高考江苏数学试卷含附加题详细答案全版
2021年江苏省高考数学真题及参考答案
2021年江苏省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}42<<x x A -=,{}5432,,,=B ,则B A ⋂=()A.{}2 B.{}3,2 C.{}4,3 D.{}4,3,22.已知i z -=2,则()=+i z z ()A.i26- B.i24- C.i26+ D.i24+3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22 C.4D.244.下列区间中,函数()⎪⎭⎫⎝⎛-=6sin 7πx x f 单调递增的区间是()A.⎪⎭⎫ ⎝⎛20π, B.⎪⎭⎫⎝⎛ππ,2 C.⎪⎭⎫ ⎝⎛23ππ, D.⎪⎭⎫⎝⎛ππ223,5.已知1F ,2F 是椭圆149:22=+y x C 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.66.若2tan -=θ,则()=++θθθθcos sin 2sin 1sin ()A.56-B.52-C.52 D.567.若过点()b a ,可以左曲线xe y =的两条切线,则()A.ae b< B.be a< C.bea <<0 D.aeb <<08.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部答对的得5分,部分选对的得2分,有选错的得0分。
9.有一组样本数据n x x x 21,,由这组数据得到新样本数据n y y y 21,,其中()n i c x y i i ,2,1=+=,c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点()ααsin ,cos 1P ,()ββsin ,cos 2-P ,()()()βαβα++sin ,cos 3P ,()0,1A ,则()==C.213OP OP OP OA ⋅=⋅ D.321OP OP OP OA ⋅=⋅11.已知点P 在圆()()165522=-+-y x 上,点()04,A ,()20,B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA ∠最小时,23=PB D.当PBA ∠最大时,23=PB 12.在正三棱柱111C B A ABC -中,11==AA AB ,点P 满足1BB BC PB μλ+=,其中[]1,0∈λ,[]1,0∈μ,则()A.当1=λ时,P AB 1∆的周长为定值B.当1=μ时,三棱锥BC A P 1-的体积为定值C.当21=λ时,有且仅有一个点P ,使得BP P A ⊥1D.当21=μ时,有且仅有一个点P ,使得B A 1⊥平面PAB 1三、填空题:本题共4小题,每小题5分,共20分。
2022年江苏省高考数学真题及参考答案
2022年江苏省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}4<x x M =,{}13N ≥=x x ,则N M ⋂=()A.{}20<x x ≤ B.⎭⎬⎫⎩⎨⎧≤231<x xC.{}163<x x ≤ D.⎭⎬⎫⎩⎨⎧≤1631<x x2.已知()11=-z i ,则=+z z()A.2- B.1- C.1 D.23.在ABC ∆中,点D 在边AB 上,DA BD 2=.记m A C=,n D C=,则=B C()A.nm23- B.nm32+- C.nm23+ D.nm32+4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km ²;水位为海拔157.5m 时,相应水面的面积为180.0km ².将该水库在这两个水位间的形状看做一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()65.27≈()A.39100.1m⨯ B.39102.1m⨯ C.39104.1m⨯ D.39106.1m⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.61 B.31 C.21 D.326.记函数()()04sin >ωπωb x x f +⎪⎭⎫ ⎝⎛+=的最小正周期为T .若ππ223<<T ,且()x f y =的图象关于点⎪⎭⎫ ⎝⎛223,π中心对称,则=⎪⎭⎫ ⎝⎛2πf ()A.1B.23 C.25 D.37.设1.01.0ea =,91=b ,9.0ln -=c ,则()A.c b a << B.a b c << C.b a c << D.bc a <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为π36,且333≤≤l ,则该正四棱锥体积的取值范围是()A.⎥⎦⎤⎢⎣⎡48118, B.⎥⎦⎤⎢⎣⎡481427, C.⎥⎦⎤⎢⎣⎡364427, D.[]27,18二、选择题:本题共4小题,每小题5分,共20分。
江苏数学高考真题(含答案)
绝密★启用前2021年普通高等学校招生全国统一考试〔江苏卷〕数学I考前须知考生在答题前请认真阅读本考前须知及各题答题要求1. 本试卷共4页,包含非选择题〔第1题 ~ 第20题,共20题〕.本卷总分值为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每题5分,共计70分,请把答案填写在答题卡相应位置上1.集合{}=1,2A ,{}=+2,3B a a ,假设A B ={1}那么实数a 的值为________2.复数z=〔1+i 〕〔1+2i 〕,其中i 是虚数单位,那么z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,那么应从丙种型号的产品中抽取 件.4.右图是一个算法流程图,假设输入x 的值为116,那么输出的y 的值是 .5.假设tan 1-=46πα⎛⎫ ⎪⎝⎭,那么tan α= .6.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,那么12V V 的值是7.记函数2()6f x x x =+-的定义域为D.在区间[-4,5]上随机取一个数x ,那么x ∈ D 的概率是8.在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P,Q ,其焦点是F 1 , F 2 ,那么四边形F 1 P F 2 Q 的面积是9.等比数列{}n a 的各项均为实数,其前n 项的和为S n ,36763,44S S ==, 那么8a =10.某公司一年购置某种货物600吨,每次购置x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,那么x 的值是11.函数()3xx12x+e -e-f x =x ,其中e 是自然数对数的底数,假设()()2a-1+2a ≤f f 0,那么实数a 的取值范围是 。
2020年江苏省高考数学试卷(包括附加题)【含详答】
2020年江苏省高考数学试卷(理科)一、填空题(本大题共16小题,共100.0分)1.已知集合A={−1,0,1,2},B={0,2,3},则A∩B=______.2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是______.3.已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图,若输出y的值为−2,则输入x的值是______.6.在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是______.7.已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)的值是______.8.已知sin2(π4+α)=23,则sin2α的值是______.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是______cm3.10.将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是______.11.设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.已知数列{a n+b n}的前n项和S n=n2−n+2n−1(n∈N∗),则d+q的值是______.12.已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是______.13. 在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9.若PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ (m 为常数),则CD 的长度是______.14. 在平面直角坐标系xOy 中,已知P(√32,0),A 、B 是圆C :x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是______.15. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO′为铅垂线(O′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离ℎ1(米)与D 到OO′的距离a(米)之间满足关系式ℎ1=140a 2;右侧曲线BO 上任一点F 到MN 的距离ℎ2(米)与F 到OO′的距离b(米)之间满足关系式ℎ2=−1800b 3+6b.已知点B 到OO′的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k(万元),桥墩CD 每米造价32k(万元)(k >0),问O′E 为多少米时,桥墩CD 与EF 的总造价最低?16. 在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1、F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.二、解答题(本大题共9小题,共112.0分)17.在三棱柱ABC−A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF//平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.18.在△ABC中,角A、B、C的对边分别为a、b、c.已知a=3,c=√2,B=45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=−4,求tan∠DAC的值.519. 已知关于x 的函数y =f(x),y =g(x)与ℎ(x)=kx +b(k,b ∈R)在区间D 上恒有f(x)≥ℎ(x)≥g(x).(1)若f(x)=x 2+2x ,g(x)=−x 2+2x ,D =(−∞,+∞),求ℎ(x)的表达式; (2)若f(x)=x 2−x +1,g(x)=klnx ,ℎ(x)=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f(x)=x 4−2x 2,g(x)=4x 2−8,ℎ(x)=4(t 3−t)x −3t 4+2t 2(0<|t|≤√2),D =[m,n]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k =λa n+11k成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.21. 平面上的点A(2,−1)在矩阵M =[a 1−1b]对应的变换作用下得到点B (3,−4). (1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵M −1.22. 在极坐标系中,已知A(ρ1,π3)在直线1:ρcosθ=2上,点B(ρ2,π6)在圆C :ρ=4sinθ上(其中ρ≥0,0≤θ<2π). (1)求ρ1,ρ2的值;(2)求出直线l 与圆C 的公共点的极坐标.23.设x∈R,解不等式2|x+1|+|x|<4.24.在三棱锥A−BCD中,已知CB=CD=√5,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC中点.(1)求直线AB与DE所成角的余弦值;BC,设二面角F−DE−C的大小为θ,求sinθ的(2)若点F在BC上,满足BF=14值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n−1+q n−1的递推关系式和X n的数学期望E(X n)(用n表示).2020年江苏省高考数学试卷(理科)一、填空题(本大题共16小题,共100.0分)1.已知集合A={−1,0,1,2},B={0,2,3},则A∩B=______.【答案】{0,2}【解析】解:集合B={0,2,3},A={−1,0,1,2},则A∩B={0,2},故答案为:{0,2}.运用集合的交集运算,可得所求集合.本题考查集合的交集运算,考查运算能力,属于基础题.2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是______.【答案】3【解析】解:复数z=(1+i)(2−i)=3+i,所以复数z=(1+i)(2−i)的实部是:3.故答案为:3.利用复数的乘法的运算法则,化简求解即可.本题考查复数的乘法的运算法则以及复数的基本概念的应用,是基本知识的考查.3.已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是______.【答案】2【解析】解:一组数据4,2a,3−a,5,6的平均数为4,则4+2a+(3−a)+5+6=4×5,解得a=2.故答案为:2.运用平均数的定义,解方程可得a的值.本题考查平均数的定义的运用,考查方程思想和运算能力,属于基础题.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.【答案】19【解析】解:一颗质地均匀的正方体骰子先后抛掷2次,可得基本事件的总数为6×6=36种,而点数和为5的事件为(1,4),(2,3),(3,2),(4,1),共4种,则点数和为5的概率为P=436=19.故答案为:19.分别求得基本事件的总数和点数和为5的事件数,由古典概率的计算公式可得所求值.本题考查古典概率的求法,考查运算能力,属于基础题.5.如图是一个算法流程图,若输出y的值为−2,则输入x的值是______.【答案】−3【解析】解:由题意可得程序框图表达式为分段函数y ={2x ,x >0x +1,x ≤0,若输出y 值为−2时,由于2x >0, 所以解x +1=−2, 即x =−3,故答案为:−3,由已知中的程序语句可知:该程序的功能是利用程序框图表达式为分段函数计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6. 在平面直角坐标系xOy 中,若双曲线x 2a 2−y 25=1(a >0)的一条渐近线方程为y =√52x ,则该双曲线的离心率是______. 【答案】32【解析】解:双曲线x 2a2−y 25=1(a >0)的一条渐近线方程为y =√52x ,可得√5a=√52,所以a =2,所以双曲线的离心率为:e =c a =√4+52=32, 故答案为:32.利用双曲线的渐近线方程,求出a ,然后求解双曲线的离心率即可.本题考查双曲线的简单性质的应用,是基本知识的考查.7. 已知y =f(x)是奇函数,当x ≥0时,f(x)=x 23,则f(−8)的值是______. 【答案】−4【解析】【分析】本题考查函数的奇偶性的定义和运用:求函数值,考查转化思想和运算能力,属于基础题.由奇函数的定义可得f(−x)=−f(x),由已知可得f(8),进而得到f(−8).【解答】解:y=f(x)是奇函数,可得f(−x)=−f(x),当x≥0时,f(x)=x23,可得f(8)=823=4,则f(−8)=−f(8)=−4,故答案为:−4.8.已知sin2(π4+α)=23,则sin2α的值是______.【答案】13【解析】解:因为sin2(π4+α)=23,则sin2(π4+α)=1−cos(π2+2α)2=1+sin2α2=23,解得sin2α=13,故答案为:13根据二倍角公式即可求出.本题考查了二倍角公式,属于基础题.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是______cm3.【答案】12√3−π2【解析】【分析】本题考查柱体体积公式,考查了推理能力与计算能力,属于基础题.通过棱柱的体积减去圆柱的体积,即可推出结果.【解答】解:六棱柱的体积为:6×12×2×2×sin60°×2=12√3,圆柱的体积为:π×(0.5)2×2=π2,所以此六角螺帽毛坯的体积是:(12√3−π2)cm3,故答案为:12√3−π2.10.将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是______.【答案】x =−5π24【解析】【分析】本题考查三角函数的平移变换,对称轴方程,属于中档题.