各种分度号热电偶热电阻的测量范围及特点
热电偶热电阻选型手册
(1)对于长度等于或不足 1m 的铠装热电偶,它的常温绝缘电阻应不小于 1000 M Ω。 (2)对于长度超过 1m 的铠装热电偶,它的常温绝缘电阻与其长度的乘积应不小于 1000M Ω.m。 即 Rr.L ≥ 1000M Ω.m。 式中:Rr- 热电偶常温绝缘电阻 M Ω L- 热电偶长度 m 3.热电阻常温绝缘电阻的试验电压为直流10~100v,环境温度在 15~35℃范围内,相对湿度应不大于 80% (1)铂热电阻的常温绝缘电阻值应不小于 100M Ω。 (2)铜热电阻的常温绝缘电阻值应不小于 50 M Ω。
3、与其它测量结构相比机
械强度差。
1、反应速度较快。 φ 0.25~φ 8.0 φ 3.0~φ 8.0
2、不适合有电干扰的场合。
1、反应速度比接壳形慢。
2、使用寿命长。
φ 0.5~φ 8.0 φ 3.0~φ 8.0
3、防电干扰。
1、可避免双支之间信号干扰。
— 2、其它特点同绝缘体。
φ 3.0~φ 8.0
八、热电阻允许通过电流
通过热电阻的测量电流不应超过 2mA。
九、热电阻自热影响
1.激励电流为 5mA,铜热电阻的自热影响评价量应不小于 6.25mW/℃ 2.激励电流为 5mA,铂热电阻的电阻增量换算成温度值应不大于 0.30℃。
十、铠装热电阻测量端
距测量端 80mm 内不得弯曲、敲击及机械损伤。
镍铬 - 镍铬
热电阻、热电偶
2 、 中间导体定律 该定律内容是: 由不同材料组成的闭合回路中 , 若各种材料接触点的
温度都相同 , 则回路中热电势的总和等于零 。根据中间导体定律还可以得出如下 结论:
(1)在热电偶回路中接入第三种均质材料 , 只要保证所接入材料两端温度 相同 , 就不会影响热电偶的热电势 。 图2 -6是两种接入中间导体的热电偶回路。
根据中间导体定律 , 只要保证连接导线和显示仪表接入热电偶回路时两连接端 的温度相同 , 就不会改变热电势 。另外 , 热电偶的热端焊接点也相当于第三种金 属 , 只要它与热电极接触良好 ,整个接点温度一致 , 也不会影响热电偶回路的热
3 、 中间温度定律
热电偶A 、B在接点温度为t1 、t3 时的热电势等于热电偶A 、B在接点温度分别 为t1 , t2和t2 , t3 时热电势的代数和 , 即
EAB(t1 , t3 )=EAB(t1 , t2 )+EAB(t2 , t3) 由此定律可得如下结论:
(1) 已知热电偶在某一给定冷端温度下进行的分度 , 只要引入适当的修正 , 就可在另外的冷端温度下使用 。该定律为制定和使用热电偶的热电势一温度 关系 即分度表奠定了理论基础 。 因为热电偶分度表是在冷端温度t0 =0℃时热 电势与热端温度的关系 , 根据中间温度定律便可以算出任何冷端温度时的热 电势值。
比较法校验是用标准热电偶与被校热电偶测同一稳定对象的温度来进行的。 一般用管式电炉作为被测对象 ,通过手动操作或温度控制器控制调整电炉的 温度 , 并稳定在预定的温度值上 。标准热电偶一般采用比被校热电偶精确度 更高的铂铑10-铂热电偶。
热电偶八大分度号
热电偶八大分度号产品,热电偶八大产品特点热电偶的分度号有主要有S、R、B、N、K、E、J、T等八种。
其中S、R、B 属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶1、S分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期1600℃。
在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶由于S型热电偶具有优良的综合性能,它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。
符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。
S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
但S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。
2、R分度号与S分度号相比除热电动势大15%左右,其它性能几乎完全相同R型热电偶的综合性能与S型热电偶相当,R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。
其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。
在我国一直难于推广,除在进口设备上的测温有所应用外,国内测温很少采用。
1967年至1971年间,英国NPL,美国NBS和加拿大NRC 三大研究机构进行了一项合作研究,其结果表明,R型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
R型热电偶的稳定性和复现性比S 型热电偶均好,我国目前尚未开展这方面的研究。
3、B分度号在室温下热电动势极小,故在测量时一般不用热电偶补偿导线。
它的长期使用温度为1600℃,短期1800℃。
