高中物理学史和物理方法总结

合集下载

物理学史高中学考总结pdf

物理学史高中学考总结pdf

物理学史高中学考总结pdf
一、古代物理学
1.中国:早在战国时期,我国就对力学和光学有了深入的研究。

例如,《墨经》中详细描
述了光沿直线传播的原理。

2.古希腊:亚里士多德是古代最伟大的物理学家之一,他对运动、力学和物质都有独到的
见解。

二、近代物理学
1.17世纪:伽利略通过实验验证了自由落体定律,推翻了传统的“重物先落地”的观点。

2.18世纪:牛顿的《自然哲学的数学原理》为经典力学奠定了基础,其中包含了三大运
动定律和万有引力定律。

三、现代物理学
1.19世纪末:麦克斯韦总结了电磁学的基本规律,预言了电磁波的存在,为现代无线通
信奠定了基础。

2.20世纪初:爱因斯坦提出了相对论,改变了人们对时间和空间的认识。

同时,量子力
学的出现对微观世界的描述进行了革命性的变革。

四、重要物理学家及其贡献
1.牛顿:经典力学奠基人,三大运动定律、万有引力定律。

2.伽利略:通过实验验证自由落体定律,推翻传统观念。

3.麦克斯韦:总结电磁学规律,预言电磁波存在。

4.爱因斯坦:相对论提出者,重新定义时间和空间。

5.波尔:量子力学的重要贡献者,提出波尔模型。

五、重要物理实验和发现
1.托马斯·杨的双缝实验:证明了光的波动性。

2.迈克尔逊-莫雷实验:探索地球相对于以太的运动速度,为相对论的提出提供了背景。

3.康普顿散射实验:证实了光子具有动量,支持了量子力学的观点。

高中物理学史最全归纳总结

高中物理学史最全归纳总结

高中物理学史最全归纳总结
高中物理学史的归纳总结如下:
1. 古代物理学(公元前6世纪-17世纪):
- 古希腊时期的自然哲学家:毕达哥拉斯、阿尔克曼、希波克拉底斯、亚里士多德等人,提出了一些基础的物理理论和观点。

- 宇宙观的进展:托勒密的地心说和哥白尼的日心说。

- 科学方法的发展:伽利略的实验和观察方法。

2. 经典物理学时期(17世纪-19世纪):
- 牛顿力学:牛顿的三大力学定律和万有引力定律的提出,奠定了经典力学的基础。

- 光学的发展:牛顿的光的粒子理论和哈雷的波动理论。

- 热力学的兴起:卡诺的热机理论和卢瑟福德的热力学定律。

3. 电磁学时期(19世纪末-20世纪):
- 麦克斯韦方程组:麦克斯韦的电磁理论,统一了电磁现象的理论描述。

- 电子的发现:汤姆孙的阴极射线实验证明了电子的存在。

- 直流电学理论的建立:欧姆定律、基尔霍夫电路定律等。

4. 现代物理学时期(20世纪):
- 相对论理论:爱因斯坦的狭义相对论和广义相对论,颠覆了牛顿力学的观念。

- 量子力学的建立:普朗克的量子假设、波尔的原子理论、薛定谔的波动力学等。

- 核物理学的发展:居里夫妇的放射现象研究、爱因斯坦的质能方程、量子力学的核模型等。

总结:高中物理学史经历了古代物理学、经典物理学、电磁学和现代物理学四个阶段,涵盖了力学、热学、光学、电磁学和量子力学等多个领域的重要理论。

这些理论的发
展不仅推动了科学的进步,也深刻影响了社会和技术的发展。

物理学史和物理思想方法

物理学史和物理思想方法

物理学史和物理思想方法(一)高中物理的重要物理学史1.力学部分(1)1638年,意大利物理学家伽利略用科学推理论证重物体和轻物体下落一样快,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快)。

(2)17世纪,伽利略通过构思的理想实验指出,在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去,得出结论:力是改变物体运动的原因。

推翻了亚里士多德的观点:力是维持物体运动的原因。

同时代的法国物理学家笛卡儿进一步指出,运动的物体没有受到力的作用,它将继续以同一速度沿着同一直线运动,既不会停下来,也不会偏离原来的方向。

(3)20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

(4)人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

(5)牛顿于1687年正式发表万有引力定律;100多年后,英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量。

2.电磁学部分(1)法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。

(2)英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

(3)美国物理学家密立根通过油滴实验精确测定了元电荷e,获得诺贝尔奖。

(4)1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流的磁效应。

(5)英国物理学家法拉第发现电磁感应现象;纽曼、韦伯于1845年和1846年先后指出法拉第电磁感应定律。

3.原子原子核(1)英国物理学家汤姆孙利用阴极射线管发现电子,并指出阴极射线是高速运动的电子流。

汤姆孙还提出原子的枣糕模型。

(2)英国物理学家卢瑟福和助手们进行了α粒子散射实验,提出了原子的核式结构模型,并用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。