利用三角函数的平移可得新函数g(x)=f(x −π6),求g(x)的所有对称轴x =7π24+kπ2,k ∈Z ,从而可判断平移后的图象中与y 轴最近的对称轴的方程, 【解答】解:因为函数y =3sin(2x +π4)的图象向右平移π6个单位长度可得 g(x)=f(x −π6)=3sin(2x −π3+π4)=3sin(2x −π12), 则y =g(x)的对称轴为2x −π12=π2+kπ,k ∈Z , 即x =7π24+kπ2,k ∈Z ,当k =0时,x =7π24,当k =−1时,x =−5π24,所以平移后的图象中与y 轴最近的对称轴的方程是x =−5π24, 故答案为:x =−5π24.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______. 【答案】4【解析】解:因为{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),因为{a n }是公差为d 的等差数列,设首项为a 1;{b n }是公比为q 的等比数列,设首项为b 1,所以{a n }的通项公式a n =a 1+(n −1)d ,所以其前n 项和S a n =n[a 1+a 1+(n−1)d]2=d 2n 2+(a 1−d2)n ,当{b n }中,当公比q =1时,其前n 项和S b n =nb 1,所以{a n +b n }的前n 项和S n =S a n +S b n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1, 则{b n }的前n 项和为S b n =b 1(q n −1)q−1=b 1q n q−1+b 1q−1,所以S n =S a n +S b n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4, 故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值.本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.12. 已知5x 2y 2+y 4=1(x,y ∈R),则x 2+y 2的最小值是______. 【答案】45【解析】解:方法一、由5x 2y 2+y 4=1,可得x 2=1−y 45y 2,由x 2≥0,可得y 2∈(0,1], 则x 2+y 2=1−y 45y 2+y 2=1+4y 45y 2=15(4y 2+1y 2)≥15⋅2√4y 2⋅1y 2=45,当且仅当y 2=12,x 2=310, 可得x 2+y 2的最小值为45; 方法二、4=(5x 2+y 2)⋅4y 2≤(5x 2+y 2+4y 22)2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即y 2=12,x 2=310时取得等号, 可得x 2+y 2的最小值为45. 故答案为:45.方法一、由已知求得x 2,代入所求式子,整理后,运用基本不等式可得所求最小值; 方法二、由4=(5x 2+y 2)⋅4y 2,运用基本不等式,计算可得所求最小值.本题考查基本不等式的运用:求最值,考查转化思想和化简运算能力,属于中档题.13. 在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9.若PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ (m 为常数),则CD 的长度是______.【答案】0或185【解析】解:如图,以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,则B(4,0),C(0,3),由PA ⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32−m)PC ⃗⃗⃗⃗⃗ ,得PA ⃗⃗⃗⃗⃗ =m(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+(32−m)(PA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ), 整理得:PA⃗⃗⃗⃗⃗ =−2m AB ⃗⃗⃗⃗⃗ +(2m −3)AC ⃗⃗⃗⃗⃗ =−2m(4,0)+(2m −3)(0,3)=(−8m,6m −9).由AP =9,得64m 2+(6m −9)2=81,解得m =2725或m =0.当m =0时,PA⃗⃗⃗⃗⃗ =(0,−9),此时C 与D 重合,|CD|=0; 当m =2725时,直线PA 的方程为y =9−6m 8mx ,直线BC 的方程为x4+y3=1,联立两直线方程可得x =83m ,y =3−2m . 即D(7225,2125),∴|CD|=√(7225)2+(2125−3)2=185.∴CD 的长度是0或185. 故答案为:0或185.以A 为坐标原点,分别以AB ,AC 所在直线为x ,y 轴建立平面直角坐标系,求得B 与C 的坐标,再把PA⃗⃗⃗⃗⃗ 的坐标用m 表示.由AP =9列式求得m 值,然后分类求得D 的坐标,则CD 的长度可求.本题考查向量的概念与向量的模,考查运算求解能力,利用坐标法求解是关键,是中档题.14. 在平面直角坐标系xOy 中,已知P(√32,0),A 、B 是圆C :x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是______. 【答案】10√5【解析】解:圆C :x 2+(y −12)2=36的圆心C(0,12),半径为6,如图,作PC 所在直径EF ,交AB 于点D ,因为PA =PB ,CA =CB =R =6,所以PC ⊥AB ,EF 为垂径,要使面积S △PAB 最大,则P ,D 位于C 的两侧, 并设CD =x ,可得PC =√14+34=1,故PD =1+x ,AB =2BD =2√36−x 2,可令x =6cosθ,S △PAB =12|AB|⋅|PD|=(1+x)√36−x 2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ,0<θ≤π2,设函数f(θ)=6sinθ+18sin2θ,0<θ≤π2, f′(θ)=6cosθ+36cos2θ=6(12cos 2θ+cosθ−6),由f′(θ)=6(12cos 2θ+cosθ−6)=0,解得cosθ=23(cosθ=−34<0舍去), 显然,当0≤cosθ<23,f′(θ)<0,f(θ)递减;当23<cosθ<1时,f′(θ)>0,f(θ)递增,结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos 2θ=√53,故f(θ)max =6×√53+36×√53×23=10√5,则△PAB 面积的最大值为10√5. 故答案为:10√5.求得圆的圆心C 和半径,作PC 所在直径EF ,交AB 于点D ,运用垂径定理和勾股定理,以及三角形的面积公式,由三角换元,结合函数的导数,求得单调区间,计算可得所求最大值.本题考查圆的方程和运用,以及圆的弦长公式和三角形的面积公式的运用,考查换元法和导数的运用:求单调性和最值,属于中档题.15. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO′为铅垂线(O′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离ℎ1(米)与D 到OO′的距离a(米)之间满足关系式ℎ1=140a 2;右侧曲线BO 上任一点F 到MN 的距离ℎ2(米)与F 到OO′的距离b(米)之间满足关系式ℎ2=−1800b 3+6b.已知点B 到OO′的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k(万元),桥墩CD 每米造价32k(万元)(k >0),问O′E 为多少米时,桥墩CD 与EF 的总造价最低?【答案】解:(1)ℎ2=−1800b3+6b,点B到OO′的距离为40米,可令b=40,可得ℎ2=−1800×403+6×40=160,即为|O′O|=160,由题意可设ℎ1=160,由140a2=160,解得a=80,则|AB|=80+40=120米;(2)可设O′E=x,则CO′=80−x,由{0<x<400<80−x<80,可得0<x<40,总造价为y=32k[160−140(80−x)2]+k[160−(6x−1800x3)]=k800(x3−30x2+160×800),y′=k800(3x2−60x)=3k800x(x−20),由k>0,当0<x<20时,y′<0,函数y递减;当20<x<40时,y′>0,函数y递增,所以当x=20时,y取得最小值,即总造价最低.答:(1)桥|AB|长为120米;(2)O′E为20米时,桥墩CD与EF的总造价最低.【解析】(1)由题意可令b=40,求得ℎ2,即O′O的长,再令ℎ1=|OO′|,求得a,可得|AB|=a+b;(2)可设O′E=x,则CO′=80−x,0<x<40,求得总造价y=32k[160−140(80−x)2]+k[160−(6x−1800x3)],化简整理,应用导数,求得单调区间,可得最小值.本题考查函数在实际问题中的应用,考查导数的应用:求最值,考查运算能力和分析问题与解决问题的能力,属于中档题.16.在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1、F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.【答案】解:(1)由椭圆的标准方程可知,a 2=4,b 2=3,c 2=a 2−b 2=1, 所以△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A(1,32),设P(t,0),则直线AP 方程为y =321−t(x −t),椭圆的右准线为:x =a 2c =4,所以直线AP 与右准线的交点为Q(4,32⋅4−t1−t ),OP⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ =(t,0)⋅(t −4,0−32⋅4−t 1−t)=t 2−4t =(t −2)2−4≥−4, 当t =2时,(OP ⃗⃗⃗⃗⃗ ⋅QP ⃗⃗⃗⃗⃗ )min =−4.(3)若S 2=3S 1,设O 到直线AB 距离d 1,M 到直线AB 距离d 2,则12×|AB|×d 2=12×|AB|×d 1,即d 2=3d 1,A(1,32),F 1(−1,0),可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95, 由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以|m−3|√9+16=95,即m =−6或12,当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2),联立{y =34(x −2)x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2y N =0或{x M =−27y M =−127, 所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,△=9×(36−56)<0,所以无解,综上所述,M 点坐标为(2,0)或(−27,−127).【解析】(1)由椭圆标准方程可知a ,b ,c 的值,根据椭圆的定义可得△AF 1F 2的周长=2a +2c ,代入计算即可.(2)由椭圆方程得A(1,32),设P(t,0),进而由点斜式写出直线AP 方程,再结合椭圆的右准线为:x =4,得点Q 为(4,32⋅4−t1−t ),再由向量数量积计算最小值即可.(3)在计算△OAB 与△MAB 的面积时,AB 可以最为同底,所以若S 2=3S 1,则O 到直线AB 距离d 1与M 到直线AB 距离d 2,之间的关系为d 2=3d 1,根据点到直线距离公式可得d 1=35,d 2=95,所以题意可以转化为M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,根据两平行直线距离公式可得,m =−6或12,然后在分两种情况算出M 点的坐标即可.本题考查椭圆的定义,向量的数量积,直线与椭圆相交问题,解题过程中注意转化思想的应用,属于中档题.二、解答题(本大题共9小题,共112.0分)17. 在三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【答案】证明:(1)E ,F 分别是AC ,B 1C 的中点.所以EF//AB 1,因为EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF//平面AB 1C 1;(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABB 1, 所以B 1C ⊥AB ,又因为AB ⊥AC ,AC ∩B 1C =C ,AC ⊂平面AB 1C ,B 1C ⊂平面AB 1C , 所以AB ⊥平面AB 1C , 因为AB ⊂平面ABB 1,所以平面AB 1C ⊥平面ABB 1.【解析】(1)证明EF//AB 1,然后利用直线与平面平行的判断定理证明EF//平面AB 1C 1;(2)证明B 1C ⊥AB ,结合AB ⊥AC ,证明AB ⊥平面AB 1C ,然后证明平面AB 1C ⊥平面ABB 1.本题考查直线与平面垂直的判断定理以及平面与平面垂直的判断定理的应用,直线与平面平行的判断定理的应用,是中档题.18. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a =3,c =√2,B =45°.(1)求sin C 的值;(2)在边BC 上取一点D ,使得cos∠ADC =−45,求tan∠DAC 的值.【答案】解:(1)因为a =3,c =√2,B =45°.,由余弦定理可得:b =√a 2+c 2−2accosB =√9+2−2×3×√2×√22=√5,由正弦定理可得csinC =bsinB ,所以sinC =cb ⋅sin45°=√2√5⋅√22=√55, 所以sinC =√55;(2)因为cos∠ADC =−45,所以sin∠ADC =√1−cos 2∠ADC =35, 在三角形ADC 中,易知C 为锐角,由(1)可得cosC =√1−sin 2C =2√55, 所以在三角形ADC 中,sin∠DAC =sin(∠ADC +∠C)=sin∠ADCcos∠C +cos∠ADCsin∠C =2√525,因为∠DAC ∈(0,π2),所以cos∠DAC =√1−sin 2∠DAC =11√525,所以tan∠DAC =sin∠DAC cos∠DAC =211.【解析】(1)由题意及余弦定理求出b 边,再由正弦定理求出sin C 的值; (2)三角形的内角和为180°,cos∠ADC =−45,可得∠ADC 为钝角,可得∠DAC 与∠ADC +∠C 互为补角,所以sin∠DAC =sin(∠ADC +∠C)展开可得sin∠DAC 及cos∠DAC ,进而求出tan∠DAC 的值.本题考查三角形的正弦定理及余弦定理的应用,及两角和的正弦公式的应用,属于中档题.19. 已知关于x 的函数y =f(x),y =g(x)与ℎ(x)=kx +b(k,b ∈R)在区间D 上恒有f(x)≥ℎ(x)≥g(x).(1)若f(x)=x 2+2x ,g(x)=−x 2+2x ,D =(−∞,+∞),求ℎ(x)的表达式; (2)若f(x)=x 2−x +1,g(x)=klnx ,ℎ(x)=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f(x)=x4−2x2,g(x)=4x2−8,ℎ(x)=4(t3−t)x−3t4+2t2(0<|t|≤√2),D=[m,n]⊂[−√2,√2],求证:n−m≤√7.【答案】解:(1)由f(x)=g(x)得x=0,又f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图象为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x,符合任意,(2)ℎ(x)−g(x)=k(x−1−lnx),设φ(x)=x−1−lnx,设φ′(x)=1−1x =x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0,令p(x)=f(x)−ℎ(x)所以p(x)=x2−x+1−(kx−k)=x2−(k+1)x+(1+k)≥0,得,当x=k+1≤0时,即k≤−1时,f(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥−1,所以k=−1,当k+1>0时,即k>−1时,△≤0,即(k+1)2−4(k+1)≤0,解得−1<k≤3,综上,k∈[0,3].423所以函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)(x−x0)+(x04−2x03)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.