可在氧化性或中性气氛中使用,也可在真空条件下短期使用。
热电偶的分度号分类
热电偶的分度号有哪几种、有什么区别热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。
其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。
t、S分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期1600℃。
在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶;R分度号与S分度号相比除热电动势大15%左右,其它性能几乎完全相同;B分度号在室温下热电动势极小,故在测量时一般不用补偿导线。
它的长期使用温度为1600℃,短期1800℃。
可在氧化性或中性气氛中使用,也可在真空条件下短期使用。
N分度号的特点是1300℃下高温抗氧化能力强,热电动势的长期稳定性及短期热循环的复现性好,耐核辐照及耐低温性能也好,可以部分代替S分度号热电偶;K分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。
在所有热电偶中使用最广泛; E分度号的特点是在常用热电偶中,其热电动势最大,即灵敏度最高。
宜在氧化性、惰性气氛中连续使用,使用温度0-800℃;J分度号的特点是既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工;T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度补偿导线工作原理:在一定温度范围内,具有与其匹配的热电动势标称值相同的一对带绝缘包覆的导线叫补偿导线。
用它们连接热电偶与测量装置,以补偿热电偶连接处的温度变化所产生的误差。
补偿导线特点:①热电特性稳定,电绝缘性能好,使用寿命长。
②柔软,弯曲性能能好,使用方便。
③包覆层材料稳定可靠,具有一定的耐温性和耐寒性能。
铂铑热电偶产品型号:WRP(WRR)--130S型小铂铑热电偶为各类小型箱式电阻炉或井式炉使用,也可以用于同类产品上。
WR系列工业用热电偶作为温度测量传感器 ,通常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以直接测量或控制各种生产过程中0-1800℃范围内的流体、蒸汽和气体介质以及固体表面等温度。
如何选择热电阻或热电偶
如何选择热电阻或热电偶热电阻和热电偶都是测温传感器,只是两种传感器检测的温度范围不一样,热阻一般检测-200~600度温度范围,热电偶(分度号K)可检测-40~1000度的温度范围(分度号N、S、R、B甚至更高)所以,前者一般用于低温检测,后者用于高温检测。
1.信号的性质虽然都是接触式测温仪表,但它们的测温范围不同。
热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热电偶是产生感应电压的变化,他随温度的改变而改变。
热电偶使用在温度较高的环境,如铂铑30---铂铑6(B型)测量范围为300度~~1600度,短期可测1800度。
S型测一20~~1300(短期1600),K型测一50~~1000,短期1200).XK型一50~~600(800),E型一40~~800(900).还有J型,T型等。
这类仪表一般用于500度以上的较高温度,低温区时输出热电势很,当电势小时,对抗干扰措施和二次表和要求很高,否则测量不准,还有,在较低的温度区域,冷端温度的变化和环境温度的变化所引起的相对误差就显得很突出,不易得到全补偿。
这时在中低温度时,一般使用热电阻测温范围为一200~~500,甚至还可测更低的温度(如用碳电阻可测到1K左右的低温).现在正常使用铂热电阻Pt100,(也有Pt50、100和50代表热电阻在0度时的阻值。
在旧分度号中用BA1,BA2来表示,BA1在0度时阻值为46欧姆,在工业上也有用铜电阻,分度号为CU50和CU100,但测温范围较小,在一50~~150之间,在一些特殊场合还有铟电阻、锰电阻等)。
2.测温范围两种传感器检测的温度范围不一样,热阻一般检测0-150度温度范围(当然可以检测负温度),热电偶可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。
3.材质区分从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热电偶是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。
热电偶及常见分度号
热电偶是什么?热电偶属于接触式温度测量仪表是工业生产中最常用的温度检测仪表之一。
其特点为测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
测量范围广。
常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
热电偶是一种感温元件, 它能将温度信号转换成热电势信号, 通过与电气测量仪表的配合, 就能测量出被测的温度。