(3)丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,并得出氢原子能级表达式。

(完整版)高考高中物理学史归纳总结

(完整版)高考高中物理学史归纳总结

高考高中物理学史归纳总结必修部分:(必修1、必修2)一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

高考高中物理学史归纳总结

高考高中物理学史归纳总结

高考高中物理学史归纳总结高中物理学作为一门重要的学科,其发展历史可以追溯到古代,经历了漫长的发展过程。

在高考物理考试中,对物理学史的了解也是必不可少的。

下面,我们将对高中物理学史进行归纳总结,帮助大家更好地理解和掌握这一学科的发展历程。

首先,古代物理学的发展可以追溯到古希腊时期。

古希腊哲学家们对自然现象进行了观察和思考,提出了许多关于物质、运动和空间的理论。

其中,柏拉图和亚里士多德的理论对后世物理学的发展产生了深远的影响。

随后,随着科学技术的进步,近代物理学得到了迅猛的发展。

伽利略、牛顿等科学家的研究成果为物理学的发展奠定了坚实的基础。

伽利略提出了地球运动学说,揭示了物体运动的规律;牛顿则提出了经典力学的三大定律,开创了近代物理学的研究方向。

随着科学技术的不断进步,物理学的研究领域也不断扩展。

电磁学、热学、光学、相对论等新的物理学理论相继涌现,为人类对自然规律的认识提供了新的视角和方法。

爱因斯坦的相对论理论、居里夫人的放射性研究等成果,为物理学的发展注入了新的活力。

在当代,量子力学、原子物理学、核物理学等新的物理学分支不断涌现,为人类认识微观世界提供了全新的框架和视角。

同时,物理学在现代科技发展中也发挥着重要的作用,如半导体技术、激光技术、核能技术等都是基于物理学理论的应用。

总的来说,高中物理学史是一部充满辉煌成就和深刻思想的历史。

从古代的自然哲学到近代的经典力学,再到当代的量子力学和相对论,物理学在人类认识自然规律、改造世界的过程中发挥着重要的作用。

通过对物理学史的归纳总结,我们可以更好地理解物理学的发展脉络,把握其核心思想和基本原理,从而更好地掌握和运用物理学知识。

总而言之,高中物理学史的归纳总结对于理解和掌握物理学知识具有重要意义。

通过对古代物理学思想和近代物理学理论的了解,我们可以更好地把握物理学的发展脉络和基本原理,为今后的学习和科研打下坚实的基础。

希望大家能够认真对待物理学史的学习,不断提高自己的物理学素养,为科学事业的发展做出贡献。

新课标高考物理学史、物理思想方法(教科版)王城整理

新课标高考物理学史、物理思想方法(教科版)王城整理

新课标高考物理学史、物理思想方法(教科版)资中县球溪高级中学王城整理物理学史部分一、力学1.1683年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律。

必修1P721687年,正式发表万有引力定律。

必修2P472.1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);必修2P473.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体不会比轻物体下落得快;从而否定了亚里士多德的观点。

17世纪,伽利略指出:在地面上运动的物体之所以会停下来,是因为摩擦力的缘故,他通过理想实验法归纳得出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

必修1P71伽利略认为“力是改变物体运动状态的原因”;亚里士多德认为“力是维持物体运动状态的原因”;伽利略首先发现单摆的等时性4.20世纪(1905年)爱因斯坦提出的狭义相对论;经典力学不适用于微观粒子和高速运动物体.5.17世纪,德国天文学家开普勒提出开普勒三定律6.1843-1845年间英国剑桥大学的学生亚当斯、法国天文学爱好者勒维耶应用万有引力定律计算出天王星外的未知天体(海王星)的质量、轨道和位置,1846年,柏林天文台的伽勒科学家观测到海王星。

