第三章 资金的时间价值

合集下载

工程经济学第三章

工程经济学第三章

2.复利法
• 例如:现有一笔本金P在年利率是i的条件下, 当计息期数为n时,则本利和Fn为
1个计息期后F1 P P i P(1 i) 2个计息期后F2 P(1 i) P(1 i)i P(1 i)2 3个计息期后F3 P(1 i)2 P(1 i)2 i P(1 i)3 ... n -1个计息期后Fn-1 P(1 i)n-2 P(1 i)n-2 i P(1 i)n-1 n个计息期后Fn P(1 i)n-1 P(1 i)n-1i P(1 i)n
第三章 资金的时间价值 与等值计算
第一节 资金的时间价值与等值计算的概念
• 一、资金的时间价值概念 • 将资金投入使用后经过一段时间,资金便
产生了增值,也就是说,由于资金在生产 和流通环节中的作用,使投资者得到了收 益或盈利。不同时间发生的等额资金在价 值上的差别,就是资金的时间价值。
一、资金的时间价值概念
等额分付终值计算公式
(1 i)n 1
F A[
]
i
• (1 i)n 1 称 为 等 额 分 付 终 值 系 数 , 记 为 (F/A,ii,n);
• 应用 F A[(1 i)n 1] 应满足: (1)每期支付金额i 相同(A值);
(2)支付间隔相同(如一年);
(3)每次支付都在对应的期末,终值与最后 一期支付同时发生。
息周期为多少,每经一期按原始本金计息一
次,利息不再生利息。单利计息的计算公式

In P ni
• In为n个计息期的总利息,n为计息期数,i为 利率。
1.单利法
• N个计息周期后的本利和为
Fn P P n i P (1 n i)
单利法的本金、利息和本利和
2.复利法
• 复利法按本利和计息,也就是说除了本金 计息外,利息也生利息,每一计息周期的 利息都要并入下一期的本金,再计利息。

第三章资金的时间价值

第三章资金的时间价值

例6:如果某工程1年建成并投产,寿命10年,每年净收益为2万元, 按10%折现率计算,恰好能够在寿命期内把期初投资全部收回,问 该工程期初所投入的资金为多少? 解: n 10
(1 + i ) - 1 (1 + 0.1) - 1 ] = 2*[ ] n i (1 + i ) 0.1*(1 + 0.1) 2*6.1445 = 12.289 P = A[


2、等差支付现值公式
因:
P = F ( P / F , i, n) = F * 1 (1 + i ) n
G (1 + i ) n - 1 n *G F = G ( F / G , i, n) = [ ]i i i G (1 + i ) n - 1 n *G 1 P ={ [ ]}* i i i (1 + i ) n G (1 + i ) n - 1 n = [ ] n n i i (1 + i ) (1 + i ) G = [( P / A, i, n) - n( P / F , i, n)] i = G ( P / G , i, n)
第三章 资金的时间价值

第一节 资金的时间价值 一、概念:是指资金在扩大再生产及其循环周转过



程中,随着时间变化而产生的资金增值或经济效益的 现象。 资金运动是资金具有时间价值的前提
充分认识和正确运用资金的时间价值,对提高资金利用率和投资 经济效益,具有十分重要的意义: 1、资金的时间价值,是商品生产和商品交换条件下的一个经济 范畴。 2、重视资金的时间价值可以促使建设资金的合理利用,使有限 的资金发挥更大的作用。 3、对外开放的政策要求我们重视资金的时间价值。

第三章 资金的时间价值

第三章 资金的时间价值
F=P · (F/P,i,n)
式中,系数(F/P,i,n)可理解为已知P,i,n 求 F之意。
25
例:某企业购置一台新设备,方案实施时,立 即投入20000元,第二年又投入15000元,第5年 又投入 10000 元,年利率为 5% ,问第 10 年末此 设备价值为多少? F=?
解:
0 20000 1 2 3 4
=60 19.599
=1175.94(元)
31
例2:某汽车运输公司为将来的技术改造筹集资金,每年年
末用利润留成存入银行30万元,欲连续积存5年,银行复 利利率为8%,问该公司5年末能用于技术改造的资金有 多少? 解:由公式有
(1 i ) n 1 F= A[ ]=A· (F/A,8%,5) i
某项目有两个贷款方案:(1)年利率16%,每 年计息一次;(2)年利率15%,每月计息一次 。应选择哪个贷款方案为优? 解: 方案1的实际利率i1 = 16% 方案2的实际利率 12 i2=(1+15%/12) - 1= 16.08% i1i2,选用方案1归还的本利和小于方案2, 因此,应选方案1为优。
23
一、一次性支付
1. 已知P,在n、i 确定时,求F。 F=?
0 1 2 n-2 n-1 n
P
计算公式为:

( F / P, i, n) F P (1 i) P·
n
式中,系数(1+i)n 称为一次支付终值系数, 用符号(F/P,i ,n)表示。
24
计息期开始的金额+期内获息=期末本利和 第1年P+iP= P(1+i)
建设投资 流动资金 经营成本 销售税金及附加 所得税 净现金流量表
4
5 6

第3章 资金时间价值-工程经济学

第3章 资金时间价值-工程经济学
利息的计算有单利计息和复利计算两种,因此,资金时间 价值的计算方法可以采用单利计息和复利计息。
(一)单利计息
单利计息是指仅按本金计算利息,利息不再生息,其利息总额与借 贷时间成正比。其利息计算公式为:
In P n i
n个计息周期后的本利和为:
(3-3) (3-4)
Fn P1 i n
第二节 资金时间价值概述
一、资金时间价值概念及意义 (一)资金时间价值的意义
在工程经济活动中,时间就是经济效益。因为经济效益是在一定 时间内创造的,不讲时间,也就谈不效益。比如100万元的利润 是一年创造的,还是一年创造的,其效果是大不一样的。因此, 重视时间因素的研究,对工程经济分析有关重要的意义。 在工程经济效果评价中,经常会遇到以下几类问题: 1.投资方式不同的方案。 2.投产方式不同的方案。 3.使用寿命不同的方案。 4.实现技术方案后,各年经营费用不同的方案评价。
第二节 资金时间价值概述
三、计算资金时间价值的基本公式 (二)复利计息 复利 计息
复利计息,是指对于某一计息周期来说,按本金加 上先前计息周期所累计的利息进行计息,即“利生 利”、“利滚利”。
按复利方式计算利息时,利息的计算公式为:
I n P[1 i 1]
n
(3-5) (3-6)
但当按复利计算时,上述“年利率6%,每月计息一次”
第二节 资金时间价值概述
三、计算资金时间价值的基本公式
(三)名义利率与实际利率的概念
2.名义利率与实际利率的关系
设名义利率为r,若年初借款为P,在一年中计息m次,求实际i。 则有: 每一计息周期的利率为 ,一年后的复本利和为: F P 1 故实际利率为: m r P 1 P m m FP r i 1 1 P P m

【价值管理】3第三章资金时间价值计算

【价值管理】3第三章资金时间价值计算

练习: 根据下列现金流量图进行有关计算,i=6%。
*等差系列的复利公式
等差数列是指等额增加或等额减少的现金流 量数列。
其特点是现金流量每个计息期改变的数额是 相等的,即相对差是相同的。
等差值用G表示。
等差现值公式:已知G求P。
记为:P=G(P/G,i,n)
例,某人计划于第一年年底存入500 元,并在此后的9年内,每年存款额 逐年增加100元。若利率为5%,求存 款现值与终值。
*名义利率和实际利率
名义利率:就是挂名的利率,非有效利率。 时间单位为“年”。
实际利率:有效利率。时间单位为“年”。 判别:当一年内的计息次数m超过1次(m>1)
时,此时的年利率即为名义利率。 周期利率:以计息期为时间单位的实际利率。
实施方案的初期投资发生在方案寿命期的期初; 方案实施中的经常性收入、支出,发生在计息期的
期末; P和F永远相差n个计息期; 已知A求F,所求F发生在最后一个A的同一个计息期; 已知A求P,所求P发生在第一个A的前一个计息期; 等差现值发生在等差开始的两个计息期之前; 当n→∞时,A=P·i,即P=A/i。
2、投资收益率低于多少时,应该考虑转让给 甲公司?
6、资金还原公式:已知P求A。 记为:A=P(A/P,i,n)
例:某人现在存入10万元,利率为10%,计划 从现在开始,连续5年内,于每年年末提取等 额资金,问每年提取多少,能将存款提取完 毕?
于每年年初提款,结果又如何?
若从第7年开始提款,结果又如何?
注:等差是从第二个计息期开始的,而所计 算的现值发生在第0期。 规则3、等差现值发生在等差开始的两个计息 期之前。
P=500(P/A,5%,10)+100(P/G,5%,10)