热电偶测温的基本原理是热电效应。
在由两种不同材料的导体 A 和 B 所组成的闭合回路中, 当A 和B 的两个接点处于不同温度T 和To时, 在回路中就会产生热电势。
这就是所谓的塞贝克效应。
导体 A 和 B 称为热电极。
温度较高的一端(T 〉叫工作端( 通常焊接在一起);温度较低的一端(To 〉叫自由端( 通常处于某个恒定的温度下〉。
根据热电势与温度函数关系。
可制成热电偶分度表。
分度表是在自由端温度To=00C 的条件下得到的。
不同的热电偶具有不同的分度表。
在热电偶回路中接入第三种金属材料时, 只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。
因此, 在热电偶测温时, 可接入测量仪表, 测得热电势后, 即可知道被测介质的温度。
常用热电偶可分为标准热电偶和非标准热电偶两大类。
标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
从理论上讲, 任何两种导体都可以配制成热电偶, 但实际上并不是所有材料都能制作热电偶, 故对热电极材料必须满足以下几点:热电偶材料受温度作用后能产生较高的热电势, 热电势和温度之间的关系最好呈线性或近似线性的单值函数关系;能测量较高的温度, 并在较宽的温度范国内应用, 经长期使用后, 物理、化学性能及热电特性保持稳定;要求材料的电阻温度系数要小, 电阻率高, 导电性能好, 热容量要小;复现性要好, 便于大批生产和互换, 便于制定统一的分度表;机械性能好, 材质均匀;资源丰富, 价格便宜。
热电偶和热电阻的知识
热电偶温度计热电现象和关于热电偶的基本定律热电偶温度计由热电偶、电测仪表和连接导线组成。
它被广泛用于测量-200~1300℃范围内的温度。
在特殊情况下,可测至2800℃的高温或4K 的低温。
热电偶能把温度信号转变为电信号,便于信号的远传和多点切换测量,具有结构简单、制作方便、准确度高、热惯性小等优点。
1. 热电偶测温原理由两种不同的导体或半导体A 或B 组成的闭合回路,如果使两个接点处于不同的温度t 0、t ,则回路中就有电动势出现,称为热电势,这一现象称为热电效应。
热电势是温度t 0和t 的函数,恒定接点温度t 0,则热电势是温度t 的单值函数,只要测得热电势的大小,便可得到被测温度t 。
热电势由温差电势与接触电势组成。
温差电势:是指一根导体上因两端温度不同而产生的热电动势。
同一导体两端温度不同时,高温端(测量端、工作端、热端)电子的运动速度大于低温端电子(参比端、自由端、冷端)的运动速度,单位时间内高温端失电子带正电,低温端得电子带负电,高、低温端之间形成一个从高温端指向低温端的静电场。
该电场阻止高温端电子向低温端的动;加大低温端电子向高温端的运动速度,当运动达到动态平衡时,导体两端产生相应的电位差,该电位差称为温差电势。
温差电势的方向:由低温端指向高温端。
温差电势的大小:,()dt dtt N d N e k t t e t tt t )(1,00⎰=,式中k 为波尔兹曼常数;e 为电子电量t N 为导体内的电子密度,是温度的函数;t 、to 是导体两端的温度。
可见温差电势的大小与导体的性质和导体两端温度有关,而与导体长度、截面大小以及沿导体长度方向的温度分布无关。
热端 测量端 工作端冷端自由端参比端热电极B(e AB ()0t AB (,t t e (0,t t e B热电偶回路的总电势接触电势:是在两种不同材料A 和B 的接触点产生的。
A 、B 材料有不同的电子密度,设导体A 的电子密度n A 大于导体B 的电子密度n B ,则从A 扩散到B 的电子数要比从B 扩散到A 的多,A 因失电子而带正电荷,B 因得电子而带负电荷,于是在A 、B 的接触面上便形成一从A 到B 的静电场。
热电偶热电阻选型手册
3
φ 20(高铝管、限用于 K、N 型热电偶)(不适用于隔爆型)
7 标记
保护管外径一非标准型时与⑥组合表示保护管外径(mm)
8 标记
测温元件形式
K
铠装型(铠装偶直径φ 6mm)
8 无标记
装配型
9
总长 L ×插入长度 l
标记 保护管材质
B
1Cr18Ni9Ti(适用于 K、N、E、J、T 型热电偶)
G
GH3030(高温用 S、B、R 型需加刚玉质内保护管)
3、与其它测量结构相比机
械强度差。
1、反应速度较快。 φ 0.25~φ 8.0 φ 3.0~φ 8.0
2、不适合有电干扰的场合。
1、反应速度比接壳形慢。
2、使用寿命长。
φ 0.5~φ 8.0 φ 3.0~φ 8.0
3、防电干扰。
1、可避免双支之间信号干扰。
— 2、其它特点同绝缘体。
φ 3.0~φ 8.0
2.铠装式热电偶常温绝缘电阻,当周围空气温度为 20 ± 15℃,相对湿度不大于 80%,铠装偶直径大于φ 1. 5,试验电压为直流 500v ± 50v,单支绝缘型铠装热电偶的偶丝与外套管之间的绝缘电阻;双支式绝缘型铠装热 电偶各支的偶丝之间及各偶丝与外套管之间的绝缘电阻:
(1)对于长度等于或不足 1m 的铠装热电偶,它的常温绝缘电阻应不小于 1000 M Ω。 (2)对于长度超过 1m 的铠装热电偶,它的常温绝缘电阻与其长度的乘积应不小于 1000M Ω.m。 即 Rr.L ≥ 1000M Ω.m。 式中:Rr- 热电偶常温绝缘电阻 M Ω L- 热电偶长度 m 3.热电阻常温绝缘电阻的试验电压为直流10~100v,环境温度在 15~35℃范围内,相对湿度应不大于 80% (1)铂热电阻的常温绝缘电阻值应不小于 100M Ω。 (2)铜热电阻的常温绝缘电阻值应不小于 50 M Ω。
热电偶的分度号有哪几种
热电偶的分度号有哪几种?有什么区别?热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。
其中S、R、B属于贵金属热电偶N、K、E、J、T属于廉金属热电偶。
t、S分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度140短期1600℃。
在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶;^ R分度号与S分度号相比除热电动势大15%左右,其它性能几乎完全相同;B分度号在室温下热电动势极小,故在测量时一般不用补偿导线。
它的长期使用温度为1600短期1800℃。
可在氧化性或中性气氛中使用,也可在真空条件下短期使用。
N分度号的特点是1300℃下高温抗氧化能力强,热电动势的长期稳定性及短期热循环的复现好,耐核辐照及耐低温性能也好,可以部分代替S分度号热电偶;K分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃短期1200℃。
在所有热电偶中使用最广泛;E分度号的特点是在常用热电偶中,其热电动势最大,即灵敏度最高。
宜在氧化性、惰性气氛连续使用,使用温度0-800℃;J分度号的特点是既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工;T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度补偿导线工作原理:在一定温度范围内,具有与其匹配的热电动势标称值相同的一对带绝缘包覆的导线叫补偿导用它们连接热电偶与测量装置,以补偿热电偶连接处的温度变化所产生的误差。
补偿导线特点:① 热电特性稳定,电绝缘性能好,使用寿命长。
② 柔软,弯曲性能能好,使用方便。
③ 包覆层材料稳定可靠,具有一定的耐温性和耐寒性能。
补偿导线结构和用途:①补偿导线由芯线和绝缘包覆层组成;②补偿导线应因芯线合金材质不同分为延长型和补偿型两种,延长型补偿导线有 NX (镍铬硅硅镁)、 KX (镍铬 10- 镍硅 3 )、 EX (镍铬 10- 铜镍 45 )、 JX (铁 - 铜镍 45 TX (铜 - 铜镍 45 ),补偿型补偿导线有 SC 和 RC (铜 - 铜镍 0.6 )、 KC (铜镍 40 )、 NC (铁 - 铜镍)等;③补偿导线的绝缘包覆层与外套材料有聚氯乙烯,聚四氟乙烯,玻璃纤维,石英纱和陶瓷纤维金属屏蔽层有不锈钢网等;④热电偶补偿导线与显示仪表、记录仪或计算机连接构成测温系统,广泛用于电力、冶金、石油工、轻纺等工业及国防、科研等部门。
各种热电偶热电阻的测量范围和优缺点
S型热电偶:铂铑10-铂热电偶温度范围0~1600℃旧分度号LB-3优点1.耐热性、安定性、再现性良好及较优越的精确度。
3.耐氧化、耐腐浊性良好3.可以做为标准使用。
缺点1.热电动势值小。
2.在还元性气体环境较脆弱。
(特别是氢、金属蒸气)3.补偿导线误差大。
4.价格高昂。
R型热电偶:铂铑13-铂热电偶温度范围0~1600℃优点1.耐热性、安定性、再现性良好及较优越的精确度。
2.耐氧化、耐腐浊性良好3.可以做为标准使用。
缺点1.热电动势值小。
2.在还元性气体环境较脆弱。
(特别是氢、金属蒸气)3.补偿导线误差大。
4.价格高昂。
B型热电偶:铂铑30-铂铑6热电偶温度范围600~1800℃旧分度号LL-2自由端在0~50℃内可以不用补偿导线优点1.适用1000℃以上至1800℃。
2.在常温环境下热电动势非常小,不需补偿导线3.耐氧化、耐腐浊性良好。
4.耐热性与机械强度较R型优良。
缺点1.在中低温域之热电动势极小,600℃以下测定温度不准确。
2.热电动势值小。
3.热电动势之直线性不佳。
4.价格高昂。
K型热电偶:镍铬-镍硅热电偶镍铬-镍铝热电偶温度范围-200~1300℃优点1.热电动势之直线性良好2.1000℃以下耐氧化性良好。
3.在金属热电偶中安定性属良好。
缺点1.不适用于还元性气体环境,特别是一氧化碳、二氧化硫、硫化氢等气体。
2.热电动势与贵金属热电偶相比较经时变化较大。
3.受短范围排序之影响会产生误差。
N型热电偶:镍铬硅--镍硅热电偶温度范围-270~1300℃优点1.热电动势之直线性良好。
2.1200℃以下耐氧化性良好。
3.为K型之改良型,受Green Rot之影响较小,耐热温度较K型高。
缺点1.不适用于还元性气体环境2.热电动势与贵金属热电偶相比较经时变化较大。
E型热电偶:镍铬硅--康铜热电偶温度范围-270~1000℃优点1.现有热电偶中感度最佳者2.与J热电偶相比耐热性良好。
3.两脚不具磁性。
热电偶热电阻的区别.
