最本质的性质:当两个冷热程度不同的物体 接触后就会产生导热换热,换热结束后两物体处 于热平衡状态,则它们具有相同的温度。
容易破损、读数麻烦、一般只 能现场指示 ,不能记录与远传 精度低、不能离开测量点测量 , 量程与使用范围均有限
-100~100(150)有机液体 0 ~350(-30 ~ 650)水银
-80 ~ 600
结构简单、不怕震动、具有 精度低、测量距离较远时 ,仪
防爆性、价格低廉、能记录、 表的滞后性较大、一般离开测
分类 按测量方式 接触式与非接触式
一、概述
测温 方式
接 触 式 测 温 仪 表
温度计 种类
玻璃液体 温度计
双金属温 度计
压力式温 度计
电阻温度 计
热电偶温 度计
表3-3 各种温度计的优缺点及使用范围
优点
缺点
使用范围/℃
结构简单、使用方便、测量 准确、价格低廉 结构简单、机械强度大、价
格低、能记录、报警与自控
即在A两端形成一定电 位差,即温差电势(汤 姆逊电势)。
汤姆逊电势大小为:
T
eA (T ,T0 )
dT
T0
δ —— 汤姆逊系数,它表示温度为1℃时所产生 的电动势值,它与材料的性质有关。
帕尔帖电势大小为:
e AB
(T )
kT e
ln
NA NB
k —— 玻耳兹曼常数; K=1.38×10-23
T —— 接触面的绝对温度;
e —— 单位电荷量; e = 1.6×10-19C
NA——金属电极A的自由电子密度 NB——金属电极B的自由电子密度
(2)温差电势
温差电势 (汤姆逊电势)
在同一金属材料A中, 当金属材料两端的温度 不同时,两端电子能量 不同。温度高的一端电 子能量大,则电子从高 温端向低温扩散的数量 多,直至平衡。
700 ~ 3200 0 ~ 2000)
4
接触式测温
温度敏感元件与被测对象接触,经过换热后两 者温度相等。
常用的接触式测温仪表: (1) 膨胀式温度计。 (2) 热电阻温度计。 (3) 热电偶温度计。 (4) 其他原理的温度计。
特点:
优点:直观、可靠,测量仪表也比较简单。 缺点: 由于敏感元件必须与被测对象接触,在接触过程中就可 能破坏被测对象的温度场分布,从而造成测量误差。 有的测温元件不能和被测对象充分接触,不能达到充分 的热平衡,使测温元件和被测对象温度不一致,也会带来 误差。 在接触过程中,介质腐蚀性,高温时对测温元件的影响, 影响测温元件的可靠性和工作寿命。