2012最新版《技术经济学原理与实务》第三章资金的时间价值

2012最新版《技术经济学原理与实务》第三章资金的时间价值

第3章资金时间价值与等值计算学习目标 (1)了解现金流量和现金流量图概念 (2)理解资金的时间价值的含义 (3)掌握资金的等值计算 (4)掌握资金等值计算公式 3.1 资金时间价值一、资金时间价值的概念资金的时间价值:是指把资金投入到生产或流通领域后,资金随时间的不断变化而产生增值的现象。

二、利息和利率利息:是指资金的时间价值中的增值部分,也可理解为占用资金所付出的代价;或放弃使用资金所获得的报酬。

利率:是指单位时间内利息与本金之比。

这里所说的单位时间,可以是年、季、月、日等。

习惯上,年利率用百分号(%)表示;而月利率用千分号(‰)表示。

三、理想的资本市场(1)金融市场完全是竞争性的。

(2)无交易费用。

(3)情报是完整的、无偿使用的,任何人都可以得到。

(4)所有的个人和公司都按照相同的条款借款和贷款,即只有一个利率。

四、利率平衡市场价格利率确定受两个相反力量的作用,其一,在消费者方面,要求利率具有推迟消费和促进节余的吸引力;其二,在生产这方面,用节余资金投资产生收益的能力确实有限的。

这两种力量均衡时,资金的市场价格――利率就能确定。

可见资金的时间价值是资金投入生产或流通过程中产生的新的价值。

利率杠杆的作用1、调节资本市场 2、控制通货膨胀 3、维持适度的经济增长率技术经济评价中常用的利率 1、财务基准收益率 2、社会折现率 3.2 现金流量与现金流量图一、现金流和现金流图(一)现金流为了对建设项目进行经济评价,需要对项目各年的资金流动情况作出描述。

如果把项目看成是一个系统,为了项目的建设或生产,某一时刻流入系统的资金称为该时刻的现金流入(现金收入),用正的符号表示;而流出系统的资金称为该时刻的现金流出(现金支出),用负的符号表示。

若某一时刻既有现金流入,又有现金流出,则该时刻系统的现金流入和现金流出的代数和称为净现金流量,简称为某时刻的现金流。

(二)现金流图及其做法为了计算的需要,把项目寿命周期内的现金流与时间的关系用图形表示出来,这就是现金流图。

工程经济学 第三章 资金的时间价值

工程经济学 第三章 资金的时间价值
F=P(1+i)n
.
复利法的计算
年份
年初本金P
1
P
2 P(1+i)
当年利息I
P·i P(1+i) ·i
年末本利和F
P(1+i) P(1+i)2
… … … …
n-1 P(1+i)n-2 P(1+i)n-2 ·i P(1+i)n-1 n P(1+i)n-1 P(1+i)n-1 ·i P(1+i)n
n年末本利和的复利计算公式为: F= P(1. +i)n
资金的时间价值一般用利息和利率来度量。 1、利息
就是资金的时间价值。它是在一定时期内, 资金的所有者放弃资金的使用权而得到的补偿 或借贷者为获得资金的使用权所付出的代价。 通常情况下,利息的多少用利率来表示。在工 程经济学中,“利息”广义的含义是指投资所 得的利息、利润等,即投资收益。利息通常用 “I”表示。
资金产生价值的条件: 第一,投入生产或流通领域; 第二,存在借贷关系。
资金的时间价值是客观存在的,只要商品生产存在, 资金就具有时间价值。
通货膨胀是指由于货币发行量超过商品流通实际需要 量而引起的货币贬值和物价上涨现象。
.
资金的价值不只体现在数量上,而且表现在时间上。 投入一样,总收益也相同,但收益的时间不同。
I代表总利息
P代表本金
i代表利率
n代表计息周 期数
单利虽然考虑了资金的时间价值,但对以前 已经产生的利息并没有转入计息基数而累计 计息。因此,单利计算资金的时间价值是不 完善的。
.
(二)复利
将本期利息转为下期的本金,下期按本期 期末的本利和计息,这种计息方式称为复利。 在以复利计息的情况下,除本金计算之外,利 息再计利息,即“利滚利”。

3.资金的时间价值

3.资金的时间价值
F=?

