吉林大学2009级计算机学院《离散数学II》试题(A)答案

合集下载

本部_离散数学II_试卷_a_答案

本部_离散数学II_试卷_a_答案

计算机学院、系2005 /2006 学年(1 )学期期末考试试卷《离散数学II 》试卷(A 卷)专业年级班级姓名学号题号一二三四五六七八九十总分得分一、单选题(在每小题的四个备选答案中,选出一个最正确的答案,并将答案的序号填在题干的括号内。

每小题2分,共24分)1、由r棵树组成的森林的顶点数n与边数m有下列关系( B )。

A.n=m-r B.n=m+r C.n=m-1 D.m+n+r=02、若无向图G中不含孤立点,且存在一条经过所有边的闭路径,则( B )。

A.G必为哈密顿图B.G必为欧拉图C.G必为不连通图D.G必为简单图3、下图是( C )。

A.强连通B.单侧连通C.弱连通D.不连通4、以下是简单图的度序列的是( C )。

A.(5,4,3,2,2,2,1) B.(7,6,5,4,4,3,1) C.(6,43,3,3,2,1) D.(6,6,4,3,2,2,1)5、下列无向图中,不.是哈密顿图的是( B )。

6、满足下列条件( A )的无向图不一定是树。

A.边数=顶点数-1 B.任意一对结点间有且仅有一条通路C.连通且无回路D.无回路,但添加任何一条边后必产生唯一回路7、设<S,*>为一代数系统,S={e,a,b}。

*运算定义如下。

则( D )为其子代数。

*e a be b b ea eb ab b e eA.<{e,a,b},⊙> B.<{a,b},*> C.<{e,a},*> D.<{e,b},*>8、以下代数系统中,群是( D )。

*a b c d*a b c da abcd a a b c db b e ac b b b b bc cd b a c c b a dd d ae b d d b c aA B*a b c d*a b c da abcd a b a d cb b a dc b a b c dc cd c a c d c a bd d c b a d c d b aC D9、设<S,*>为一代数系统,a∈S,则( A )。

离散数学第2版课后习题答案

离散数学第2版课后习题答案

离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。

离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。

而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。

本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。

第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。

命题变量用字母表示,代表一个命题。

命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。

括号用于改变命题联结词的优先级。

习题2:列举命题逻辑的基本定律。

答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。

1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。

集合的基本运算包括并、交、差和补等。

习题2:列举集合的基本定律。

答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。

第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。

答:命题逻辑的推理规则是用来推导命题的逻辑规则。

常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。

习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。

答:假言推理规则可以用来证明该命题。

根据假言推理规则,如果A成立,则B成立。

又根据假言推理规则,如果B不成立,则A不成立。

2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。

与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1. 用命题逻辑把下列命题符号化a) 假如上午不下雨,我去看电影,否则就在家里读书或看报。

b) 我今天进城,除非下雨。

c) 仅当你走,我将留下。

2. 用谓词逻辑把下列命题符号化a) 有些实数不是有理数b) 对于所有非零实数x,总存在y使得xy=1。

c) f是从A到B的函数当且仅当对于每个a€ A存在唯一的b € B ,使得f(a)=b.二、简答题(共6道题,共32分)1. 求命题公式(P T(Q T R)).r(R T(Q T P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2. 设个体域为{1,2,3},求下列命题的真值(4分)a) -x y(x+y=4)b) y -x (x+y=4)3. 求-x(F(x) T G(x)) T ( xF(x) T-I X G(X))的前束范式。

(4 分)4. 判断下面命题的真假,并说明原因。

(每小题2分,共4分)a) (A _.B)—C=(A-B) (A-C)b) 若f是从集合A到集合B的入射函数,则|A| < |B|5. 设A是有穷集,|A|=5,问(每小题2分,共4分)a) A上有多少种不同的等价关系?b) 从A到A的不同双射函数有多少个?6. 设有偏序集<A, < >,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)7. 已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数K IS;P(S);N,N ;P(N);R,R X R,{o,1}(写出即可)(6 分)三、证明题(共3小题,共计40分)1. 使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a) A T (B A C),(E T—F) T—C, B T (A A ~S)二B T Eb) -x(P(x) T—Q(x)), -x(Q(x) V R(x)) , x—R(x)二x~P(x)2. 设R1是A上的等价关系,R2是B上的等价关系,A工._且B =_,关系R满足:<<X1,y1>,<X2,y2>>€ R,当且仅当< x 1, X2> € R1 且<y 1,y2> € R2。