7.1930年,汤姆博士根据海王星自身运动不规则性的记载发现了冥王星。

8.17世纪荷兰物理学家惠更斯确定了单摆的周期公式。

周期是2s的单摆叫秒摆。

9. 奥地利物理学家多普勒首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。

(相互接近,f增大;相互远离,f减少)二、电磁学1.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。

2.1752年,富兰克林在费城通过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。

高中物理学史和重要思想方法

高中物理学史和重要思想方法

高中物理学史和重要思想方法(1)理想模型法:为了便于进行物理研究或物理教学而建立的一种抽象的理想客体或理想物理过程,突出了事物的主要因素、忽略了事物的次要因素.理想模型可分为对象模型(如质点、点电荷、理想变压器等)、条件模型(如光滑表面、轻杆、轻绳、匀强电场、匀强磁场等)和过程模型(在空气中自由下落的物体、抛体运动、匀速直线运动、匀速圆周运动、恒定电流等).(2)极限思维法:就是人们把所研究的问题外推到极端情况(或理想状态),通过推理而得出结论的过程,在用极限思维法处理物理问题时,通常是将参量的一般变化推到极限值,即无限大、零值、临界值和特定值的条件下进行分析和讨论.如公式v =Δx Δt中,当Δt →0时,v 是瞬时速度.(3)理想实验法:也叫做实验推理法,就是在物理实验的基础上,加上合理的、科学的推理得出结论的方法,这也是一种常用的科学方法.如伽利略斜面实验、推导出牛顿第一定律等.(4)微元法:微元法是指在处理问题时,从对事物的极小部分(微元)分析入手,达到解决事物整体目的的方法.它在解决物理学问题时很常用,思想就是“化整为零”,先分析“微元”,再通过“微元”分析整体.(5)比值定义法:就是用两个基本物理量的“比”来定义一个新的物理量的方法,特点是:A=B C ,但A 与B 、C 均无关.如a =Δv Δt 、E =F q 、C =Q U 、I =q t 、R =U I 、B =F IL 、ρ=m V等. (6)放大法:在物理现象或待测物理量十分微小的情况下,把物理现象或待测物理量按照一定规律放大后再进行观察和测量,这种方法称为放大法,常见的方式有机械放大、电放大、光放大.(7)控制变量法:决定某一个现象的产生和变化的因素很多,为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,研究其他两个变量之间的关系,这种方法就是控制变量法.比如探究加速度与力、质量的关系,就用了控制变量法.(8)等效替代法:在研究物理问题时,有时为了使问题简化,常用一个物理量来代替其他所有物理量,但不会改变物理效果.如用合力替代各个分力,用总电阻替代各部分电阻等.(9)类比法:也叫“比较类推法”,是指由一类事物所具有的某种属性,可以推测与其类似的事物也应具有这种属性的推理方法.其结论必须由实验来检验,类比对象间共有的属性越多,则类比结论的可靠性越大.如研究电场力做功时,与重力做功进行类比;认识电流时,用水流进行类比;认识电压时,用水压进行类比.。

2023年高中物理学史归纳

2023年高中物理学史归纳

高考物理学史总结1、伽利略(1)通过理想试验推翻了亚里士多德“力是维持运动旳原因”旳观点(2)推翻了亚里士多德“重旳物体比轻物体下落得快”旳观点2、开普勒:提出开普勒行星运动三定律;3、牛顿(1)提出了三条运动定律。

(2)发现表万有引力定律;4、卡文迪许:运用扭秤装置比较精确地测出了引力常量5、爱因斯坦(1)提出旳狭义相对论(经典力学不合用于微观粒子和高速运动物体。

)(2)提出光子说,成功地解释了光电效应规律。

(3)提出质能方程E=mC2,为核能运用提出理论基础6、库仑:运用扭秤试验发现了电荷之间旳互相作用规律——库仑定律。

7、焦耳和楞次先后各自独立发现电流通过导体时产生热效应旳规律,称为焦耳——楞次定律。

8、奥斯特电流可以使周围旳磁针偏转旳效应,称为电流旳磁效应。

9、安培:研究了电流在磁场中受力旳规律10、洛仑兹:提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)旳观点。

11、法拉第(1)发现了由磁场产生电流旳条件和规律——电磁感应现象;(2)提出电荷周围有电场,提出可用电场描述电场12、楞次:确定感应电流方向旳定律。

13、亨利:发现自感现象。

14、麦克斯韦:预言了电磁波旳存在,指出光是一种电磁波,为光旳电磁理论奠定了基础。

15、赫兹:(1)用试验证明了电磁波旳存在并测定了电磁波旳传播速度等于光速。

(2)证明了电磁理旳存在。

16、普朗克提出“能量量子假说”——解释物体热辐射(黑体辐射)规律电磁波旳发射和吸取不是持续旳,而是一份一份旳17玻尔:提出了原子构造假说,成功地解释和预言了氢原子旳辐射电磁波谱。

18、德布罗意:预言了实物粒子旳波动性;19、汤姆生运用阴极射线管发现了电子,阐明原子可分,有复杂内部构造,并提出原子旳枣糕模型(葡萄干布丁模型)。

20、卢瑟福进行了α粒子散射试验,并提出了原子旳核式构造模型。

由试验成果估计原子核直径数量级为10-15 m。

21、卢瑟福:用α粒子轰击氮核,第一次实现了原子核旳人工转变,并发现了质子。

物理学史与物理思想方法

物理学史与物理思想方法

物理学史与物理思想方法1、胡克:英国物理学家;发现了胡克定律(F弹=kx)2、伽利略:意大利的著名物理学家伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。

4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。

5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。

6、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。

研究电流通过导体时的发热,得到了焦耳定律。

8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。

9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。

10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。

11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系通过实验得出欧姆定律。

12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。

13、安培:法国科学家;提出了著名的分子电流假说,发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则),14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。