0 1 23
t
n
A
(F/A,i,n)称作年金终值系数。
31
二、资金等值计算
F A(1 i)n1 A(1 i)n2 A(1 i) A
两边乘以(1 i)得
F (1 i) A(1 i)n A(1 i)n1 A(1 i)2 A(1 i)
同一数量的资金,在不同时间内,将具有 不同等的价值; 不同等的两笔资金,在不同时间内,将有 可能具有相等的价值。 影响资金等值的因素有三个:资金额的大小、 资金发生的时间和资金时间价值率。
24
• 现值。现值是指资金现在的价值,是资金处于资 金运动起点时刻的价值,又称为“本金”,以符 号P表示。
本利和: F=P(1+ni)=100(1+5×0.1)=150(万元)
利 息:50万元 (2)复利法
本利和 F=P(1+i)n =100(1+0.1)5 =161.05(万元)
利 息:61.05万元
16
我国银行对储蓄存款利息是按单利计算的。
整存整取
三个月 1.71% 半年 1.98% 一年 2.25% 二年 2.79% 三年 3.33% 五年 3.60%
• 终值。终值是现值在未来时点上的等值资金。相 对现值而言,终值又称为将来值、本利和,以符 号F表示。
• 等年值。等年值是指分期等额收付的资金值。由 于各期间隔通常为一年,且各年金额相等,故又 称为年金。以符号A表示。
• 贴现与贴现率。把终值换算为现值的过程叫贴现 或折现。贴现时所用的利率称为贴现率或折现率。
36
例 在银行中存一笔钱,可以使你在 今后的10年中每年收到20000元,你应 该存多少钱?(利率为8%)

技术经济与企业管理第三章资金的时间价值

技术经济与企业管理第三章资金的时间价值
答:购买者可获年利率为9.2% 。
技术经济与企业管理第三章资金的时 间价值
二、复利计算公式
• 复利公式计算符号如下: P:现值,i:
折现率,n:时间周期数,F:终值,A: 等额年金
技术经济与企业管理第三章资金的时 间价值
1.复利终值公式,
复利终值公式(已知现值P,求终值F),该问题可用如
下现金流图表示。
n

技术经济与企业管理第三章资金的时 间价值
4.偿债基金公式
偿债基金公式(已知终值F,求年金A),该问题可用如 下现金流图表示。
0 1 2 ···· A=?
F
n 年
技术经济与企业管理第三章资金的时 间价值
5.年金现值公式
年金现值公式(已知年金A,求现值P),该问题可用如 下现金流图表示。
A
0 1 2 ····· P=?
期数(期末) 期初本金
本期利息
期末本利和
1
P
2
P
3
P


n
P
Pi
F1=P(1+i)
Pi
F2=P(1+2i)
Pi
F3=P(1+3i)


Pi
Fn=P(1+ni)
技术经济与企业管理第三章资金的时 间价值
2.复利法:复利计息时,不仅本金计息,而且利
息也生息。即把前期中的利息加到本金中去,作
为本金的计息本金。复利计息更符合资金在社会
在计息期的期末;

(3)本期的期末即为下期的期初;

(4)现值P是当前期间开始时发生的;

(5)将来值F是当前以后的第n期期末发生的;

第三章 资金时间价值

第三章 资金时间价值

60万元
1000万
1000万
(2)
1338.2万
(3)
1000万元
012
60
48
1000万元
(4)
3 4 5 200万元
36
24 12
0 1 2 3 45
A=237.4 万元
分析:
四种偿还方式5年来偿还给银行的累计金额:
(1) 1300万元
(2) 1338.2万元
(3) 1180万元
(4) 1187万元
注意:现金流量图与选择的对象有关。
例:设有某项贷款为5000元,偿还期 为5年,年利率为10%,偿还方式有 两种:一是到期本利一次偿还;二 是每年付息,到期一次还本。就两 种方式画现金流量图。
以贷款者为对象,该系统现金流量图所示
8053
i=10%
01 2
3 45
5000
a
i=10% 500
01 2
答:P
A
i(1 (1
i)
i)n n
1
A(P / A, i, n)
100 4.2124 421 .24(万元)
(4)资本回收公式 银行现提供贷款P元,年利率为i,要求在 n年内等额分期回收全部贷款,问每年末 应回收多少资金?这是已知现值P求年金 A的问题。
记为(A/P,i,n),其 值可查附表。
A
0 12 3 4
n-2 n-1 n
P 等额分付现金流之二
从第1年末到第n年末有一个等额的现 金流序列,每年的金额均为A,这一等额 年金序列在利率为i的条件下,其现值是多 少?
上式为等额分付现值公式,
记为(P/A,i,n),(P/A,i,n)的值可查 附表。