【大学期末考试复习题】吉林大学《离散数学II》期末考试试题(A)参考答案

【大学期末考试复习题】吉林大学《离散数学II》期末考试试题(A)参考答案

一、1.(1 3 2)(4 5);2.不一定。

因为无限循环群恰有两个生成元;3.一定;4.B;5.C;6.D;7.一共两个子群,一个是{0},一个是A;8.偶置换,奇置换;9.A={1,2,4,5,20},关系是整除;10.B;二、1.x8-x4+1;2.4Z;3.商式:2x4+ x3 + 2x2+ 4x+2;余式:2;4.{I,(1 3)},{(1 2),(1 3 2)},{(2 3),(1 2 3)}5.0的周期是1;1的周期是6;2的周期是3;3的周期是2;4的周期是3;5的周期是6。

三、证明:如果它可约必为一次式与四次及以下因式乘积或二次式与三次及以下因式乘积的形式。

(1)在R2上3x5+5x2+1是x5+x2+1,而f(0)=f(1)=10,所以它在R2上无一次质因式;(2)在R2上的二次质因式只有x2+x+1,而x5+x2+1=x2(x+1)(x2+x+1)+1,所以它在R2上也无二次质因式,因此它在R2上不可约,从而在R0上不可约。

四、1)由C的定义知C?G2)设(G,*)的单位元为e,则有e A和e B,所以e=e*e C;3)任取x, y C,令x=a1*b1, y=a2*b2,则x*y= (a1*b1)*(a2*b2),因为*满足结合律和交换律,所以有x*y= (a1* a2)*( b1*b2) C,故*在C上是封闭的。

4)任取c C,令x=a*b,则x-1=(a*b)-1= b-1*a-1= a-1*b-1C,故C中每个元素都有逆元素。

因此结论成立。

五、显然X 非空,如(0,0)属于X根据运算的定义,在X上封闭,且满足交换律与结合律,(X, )的单位元是(0,0),任取(a,b) X,(a,b)的负元是(-a,-b)。

所以(X, )是交换群。

运算在X上封闭,且满足结合律,所以(X, )是半群。

任取(a1,b1),(a2,b2) ,(a3,b3) X,有(a1,b1) ((a2,b2) (a3,b3))=(a1a2+a1a3,b1b2+b1b3)((a1,b1) (a2,b2)) ((a1,b1) (a3,b3))= (a1a2+a1a3,b1b2+b1b3),再根据和满足交第 1 页共 2 页。

离散数学(第二版)最全课后习题答案详解

离散数学(第二版)最全课后习题答案详解
答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式 q 的真值为 1.
4.将下列命题符号化,并指出真值. (1)2 与 5 都是素数
答:p:2 是素数,q:5 是素数,符号化为 p q∧ ,其真值为 1.
(2)不但 π 是无理数,而且自然对数的底 e 也是无理数. 答:p:π 是无理数,q:自然对数的底 e 是无理数,符号化为 p q∧ ,其真值为 1.
若 p 为真,则真值为 0;若 p 为假,则真值为 1
14.将下列命题符号化:
(1) 刘晓月跑得快,跳得高;
(2) 老王是山东人或者河北人;
(3) 因为天气冷,所以我穿了羽绒服;
(4) 王欢与李乐组成一个小组;
(5) 李欣与李末是兄弟;
(6) 王强与刘威都学过法语;
(7) 他一面吃饭,一面听音乐;
(8) 如果天下大雨,他就乘班车上班;
1
0
1
0
1
0
0
1
1
1
0
0
0
0
1
0
1
0
1
1
1
1
0
0
1
0
1
0
1
0
0
1
1
1
此式为可满足式
20.求下列公式的成真赋值: (1)
(2)
(3)
(4)
p
q
解:
0
0
0
1
1
0
0
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
0
1
由真值表得:(1)的成真赋值是 01,10,11(2)的成真赋值是 00,10,11