由函数y=f(x)的图象可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2],又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0,设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84,所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t2−8)=√t6−5t4+3t2+8,t2=λ,则λ∈[1,2],由图象可知,n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√7,即n−m≤√7.【解析】(1)由f(x)=g(x)得x=0,求导可得f′(0)=g′(0)=2,能推出函数ℎ(x)的图象为过原点,斜率为2的直线,进而可得ℎ(x)=2x,再进行检验即可.(2)由题可知ℎ(x)−g(x)=k(x−1−lnx),设φ(x)=x−1−lnx,求导分析单调性可得,φ(x)≥φ(1)=0,那么要使的ℎ(x)−g(x)≥0,则k≥0;令p(x)=f(x)−ℎ(x)为二次函数,则要使得p(x)≥0,分两种情况,当x=k+1≤0时,当k+1>0时进行讨论,进而得出答案.(3)因为f(x)=x4−2x2,求导,分析f(x)单调性及图象得函数y=f(x)的图象在x=x 0处的切线为:y =(4x 03−4x 0)x −3x 04+2x 02,可推出直线y =ℎ(x)为函数y =f(x)的图象在x =t(0<|t|≤√2)处的切线.进而f(x)≥ℎ(x)在区间D 上恒成立;在分析g(x)−ℎ(x)=0,设4x 2−4(t 3−t)x +3t 4−2t 2−8=0,两根为x 1,x 2,由韦达定理可得x 1+x 2,x 1x 2,所以n −m =|x 1−x 2|=√t 6−5t 4+3t 2+8,再求最值即可得出结论.本题考查恒成立问题,参数的取值范围,导数的综合应用,解题过程中注意数形结合思想的应用,属于中档题.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k =λa n+11k成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.【答案】解:(1)k =1时,a n+1=S n+1−S n =λa n+1,由n 为任意正整数,且a 1=1,a n ≠0,可得λ=1; (2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ),从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ), 由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n };②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n2+(1−t)p n +1=0有两解α,β,设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β, 则对任意n ∈N ∗,S n+1S n=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件.对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值;(2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则Sn+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.21. 平面上的点A(2,−1)在矩阵M =[a 1−1b]对应的变换作用下得到点B (3,−4). (1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵M −1.【答案】解:(1)由题意,知[a 1−1b ]⋅[2−1]=[2a −1−2−b ]=[3−4], 则{2a −1=3−2−b =−4,解得a =2,b =2; (2)由(1)知,矩阵M =[21−12],设矩阵M 的逆矩阵为M −1=[mn p q ],∴M ⋅M −1=[21−12]⋅[mn pq ]=[2m +p 2n +q −m +2p −n +2q ]=[1001], ∴{2m +p =12n +q =0−m +2p =0−n +2q =1,解得m =25,n =−15,p =15,q =25, ∴M −1=[25−151525].【解析】(1)由[a 1−1b ]⋅[2−1]=[3−4],列方程组,求出a 、b 的值; (2)设矩阵M 的逆矩阵为M −1=[mn pq ],利用M ⋅M −1=[1001],列方程组求出m 、n 、p 和q 的值即可.本题考查了矩阵的变换与计算问题,也考查了运算求解能力,是中档题.22. 在极坐标系中,已知A(ρ1,π3)在直线1:ρcosθ=2上,点B(ρ2,π6)在圆C :ρ=4sinθ上(其中ρ≥0,0≤θ<2π). (1)求ρ1,ρ2的值;(2)求出直线l 与圆C 的公共点的极坐标. 【答案】解:(1)∵A(ρ1,π3)在直线1:ρcosθ=2上, ∴ρ1cos π3=2,解得ρ1=4.∵点B(ρ2,π6)在圆C :ρ=4sinθ上, ∴ρ2=4sin π6,解得ρ2=2.(2)由直线l 与圆C 得,方程组{ρcosθ=2ρ=4sinθ,则sin2θ=1.∵θ∈[0,2π],∴2θ=π2,∴θ=π4. ∴ρ=4×sin π4=2√2.故公共点的极坐标为(2√2,π4).【解析】(1)直接根据点A 在直线l 上,列方程求出ρ1的值,点B 在圆C 上,列方程求出ρ2的值;(2)联立直线l 与圆C 的方程,然后求出其公共点的极坐标即可.本题考查的知识要点:极坐标与极坐标方程的关系和根据简单曲线极坐标方程求交点坐标,主要考查学生的运算能力和转换能力,属于基础题型.23. 设x ∈R ,解不等式2|x +1|+|x|<4. 【答案】解:2|x +1|+|x|={3x +2,x >0x +2,−1≤x ≤0−3x −2,x <−1.∵2|x +1|+|x|<4,∴{3x +2<4x >0或{x +2<4−1≤x ≤0或{−3x −2<4x <−1,∴0<x <23或−1<x <0或−2<x <−1,∴−2<x <23, ∴不等式的解集为{x|−2<x <23}.【解析】先将2|x +1|+|x|写为分段函数的形式,然后根据2|x +1|+|x|<4,利用零点分段法解不等式即可.本题考查了绝对值不等式的解法,考查了分类讨论思想,属基础题.24. 在三棱锥A −BCD 中,已知CB =CD =√5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F −DE −C 的大小为θ,求sinθ的值.【答案】解:(1)如图,连接OC ,∵CB =CD ,O 为BD 的中点,∴CO ⊥BD .以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系. ∵BD =2,∴OB =OD =1,则OC =√BC 2−OB 2=√5−1=2.∴B(1,0,0),A(0,0,2),C(0,2,0),D(−1,0,0),∵E 是AC 的中点,∴E(0,1,1),∴AB ⃗⃗⃗⃗⃗ =(−1,0,2),DE⃗⃗⃗⃗⃗⃗ =(1,1,1). 设直线AB 与DE 所成角为α,则cosα=|AB ⃗⃗⃗⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗⃗ |⋅|DE ⃗⃗⃗⃗⃗⃗ |=|−1+2|√1+4⋅√1+1+1=√1515, 即直线AB 与DE 所成角的余弦值为√1515; (2)∵BF =14BC ,∴BF ⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,设F(x,y ,z),则(x −1,y ,z)=(−14,12,0),∴F(34,12,0).∴DE ⃗⃗⃗⃗⃗⃗ =(1,1,1),DF ⃗⃗⃗⃗⃗ =(74,12,0),DC ⃗⃗⃗⃗⃗ =(1,2,0). 设平面DEF 的一个法向量为m⃗⃗⃗ =(x 1,y 1,z 1), 由{m ⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ =x 1+y 1+z 1=0m ⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ =74x 1+12y 1=0,取x 1=−2,得m ⃗⃗⃗ =(−2,7,−5);设平面DEC 的一个法向量为n⃗ =(x 2,y 2,z 2), 由{n ⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ =x 2+y 2+z 2=0n⃗ ⋅DC ⃗⃗⃗⃗⃗ =x 2+2y 2=0,取x 2=−2,得n ⃗ =(−2,1,1). ∴|cosθ|=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=√4+49+25⋅√4+1+1=√1313. ∴sinθ=√1−cos 2θ=√1−113=2√3913. 【解析】(1)由题意画出图形,连接OC ,由已知可得CO ⊥BD ,以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系,求出所用点的坐标,得到AB ⃗⃗⃗⃗⃗ =(−1,0,2),DE⃗⃗⃗⃗⃗⃗ =(1,1,1),设直线AB 与DE 所成角为α,由两向量所成角的余弦值,可得直线AB 与DE 所成角的余弦值;(2)由BF =14BC ,得BF ⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,设F(x,y ,z),由向量等式求得F(34,12,0),进一步求出平面DEF 的一个法向量与平面DEC 的一个法向量,由两法向量所成角的余弦值求得cosθ,再由同角三角函数基本关系式求解sinθ.本题考查利用空间向量求空间角,考查空间想象能力与逻辑思维能力和运算求解能力,是中档题.25. 甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1,q 1和p 2,q 2;(2)求2p n +q n 与2p n−1+q n−1的递推关系式和X n 的数学期望E(X n )(用n 表示).【答案】解:(1)由题意可知:p 1=13,q 1=23,则p 2=13p 1+23×13q 1=727; q 2=23p 1+(23×23+13×13)q 1=1627. (2)由题意可知:p n+1=13p n +23×13q n =13p n +29q n ,q n+1=23p n +(23×23+13×13)q n +23(1−p n −q n )=−19q n +23, 两式相加可得2p n+1+q n+1=23p n +13q n +23=13(2p n +q n )+23,则:2p n +q n =13(2p n−1+q n−1)+23,所以,2p n +q n −1=13(2p n−1+q n−1−1),因为2p 1+q 1−1=13,数列{2p n +q n −1}是首项为13,公比为13的等比数列, 所以2p n +q n −1=(13)n ,即2p n +q n =(13)n +1,所以E(X n )=2p n +q n +0×(1−p n −q n )=(13)n +1.【解析】(1)利用已知条件求出p 1=13,q 1=23,推出p 2;q 2即可.(2)推出p n+1=13p n +29q n ,q n+1=−19q n +23,得到2p n+1+q n+1=13(2p n +q n )+23,推出2p n +q n −1=13(2p n−1+q n−1−1),说明数列{2p n +q n −1}是首项为13,公比为13的等比数列,然后求解的通项公式以及期望即可.本题考查数列与概率相结合,期望的求法,数列的递推关系式以及通项公式的求法,考查转化首项以及计算能力,是难题.。
高考江苏数学试卷含附加题详细解答(全word版)080619
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学参考公式: 样本数据1x ,2x ,,n x 的标准差s =其中x 为样本平均数柱体体积公式V Sh =其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分. 1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= ▲ .【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒= 【答案】102.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ . 【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 【答案】1123.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += ▲ .锥体体积公式13V Sh =其中S S 为底面积,h 为高 球的表面积、体积公式24S R π=,343V R π=【解析】本小题考查复数的除法运算.∵()21112i i i i ++==- ,∴a =0,b =1,因此1a b += 【答案】14.若集合2{|(1)37,}A x x x x R =-<+∈,则AZ 中有 ▲ 个元素【解析】本小题考查集合的运算和解一元二次不等式.由2(1)37x x -<+得2560x x --<,(1,6)A =-∴,因此}{0,1,2,3,4,5A Z =,共有6个元素.【答案】65.已知向量a 和b 的夹角为0120,||1,||3a b ==,则|5|a b -= ▲ . 【解析】本小题考查向量的线性运算.()2222552510a b a b a a b b -=-=-+=22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,5a b -=7 【答案】76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域 E 表示单位圆及其内部,因此.214416P ππ⨯==⨯【答案】16π 7.某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲ 【解析】由流程图1122334455S G F G F G F G F G F =++++4.50.125.50.206.50.407.50.28.50.08=⨯+⨯+⨯+⨯+⨯ 6.42= 【答案】6.428.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 ▲ 【解析】本小题考查导数的几何意义、切线的求法.'1y x = ,令112x =得2x =,故切点(2,ln2),代入直线方程,得,所以b =ln2-1.【答案】ln2-19.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF 的方程: ( ▲ )011=⎪⎪⎭⎫⎝⎛-+y a p x 。
高考江苏数学试题及答案(word解析版)