工程经济学第3章 资金的时间价值

工程经济学第3章 资金的时间价值
利润 生产
t
t t
资金 原值流通 保Βιβλιοθήκη 箱资金 资金 新值 = 原值
资金 + 时间价值 利息
资金 原值
3.1.2 利息与利率
衡量资金时间价值的尺度 绝对尺度 —— 利息和利润
反映资金的盈利能力
相对尺度 —— 利息率和利润率
反映资金随时变化的增值速度
1。单利与复利
1)单利 —— 只对本金计算利息
In P i n
利息
I F P 1076.89 1000 76.89(元)
2) 名义利率与实际利率
工程经济中,通常是按年记息,但实际生活中有 季、月、周、日记息等多种约定。当记息期数与计 算复利次数不同,就出现名义利率和实际利率。
2。实际利率
一年内按几次记息后的全部利息与本金之比称为实际利率。
i (1 i ) n 内把本利和在每年年末以等额资金 P 取回。 n (1 i ) 1
5。复利系数表的用法 根据已知条件,需要求什么?从表中查出所需的复利系数。 [例4] 某项目资金(万元)流动情况如图所示,求终值、现 值、第四期期末的等额资金(i=10%)。
60 30 0 40 1 2 3 4 5 6 7 8 9 10 11 年
(4)可理解为:N点处有一笔资金F,折合到0点(已知利率i) 1 的数值大小为 F 。 n (1 i ) P可称为折现值或贴现值,i称为折现率。
3.3.2 等额分付
1.等额分付终值计算(已知A,求F)
F=? (1)现金流量图
0 1 2 3 。。。 n-1 n
A (2)计算公式
(1 i ) n 1 F A i
400
200 1200
0

工程经济学第三章资金的时间价值

工程经济学第三章资金的时间价值
资本约束条件下的方案选 择
在满足资本约束条件下选择最优方案,需要 考虑资本成本和项目组合的风险分散效应。
风险评估与不确定性分析
敏感性分析
分析项目主要不确定性因素的变化对项目经济评价指 标的影响程度,以评估项目的风险。
概率分析
通过预测不确定性因素的概率分布来评估项目的风险, 通常采用蒙特卡洛模拟等方法进行模拟分析。
在退休后,根据个人情况 和养老金规划,合理领取 养老金,以保障生活质量。
CHAPTER 04
工程经济学中资金时间价值的应用
工程项目的经济评价
净现值(NPV)
通过将项目未来现金流折现到项目开始时的现值来评估项目的经济价值。
内部收益率(IRR)
衡量项目投资回报率的指标,通过求解使得净现值等于零的折现率来得出。
折现现金流分析可以帮助投资者识别项目的净现值、内部收益率等关键指标,从而作出明智的投资决策。
资本预算
资本预算是企业对长期投资项目进行评估和决策的过程,包括项目的预期成本、收 益和风险。
资本预算的目的是确定哪些项目能够为企业创造长期价值,并为企业分配有限的资 源。
资本预算的编制需要考虑资金的时间价值,通过折现现金流分析等方法评估项目的 经济可行性。
工程经济学第三章资金 的时间价值
CONTENTS 目录
• 资金时间价值概述 • 资金时间价值的计算 • 资金时间价值的运用 • 工程经济学中资金时间价值的应用 • 资金时间价值的扩展概念
CHAPTER 01
资金时间价值概述
资金时间价值的定义
资金时间价值是指资金在投资和再投资过程中,由于时间因 素而形成的价值差额。简单来说,就是资金在投资过程中随 时间推移而产生的增值。
[ 感谢观看 ]