吉林大学离散数学课后习题答案

吉林大学离散数学课后习题答案

第一章集合论基础§1.1 基本要求1. 掌握集合、子集、超集、空集、幂集、集合族的概念。

懂得两个集合间相等和包含关系的定义和性质,能够利用定义证明两个集合相等。

熟悉常用的集合表示方法。

2. 掌握集合的基本运算:并、交、余、差、直乘积、对称差的定义以及集合运算满足的基本算律,能够利用它们来证明更复杂的集合等式。

3. 掌握关系、二元关系、空关系、全域关系、相等关系、逆关系的概念以及关系的性质:自反性、对称性、反对称性、传递性。

会做关系的乘积。

了解关系的闭包运算:自反闭包、对称闭包、传递闭包。

4. 掌握等价关系、等价类、商集的概念,了解等价关系和划分的内在联系。

5. 掌握部分序关系、部分序集、全序关系、全序集的概念以及部分序集中的特殊元素:最大元、最小元、极大元、极小元、上确界、小确界的定义。

能画出有限部分序集的Hasse 图,并根据图讨论部分序集的某些性质。

6. 掌握映射、映像、1-1映射等概念,会做映射的乘积。

了解可数集合的概念,掌握可数集合的判定方法。

7. 了解关系在数据库中的应用(数据的增、删、改)以及划分在计算机中的应用。

§1.2 主要解题方法1.2.1 证明集合的包含关系方法一.用定义来证明集合的包含关系是最常用也是最基本的一种方法。

要证明A⊆B,首先任取x∈A,再演绎地证出x∈B成立。

由于我们选择的元素x是属于A的任何一个,而非特指的一个,故知给出的演绎证明对A中含有的每一个元素都成立。

当A是无限集时,因为我们不能对x∈A,逐一地证明x∈B成立,所以证明时的假设“x是任取的”就特别重要。

例1.2.1 设A,B,C,D是任意四个非空集合,若A⊆C,B⊆D,则A×B⊆C×D。

证明:任取(x,y) ∈A×B,往证(x,y) ∈C×D。

由(x,y) ∈A×B知,x∈A,且y∈B。

又由A⊆C,B⊆D知,x∈C,且y∈D,因此,(x,y) ∈C×D。

吉林大学离散数学课后习题答案

吉林大学离散数学课后习题答案

吉林大学离散数学课后习题答案第二章命题逻辑§2.2 主要解题方法2.2.1 证明命题公式恒真或恒假主要有如下方法:方法一.真值表方法。

即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。

真值表法比较烦琐,但只要认真仔细,不会出错。

例2.2.1 说明 G= (P Q R)(P Q)(P R)是恒真、恒假还是可满足。

解:该公式的真值表如下:P Q R P QR PQ(P QR)(P Q)P R G0 0 0 1 1 1 1 10 0 1 1 1 1 1 10 1 0 1 1 1 1 10 1 1 1 1 1 1 11 0 0 1 0 0 1 11 0 1 1 0 0 1 11 1 0 0 1 0 0 11 1 1 1 1 1 1 1表2.2.1由于表2.2.1中对应公式G所在列的每一取值全为1,故G恒真。

方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。

例2.2.2 说明 G= ((P R) R) ( (Q P) P)是恒真、恒假还是可满足。

解:由(P R) R=P R R=1,以及(Q P) P= (Q P) P = Q PP=0知,((P R) R) ( (Q P) P)=0,故G恒假。

方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n 个极大项,则G是恒假的。

方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G恒假,若最终结果有1,有0,则是可满足的。

大学离散数学试卷二及答案

大学离散数学试卷二及答案

大学离散数学试卷二及答案一、单项选择题 (2分×10=20分)1、下列语句是命题的有[ B ]。

A. 122>+y x ;B. 2010年的国庆节是晴天;C. 青年学生多么朝气蓬勃呀!D. 学生不准吸烟!2、在命题逻辑中,任何命题公式的主合取范式都 [ C ]。

A. 不一定存在;B. 不存在;C. 存在且唯一;D. 存在但不唯一.3、设S={1,2,3,4},R={<1,1>,<3,3>,<4,4>},则R 满足的性质是 [ C ]A. 自反、对称、传递的 ;B. 自反、对称、反对称的;C. 对称、反对称、传递的;D. 只有对称性.4. 与命题p ∧(p ∨q)等值的公式是 [ A ]。