15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。

高中物理学史总结

高中物理学史总结

高中物理学史总结导言物理学作为一门自然科学,研究物质、能量、力量和它们之间的相互作用规律,是人类认识和改造世界的基础。

高中物理作为一门必修课程,旨在培养学生的观察、实验、分析和推理等科学思维能力,为学生的科学素养和未来的职业发展奠定基础。

本文将对高中物理学史进行总结,带领读者了解物理学的发展历程和重要里程碑。

古代物理学古代物理学主要集中在希腊,其中最为著名的学派是亚里士多德的哲学学派。

亚里士多德提出了自然哲学的概念,认为自然现象是有目的的,物质被分成了四个元素:地、水、火和气。

这种观点在几个世纪内占据了主导地位,阻碍了物理学的进一步发展。

文艺复兴和科学革命文艺复兴时期,人们开始质疑亚里士多德的观点,开启了科学革命的大门。

在这个时期,一些著名科学家开始进行实验和观察,纳入了对自然的研究。

其中最著名的科学家是伽利略·伽利莱和托马斯·康普顿。

伽利略是现代物理学的奠基人之一,他通过实验和观察发现,物体在真空中下落的速度是与其质量无关的。

他还提出了惯性的概念,即物体保持静止或匀速直线运动的倾向。

伽利略的工作为后来的牛顿定律和力学的发展奠定了基础。

托马斯·康普顿是发现光的波粒二象性的重要科学家。

他发现X射线的散射现象是由于光具有粒子性质,并且通过测量散射光的波长和角度,成功计算出光的电磁波长。

古典物理学古典物理学主要发展于18世纪到19世纪初。

牛顿在这个时期提出了经典物理学的三大定律:1.牛顿第一定律(惯性定律):物体在没有外力作用的情况下将保持静止或匀速直线运动。

2.牛顿第二定律(运动定律):物体的加速度与作用在其上的力成正比,与物体的质量成反比。

3.牛顿第三定律(作用与反作用定律):对任何施加在物体上的力,物体都会施加一个同大小、反方向的力。

这三大定律为经典物理学奠定了基础,描述了物体的运动规律。

此外,18世纪还涌现出其他重要的物理学家,如安培、欧姆、法拉第等。

他们研究了电磁力和电学现象,奠定了电磁学的基础。

《2024年物理学史与物理教学结合的理论与实践研究》范文

《2024年物理学史与物理教学结合的理论与实践研究》范文

《物理学史与物理教学结合的理论与实践研究》篇一一、引言物理学作为一门基础科学,其发展历程与人类文明的发展紧密相连。

物理学史不仅是物理学的历史记录,更是物理教学的重要资源。

将物理学史与物理教学相结合,可以帮助学生更好地理解物理概念,增强学生的学习动力和兴趣,同时也能够让学生了解物理学的发展历程和未来发展趋势。

本文将探讨物理学史与物理教学结合的理论基础和实践经验。

二、物理学史与物理教学的理论结合1. 物理学史的教学价值物理学史的教学价值在于它能够帮助学生理解物理学的起源、发展和未来趋势。

通过学习物理学史,学生可以了解物理学家们的思想、方法和成果,从而更好地理解物理学的本质和规律。

此外,物理学史还可以帮助学生了解科学研究的方法和过程,培养学生的科学素养和创新能力。

2. 物理学史与物理教学的结合方式物理学史与物理教学的结合方式有多种,其中最常见的是在物理教学中穿插物理学史的内容。

教师可以在讲解物理概念和规律时,介绍相关的物理学史,让学生了解这些概念和规律的历史背景和科学家们的探索过程。

此外,教师还可以通过实验教学、科学探究等方式,将物理学史与物理教学相结合,让学生亲身体验科学家的探索过程和方法。

三、物理学史在物理教学中的实践应用1. 利用物理学史激发学生的学习兴趣通过介绍物理学史中的著名实验、发现和理论,可以激发学生的学习兴趣和好奇心。

例如,在讲解牛顿运动定律时,可以介绍牛顿的生平事迹和万有引力定律的发现过程,让学生了解科学家的探索精神和科学方法。

此外,教师还可以通过展示历史上的重要实验和发现,让学生了解科学技术的进步对人类社会的影响。

2. 借助物理学史加深学生对物理概念的理解在讲解物理概念和规律时,借助物理学史的背景和科学家们的探索过程,可以帮助学生更好地理解这些概念和规律的内涵和外延。

例如,在讲解量子力学时,可以介绍普朗克、爱因斯坦等科学家的研究历程和贡献,让学生了解量子力学的发展历程和应用领域。

这样不仅可以加深学生对概念的理解,还可以培养学生的科学思维和方法。

(完整版)高中物理学史总结

(完整版)高中物理学史总结