★第3章_资金的时间价值和等值计算-PPT精选文档

★第3章_资金的时间价值和等值计算-PPT精选文档
第三章 资金时间价值与现金流量的等值计算
第一节 资金的时间价值 一.资金的时间价值 1.资金的时间价值概念:把货币作为生产资金投入到生产或 流通领域…就会得到资金的增值, 资金的这种增值现象就叫做~。
从投资者角度看,是资金在生产与交换活动中给投资者带来的利润。 从消费者角度看,是消费者放弃即期消费所获得的报酬--利息。
P·i P (1+i)·i
P (1+i)2·i ……
P+P·i
= P (1+i)
P (1+i) (1+i ) = P (1+i)2
P (1+i)2 (1+i ) = P (1+i)3
……
……
n P (1+i)n-1
P (1+i)n-1·i P (1+i)n-1(1+i ) = P (1+i ) n
∴ 复利计息的本利和:Fn=P(1+i)n
课堂作业:若年利率为12%,每半年计息一次。问1000元在满一年时可增值多 少?
四.名义利率与实际利率:
从式i=(1+
r m
)m
-1
可得出如下结论:
⑴当m =1时, i = r, 即没有年实际利率与年名义利率之分。
Hale Waihona Puke ⑵当m>1时, i >r, 即:一年中,计息越频繁(即计息周期越短),实 际利率就越高于年名义利率。
第四章 第一节 资金的时间价值 一.资金时间价值 3.单利与复利
⑵复利计息:不仅本金生利,且利息也要生利,即用上一期期 末的本利和(作为新的本金)计算利息,即“利滚利”。
复利计算公式推导如下:
年 当年年初本金 ⑴
当年利息 ⑵

工程经济学课件(第3章资金的时间价值与等值计算)

工程经济学课件(第3章资金的时间价值与等值计算)

F
A1
i n
i
1
A1 i1
i n
i
1
6000 1 0.04 F / A,4%,4
6000 1.04 4.246
26495.04元
3.等额分付现值计算公式
已知一个技术方案或投资项目在n年内每 年末均获得相同数额的收益为A ,设利 率为i,求期初需要的投资额P 。
P
A
1 i1
A
F 1
i
i n
1
F A / F ,5%,3 200 0.31721
63.442(万元)
❖变化
若等额分付的A发生在期初,则需将年初 的发生值折算到年末后进行计算。 F
0 1234
n-1 n
A A'
A A1 i
F
A1 in
1
A1 i1 in
1
i
i
例题
例5:某大学生贷款读书,每年初需从银 行贷款6,000元,年利率为4%,4年后毕业 时共计欠银行本利和为多少?
r
1
er
1
n n
n n
第三节 资金的等值计算
❖基本概念 ❖一次支付类型计算公式 ❖等额分付类型计算公式
一、基本概念
1.决定资金等值的因素 ➢资金数额 ➢资金发生的时刻 ➢利率:关键因素
一、基本概念
2.几个概念
➢折现(贴现):把将来某一时点上的资金金额换 算成现在时点的等值金额的过程 ➢现值:折现到计算基准时点的资金金额 ➢终值:与现值相等的将来某一时点上的资金金额 ➢折现率:折现时的计算利率
名义利率为 r,则计息期利率为r/n
一年后本利和 年利息
F
P 1

第3章 资金的时间价值及基本计算公式

第3章 资金的时间价值及基本计算公式

第三节 基本计算公式
基本计算公式中常用的几个符号先加以说明,以便讨论。 P——本金或资金的现值,现值P是指相对于基准年(或当年)初的数值; F——到期的本利和,是指从基准年(初)起第n年年末的数值,一般称期值
或终值; A——等额年值,是指第一年至第n年的每年年末的一系列等额数值; G——等差系列的相邻级差值; i——折现率或利率,常以%计; n——期数,通常以年数计。
式中1/(1+i)n称为一次收付现值因子,可以[P/F,i,n]表 示。此处i称为贴现率或折现率,其值一般与利率相同。这种 把期值折算为现值的方法,称为贴现法或折现法。
例 某人10年后(末)需20万元买房子,按10%的年利率存款于银行,问现在 (年初)需存钱多少? P=200000/(1+10%)10=77108.66元
3.利息和利率
例 贷款100万元,年利率15%,试分别用单利和复利计算第五年未的本利和。 解:单利: F=P(1十ni)=100(1十5×0.15)=175(万元)
复利: F=P(1十i)n=100[1十0.15)5=201.14(万元) 单利计息贷款与资金占用时间是线性关系,利息额与时间按等差级数增值;复 利计息贷款与资金占用时间是指数变化关系,利息额与时间按等比级数增值。 当利率较高、资金占用时间较长时,所需支付的利息额很大。如上述的算例, 5年以后需还的本利和为201.14万元,比贷款100万元增加一倍多。
第一方案是在每年年末还本金2000元,再加所欠利息,即第一年偿还2800元, 第二年2600元,第三年2400元,第四年2200元,共偿还10000元。见表。
第二种方案可以采用每年年终只付利息的办法,到第四年末再一次付清本 金和该年的利息,见表.
从以上两个还款方案可以看出,虽然每年的支付额及其支付总额都不相同, 但这两种付款方案与原来的8000元本金,其价值是相等的。 所以对贷款者来说,任何一个还款方案都可以接受。但对借款者来说,则可 以根据资金的占有和利用情况选择对自己最有利的还债方案。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、基本概念
现金流量图几点说明 现金流量图a
现金流量图b
三、基本概念
3.现值P: 发生在或折算为某一特定时间序列起点的效
益或费用。
4.终值F(S): 发生在或折算为某一特定时间序列终点的效
益或费用。
三、基本概念
5.等额年金R(A): 发生在或折算为某一特定时间序列各计息期
末(不包括0期)的等额序列。
2.研究资金时间价值的意义 重视资金的时间价值,可促使有限的资金合
理使用,使有限的资金发挥更大的作用,在基本 建设过程中,尽量缩短建设周期,加速资金的周 转,节省资金占用的时间和数量,提高资金使用 的经济效益。
二、衡量资金时间价值的尺度
一、资金时间价值的意义 二、衡量资金时间价值的尺度 三、现金流量与等值的概念 四、计算资金时间价值的方法
单利法特点:在一定程度上,考虑了资金的 时间价值,不彻底,没有计算利息的利息,是一 种不完善的方法。
四、资金时间价值的计算方法
2.复利法: 用本金和累计利息之和计算资金时间价值的
方法。 除了本金的利息之外,还要计算利息的利息,
即利息还要生利。 计算公式:
F=P(1+i)n 式中各参数含义同单利法。
F =F1+F2+F3+……Fn-1+Fn =[R(1+i)n-1+R(1+i)n-2+R(1+i)n-3+……+
R(1+i) 1+R]
= R[(1+i)n-1+(1+i)n-2+(1+i)n-3+……+
(1+i) 1+1]
四、资金时间价值的计算方法