普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =_______.【答案】{13}-,【解析】由题意得{1,3}A B =-.(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【解析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21. (3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【解析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.(9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.【答案】255【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)3512d +⨯--==+,所求弦长为2292552245l r d =-=-=. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】20⎛⎫- ⎪⎝⎭, 【解析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得20m -<<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是________. 【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是________.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-,即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=.(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________.【答案】()102,【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大, 7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是_______.【答案】62-【解析】由已知sin 22sin A B C =及正弦定理可得22a b c =,2222222()2cos 22a b a b a b cC ab ab++-+-==223222262262a b ab ab ab +---=,当且仅当2232a b =,即23a b =所以cos C 62- 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,5sin α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()5sin 2ααπ∈π,,,∴225cos 1sin αα=--=, ()210sin sin cos cos sin sin )444αααααπππ+=+=+=.(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF = (2)若1FC AB ⊥,求椭圆离心率e 的值. 解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴22(2)2a ==,∴21b =,∴椭圆方程为2212x y +=.(2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=②①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩ ∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴5c a = 5. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC 22(17080)(0120)150-+-=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠, 从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AFcos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m .(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD r MF OF OM d ===--所以68035dr -=.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1xx xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a a a a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-, 取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+. 当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N .因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值.解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为21222x t y t ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长. 解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||82AB =. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x xf x f x x x x x x ''⎛⎫⎛⎫'==-=--+⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.(i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+n ∈*N ).。
2024年江苏省高考数学真题及参考答案
2024年江苏省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。
2020年高考(江苏卷)数学附加题训练一 (含答案)
2020年高考(江苏卷)数学附加题训练一21、(本小题满分10分)已知线性变换1T 是顺时针方向选择90°的旋转变换,其对应的矩阵为M ,线性变换⎩⎨⎧=+=yy y x x T '2'2:对应的矩阵为N ,列向量a X b ⎡⎤=⎢⎥⎣⎦.(1)写出矩阵M ,N ;(2)已知⎥⎦⎤⎢⎣⎡=--2411X M N ,试求b a ,的值.22、(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为,3x t y ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=-+⎩,(ϕ为参数).(1)求曲线1C 的直角坐标方程和2C 的标准方程;(2)点,P Q 分别为曲线1C ,2C 上的动点,当PQ 长度最小时,试求点Q 的坐标..23、(本小题满分10分)在四棱锥P-ABCD中,CD⊥平面PAD,∆PAD是正三角形,DC∥AB,DA=DC=2AB=2.(1)求平面PAB与平面PCD所成的锐二面角的大小;(2)点E为线段CD上的一动点,设异面直线BE与直线PA所成角的大小为θ,当cosθ=5时,试5确定点E的位置.24、(本小题满分10分)在直角坐标系xOy中,已知抛物线C:y2=2px(p>0)上一点P(4,m)到焦点F的距离为6,点Q为其准线l上的任意-一点,过点Q作抛物线C的两条切线,切点分别为A,B.(1)求抛物线C的方程;(2)当点Q在x轴上时,证明:∆QAB为等腰直角三角形.(3)证明:∆QAB为直角三角形.数学附加题训练一参考答案21.已知线性变换1T 是顺时针方向选择90°的旋转变换,其对应的矩阵为M ,线性变换⎩⎨⎧=+=y y y x x T '2'2:对应的矩阵为N ,列向量a X b ⎡⎤=⎢⎥⎣⎦.(1)写出矩阵M ,N ;(2)已知⎥⎦⎤⎢⎣⎡=--2411X M N ,试求b a ,的值.22在平面直角坐标系xOy 中,曲线1C 的参数方程为,3x t y ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=-+⎩,(ϕ为参数).(1)求曲线1C 的直角坐标方程和2C 的标准方程;(2)点,P Q 分别为曲线1C ,2C 上的动点,当PQ 长度最小时,试求点Q 的坐标.23、(本小题满分10分)在四棱锥ABCD P -中,⊥CD 平面PAD ,PAD ∆是正三角形,AB DC ∥,22===AB DC DA .(1)求平面PAB 与平面PCD 所成的锐二面角的大小;(2)点E 为线段CD 上的一动点,设异面直线BE 与直线PA 所成角的大小为θ,当55cos =θ时,试确定点E 的位置.24、(本小题满分10分)在直角坐标系xOy 中,已知抛物线px y C 2:2=)0(>p 上一点),4(m P 到焦点F 的距离为6,点Q 为其准线l 上的任意-一点,过点Q 作抛物线C 的两条切线,切点分别为B A ,.(1)求抛物线C 的方程;(2)当点Q 在x 轴上时,证明:QAB ∆为等腰直角三角形.(3)证明:QAB ∆为直角三角形.。
高考数学试卷(含答案解析)
江苏省高考数学试卷一.填空题1.(5分)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为, 则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.8.(5分)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=.10.(5分)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n ∈R), 则m+n=.13.(5分)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f (x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.18.(16分)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中, l 的一端置于点E 处, 另一端置于侧棱GG 1上, 求l 没入水中部分的长度.19.(16分)对于给定的正整数k, 若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立, 则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a的取值范围.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【必做题】25.如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2020•江苏)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1, 2}, B={a, a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法, 是基础题, 解题时要认真审题, 注意交集定义及性质的合理运用.2.(5分)(2020•江苏)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z 的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式, 考查了推理能力与计算能力, 属于基础题.3.(5分)(2020•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为, 再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件, 而抽取60辆进行检验, 抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致, 按照一定的比例, 即样本容量和总体容量的比值, 在各层中进行抽取.4.(5分)(2020•江苏)如图是一个算法流程图:若输入x的值为, 则输出y 的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=, 不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图, 模拟程序是解决此类问题的常用方法, 注意解题方法的积累, 属于基础题.5.(5分)(2020•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式, 属于基础题6.(5分)(2020•江苏)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.【分析】设出球的半径, 求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R, 则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法, 考查空间想象能力以及计算能力.7.(5分)(2020•江苏)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.【分析】求出函数的定义域, 结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0, 得﹣2≤x≤3,则D=[﹣2, 3],则在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算, 结合函数的定义域求出D, 以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2020•江苏)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程, 得到P, Q坐标, 求出焦点坐标, 然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=, 双曲线渐近线方程为:y=x, 所以P(, ), Q(, ﹣), F1(﹣2, 0).F2(2, 0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用, 考查计算能力.9.(5分)(2020•江苏)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=32.【分析】设等比数列{a n}的公比为q≠1, S3=, S6=, 可得=,=, 联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=, S6=, ∴=, =,解得a1=, q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式, 考查了推理能力与计算能力, 属于中档题.10.(5分)(2020•江苏)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x, 利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用, 考查了推理能力与计算能力, 属于基础题.11.(5分)(2020•江苏)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1, ] .【分析】求出f(x)的导数, 由基本不等式和二次函数的性质, 可得f(x)在R上递增;再由奇偶性的定义, 可得f(x)为奇函数, 原不等式即为2a2≤1﹣a, 运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1, ].【点评】本题考查函数的单调性和奇偶性的判断和应用, 注意运用导数和定义法, 考查转化思想的运用和二次不等式的解法, 考查运算能力, 属于中档题.12.(5分)(2020•江苏)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=3.【分析】如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.可得cosα=, sinα=.C.可得cos(α+45°)=.sin (α+45°)=.B.利用=m+n(m, n∈R), 即可得出.【解答】解:如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.∴cosα=, sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m, n∈R),∴=m﹣n, =0+n,解得n=, m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式, 考查了推理能力与计算能力, 属于中档题.13.(5分)(2020•江苏)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是[﹣5, 1] .【分析】根据题意, 设P(x0, y0), 由数量积的坐标计算公式化简变形可得2x0+y0+5≤0, 分析可得其表示表示直线2x+y+5≤0以及直线下方的区域, 联立直线与圆的方程可得交点的横坐标, 结合图形分析可得答案.【解答】解:根据题意, 设P(x0, y0), 则有x02+y02=50,=(﹣12﹣x0, ﹣y0)•(﹣x0, 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0, 表示直线2x+y+5≤0以及直线下方的区域,联立, 解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5, 1],故答案为:[﹣5, 1].【点评】本题考查数量积的运算以及直线与圆的位置关系, 关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2020•江苏)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f (x)=, 其中集合D={x|x=, n∈N*}, 分析f(x)的图象与y=lgx 图象交点的个数, 进而可得答案.【解答】解:∵在区间[0, 1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1, 2)上, f(x)=, 此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2, 3)上, f(x)的图象与y=lgx有且只有一个交点;区间[3, 4)上, f(x)的图象与y=lgx有且只有一个交点;区间[4, 5)上, f(x)的图象与y=lgx有且只有一个交点;区间[5, 6)上, f(x)的图象与y=lgx有且只有一个交点;区间[6, 7)上, f(x)的图象与y=lgx有且只有一个交点;区间[7, 8)上, f(x)的图象与y=lgx有且只有一个交点;区间[8, 9)上, f(x)的图象与y=lgx有且只有一个交点;在区间[9, +∞)上, f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断, 函数的图象和性质, 转化思想, 难度中档.