高中物理学史专题★伽利略(意大利物理学家)对物理学的贡献:①发现摆的等时性②物体下落过程中的运动情况与物体的质量无关③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)经典题目伽利略根据实验证实了力是使物体运动的原因(错)伽利略认为力是维持物体运动的原因(错)伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对)★胡克(英国物理学家)对物理学的贡献:胡克定律经典题目胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)★牛顿(英国物理学家)对物理学的贡献①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学②经典力学的建立标志着近代自然科学的诞生经典题目牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对)★卡文迪许贡献:测量了万有引力常量典型题目牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对)★亚里士多德(古希腊)观点:①重的物理下落得比轻的物体快②力是维持物体运动的原因经典题目亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)★开普勒(德国天文学家)对物理学的贡献开普勒三定律开普勒发现了万有引力定律和行星运动规律(错)托勒密(古希腊科学家)观点:发展和完善了地心说哥白尼(波兰天文学家) 观点:日心说第谷(丹麦天文学家) 贡献:测量天体的运动威廉·赫歇耳(英国天文学家)贡献:用望远镜发现了太阳系的第七颗行星--天王星汤苞(美国天文学家)贡献:用“计算、预测、观察和照相”的方法发现了太阳系第九颗行星-—冥王星泰勒斯(古希腊)贡献:发现毛皮摩擦过的琥珀能吸引羽毛、头发等轻小物体★库仑(法国物理学家)贡献:发现了库仑定律-—标志着电学的研究从定性走向定量典型题目库仑总结并确认了真空中两个静止点电荷之间的相互作用(对)库仑发现了电流的磁效应(错)富兰克林(美国物理学家)①对当时的电学知识(如电的产生、转移、感应、存储等)作了比较系统的整理②统一了天电和地电密立根贡献:密立根油滴实验-—测定元电荷昂纳斯(荷兰物理学家)发现超导欧姆: 贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家)电流的磁效应(电流能够产生磁场)经典题目奥斯特最早发现电流周围存在磁场(对)法拉第根据小磁针在通电导线周围的偏转而发现了电流的磁效应(错)★法拉第贡献:①用电场线的方法表示电场②发现了电磁感应现象③发现了法拉第电磁感应定律(E=n△Φ/△t)经典题目奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象(对)法拉第发现了磁场产生电流的条件和规律(对)奥斯特对电磁感应现象的研究,将人类带入了电气化时代(错)★安培(法国物理学家)①磁场对电流可以产生作用力(安培力),并且总结出了这一作用力遵循的规律②安培分子电流假说经典题目安培最早发现了磁场能对电流产生作用(对)安培提出了磁场对运动电荷的作用力公式(错)狄拉克(英国物理学家)贡献:预言磁单极必定存在(至今都没有发现)★洛伦兹(荷兰物理学家)贡献:1895年发表了磁场对运动电荷的作用力公式(洛伦兹力)阿斯顿贡献:①发现了质谱仪②发现非放射性元素的同位素劳伦斯(美国) 发现了回旋加速器★楞次发现了楞次定律(判断感应电流的方向)★汤姆生(英国物理学家)贡献:①发现了电子(揭示了原子具有复杂的结构)②建立了原子的模型—-枣糕模型经典题目汤姆生通过对阴极射线的研究发现了电子(对)★卢瑟福(英国物理学家)指导助手进行了α粒子散射实验(记住实验现象)提出了原子的核式结构(记住内容)发现了质子经典题目汤姆生提出原子的核式结构学说,后来卢瑟福用粒子散射实验给予了验证(错)卢瑟福的原子核式结构学说成功地解释了氢原子的发光现象(错)卢瑟福的a粒子散射实验可以估算原子核的大小(对)卢瑟福通过对α粒子散射实验的研究,揭示了原子核的组成(对)★波尔(丹麦物理学家)贡献:波尔原子模型(很好的解释了氢原子光谱)经典题目玻尔把普朗克的量子理论运用于原子系统上,成功解释了氢原子光谱规律(对)玻尔理论是依据a粒子散射实验分析得出的(错)玻尔氢原子能级理论的局限性是保留了过多的经典物理理论(对)★贝克勒尔(法国物理学家)发现天然放射现象(揭示了原子核具有复杂结构)经典题目贝克勒尔通过对天然放射现象的研究发现了原子的核式结构(错)★伦琴贡献:发现了伦琴射线(X射线)★查德威克贡献:发现了中子★约里奥·居里和伊丽芙·居里夫妇①发现了放射性同位素②发现了正电子经典题目居里夫妇用α粒子轰击铝箔时发现电子(错)约里奥·居里夫妇用α粒子轰击铝箔时发现正电子(对)★普朗克贡献:量子论★爱因斯坦贡献:①用光子说解释了光电效应②相对论经典题目爱因斯坦提出了量子理论,普朗克提出了光子说(错)爱因斯坦用光子说很好地解释了光电效应(对)是爱因斯坦发现了光电效应现象,普朗克为了解释光电效应的规律,提出了光子说(错)爱因斯坦创立了举世瞩目的相对论,为人类利用核能奠定了理论基础;普朗克提出了光子说,深★麦克斯韦贡献:①建立了完整的电磁理论②预言了电磁波的存在,并且认为光是一种电磁波(赫兹通过实验证实电磁波的存在)经典题目普朗克在前人研究电磁感应的基础上建立了完整的电磁理论(对)麦克斯韦从理论上预言了电磁波的存在,赫兹用实验方法给予了证实(对)麦克斯韦通过实验证实了电磁波的存在(错)。