贷款1000万元,年利率为3%,按复利计息, 计算四年后偿还的本利和是多少?
复利法计算实例
计息周期 年初本金p (年) (万元)
当年利息pi (万元)
年末本利和 (万元)
1
1000
1000×3%=30
1000+30=1030 p+pi
2
1030 P(1+i)
1030×3%=30.9 p(1+i)i
1.10000 0.57619 0.40211 0.31547 0.26380 0.22961 0.20541 0.18744 0.17364 0.16275
0.909 1.736 2.487 3.170 3.791 4.355 4.868 5.335 5.759 6.144
一、一次支付序列复利公式
箭头的长短与收入(或支出)的大小成比例。 在箭头的地方,标明资金的数额,最后标明利率。
三、基本概念
现金流量图几点说明 (3)现金流量图与立脚点的位置有关。
如下图所示
a.在第一年年初借来1000元,每年计息一次, 第四年末需还1262元,利率 i=6%。
b.在第一年年初借出1000元,每年计息一次, 第四年末应得1262元,利率 i=6%。
4
1000 1000×3%=30 1090+30=1120



n
p
pi

F=p+npi
四、资金时间价值的计算方法
已知:p=1000万元,n=4年,i=3%。求F=?
解:F=P(1+ni)
=1000×(1+4×0.03)
=1120万元
如图:
0
i=3%
1
2
3
4
F=?
p=1000万元
四、资金时间价值的计算方法
与再生产的过程,就会得到增值,货币这种增值 的现象就称为资金的时间价值。
简单地说,是指同样数额的资金在不同的时 间点上具有不同的价值,资金的增值特征。
1.资金时间价值:
资金的时间价值,不是资金本身能够增值, 而是在生产和流通领域和劳动力相结合,才会产 生增值。
物化劳动:通过消耗生产资料(原材料、设 备、动力)提供的劳动。活劳动:劳动者提供的 劳动。
i=3%
0
1
2
3
4
F=?
p=1000万元
四、资金时间价值的计算方法
计息周期 年初本金 (年) (万元)
1
1000
2
1000
当年利息 (万元) 1000×3%=30 1000×3%=30
年末本利和 (万元)
1000+30=1030 1030+30=1060
3
1000 1000×3%=30 1060+30=1090
值系数
(F/R,i,n)
等额支付 序列偿债 基金系数
(R/F,i,n)
等额支付 序列资金 回收系数
(R/P,i,n)
等额支付 序列现值
系数
(P/R,i,n)
1.000 2.100 3.310 4.641 5.105 7.716 9.487 11.436 13.579 15.937
1.00000 0.47619 0.30211 0.21547 0.16380 0.12961 0.10541 0.08744 0.07364 0.06275
三、基本概念
现金流量图几点说明
(1)画一水平线为时间标尺,时间的推移 自左向右,每一格表示一个时间单位(每一格为 一个计息周期,计息周期为年、月等),应注意 的时每一格的终点与下一格的起点时重合的,即 每一个计息周期的终点和下一个计息周期的起点 是重合的。
三、基本概念
如图所示
三、基本概念
现金流量图几点说明
1030+30.9=1060.9 P(1+i)2
3
1060.9 P(1+i)2
1060.9×3%= 31.83 1060.9+31.83=1092.73
P(1+i)2i
P(1+i)3
4
1092.73 1092.73×3%= 32.78 1092.73+32.78=1125.51
P(1+i)3
P(1+i)3i
P(1+i)4