二.解答题15.(14分)(2020•江苏)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF ⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G, 连结FG、EG使得FG∥BC, 则EG∥AC, 利用线面垂直的性质定理可知FG⊥AD, 结合线面垂直的判定定理可知AD⊥平面EFG, 从而可得结论.【解答】证明:(1)因为AB⊥AD, EF⊥AD, 且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC, AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G, 连结FG、EG使得FG∥BC, 则EG∥AC,因为BC⊥BD, 所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD, 所以FG⊥AD,又因为AD⊥EF, 且EF∩FG=F,所以AD⊥平面EFG, 所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定, 考查空间想象能力, 考查转化思想, 涉及线面平行判定定理, 线面垂直的性质及判定定理, 注意解题方法的积累, 属于中档题.16.(14分)(2020•江苏)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣, 问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx, sinx), =(3, ﹣), ∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0, π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0, π],∴x+∈[, ],∴﹣1≤cos(x+)≤,当x=0时, f(x)有最大值, 最大值3,当x=时, f(x)有最小值, 最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质, 属于基础题17.(14分)(2020•江苏)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c, 由椭圆的准线方程x=±, 则2×=8, 即可求得a和c的值, 则b2=a2﹣c2=3, 即可求得椭圆方程;(2)设P点坐标, 分别求得直线PF2的斜率及直线PF1的斜率, 则即可求得l2及l1的斜率及方程, 联立求得Q点坐标, 由Q在椭圆方程, 求得y02=x02﹣1, 联立即可求得P点坐标;方法二:设P(m, n), 当m≠1时, =, =, 求得直线l1及l1的方程, 联立求得Q点坐标, 根据对称性可得=±n2, 联立椭圆方程, 即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==, 则a=2c, ①椭圆的准线方程x=±, 由2×=8, ②由①②解得:a=2, c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x0, y0), 则直线PF2的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x﹣1),直线PF1的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x+1),联立, 解得:, 则Q(﹣x0, ),由P, Q在椭圆上, P, Q的横坐标互为相反数, 纵坐标应相等, 则y0=, ∴y02=x02﹣1,则, 解得:, 则,又P在第一象限, 所以P的坐标为:P(, ).方法二:设P(m, n), 由P在第一象限, 则m>0, n>0,当m=1时, 不存在, 解得:Q与F1重合, 不满足题意,当m≠1时, =, =,由l1⊥PF1, l2⊥PF2, 则=﹣, =﹣,直线l1的方程y=﹣(x+1), ①直线l2的方程y=﹣(x﹣1), ②联立解得:x=﹣m, 则Q(﹣m, ),由Q在椭圆方程, 由对称性可得:=±n2,即m2﹣n2=1, 或m2+n2=1,由P(m, n), 在椭圆方程, , 解得:, 或,无解,又P在第一象限, 所以P的坐标为:P(, ).【点评】本题考查椭圆的标准方程, 直线与椭圆的位置关系, 考查直线的斜率公式, 考查数形结合思想, 考查计算能力, 属于中档题.18.(16分)(2020•江苏)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l 没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l 没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 过N作NP∥MC, 交AC于点P, 推导出CC1⊥平面ABCD, CC1⊥AC, NP⊥AC, 求出MC=30cm, 推导出△ANP∽△AMC, 由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N, 过点N作NP⊥EG, 交EG于点P, 过点E作EQ⊥E1G1, 交E1G1于点Q, 推导出EE1G1G为等腰梯形, 求出E1Q=24cm, E1E=40cm, 由正弦定理求出sin∠GEM=, 由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N,在平面ACM中, 过N作NP∥MC, 交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱, ∴CC1⊥平面ABCD,又∵AC⊂平面ABCD, ∴CC1⊥AC, ∴NP⊥AC,∴NP=12cm, 且AM2=AC2+MC2, 解得MC=30cm,∵NP∥MC, ∴△ANP∽△AMC,∴=, , 得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N,在平面E1EGG1中, 过点N作NP⊥EG, 交EG于点P,过点E作EQ⊥E1G1, 交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台, ∴EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形, 画出平面E1EGG1的平面图,∵E1G1=62cm, EG=14cm, EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=, sin∠EGM=sin∠EE1G1=, cos,根据正弦定理得:=, ∴sin, cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=, ∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l 没入水中部分的长度的求法, 考查空间中线线、线面、面面间的位置关系等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.19.(16分)(2020•江苏)对于给定的正整数k, 若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立, 则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.【分析】(1)由题意可知根据等差数列的性质, a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n , 根据“P (k )数列”的定义, 可得数列{a n }是“P (3)数列”;(2)由“P (k )数列”的定义, 则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , 变形整理即可求得2a n =a n ﹣1+a n +1, 即可证明数列{a n }是等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1, 公差为d, 则a n =a 1+(n ﹣1)d,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n, ①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n, ②+a n﹣2+a n+a n+1=4a n﹣1, ③由①可知:a n﹣3a n﹣1+a n+a n+2+a n+3=4a n+1, ④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质, 考查数列的新定义的性质, 考查数列的运算, 考查转化思想, 属于中档题.20.(16分)(2020•江苏)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b, 进而再求导可知g′(x)=6x+2a, 通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣, 从而f(﹣)=0, 整理可知b=+(a>0), 结合f(x)=x3+ax2+bx+1(a>0, b∈R)有极值可知f′(x)=0有两个不等的实根, 进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27), 结合a>3可知h(a)>0, 从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣, 利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2, 进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣, 因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b, g′(x)=6x+2a,令g′(x)=0, 解得x=﹣.由于当x>﹣时g′(x)>0, g(x)=f′(x)单调递增;当x<﹣时g′(x)<0, g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0, 即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0, b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0, 即a2﹣+>0, 解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3, 所以h(a)>0, 即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点, 则x1+x2=, x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x), f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3, 所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0, 解得a≤6,所以a的取值范围是(3, 6].【点评】本题考查利用导数研究函数的单调性、极值, 考查运算求解能力, 考查转化思想, 注意解题方法的积累, 属于难题.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2020•江苏)如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP ⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB, 即可证明.【解答】证明:(1)∵直线PC切半圆O于点C, ∴∠ACP=∠ABC.∵AB为半圆O的直径, ∴∠ACB=90°.∵AP⊥PC, ∴∠APC=90°.∴∠PAC=90°﹣∠ACP, ∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理, 考查了推理能力与计算能力, 属于中档题.[选修4-2:矩阵与变换]22.(2020•江苏)已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律, 代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x, y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0, y0),则=, 即x0=2y, y0=x,∴x=y0, y=,∴, 即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换, 属于中档题.[选修4-4:坐标系与参数方程]23.(2020•江苏)在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程, 代入距离公式化简得出距离d关于参数s 的函数, 从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时, d取得最小值=.【点评】本题考查了参数方程的应用, 属于基础题.[选修4-5:不等式选讲]24.(2020•江苏)已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd ≤8.【分析】a2+b2=4, c2+d2=16, 令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.代入ac+bd化简, 利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2), 即可得出.【解答】证明:∵a2+b2=4, c2+d2=16,令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64, 当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质, 考查了推理能力与计算能力, 属于中档题.【必做题】26.(2020•江苏)已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球, 则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P(), 由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为, …, , P(x=)=, k=n, n+1, n+2, …, n+m, 从而E(X)=()=, 由此能证明E (X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为, …, ,P(x=)=, k=n, n+1, n+2, …, n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法, 考查离散型随机变量的分布列、数学期望等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.25.(2020•江苏)如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内, 过A作Ax⊥AD, 由AA1⊥平面ABCD, 可得AA1⊥Ax, AA1⊥AD, 以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A, B, C, D, A1, C1的坐标, 进一步求出, , , 的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量, 再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值, 进一步得到正弦值.【解答】解:在平面ABCD内, 过A作Ax⊥AD,∵AA1⊥平面ABCD, AD、Ax⊂平面ABCD,∴AA1⊥Ax, AA1⊥AD,以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2, AA1=, ∠BAD=120°,∴A(0, 0, 0), B(), C(, 1, 0),D(0, 2, 0),A1(0, 0, ), C1().=(), =(), , .(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由, 得, 取x=, 得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为, 则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角, 训练了利用空间向量求空间角, 是中档题.。