热电偶/热电阻的区别热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于:一、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热耦,是产生感应电压的变化,他随温度的改变而改变。
二、两种传感器检测的温度范围不一样,热阻一般检测0-150度温度范围,最高测量范围可达600度左右(当然可以检测负温度)。
热耦可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。
三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热耦是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。
四、PLC 对应的热电阻和热电偶的输入模块也是不一样的,这句话是没问题,但一般PLC 都直接接入4~20ma 信号,而热电阻和热电偶一般都带有变送器才接入PLC 。
要是接入DCS 的话就不必用变送器了!热电阻是RTD 信号,热电偶是TC 信号!五、PLC 也有热电阻模块和热电偶模块,可直接输入电阻和电偶信号。
六、热电偶有J 、T 、N 、K 、S 等型号,有比电阻贵的,也有比电阻便宜的,但是算上补偿导线,综合造价热电偶就高了。
热电阻是电阻信号, 热电偶是电压信号。
七、热电阻测温原理是根据导体(或半导体)的电阻随温度变化的性质来测量的,测量范围为负00~500度,常用的有铂电阻(Pt100、Pt10 、铜电阻Cu50(负50-150度)。
热电偶测温原理是基于热电效应来测量温度的,常用的有铂铑——铂(分度号S ,测量范围0~1300度)、镍铬——镍硅(分度号K ,测量范围0~900度)、镍铬——康铜(分度号E ,测量范围0~600度)、铂铑30——铂铑6(分度号B ,测量范围0~1600度)。
热电偶与热电阻均属于温度测量中的接触式测温, 尽管其作用相同都是测量物体的温度, 但是他们的原理与特点却不尽相同.首先, 介绍一下热电偶, 热电偶是温度测量中应用最广泛的温度器件, 他的主要特点就是测温范围宽, 性能比较稳定, 同时结构简单, 动态响应好, 更能够远传4-20mA 电信号, 便于自动控制和集中控制。
热电偶型号、规格及分类说明
t=tm
2
500≤tm<850
t=tm
0.5
850≤tm<1000
t=tm
0.08
1000≤tm<1300
t=tm
0.02
tm>1300
t=1300
0.02
三、型号表示
W R 规格
内容
R
铂铑 30-铂铑 6
P
铂铑 10-铂
N
镍铬-镍硅
E
镍铬-铜镍 (镍铬-康铜)
热 -1
电
2
偶
3
材
4
料
5
无固定式装置式 固定螺纹式 活动式法兰 固定法兰式 活动法兰角尺形式
6
固定螺纹锥形保护管式
安装 2 固定 3 形式 4
防溅式 防水式 隔爆式
接 0 ø16mm 保护管 线 1 ø25mm 保护管(双层套管) 盒 2 ø16mm 高铝质管(单层套管) 形 3 ø20mm 高铝质管 式 设计
序号
W R □ - □ □□
四、工作原理
热电偶的工作原理是:两种不同成分的导体两端经焊接、形成回路,直接测温端叫测量 端,接线端子端叫参比端。当测量端和参比端存在温差时,就会在回路中产生热电流,接 上显示仪表,仪表上就指示出热电偶,产生的热电动势的对应温度值。 热电偶的热电动势将随着测量端温度升高而增长,热电动势的大小只和热电偶导体材质以 及两端温差有关,和热电极的长度、直径无关。 装配式热电偶主要由接线盒、保护管、绝缘套管、接线端子、热电极组成基本结构,并配 以各种安装固定装置组成。
二、主要技术指标
1. 温度测量范围和允许误差
热电偶类别
代号
分度号
铂铑 30-铂铑 6
WRR B
热电阻的那些类型介绍
热电阻的那些类型介绍热电阻作为一种传感器,可广泛应用于温度测量、温度控制和保护等领域。
热电阻按照不同的材料、结构、工艺和应用,分成了多种不同类型。
本文将介绍几种常见的热电阻类型及其特点。
PT100热电阻PT100热电阻,也叫铂电阻,是由纯铂制作的热电阻。
PT100热电阻的特点是精度高、线性好、稳定性好、可重复使用,是目前使用最为广泛的一种热电阻。
其测量范围通常在-200℃~850℃之间,一般用于温度较高的场合,如炉温测量、热处理等。
PT1000热电阻PT1000热电阻是由纯铂细丝制成的、与PT100热电阻一样的热敏元件,但其电阻值为1000Ω。