n
P(1+i)n-1
… P(1+i)n-1 i
… F=P(1+i)n
复利法计算实例 可以看出,不仅本金逐期计息,而且累计的
利息也逐期加利,这与单利法不同。
复利法特点是能充分反映资金时间价值,符 合客观实际,普遍采用的方法。
第二节 计算资金时间价值的普通复利公式
普通复利公式 以年复利公式计息,按年进行支付的复利计
1.100 1.210 1.331 1.464 1.611 1.772 1.949 2.144 2.358 2.594
一次支付序 列现值 系数
(P/F,i,n)
0.9091 0.8264 0.7513 0.6830 0.6209 0.5645 0.5132 0.4665 0.4241 0.3855
等额支付 序列未来
利息周期:用以表示利率的时间单位。(一 年、半年、一季度,一个月) 它们反映了资金随时间变化的增值率,因此衡量 资金时间价值的相对尺度。
三、基本概念
1.现金流量 含义:企业在研究周期内,实际支出(流出)
的资金与收入(流入)的资金,称为现金流量。 现金流入量,如产品销售收入,固定资产残值, 回收资金;现金流出量,如投资,流动资金,经 营成本及各项费用。
包括利息在内的累积值是多少?
在n年内,每年末投资R元,求第n年末累积
值是多少? 如图:
0
1
2
3 R
FF==?? n-1
n
-1
F1=?
FF==?? n
F2=?
F3=?
Fn-1=?
1、等额支付序列终值公式
分解成n个一次支付序列,由一次支付未来 值公式:F=P(1+i)n,得:
F1=R(1+i)n-1, F2=R(1+i)n-2, F3=R(1+i)n-3, ……, Fn-1=R(1+i) 1, Fn=R. F =F1+F2+F3+……Fn-1+Fn
二、衡量资金时间价值的尺度
1.利息、盈利或净收益:绝对尺度 利息是指银行存款获得的资金增值。 盈利或净收益:资金投入生产建设产生的资
金增值。 利息、盈利或净收益都是资金时间价值的体
现,是衡量资金时间价值的绝对尺度。
二、衡量资金时间价值的尺度
2.利率、盈利率或收益率:相对尺度
利率(盈利率或收益率):一定时间(通常为 年)的利息或收益占原投入资金的比率(如i=6 %,百分数表示).
算公式。按支付方式和等值换算的时点不同,可 分为不同的类型。
工程项目投资贷款时,有以下几种支付方式:
一次贷款,一次偿还——属于一次支付序列 一次贷款,分期等额偿还 分期等额贷款,一次偿还——属于等额支付 序列 等值换算的时点不同,现值P,未来值F,等 额年金R。
一、一次支付序列复利公式
1、一次支付序列将来值公式 2、一次支付序列现值公式
如图所示
5格表示5年,表示5个计息周期,以年为例, 标上顺序自左向右,第一年末与第二年初是重合 的。
三、基本概念
现金流量图几点说明 (2)箭头表示现金流动的方向
在时间标尺的下方,向下的箭头表示(现金 的减少)支出;在时间标尺的上方,向上的箭头 表示(现金的增加)现金的收入。
箭头的位置要画在计息周期的起点或终点的 位置且与时间标尺垂直。
1.单利法: 单利法计算公式:
F=P(1+ni)=P+nPi 式中:i-利率(用百分数表示%);
n-计息周期数(通常为年) P-本金(投资的现值) F -本利和=本金+利息(投资的未来值)
四、资金时间价值的计算方法
例 借出1000万元,四年后偿还,年利率为3%,
单利计息,求四年后应得的本利和为多少?
相关文档
最新文档