(完整版)高考高中物理学史归纳总结

(完整版)高考高中物理学史归纳总结

高考高中物理学史归纳总结必修部分:(必修1、必修2)一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

物理学史和物理方法

物理学史和物理方法

物理学史和物理方法物理学史是研究自然界物理现象和物体行为的学科的历史发展。

从古代到现代,物理学历经了多个阶段和重大的科学革命,逐步建立起了现代物理学的基础。

以下是物理学史中的一些重要时期和里程碑事件:1. 古代物理学:古希腊时期,一些哲学家如泰勒斯、毕达哥拉斯和阿那克西曼德开始对自然现象进行观察和思考,并提出了一些基本的物理概念。

2. 中世纪物理学:在中世纪,基督教教会对科学研究的限制导致物理学的发展较为缓慢。

然而,在这个时期,一些科学家如罗杰·培根和威廉·奥卡姆提出了一些重要的科学方法论,为后来的发展奠定了基础。

3. 文艺复兴时期:文艺复兴时期是物理学发展的重要时期。

伽利略·伽利莱通过自己的实验和观察,提出了一些重要的物理定律,如下落定律和斜面上物体滚动的定律。

他也是通过对天体运动的研究,支持了日心说的科学证据。

4. 牛顿力学革命:艾萨克·牛顿的《自然哲学的数学原理》(Principia Mathematica)于1687年出版,提出了经典力学的三大定律,描述了物体的运动和力的作用。

这个理论奠定了物理学的基础,并持续影响了几个世纪的研究。

5. 19世纪物理学:19世纪是物理学发展的重要时期,涌现出许多重要科学家和重大的发现。

迈克尔·法拉第发现了电磁感应定律,詹姆斯·克拉克·麦克斯韦完成了电动力学的统一理论,提出了麦克斯韦方程组。

同时,热力学、光学、声学等领域也得到了重要的发展。

6. 现代物理学:20世纪初,量子力学的发展引起了物理学的革命。

通过与经典物理学的不同方法和理论,量子力学革命性地推动了对微观领域的了解。

同时,相对论的出现也深刻地改变了物理学的观念和方法。

随后,还有一系列领域和理论的发展,如核物理、粒子物理、宇宙学等。

物理方法是指用来研究物理现象和解释自然规律的科学方法。

这些方法包括实验方法、观察方法、数学建模、推理和推测等。

高中物理学史总结

高中物理学史总结

高中物理学史总结高中课程标准中明确提出,高中教学旨在进一步提高学生的科学素养,从知识与技能、过程与方法、情感态度与价值观三个方面培养学生,使学生通过高中物理的学习逐步养成科学方法、科学态度、科学思维习惯、科学世界观,引导学生认识科学和技术的差别、科学技术对社会的影响、技术对环境的影响,强调认识和领悟科学的本质、科学与人文的关系,培养学生的社会责任感等。

可见,高中物理教学要让学生经历科学探究过程、了解物理学的研究方法、理解物理学的发展历史,从物理学发展的历程中领悟到科学事业的本质特性,体会物理学对经济和社会发展的贡献、深刻地理解物理学与人的存在关系,以及科学的发展对人的精神世界的影响,逐步形成科学态度和科学精神。

而物理学史集中地体现了人类探索和逐步认识物理世界的现象、特性、规律和本质的历程,在高中物理学中加强物理学史教育,展现历史上物理学家探索物理世界奥秘的艰辛历程,以其中的欢乐、困惑、惊奇和哲理去感染学生,把物理知识的逻辑展开与物理学认识的历史发展有机结合起来,将物理教学过程设计成是把“凝固的文化激活”的过程,把文化传播和学习转化成为历史上的创造者与今天的文习者之间的对话,让学生以物理学家认识世界本来面目的1/ 3态度去认识世界,确立物理学的意识,在获得物理知识的同时,全面提高学生的素养。

在物理学史中有不少伟人,他们都为了揭示自然真理做出过巨大贡献,并取得了辉煌成就,但随着的发展,人们不得不否定这些先辈们的某些错误结论和不正确猜想。

亚里士多德的很多物理知识,如“力是维持物体运动的原因”被人们接受了上千年,但伽利略通过“斜面小球滚动”实验的理想化分析,正确认识到物体运动并不需要力的维持,从而让人们知道亚里士多德也有错误的认识;关于光是波动说还是粒子说的争论,有很多科学家都参与其中,经典力学奠基人牛顿就是粒子说的代表,但当托马斯·杨的“双缝干涉”实验成功时,这位物理巨匠也不得不承认光的波动说;诺贝尔物理学奖获得者约瑟夫·约翰·汤姆逊发现了电子,并提出原子的“枣糕式”原子模型,但当他的学生卢瑟福发现“α粒子散射”实验后,他的“枣糕式”原子模型无论如何也不能解释这一实验现象,为此学生卢瑟福的“核式”原子模型取代了老师汤姆逊的“枣糕式”原子模型……这众多物理学史一定能让学生明白,在科学真理面前,人人是平等的,在这里,只要你努力探索,科学的大门就一定会为你打开,不论你多么渺小,都将获得人们的肯定和赞许。