PT1000热电阻的特点是线性良好、响应速率快、阻值大,其适用范围为-50℃~400℃之间,适用于室内恒温控制和工业自动化控制等领域。
NTC热电阻NTC热电阻是由金属氧化物制成的,它的电阻值随着温度的升高而减小。
NTC 热电阻的特点是响应速度快、精度好、价格便宜,但是其线性较差,应用范围也相对较窄,一般适用于低温环境下的温度测量和恒温控制等领域。
PTC热电阻PTC热电阻也是由金属氧化物制成的,其电阻值随着温度升高而增大。
PTC热电阻的特点是响应速度快、线性良好、精度高、稳定性好,在温度达到一定值时其电阻值会发生跃变,因此常用于过热保护和自控恒温的控制电路中。
K热电偶K热电偶是由镍铬合金和镍铝合金制成的热电偶,与热电阻不同,它是通过测量两种金属合金带来的温度电势差来间接测量温度的。
K热电偶的特点是线性好、响应速度快、测量范围广(通常为-200℃~1300℃),广泛应用于炉温测量、熔融金属测量、热处理和化工等领域。
以上是常见的热电阻类型介绍,每种热电阻都有其优点和适用范围,选用时需根据实际需求和具体应用场合进行选择。
热电阻测温特点
热电阻测温特点热电阻是一种常用的温度传感器,用于测量温度。
它的工作原理是基于材料的温度与其电阻值之间的关系。
在温度变化时,热电阻的电阻值也会相应地发生变化,通过测量电阻值的变化,可以确定温度的变化。
热电阻测温的特点主要包括以下几点:1. 精度高:热电阻具有较高的温度测量精度,能够满足许多工业和科学实验的要求。
常用的热电阻材料有铂金(PT100、PT1000)和镍铁(NI100、NI1000)等,其测量精度可以达到0.1摄氏度。
2. 稳定性好:热电阻的温度响应速度较快,且稳定性好。
它的响应时间通常在几十毫秒到几秒之间,适用于对温度变化要求较高的场合。
3. 范围广:热电阻可以测量的温度范围较大,一般可达-200摄氏度至800摄氏度。
不同材料的热电阻适用于不同的温度范围,可以根据具体需求选择合适的热电阻材料。
4. 抗干扰能力强:热电阻测温信号受干扰的影响较小,具有较好的抗电磁干扰能力。
在工业环境中,存在许多电磁干扰源,如电机、电磁阀等,热电阻能够通过合理的电路设计和屏蔽措施,减少外界干扰对温度测量的影响。
5. 易于安装和维护:热电阻的结构简单,体积小,重量轻,安装方便。
一般情况下,热电阻通过连接电缆与测量仪器相连,可以远程测量温度,并且不会对被测物体造成破坏。
6. 成本适中:相比其他温度传感器,如热电偶和红外线测温仪等,热电阻的成本较低。
这使得热电阻成为了许多应用中的首选传感器。
热电阻的测温原理是基于热敏材料的电阻随温度的变化而变化。
热电阻通常由金属或半导体材料制成,这些材料的电阻值随温度的升高而增大。
其中,铂金材料是应用最广泛的热电阻材料之一。
铂金热电阻的电阻-温度特性是经过精确校准的,可以提供较为准确的温度测量结果。
热电阻的测温原理可以通过以下方式解释:当热电阻与被测物体接触时,热电阻吸收被测物体的热量,导致其温度升高。
随着温度的升高,热电阻的电阻值也会相应地增大。
这是因为热敏材料中的电子受热激发,电阻发生变化。
热电偶和热电阻的相同点和不同点
热电偶和热电阻的相同点和不同点热电偶和热电阻是两种常见的温度测量传感器,它们的原理和特点有相同点,也有不同点。
下面将针对这两种传感器,从功能、原理、特点、优缺点等方面进行比较。
相同点:1. 原理相似:热电偶和热电阻都是基于热电效应实现温度测量的。
热电偶是通过不同材质之间的温差产生电势差来测量温度的,而热电阻则是通过电阻随温度变化呈线性关系来测量温度的。
2. 测温范围相似:热电偶和热电阻都可用于测量宽广的温度范围,从超低温度到高温度都可以。
3. 都有工业化应用:两种传感器都有广泛的工业应用,例如汽车、化工、石油、冶金等领域。
不同点:1. 测量精度:热电阻的测量精度比热电偶更高,热电阻的误差通常在±0.1度左右,而热电偶的误差在±1度左右。
因此,在要求高精度测量的场合,热电阻更为优越。
2. 响应速度:热电偶响应速度快,随温度变化的速度也比较快,而热电阻的响应速度则较慢,随温度变化的速度也较慢。
因此,对于需要测量瞬时温度变化的场合,热电偶更适用。
3. 抗干扰性能:热电阻对电磁场干扰比热电偶更弱,具有较好的抗干扰性能,而热电偶对电磁场干扰比较敏感,容易受到外界干扰的影响。
因此,在工业领域中,热电阻通常被用来测量电磁干扰较强的场合。
4. 延伸长度:热电偶可实现一定长度的延伸,可以满足一些需要长距离测量的要求。