2020年江苏高考数学试卷及答案(含附加题)
2020年江苏高考数学试卷及答案(含附加题)一、填空题:本大题共14小题,每题5分,共计70分,请把答案填写在答题卡相应位置上。
1.已知集合{}1,0,1,2A =-,{}0,2,3B =,则A B = __________。
2.已知i 是虚数单位,则复数()()12z i i =+-的实部是__________。
3.已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是__________。
4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是。
5.右图是一个算法流程图,若输出y的值为-2,则输入x的值为。
6.在平面直角坐标系xOy中22y =,若双曲线()222105x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是。
7.已知()y f x =是奇函数,当0x >时,23()f x x =,则(8)f -的值是。
8.已知22sin +=43πα(),则sin 2α的值是。
9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是3cm 。
10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图像向右平移6π个单位长度,则平移后的图像与y 轴最近的对称轴方程是。
11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知数列{}+n n a b 的前项和()221n n S n n n N *=-+-∈,则d q +的值是。
12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是。
13.在△ABC 中,4AB =,=3AC ,∠=90BAC °,D 在边AC 上,延长AD P 到,使得=9AP ,若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭(m 为常数),则CD 的长度是。
2020届江苏高考数学原卷版含附加题
绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题1.已知集合{1,0,1,2}A =-,{0,2,3}B =,则A B = __________.2.已知i 是虚数单位,则复数(1)(2)z i i =+-的实部是__________.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是__________.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是__________.5.右图是一个算法流程图.若输出y 值为2-,则输入x 的值是__________.6.在平面直角坐标系xOy 中,若双曲线2221(0)5x y a a -=>的一条渐近线方程为y x =则该双曲线的离心率是__________.7.已知()y f x =是奇函数,当0x ≥时,23()f x x =,则(8)f -的值是__________.8.已知22sin 43πα⎛⎫+= ⎪⎝⎭,则sin 2α的值是__________.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半径为0.5cm ,则此六角螺帽毛坯的体积是__________cm 3.10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是__________.11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知{}n n a b +的前n 项和()2*21n n S n n n =-+-∈ ,则d q +的值是__________.12.已知()22451,x y y x y +=∈ ,则22x y +的最小值是__________.13.在ABC △中,4AB =,3AC =,90BAC ∠= ,D 在边BC 上,延长AD 到P ,使得9AP =.若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭(m 为常数),则CD 的长度是__________.14.在平面直角坐标系xOy 中,已知2P ⎫⎪⎪⎝⎭,A B 、是圆221:362C x y ⎛⎫+-= ⎪⎝⎭上的两个动点,满足PA PB =,则PAB △面积的最大值是__________.二、解答题15.在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,E ,F 分别是AC ,1B C 的中点.(1)求证://EF 平面11AB C ;(2)求证:平面1AB C ⊥平面1ABB .16.在ABC △中,角A B C 、、的对边分别为a b c 、、.已知3a =,c =45B = .(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,'OO 为铅垂线('O 在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到'OO 的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到'OO 的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到'OO 的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于'OO 的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元),桥墩CD 每米造价32k (万元)(0k >),问'O E 为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为1F ,2F 点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为1S ,2S ,若213S S =,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(),h x kx b k b =+∈ 在区间D 上恒有()()()f x h x g x ≥≥.(1)若2()2f x x x =+,2()2g x x x =-+,(),D =-∞+∞,求()h x 的表达式;(2)若2()1f x x x =-+,()ln g x k x =,()h x kx k =-,()0,D =+∞,求k 的取值范围;(3)42()2f x x x =-,2()48g x x =-,()(342()4320||h x t t x t t t =--+<≤,[,][D m n =⊆,求证:n m -≤20.已知数列{}n a 的首项11a =,前n 项和为n S ,设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为"~"k λ数列.(1)若等差数列{}n a 是"~1"λ数列,求λ的值;(2)若数列{}n a 是~2"数列,且0n a >,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为"~3"λ数列,且0n a ≥?若存在,求λ的取值范围;若不存在,说明理由绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.【选做题】A.[选修4-2:矩阵与变换]平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1-M .B.[选修4-4:坐标系与参数方程]在极坐标系中,已知点1,3A πρ⎛⎫ ⎪⎝⎭在直线:cos 2l ρθ=上,点2,6B πρ⎛⎫ ⎪⎝⎭在圆:4sin C ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值;(2)求出直线l 与圆C 的公共点的极坐标.C.[选修4-5:不等式选讲]设x ∈R ,解不等式2|1|||4x x ++<.22.在三棱锥A BCD -中,已知CB CD ==,2BD =,O 为BD 的中点,AO ⊥平面BCD ,2AO =,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足14BF BC =,设二面角F DE C --的大小为θ,求sin θ的值.23.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为n X ,恰有2个黑球的概率为n p ,恰有1个黑球的概率为n q .(1)求1p ,1q 和2p ,2q ;(2)求2n n p q +与112n n p q --+的递推关系式和n X 的数学期望()n E X (用n 表示).。
【真题】2019年江苏省高考数学试题(含附加题+答案)
15.(本小题满分 14 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
(1)若 a=3c,b=
2
,cosB=
2
,求
c
的值;(2)若
sin
A
cos
B
,求
sin(B
)
的值.
3
a 2b
2
第 3 页 共 18 页
16.(本小题满分 14 分) 如图,在直三棱柱 ABC-A1B1C1 中,D,E 分别为 BC,AC 的中点,AB=BC. 求证:(1)A1B1∥平面 DEC1; (2)BE⊥C1E.
sin A sin B
2b b
从而 cos2 B (2sin B)2 ,即 cos2 B 4 1 cos2 B ,故 cos2 B 4 . 5
因为 sin B 0 ,所以 cos B 2sin B 0 ,从而 cos B 2 5 . 5
因此 sin
B
π 2
cos
B
25 5
.
16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间 想象能力和推理论证能力.满分 14 分.
10.在平面直角坐标系 xOy 中,P 是曲线 y x 4 (x 0) 上的一个动点,则点 P 到直线 x+y=0 的距离的 x
最小值是 ▲ .
11.在平面直角坐标系 xOy 中,点 A 在曲线 y=lnx 上,且该曲线在点 A 处的切线经过点(-e,-1)(e 为自
然对数的底数),则点 A 的坐标是 ▲ .
置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式:
江苏高考数学附加题卷例题及答案
B .附加题部分三、附加题部分<本大题共6小题,其中第21~24题为选做题,请考生在第21~24题中任选2个小题作答,如果多做,则按所选做的前两题记分;第25和第26题为必做题.解答应写出文字说明,证明过程或演算步骤.)21.<本小题为选做题,满分10分)如图,AB 是O 的直径,M 为圆上一点,MEAB ,垂足为E ,点C 为O 上任一点,,AC EM 交于点D ,BC 交DE 于点F .f3Qh6rmFDS 求证:<1)AE ED FE EB ::;<2)2EMED EF .22.<本小题为选做题,满分10分)已知点(,)P x y 是圆222xyy 上的动点.<1)求2x y 的取值范围;<2)若0xya恒成立,求实数a 的取值范围.23.<本小题为选做题,满分10分)求使等式2 42 0 1 03 50 10 -1M成立的矩阵M .24.<本小题为选做题,满分10分)已知(0,)2x,求函数21sin 2sin yxx的最小值以及取最小值时所对应的x 值.25.<本小题为必做题,满分10分)如图,直三棱柱111A B C ABC 中,12C CCB CA,ACCB . D E 、分别为棱111C C B C 、的中点.<1)求点E 到平面ADB 的距离;<2)求二面角1EA DB 的平面角的余弦值;<3)在线段AC 上是否存在一点F ,使得EF面1A DB ?若存在,确定其位置;若不存在,说平明理由.BEM FACDO1C 1A 1B ED在1,2,3,,9这9个自然数中,任取3个不同的数.<1)求这3个数中至少有1个是偶数的概率;<2)求这3个数和为18的概率;<3)设为这3个数中两数相邻的组数<例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时的值是2).求随机变量的分布列及其数学期望E .f3Qh6rmFDSB .附加题部分三、附加题部分:21.<选做题)<本小题满分10分)证明:<1)∵MN AB ,∴90B BFED ,∴AED ∽FEB ,∴EB FE EDAE ::;<5分)<2)延长ME 与⊙O 交于点N ,由相交弦定理,得EM EN EA EB ,且EM EN ,∴2EM EA EB ,由<1)∴2EMED EF 。
2020年江苏高考数学试卷及答案
2020年普通高等学校招生全国统一考试(江苏卷)数 学 试 题参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 一、填空题:本大题共14小题,每小题5分,共计70分. 1.已知集合{1,0,1,2},{0,2,3}A B =-=,则AB = ▲ .2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 ▲ . 3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是 ▲ .4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 ▲ . 5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是 ▲ .6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ .7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则()8f -的值是 ▲ . 8.已知2sin ()4απ+=23,则sin 2α的值是 ▲ .9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 ▲ cm.10.将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 ▲ .11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 ▲ . 12.已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是 ▲ .14.在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是 ▲ .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.16.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.(本小题满分14分)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米. (1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点)..桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0),问O E '为多少米时,桥墩CD与EF 的总造价最低?18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标. 19.(本小题满分16分)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422342() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<≤,,,[], D m n =⊆⎡⎣,求证:n m -20.(本小题满分16分)已知数列{}()n a n ∈*N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111kk k n nn S S a λ++-=成立,则称此数列为“λ~k ”数列. (1)若等差数列{}n a 是“λ~1”数列,求λ的值;(2)若数列{}n a ”数列,且0n a >,求数列{}n a 的通项公式; (3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ~3”数列,且0n a ≥若存在,求λ的取值范围;若不存在,说明理由.2020年普通高等学校招生全国统一考试(江苏卷)参考答案一、填空题: 1.{0,2} 2.3 3.24.195.3-6.327.4- 8.139.2π 10.524x π=-11.412.4513.185或014.二、解答题15.