高中物理学史知识点总结

高中物理学史知识点总结

《高中物理学史知识点总结》物理学的发展是一部波澜壮阔的历史画卷,它不仅展现了人类对自然规律的不懈探索,也为现代科技的进步奠定了坚实的基础。

在高中物理学习中,了解物理学史对于深入理解物理概念和规律至关重要。

本文将对高中物理学史知识点进行全面总结。

一、力学部分1. 亚里士多德亚里士多德是古希腊著名的哲学家和科学家。

他认为力是维持物体运动的原因,重物下落比轻物快。

虽然他的观点在现在看来存在错误,但在当时对物理学的发展起到了一定的推动作用。

2. 伽利略伽利略是近代科学的奠基人之一。

他通过理想斜面实验推翻了亚里士多德的观点,指出力不是维持物体运动的原因,而是改变物体运动状态的原因。

他还发明了天文望远镜,对天文学的发展做出了巨大贡献。

3. 牛顿艾萨克·牛顿是英国著名的物理学家、数学家和天文学家。

他提出了万有引力定律和牛顿运动三定律,奠定了经典力学的基础。

万有引力定律解释了天体运动的规律,牛顿运动三定律则描述了物体在力的作用下的运动规律。

二、热学部分1. 布朗英国植物学家布朗在 1827 年发现了布朗运动,即悬浮在液体中的微粒不停地做无规则运动。

布朗运动间接证明了分子的无规则运动。

2. 克劳修斯和开尔文德国物理学家克劳修斯和英国物理学家开尔文分别独立地提出了热力学第二定律。

克劳修斯表述为:热量不能自发地从低温物体传到高温物体。

开尔文表述为:不可能从单一热源吸收热量,使之完全变为有用功而不产生其他影响。

三、电磁学部分1. 库仑法国物理学家库仑通过扭秤实验得出了库仑定律,即真空中两个静止点电荷之间的相互作用力与它们的电荷量的乘积成正比,与它们之间距离的平方成反比。

2. 奥斯特丹麦物理学家奥斯特在 1820 年发现了电流的磁效应,即通电导线周围存在磁场。

这一发现打破了长期以来认为电与磁没有联系的观念。

3. 法拉第英国物理学家法拉第经过十年的不懈努力,终于在 1831 年发现了电磁感应现象,即闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流。

高考物理《常识、科学史、物理思维与方法》知识点总结

高考物理《常识、科学史、物理思维与方法》知识点总结

高考物理《常识、科学史、物理思维与方法》知识点总结一、矢量与标量1.矢量:既有大小又有方向,且加减运算遵循平行四边形定则或三角形定则.常见矢量:位移、速度、加速度、力、电场强度、磁通量、磁感应强度2.标量:只有大小没有方向,且加减运算遵循代数运算定则.常见标量:时间、时刻、路程、电流、功、能量、电势、电势能、功率、速率3.平行四边形定则:以表示这两个力的线段为邻边用力的图示作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向.4.三角形:将两个力头尾相连,则合力由第一个力的起点指向第二个力的终点.二、国际单位制1.基本量:被选定作为基本单位的物理量,它们的单位叫基本单位.2.导出量:由基本量根据物理关系推导出来的其他物理量,推导出来的相应单位叫作导出单位3.单位制:基本单位和导出单位组成了单位制.技巧点拨:①在解题计算时,已知量均采用国际单位制,计算过程中不用写出各个量的单位,只要在式子末尾写出所求量的单位即可.②单位制可以帮助我们检查记忆中的物理公式和计算结果是否正确.三、各种粒子及其符号α粒子H42、质子H11、中子n10、电子e01 、氘核H21、氚核H31四、物理学史简化必背版1.万有引力定律→牛顿2.“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”→库仑3.利用带电油滴在竖直电场中的平衡,得到了基本电荷e →密立根4.研究阴极射线,发现电子,测得了电子的比荷e/m;提出了“枣糕模型”→汤姆生5.发明了威尔逊云室以观察α、β、γ射线的径迹→威尔逊6.单摆的等时性→伽利略7.首先用电场线描述电场→法拉第8.分子电流假说→安培9.建立了电磁场理论→麦克斯韦10.光的微粒说→牛顿11.光的电磁说→麦克斯韦12.电流的磁效应→奥斯特13.质子的发现→卢瑟福14.粒子散射实验→卢瑟福15.原子的核式结构模型→卢瑟福16.光电效应规律,光子说相对论,质能方程→爱因斯坦17.采用了理想实验和逻辑推理的方法→伽利略18.测出了万有引力常量。

高中物理 最全的物理学史

高中物理 最全的物理学史

【高中物理】最全的物理学史一、力学:1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2.1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

4.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5.英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比。