而热电阻由于电阻值的变化很小,一般只适用于长度短的测量。
总的来说,热电偶适用于测量范围宽、要求快速响应、价格实惠的场合;而热电阻适用于需要高精度、低干扰、低功耗的场合。
两种传感器各有优缺点,应根据实际应用场合需求选择合适的传感器。
工业上常用的热电偶和热电阻种类
工业上常用的热电偶和热电阻种类?1)铂铑30-铂铑6热电偶(B型热电偶)为贵金属热电偶。
偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(BP)的名义化学成分为铂铑合金,其中含铑为30%,含铂为70%,负极(BN)为铂铑合金,含铑为量6%,故俗称双铂铑热电偶。
该热电偶长期最高使用温度为1600℃,短期最高使用温度为1800℃。
B型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长,测温上限高等优点。
适用于氧化性和惰性气氛中,也可短期用于真空中,但不适用于还原性气氛或含有金属或非金属蒸气气氛中。
B 型热电偶一个明显的优点是不需用补偿导线进行补偿,因为在0~50℃范围内热电势小于3μV。
2)铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。
偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。
该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。
S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。
它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。
由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器3)镍铬一镍硅热电偶该热电偶(分度号为K)中镍铬为正极,镍硅为负极;测量范围为-50-1000℃,短期可测量1200℃;在氧化性和中性介质币使用,500℃以下低温范围内,也可用于还原性介质中测量。
此种热电偶其热电势大,线性好,测温范围较宽,造价低,因而应用很广。
4)镍铬一康铜热电偶该热电偶(分度号为XK)中镍铬为正极,康铜铜为负极;适宜于还原性或中性介质中使用;测量范围为-50-600℃,短期可测800℃;这种热电偶的热电势较大,比镍铬一镍硅热电偶高一倍左右;价格便宜。
热电偶和热电阻
第一章温度测量一、概述温度是表征物体冷热程度的物理量。
在工农业生产和科学研究中都要用到温度的测量与控制问题。
二、温度检测仪表的分类温度仪表通常分一次仪表与二次仪表。
一次仪表通常为:热电偶、热电阻、双金属温度计、就地温度显示仪等;二次仪表通常为温度记录仪、温度巡检仪、温度显示仪、温度调节仪、温度变送器等。
另外,温度测量仪表按测温方式可分为接触式和非接触式两种温度仪表的接触式和非接触式比较:1、接触式会破坏被检测物温度场,且测温元件易发生化学反应;非接触式不存在此问题。
2、接触式产生的时间滞后较大;非接触式反映速度较快。
3、接触式测量高温受到一定限制;非接触式测量的温度上限高。
4、接触式测温可测量低温和超低温;非接触式测温不适宜测低温。
5、接触式温度计结构简单、可靠、测量精度较高,共误差可在1[%]以内;非接触式测温结构复杂,测温时受被测物热发射率和环境条件影响大,测量误差较大,一般都在1[%]以上。
三、几种常用的热电阻装配热电阻WZ系列工业用热电阻作为温度测量传感器,通常与温度变送器,调节器以及显示仪表等配套使用,组成过程控制系统,用以直接测量或控制各种生产过程中-200 C -500 C范围内的液体,蒸汽和气体介质以及固体表面的温度•热电阻是利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的•当被测介体中有温度梯度存在时,所测的温度是感温元件所在范围介质中的平均温度•尽管各种热电阻的外形差异很大,但是它们的基本结构却大致相似,一般有感温元件,绝缘套管, 保护管,和接线盒等主要部分组成。
特点2压簧式感温兀件,抗振性能好;2测温精度高;2机械强度高,耐压性能好;2进口薄膜电阻元件,性能可靠稳定。
工作原理热电阻是利用物质在温度变化时,其电阻也随着发生变化的特征来测量温度的。
当阻值变化时,工作仪表便显示出阻值所对应的温度值。