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .16.本小题主要考查正弦定理、余弦定理、同角三角函数关系、两角和与差的三角函数等基础知识,考查运算求解能力.满分14分.解:(1)在ABC △中,因为3,45a c B ==︒,由余弦定理2222cos b a c ac B =+-,得292235b =+-⨯︒=,所以b在ABC △中,由正弦定理sin sin b cB C=,,所以sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故cos C =则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以3sin 5ADC ∠=,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯. 17.本小题主要考查函数的性质、用导数求最值、解方程等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)设1111,,,AA BB CD EF 都与MN 垂直,1111,,,A B D F 是相应垂足. 由条件知,当40O'B =时, 31140640160,800BB =-⨯+⨯= 则1160AA =. 由21160,40O'A =得80.O'A = 所以8040120AB O'A O'B =+=+=(米).(2)以O 为原点,OO'为y 轴建立平面直角坐标系xOy (如图所示). 设2(,),(0,40),F x y x ∈则3216,800y x x =-+3211601606800EF y x x =-=+-. 因为80,CE =所以80O'C x =-. 设1(80,),D x y -则211(80),40y x =- 所以22111160160(80)4.4040CD y x x x =-=--=-+ 记桥墩CD 和EF 的总造价为()f x ,则3232131()=(1606)(4)80024013(160)(040).80080f x k x x k x x k x x x +-+-+=-+<<2333()=(160)(20)80040800k f x k x x x x '-+=-, 令()=0f x ', 得20.x =所以当20x =时,()f x 取得最小值.答:(1)桥AB 的长度为120米;(2)当O'E 为20米时,桥墩CD 和EF 的总造价最低.18.本小题主要考查直线方程、椭圆方程、椭圆的几何性质、直线与椭圆的位置关系、向量数量积等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分16分.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)由条件()()()f x h x g x ≥≥,得222 2x x kx b x x +≥+≥-+, 取0x =,得00b ≥≥,所以0b =.由22x x kx +≥,得2 2 ()0x k x +-≥,此式对一切(,)x ∈-∞+∞恒成立, 所以22 0()k -≤,则2k =,此时222x x x ≥-+恒成立, 所以()2h x x =.(2) 1 ln ,()()()()0,h g x k x x x x -=--∈+∞.令() 1ln u x x x =--,则1()1,u'x x=-令()=0u'x ,得1x =.所以min () 0(1)u x u ==.则1ln x x -≥恒成立, 所以当且仅当0k ≥时,()()f x g x ≥恒成立.另一方面,()()f x h x ≥恒成立,即21x x kx k -+≥-恒成立, 也即2()1 1 +0x k x k -++≥恒成立. 因为0k ≥,对称轴为102kx +=>, 所以2141)0(()k k +-+≤,解得13k -≤≤. 因此,k 的取值范围是0 3.k ≤≤(3)①当1t ≤≤由()()g x h x ≤,得2342484()32x t t x t t -≤--+,整理得4223328()0.()4t t x t t x ----+≤*令3242=()(328),t t t t ∆---- 则642=538t t t ∆-++.记64253()18(t t t t t ϕ-++=≤≤则53222062(31)(3())06t t t t t t 't ϕ-+=--<=恒成立,所以()t ϕ在[1,上是减函数,则()(1)t ϕϕϕ≤≤,即2()7t ϕ≤≤. 所以不等式()*有解,设解为12x x x ≤≤,因此21n m x x -≤-=≤ ②当01t <<时,432()()11 34241f h t t t t ---=+---.设432 = 342(41)t t t t v t +---,322 ()=1212444(1)(31),v't t t t t t +--=+-令()0v t '=,得t =.当(0t ∈时,()0v t '<,()v t 是减函数;当1)t ∈时,()0v t '>,()v t 是增函数. (0)1v =-,(1)0v =,则当01t <<时,()0v t <.(或证:2()(1)(31)(1)0v t t t t =++-<.) 则(1)(1)0f h ---<,因此1()m n -∉,.因为m n ⊆[][,,所以1n m -≤<③当0t <时,因为()f x ,()g x均为偶函数,因此n m -≤综上所述,n m -≤20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)因为等差数列{}n a 是“λ~1”数列,则11n n n S S a λ++-=,即11n n a a λ++=, 也即1(1)0n a λ+-=,此式对一切正整数n 均成立.若1λ≠,则10n a +=恒成立,故320a a -=,而211a a -=-, 这与{}n a 是等差数列矛盾.所以1λ=.(此时,任意首项为1的等差数列都是“1~1”数列) (2)因为数列*{}()n a n ∈N”数列,-=因为0n a >,所以10n n S S +>>1=.n b =,则1n b -=221(1)(1)(1)3n n n b b b -=->. 解得2n b =2=,也即14n n S S +=, 所以数列{}n S 是公比为4的等比数列.因为111S a ==,所以14n n S -=.则21(1),34(2).n n n a n -=⎧=⎨⨯≥⎩(3)设各项非负的数列*{}()n a n ∈N 为“~3λ”数列, 则11133311n n n SS aλ++-==因为0n a ≥,而11a =,所以10n n S S +≥>1=n c,则1 1)n n c c -=≥,即333(1)(1)( 1)n n n c c c λ-=-≥.(*) ①若0λ≤或=1λ,则(*)只有一解为=1n c ,即符合条件的数列{}n a 只有一个. (此数列为1,0,0,0,…)②若1λ>,则(*)化为3232(1)(1)01n nnc c c λλ+-++=-, 因为1n c ≥,所以3232101n n c c λλ+++>-,则(*)只有一解为=1n c , 即符合条件的数列{}n a 只有一个.(此数列为1,0,0,0,…)③若01λ<<,则3232101nnc c λλ+++=-的两根分别在(0,1)与(1,+∞)内, 则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t ). 所以1n n S S +=或31n n S t S +=.由于数列{}n S 从任何一项求其后一项均有两种不同结果,所以这样的数列{}n S 有无数多个,则对应的{}n a 有无数多个.综上所述,能存在三个各项非负的数列{}n a 为“~3λ”数列,λ的取值范围是01λ<<.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换](本小题满分10分)平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -. (1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1-M .B .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θ≤<π).(1)求1ρ,2ρ的值;(2)求出直线l 与圆C 的公共点的极坐标. C .[选修4-5:不等式选讲](本小题满分10分)设x ∈R ,解不等式2|1|||4x x ++<.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值. 23.(本小题满分10分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1,q 1和p 2,q 2;(2)求2p n +q n 与2p n -1+q n -1的递推关系式和X n 的数学期望E (X n )(用n 表示) .数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4-2:矩阵与变换]本小题主要考查矩阵的运算、逆矩阵等基础知识,考查运算求解能力.满分10分. 解:(1)因为123=114a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ ,所以213,24,a b -=⎧⎨--=-⎩解得2a b ==,所以2112⎡⎤=⎢⎥-⎣⎦M . (2)因为2112⎡⎤=⎢⎥-⎣⎦ M ,det 221150=⨯-⨯-=≠()()M ,所以M 可逆, 从而121551255-⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ - M. B .[选修4-4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:(1)由1cos 23ρπ=,得14ρ=;24sin 26ρπ==,又(0,0)(即(0,6π))也在圆C 上, 因此22ρ=或0.(2)由cos 2,4sin ,ρθρθ=⎧⎨=⎩得4sin cos 2θθ=,所以sin21θ=.因为0ρ≥,0 2θ≤<π,所以4θπ=,ρ所以公共点的极坐标为)4π.C .[选修4-5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x >0时,原不等式可化为224x x ++<,解得203x <<; 当10x -≤≤时,原不等式可化为224x x +-<,解得10x -≤≤; 当1x <-时,原不等式可化为224x x ---<,解得 2 1x -<<-. 综上,原不等式的解集为2|2}3{x x -<<.22.【必做题】本小题主要考查空间向量、异面直线所成角和二面角等基础知识,考查空间想象能力和运算求解能力.满分10分.解:(1)连结OC ,因为CB =CD ,O 为BD 中点,所以CO ⊥B D . 又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥O C .以{}OB OC OA ,,为基底,建立空间直角坐标系O –xyz . 因为BD =2,CB CD =,AO =2,所以B (1,0,0),D (–1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 则AB =(1,0,–2),DE =(1,1,1),所以|||1||||||5cos AB DE AB DE AB DE +=⋅⋅==<>,.因此,直线AB 与DE . (2)因为点F 在BC 上,14BF BC =,BC =(–1,2,0). 所以111(,,0)442BF BC ==-. 又20,0DB =(,), 故71(,,0)42DF DB BF =+=.设1111()x y z =,,n 为平面DEF 的一个法向量, 则1100,DE DF ⎧⎪⎨⎪⎩⋅=⋅=,n n 即111110710,42x y z x y +⎧+=⎪+=⎪⎨⎩, 取12x =,得1–7y =,15z =,所以1(275)n =-,,. 设2222()x y z =,,n 为平面DEC 的一个法向量,又DC =(1,2,0), 则2200,DE DC ⎧⎪⎨⎪⎩⋅=⋅=,n n 即22222020,x y z x y ++=+=⎧⎨⎩,取22x =,得2–1y =,2–1z =,所以2(211)n =--,,. 故2112|||||||co |s θ⋅==⋅n n n n .所以s n i θ=23.【必做题】本小题主要考查随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)113111133C C 1C C 3p =⋅=,113211133C C 2C C 3q =⋅=,11113121211111*********C C C C 1270(1)C C C C 3927p p q p q p q =⋅⋅+⋅⋅+⋅--=+=,1111111133222112211111111111133333333C C C C C C C C ()(1)C C C C C C C C q p q p q =⋅⋅+⋅+⋅⋅+⋅⋅--11216=9327q -+=.(2)当2n ≥时,1111312111111111113333C C C C 120(1)C C C C 39n n n n n n n p p q p q p q ------=⋅⋅+⋅⋅+⋅--=+,①111111113322211211111111111133333333C C C C C C C C ()(1)C C C C C C C C n n n n n q p q p q ----=⋅⋅+⋅+⋅⋅+⋅⋅--112=93n q --+,②2⨯+①②,得()1111124121222399333n n n n n n n p q p q q p q -----+=+-+=++. 从而1112(211)3n n n n p q p q ---+-+=,又111312p q -+=,所以11112()1()3331n nn n p q -+++==,*n ∈N .③由②,有1313()595n n q q --=--,又135115q -=,所以1113()1595n n q -=-+,*n ∈N . 由③,有13111()210111()()33925n n n n n p q =+=-+-+[],*n ∈N . 故311111()()109235n n n n p q --=--+,*n ∈N . n X 的概率分布则*1()0(1)121(),3n n n n n n E X p q q p n =⨯--+⨯+⨯=+∈N .。
2020年江苏省高考数学试卷(含详细解析)
保密★启用前2020年江苏省高考数学试卷—.■总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分1.已知集合A=(—l,0,l,2},g=(0,2,3},则AC\B=.2.己知i是虚数单位,则复数Z=(l+i)(2-i)的实部.3.己知一组数据4.2劣3—",5,6的平均数为4,则。
的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图.若输出)'的值为-2,则输入.1的值是•6.在平而直角坐标系X。
),中,若双曲线竺-22=l(a>0)的一条渐近线方程为y=2^/52 x,则该双曲线的离心率是—・7.己知.汽心)是奇函数,当官时,门刁=指,则直罚的值是8.已知sin'U+a)=二.则sin2tz的值是____.439.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.己知螺帽的底面正六边形边长为2cm.高为2cm.内孔半轻为0.5cm.则此六角螺帽右坯的体枳是—cm.10,将函数y=3sin(2wf)的图象向右平移兰个单位长度,则平移后的图象中与y轴最46近的对称轴的方程是—.11.设{叫}是公差为,的等差数列,(加J是公比为g的等比数列.已知数列{”〃+“}的前〃项和/一〃+2〃一1(〃£FT),则d+q的值是12.已知5亍八寸=1(矽苗),则J2的最小值是________.13.在△ABC中,仙=4AC=3,ZBAC=90°,D在边8C上,延长AO到F,使得AP=9.14.在平而直角坐标系xOy中.己知,0),1△是圆G”+。
-或)・=36上的两个动点,满足PA=PB,则△用8而积的最大值是二、解答题评卷人得分15.在三棱柱ABC-A\B\C}中,AB1AC.&C1平而ABC,E,F分别是AC,3C的中点......O...........O.....I-.....O.....滨......O............O ※※寒※※即※※田※※s?I※※II※※堞※※I※※群※※点※※军浓※(1)求证:段〃平而/IF i C i:(2)求证:平面AB.CL平而ABB,.16.在△ABC中,角A. B.C的对边分别为〃,b,c,己知”=3.c=JI b=45Q.1)⑴求sinC的值:4(2)在边8C上取一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则有
,即 ,所以
又因为点 在椭圆上,故 ,从而
所以,曲线 的方程是
C.选修4—4参数方程与极坐标
在平面直角坐标系 中,点 是椭圆 上的一个动点,求 的最大值.