6.1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

7.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

8.17世纪,德国天文学家开普勒提出开普勒三大定律;9.牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10.1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理学史总结1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,最早研究“匀加速直线运动”,导出S正比于t2并给以实验检验;伽利略的科学推理方法是人类思想史上最伟大的成就之一。

17世纪,伽利略通过构思的斜面理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

另外他还发现了“摆的等时性”。

1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

牛顿于1687年正式发表万有引力定律,1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量(微小形变放大思想);另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。

历史上关于光的本质有两种学说:一种是牛顿主张的微粒说——认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说——认为光是在空间传播的某种波。

爱因斯坦,德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。

提出了“质能方程E=mc2”。

经典力学不适用于微观粒子和高速运动物体。

1905年爱因斯坦:受到普朗克的启发在德国物理学家赫兹首先发现“光电效应”实验(注:实验做法)的基础上提出了“光子说”,成功地解释了光电效应规律,提出著名的爱因斯坦光电效应方程:E k=hv—W)因此获得诺贝尔物理奖。

1905年爱因斯坦:提出狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

狭义相对论的其他结论:①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。

③相对论质量:物体运动时的质量大于静止时的质量。

1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子,把物理学带进了量子世界;E与频率υ成正比,即E=hv;另外其在热力学方面也有巨大贡献。

1913年,丹麦物理学家玻尔把普朗克的量子理论应用到原子系统上,提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础;玻尔最先得出氢原子能级表达式。

十九世纪末以前建立的物理学通常称为经典物理学,按照经典物理学理论,如果带电粒子做变速运动,包括振动和圆周运动,粒子一定以电磁波的形式向外辐射能量,辐射的频率等与振动或圆周运动的频率。

为了解释与经典物理学的一系列矛盾,玻尔提出了自己的原子结构假说,即玻尔理论。

英国物理学家汤姆生发现电子,说明原子是可分的,有复杂的内部结构,并提出原子的枣糕模型,在当时能解释一些实验现象。

并测得了电子的比荷e/m;研究了阴极射线,并指出:阴极射线是高速运动的电子流,因此获得了诺贝尔物理学奖。

汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。

1896年,法国物理学家贝克勒尔:首次发现铀的天然放射现象,说明原子核也有复杂的内部结构即原子核也是可分的。

天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。

衰变快慢与原子所处的物理和化学状态无关。

1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。

1934年,老居里夫妇的女儿女婿约里奥-居里夫妇用α粒子轰击铝箔时,首先发现了正电子和人工放射性同位素。

1909-1911英国物理学家卢瑟福进行了α粒子散射实验,说明了原子中的正电荷与原子质量一定集中在一个很小的核上,提出原子核式结构模型。

1919年卢瑟福用氦核轰击氮核的实验产生了氧的同位素,第一次实现了原子核的人工转变,并产生了氢原子核,命名为质子。

卢瑟福还预言了中子的存在。

1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。

1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。

法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

还提出了著名的分子电流假说。

②发现电流的相互作用规律③发明了电流计④提出分子电流假说⑤总结了电流元之间的作用规律——安培定律1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。

1837年,法拉第最早引入了电场概念,并提出用电场线表示电场,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。

赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用莱顿瓶所做的实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。

麦克斯韦:英国科学家;1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,建立了完整的电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体,小到电子质子,大到行星太阳都有一种波与之对应,波长是λ=h/p,这种波称物质波,又称德布罗意波。

1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。

电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。

1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e的电荷量,获得诺贝尔奖。

焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。

研究电流通过导体时的发热,得到了焦耳定律。

17世纪,荷兰物理学家惠更斯确定了单摆周期公式。

周期是2s的单摆叫秒摆。

提出了机械波的波动现象规律——惠更斯原理。

在对光的研究中,提出了光的波动说。

1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比,即欧姆定律。

在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。

1895年,德国物理学家伦琴继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线,并为他夫人的手拍下世界上第一张X射线的人体照片。

X射线具有很强的穿透本领,能使荧光物质发出荧光,还能使照相底片感光。

高速电子流射到任何固体上都能产生这种射线。

1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时,发现了康普顿效应,证实了光的粒子性。

康普顿效应不仅证明光子具有能量,也证明光子具有动量,碰撞过程中遵守动量和能量守恒。

1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。

托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地通过“杨氏双缝干涉实验”观察到了光的干涉现象,证实了光的波动性。

17世纪,德国天文学家开普勒提出开普勒三大定律。

18世纪中叶,美国人富兰克林提出了正、负电荷的概念。

1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。

1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。

1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。

16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。

1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

1932年,美国物理学家劳伦兹发明了回旋加速器,能在实验室中产生大量的高能粒子。

1835年,美国科学家亨利发现自感现象,日光灯的工作原理即为其应用之一。

1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

1621年,荷兰数学家斯涅耳找到了折射现象中入射角与折射角之间的规律——折射定律。

1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。

物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验——量子论(微观世界);19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

激光——被誉为20世纪的“世纪之光”;1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。

1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。

1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。

相关文档
最新文档