主要技术参数产品执行标准IEC584IEC1515GB/T16839-1997JB/T5582-91常温绝缘电阻热电阻在环境温度为15—35° C,相对湿度不大于80%试验电压为10—100V (直流)电极与外套管之间的绝缘电阻>100M D。
各种分度号热电偶热电阻的测量范围及特点
十年又或者八年,我们又会变成什么样的大人。现在我们长大,我错过了你的童年
4、低廉 缺点:不适用于还元性气体环境 七、J 型热电偶:铁--康铜热电偶,温度范 围-210~1000℃; 优点:1、可使用于还元性气体环境
2、热电动势较 K 热电偶大 20%。 3、较便宜,适用于中温区域。 缺点:易生锈,再现性不佳。 八、T 型热电偶:铜--康铜热电偶,温度范 围-270~400℃;
十年又或者八年,我们又会变成什么样的大人。现在我们长大,我错过了你的童年
范围 0~1300℃; 优点:1、耐热性、安定性、再现性良好及 较优越的精确度; 2、耐氧化、耐腐浊性良好; 3、可以做为标准使用。
缺点:1、热电动势值小,补偿导线误差大; 2、在还元性气体环境较脆弱(特别是氢、金 属蒸气); 4、比 S 分度高昂。 三、B 型热电偶:铂铑 30-铂铑 6 热电偶,
一、S 型热电偶:铂铑 10-铂热电偶,温度 范围 0~1300℃;优点:1、耐热性、安定性、再 现性良好及较优越的精确度; 2、耐氧化、耐腐浊性良好; 3、可以做为标准使用。
缺点:1、热电动势值小,补偿导线误差大; 2、高昂; 3、在还元性气体环境较脆弱。(特别是氢、 金属蒸气) 二、R 型热电偶:铂铑 13-铂热电偶,温度
十年又或者八年,我们又会变成什么样的大人。现在我们长大,我错过了你的童年
ห้องสมุดไป่ตู้
优点:1、1200℃以下耐氧化性良好。 2、热电动势之直线性良好。 缺点:1、不适用于还元性气体环境 2、热电动势与贵金属热电偶相比较时变化 较大。
六、E 型热电偶:镍铬硅--康铜热电偶,温 度范围-270~1000℃ 优点:1、热电偶中感度最好; 2、与 J 热电偶相比耐热性良好; 3、适于氧化性气体环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种分度号热电偶热电阻的测量范围及特点
一、S型热电偶:铂铑10-铂热电偶,温度范围0~1300℃;优点:1、耐热性、安定性、再现性良好及较优越的精确度;
2、耐氧化、耐腐浊性良好;
3、可以做为标准使用。
缺点:1、热电动势值小,补偿导线误差大;
2、价格高昂;
3、在还元性气体环境较脆弱。
(特别是氢、金属蒸气)
二、R型热电偶:铂铑13-铂热电偶,温度范围0~1300℃;
优点:
1、耐热性、安定性、再现性良好及较优越的精确度;
2、耐氧化、耐腐浊性良好;
3、可以做为标准使用。
缺点:
1、热电动势值小,补偿导线误差大;
2、在还元性气体环境较脆弱(特别是氢、金属蒸气);
4、价格比S分度高昂。
三、B型热电偶:铂铑30-铂铑6热电偶,温度范围0~1600℃;
优点:
1、耐氧化、耐腐浊性良好;
2、在常温环境下热电动势非常小,不需补偿导线;
3、耐热性与机械强度较R型优良。
缺点:
1、在中低温域之热电动势极小,600℃以下测定温度不准确;
2、热电动势值小,热电动势之直线性不佳;
3、价格比S分度还要贵;
四、K型热电偶:镍铬-镍硅热电偶,温度范围0~1300℃;
优点:1、热电动势之直线性良好;
2、1000℃以下耐氧化性良好;
3、在金属热电偶中安定性属良好。
缺点:1、热电动势与贵金属热电偶相比较时变化较大;
2、不适合用于还元性气体环境;
3、受短范围排序之影响会产生误差。
五、N型热电偶:镍铬硅--镍硅热电偶,温度范围-270~1300℃;优点:1、1200℃以下耐氧化性良好。
2、热电动势之直线性良好。
缺点:1、不适用于还元性气体环境
2、热电动势与贵金属热电偶相比较时变化较大。
六、E型热电偶:镍铬硅--康铜热电偶,温度范围-270~1000℃优点:1、热电偶中感度最好;
2、与J热电偶相比耐热性良好;
3、适于氧化性气体环境。
4、价格低廉
缺点:不适用于还元性气体环境
七、J型热电偶:铁--康铜热电偶,温度范围-210~1000℃;优点:1、可使用于还元性气体环境
2、热电动势较K热电偶大20%。
3、价格较便宜,适用于中温区域。
缺点:易生锈,再现性不佳。
八、T型热电偶:铜--康铜热电偶,温度范围-270~400℃;优点:1、热电动势之直线性良好。
2、低温之特性良好
3、再现性良好、高精度。
缺点:1、使用温度限度低。