解:因椭圆 的参数方程为
故可设动点 的坐标为 ,其中 .
因此
所以,当 时, 取最大值2
8.设直线 是曲线 的一条切线,则实数 的值是▲
【解析】本小题考查导数的几何意义、切线的求法. ,令 得 ,故切点(2,ln2),代入直线方程,得,所以b=ln2-1.
【答案】ln2-1
9.如图,在平面直角坐标系 中,设三角形 的顶点分别为 ,点 在线段AO上的一点(异于端点),这里 均为非零实数,设直线 分别与边 交于点 ,某同学已正确求得直线 的方程为 ,请你完成直线 的方程:(▲) 。
(1)按下列要求建立函数关系式:
(i)设 (rad),将 表示成 的函数;
(ii)设 (km),将 表示成 的函数;(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短。
【解析】本小题主要考查函数最值的应用.
(Ⅰ)①由条件知PQ垂直平分AB,若∠BAO= (rad),则 ,故
18.在平面直角坐标系 中,记二次函数 ( )与两坐标轴有
三个交点.经过三个交点的圆记为 .
(1)求实数b的取值范围;
(2)求圆 的方程;
(3)问圆 是否经过定点(其坐标与 的无关)?请证明你的结论.
解:本小题主要考查二次函数图象与性质、圆的方程的求法.
(Ⅰ)令 =0,得抛物线与 轴交点是(0,b);
(2)分两种情形讨论
(i)当 时,由(1)知 (对所有实数 )
则由 及 易知 ,
再由 的单调性可知,
函数 在区间 上的单调增区间的长度
为 (参见示意图1)
(ii) 时,不妨设 ,则 ,于是
当 时,有 ,从而 ;
当 时,有
从而 ;
当 时, ,及 ,由方程
解得 图象交点的横坐标为
⑴
显然 ,
这表明 在 与 之间。由⑴易知
(1)求 对所有实数 成立的充分必要条件(用 表示);
(2)设 是两个实数,满足 ,且 .若 ,求证:函数 在区间 上的单调增区间的长度之和为 (闭区间 的长度定义为 )
解:(1)由 的定义可知, (对所有实数 )等价于
(对所有实数 )这又等价于 ,即
对所有实数 均成立.(*)
由于 的最大值为 ,
故(*)等价于 ,即 ,这就是所求的充分必要条件
由 ,得 ,所以
显然 不是平角,所以 为钝角等价于
,则等价于
即 ,得
因此, 的取值范围是
23.【必做题】.请先阅读:
在等式 ( )的两边求导,得: ,
由求导法则,得 ,化简得等式: .
(1)利用上题的想法(或其他方法),结合等式 ( ,正整数 ),证明: .
(2)对于正整数 ,求证:
(i) ;(ii) ;(iii) .
A.选修4—1几何证明选讲
如图,设△ABC的外接圆的切线AE与BC的延长线交于点E,∠BAC的平分线与BC交于点D.求证: .
证明:如图,因为 是圆的切线,
所以, ,
又因为 是 的平分线,
所以
从而
因为 ,
所以 ,故 .
因为 是圆的切线,所以由切割线定理知,
,
而 ,所以
B.选修4—2矩阵与变换
在平面直角坐标系 中,设椭圆 在矩阵 对应的变换作用下得到曲线F,求F的方程.
【答案】
7.某地区为了解 岁的老人的日平均睡眠时间(单位: ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:
序号
分组
(睡眠时间)
组中值( )
频数
(人数)
频率( )
1
6
2
10
3
20
4
10
5
4
在上述统计数据的分析中一部分计算见算法流程图,则输出的S的值为▲
【解析】由流程图
【答案】6.42
证明:(1)在等式 两边对 求导得
移项得 (*)
(2)(i)在(*)式中,令 ,整理得
所以
(ii)由(1)知
两边对 求导,得
在上式中,令
即 ,
亦即 (1)
又由(i)知 (2)
由(1)+(2)得
(iii)将等式 两边在 上对 积分
由微积分基本定理,得
所以
当n≥6时,不存在这样的等差数列。事实上,在数列 中,由于不能删去首项或末项,若删去 ,则必有 ,这与 矛盾;同样若删去 也有 ,这与 矛盾;若删去 中任意一个,则必有 ,这与 矛盾。(或者说:当n≥6时,无论删去哪一项,剩余的项中必有连续的三项)
综上所述, 。
(2)假设对于某个正整数n,存在一个公差为d的n项等差数列 ,其中 ( )为任意三项成等比数列,则 ,即 ,化简得 (*)
综上可知,在区间 上, (参见示意图2)
故由函数 及 的单调性可知, 在区间 上的单调增区间的长度之和为 ,由于 ,即 ,得
⑵
故由⑴、⑵得
综合(i)(ii)可知, 在区间 上的单调增区间的长度和为 。
2008年普通高等学校招生全国统一考试(江苏卷)
数学附加题参考答案
21:从A,B,C,D四个中选做2个,每题10分,共20分
(1)直线 面 ;
(2)平面 面 .
【试题解析】第1问根据线面平行关系的判定定理,在面 内找一条直线和直线EF平行即可,第2问,需在其中一个平面内找一条直线和另一个面垂直,由线面垂直推出面面垂直。
【标准答案】
证明:(1)∵E,F分别是 的中点.
∴EF是△ABD的中位线,∴EF∥AD,
∵EF∥ 面ACD,AD 面ACD,∴直线EF∥面ACD;
【解析】本小题考查直线方程的求法.画草图,由对称性可猜想填 .事实上,由截距式可得直线AB: ,直线CP: ,两式相减得 ,显然直线AB与CP的交点F满足此方程,又原点O也满足此方程,故为所求直线OF的方程.
【答案】
10.将全体正整数排成一个三角形数阵:
按照以上排列的规律,第 行( )从左向右的第3个数为▲
12.在平面直角坐标系 中,椭圆 的焦距为2c,以O为圆心, 为半径作圆 ,若过 作圆 的两条切线相互垂直,则椭圆的离心率为▲
【解析】设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故 ,解得 .
【答案】
13.满足条件 的三角形 的面积的最大值▲
【解析】本小题考查三角形面积公式、余弦定理以及函数思想.设BC= ,则AC= ,
令 ,由题意b≠0且Δ>0,解得b<1且b≠0.
(Ⅱ)设所求圆的一般方程为
令 =0得 这与 =0是同一个方程,故D=2,F= .
令 =0得 =0,此方程有一个根为b,代入得出E=―b―1.
所以圆C的方程为 .
(Ⅲ)圆C必过定点,证明如下:
假设圆C过定点 ,将该点的坐标代入圆C的方程,
并变形为 (*)
(2)∵AD⊥BD,EF∥AD,∴EF⊥BD,
∵CB=CD,F是BD的中点,∴CF⊥BD
又EF∩CF=F,∴BD⊥面EFC,
∵BD 面BCD,∴面 面
17.如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为ykm.
当x<0即 时, ≥0可化为 ,
在区间 上单调递增,因此 ,从而 ≤4,综上 =4
【答案】4
二、解答题:本大题共6小题,共90分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
15.如图,在平面直角坐标系 中,以 轴为始边作两个锐角 ,它们的终边分别交单位圆于 两点.已知 两点的横坐标分别是 , .
(1)求 的值;
(2)求 的值.
【试题解析】先由已知条件得 ,第(1)问求 的值,运用正切的和角公式;第(2)问求 的值,先求出 的值,再根据范围确定角的值。
【标准答案】
(1)由已知条件即三角函数的定义可知 ,
因 故 ,从而
同理可得 ,因此 .
所以 = ;
(2) ,
从而由 得 .
16.如图,在四面体 中, ,点 分别是 的中点.求证:
由 知, 与 同时为0或同时不为0
当 与 同时为0时,有 与题设矛盾。
故 与 同时不为0,所以由(*)得
因为 ,且x、y、z为整数,所以上式右边为有理数,从而 为有理数。
于是,对于任意的正整数 ,只要 为无理数,相应的数列就是满足题意要求的数列。
例如n项数列1, , ,……, 满足要求。
20.已知函数 , ( 为常数).函数 定义为:对每个给定的实数 ,
绝密★启用前
2008年普通高等学校招生全国统一考试(江苏卷)
数学
参考公式:
样本数据 , , , 的标准差
其中 为样本平均数
柱体体积公式
其中 为底面积, 为高
一、填空题:本大题共1小题,每小题5分,共70分.
1.若函数 最小正周期为 ,则 ▲.
【解析】本小题考查三角函数的周期公式.
【答案】10
2.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是▲.
【解析】本小题考查古典概型.基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故
【答案】
3.若将复数 表示为 是虚数单位)的形式,则 ▲.