A. p ;B. q ;C. p ∨q ;D. p ∧q.5. 设M={a,b,c},M 上的等价关系R={<a,a>,<b,b>,<c,c>,<b,c>,<c,b>}确定的集合M 的划分是[ D ]。

A.{{a},{b},{c}}B.{{a,c},{b,c}}C.{{a,c},{b}}D.{{a},{b,c }}6. 设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢y ,则命题“每个人都喜欢某种花”的逻辑符号化为[ C ]。

A. )),()(()((y x H y F y x M x →∃∧∀;B. )),()(()((y x H y F y x M x →∃→∀;C. )),()(()((y x H y F y x M x ∧∃→∀;D. )),()(()((y x H y F y x M x ∧∀→∃.7. 下列图中,不是哈密顿图的为[ A ]。

A B C D8. 下列四组数据中,能作为某个4阶无向简单图的度序列的为[ D ]。

A. 1,2,3,4 ;B. 2,2,2,3;C. 1,1,2,3;D. 1,1,1,3.9. 一棵无向树T 有8个顶点,4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T 中有[ C ]片树叶。

吉大离散数学试题及答案

吉大离散数学试题及答案

吉大离散数学试题及答案一、选择题1. 以下哪个选项不是离散数学中的基本概念?A. 集合B. 函数C. 微积分D. 关系答案:C2. 在集合论中,以下哪个操作不是基本的集合运算?A. 并集B. 交集C. 差集D. 微分答案:D3. 逻辑运算中的“与”操作,其结果为真当且仅当两个操作数都为真。

这个操作的符号是:A. ∧B. ∨C. ¬D. →答案:A二、填空题1. 一个集合的幂集包含该集合的所有_________。

答案:子集2. 如果函数f: A → B 是单射的,那么对于 A 中的任意两个不同的元素 a1 和 a2,f(a1) 和 f(a2) 在 B 中是_________的。

答案:不同的三、简答题1. 简述什么是图论中的“图”?答案:图是由顶点(或称为节点)和连接这些顶点的边组成的数学结构。

图可以是有向的或无向的,边可以是有权重的或无权重的。

2. 什么是逻辑中的“真值表”?答案:真值表是一种列出逻辑表达式中所有可能的真值组合及其结果的表格。

它用于展示逻辑表达式在不同输入值下的结果。

四、计算题1. 给定集合 A = {1, 2, 3} 和 B = {2, 3, 4},请找出 A 和 B 的交集。

答案:A ∩ B = {2, 3}2. 假设有一个函数 f(x) = x^2,计算 f(-3) 和 f(3) 的值。

答案:f(-3) = 9,f(3) = 9五、论述题1. 论述离散数学在计算机科学中的应用。

答案:离散数学是计算机科学的基础,它提供了处理计算机科学问题所需的数学工具和理论。

例如,集合论是数据库理论的基础;图论在网络和算法设计中有着广泛应用;逻辑和布尔代数是计算机硬件设计和编程语言的基础。

2. 讨论命题逻辑和谓词逻辑的区别。

答案:命题逻辑关注简单命题及其逻辑关系,而谓词逻辑则引入了量词和变量,允许表达更复杂的逻辑关系。

命题逻辑使用逻辑连接词(如与、或、非等)来构建表达式,而谓词逻辑则使用量词(如全称量词∀和存在量词∃)来描述涉及个体的命题。

《离散数学》题库大全及答案

《离散数学》题库大全及答案

《离散数学》题库大全及答案为离散数学领域的经典教材,全世界几乎所有知名的院校都曾经使用本书作为教材.以我个人观点看来,这本书可以称之为离散数学百科.书中不但介绍了离散数学的理论和方法,还有丰富的历史资料和相关学习网站资源.更为令人激动的便是这本书少有的将离散数学理论与应用结合得如此的好.你可以看到离散数学理论在逻辑电路,程序设计,商业和互联网等诸多领域的应用实例.本书的英文版(第六版)当中更增添了相当多的数学和计算机科学家的传记,是计算机科学历史不可多得的参考资料.作为教材这本书配有相当数量的练习.每一章后面还有一组课题,把学生已经学到的计算和离散数学的内容结合在一起进行训练.这本书也是我个人在学习离散数学时读的唯一的英文教材,实为一本值得推荐的好书。

《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案)

离散数学考试试题(A 卷及答案)一、 (10 分)判断下列公式的类型(永真式、永假式、可满足式)?1)((P Q)∧Q)一 ((Q∨R)∧Q) 2)((Q P)∨P)∧ (P∨R)3)((P∨Q)R)((P∧Q)∨R)解: 1)永真式; 2) 永假式; 3)可满足式。

二、 (8 分) 个体域为{1, 2},求x3y (x+y=4)的真值。

解:x3y (x+y=4) 一 x ((x+1=4)∨(x+2=4))一((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))一(0∨0)∧(0∨1)一1∧1一0三、 (8 分) 已知集合 A 和 B 且|A|=n, |B|=m,求 A 到 B 的二元关系数是多少? A 到 B 的函数数是多少?解:因为|P(A×B) |=2|A×B|=2|A| |B|=2mn,所以 A 到 B 的二元关系有 2mn 个。

因为|BA|= |B| |A|=mn,所以 A 到 B 的函数 mn 个。

四、 (10 分) 已知 A={1,2,3,4,5}和 R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求 r(R) 、s(R)和 t(R)。

解: r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、 (10 分) 75 个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20 人这三种东西都乘过,其中 55 人至少乘坐过其中的两种。

离散数学2及答案

离散数学2及答案

离散数学2一、填空题(每小题2分,共30分)1 设():M x x 偶数, ():F x x 素数。

将命题“存在偶素数”符号化为: ))()((x F x M x ∧∃ 。

2 集合A={2,2,2,3}的幂集合P(A)={}3,2{},3{},2{,φ }。

3 设A={1,2,3},B={a,b},则=⨯B A 6 。

4 已知命题公式A 含有2个命题变项,其成真赋值为00、10、11,则其主合取范式为 1M 。

5 设p :北京比大连人口多,q :2+2=4,r :乌鸦是白色的。

则命题公式)()(r p r p ⌝∧↔∨⌝的真值为 0 。

6 无向图G 具有欧拉通路,当且仅当G 是 连通 图且无奇度顶点或有两个奇度顶点。

7 6阶无向树的总度数为 10 。

8设A={1,2,3},B={a, b},A 1={2},f={<1,a>,<2,a>,<3,b>},则=-))((11A f f { 1,2 }。

9 设B A f →:,若ran B f )(=,则称B A f →:是满射的。

10 设群>⊕=<}),.({b a P G ,其中⊕为对称差。

群方程φ=⊕}{b Y 的解=Y {b} 。

11 设p:我去自习,q:我去看电影,r:我有课。

则命题“如果我去自习或看电影,我就没有课”的符号化形式为r qp⌝→∨)(。

12 画出3阶有向完全图的2条边的2个非同构的生成子图。

13 下面运算表中的=-1a c 。

14 写出模4乘法<Z4,⊗ >的运算表⊗0 1 2 31230 0 0 00 1 2 30 2 0 20 3 2 115 设A(x)是任意的含自由出现个体变项x的公式,则⇔⌝∀)(xxA )(xAx⌝∃。

二、试解下列各题(每小题5分,共25分)1. 设A = {a , b , c , d }, R = {<a ,b >,<b ,a >,<b ,c >,<c ,d >}, 求3R 的的矩阵表示和关系图表示。

离散数学课后习题答案二

离散数学课后习题答案二

离散数学课后习题答案二习题3.71. 列出关系}6|{=∈><+d c b a d c b a d c b a 且,,,,,,Z 中所有有序4元组。

解}6|{=∈><+d c b a d c b a d c b a 且,,,,,,Z,2,1,3,1,3,1,2,1,2,3,1,1,3,2,1,1,1,1,1,6,1,1,6,1,1,6,1,1,6,1,1,1{><><><><><><><><=><><><><><><><><2,1,1,3,3,1,1,2,1,2,1,3,1,3,1,2,1,1,2,3, 1,1,3,2,1,2,3,1,1,3,2,12. 列出二维表3.18所表示的多元关系中所有5元组。

假设不增加新的5元组,找出二维表3.18所有的主键码。

表3.18 航班信息航空公司航班登机口目的地起飞时间Nadir 112 34 底特律08:10 Acme 221 22 丹佛 08:17 Acme 122 33 安克雷奇 08:22 Acme 323 34 檀香山 08:30 Nadir 199 13 底特律 08:47 Acme 222 22 丹佛09:10 Nadir 32234底特律09:44解略3. 当施用投影运算5,3,2π到有序5元组><="">解略4. 哪个投影运算用于除去一个6元组的第一、第二和第四个分量?解略5. 给出分别施用投影运算4,2,1π和选择运算Nadir 航空公司=σ到二维表3.18以后得到的表。

解对航班信息二维表进行投影运算5,3,2π后得到的二维表航班登机口起飞时间 112 34 08:10 221 22 08:17 122 33 08:22 323 34 08:30 199 13 08:47 222 22 09:10 3223409:44对航班信息二维表进行选择运算Nadir 航空公司=后得到的二维表航空公司航班登机口目的地起飞时间Nadir 112 34 底特律08:10 Nadir 199 13 底特律 08:47 Nadir 32234底特律09:446. 把连接运算3J 用到5元组二维表和8元组二维表后所得二维表中有序多元组有多少个分量?解略7. 构造把连接运算2J 用到二维表3.19和二维表3.20所得到的二维表。

2009级(软件工程)离散数学试题答案

2009级(软件工程)离散数学试题答案

2009级离散数学A卷试题参考答案一、填空题(每小题2分,共20分)1.q→p2.∀x∀y(S(x)∧T(y)→H(x,y))/ ∃x∃y(S(x)∧T(y)∧H(x,y)) 3.(F(1, 1)∧F(1, 2))∨( F(2, 1) ∧F(2, 2)) 4.45.f |f: B → A的函数6.1、2、3、67.交换群、半群、分配律8.D是强连通图且每个结点的出度等于入度9.deg(u)+ deg(v)≥ n 10.n-1二、判断题(每小题2分,共20分,正确的划v,错误的划×)1.v 2.v 3.v 4.×5.×6.×7.×8.v 9.v 10.×三、计算题(每小题5分,共15分)1.M010(M2)2.R1 ={<1,1>,<2,2>,<3,3>,<4,4>,<2,3>,<3,2>,<2,4>,<4,2>,<3,4>,<4,3>}R2 ={<1,1>,<2,2>,<3,3>,<4,4>,<1,3>,<3,1>,<1,4>,<4,1>,<3,4>,<4,3>}R3 ={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<1,4>,<4,1>,<2,4>,<4,2>}R4 ={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>}R5 ={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<3,4>,<4,3>} R6 ={<1,1>,<2,2>,<3,3>,<4,4>,<1,3>,<3,1>,<2,4>,<4,2>} R7 ={<1,1>,<2,2>,<3,3>,<4,4>,<1,4>,<4,1>,<2,3>,<3,2>} 3.6四、证明题(共45分)1.对于任意z∈C,由fοg是满射,必存在x∈A,使得z=fοg(x)=g(f(x));由f是A到B的函数,必存在y∈B,使得f(x)=y。

离散数学试题与参考答案

离散数学试题与参考答案

《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。

(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( )(A) 1∈A (B) {1,2, 3}⊆A(C) {{4,5}}⊂A (D) ∅∈A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B ⋂C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>}5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共206. 设集合A ={∅,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><,那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系.9. 写出一个不含“→”的逻辑联结词的完备集 .10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为 M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C)12. (10分)构造证明:(P →(Q →S))∧(⌝R ∨P)∧Q ⇒R →S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。

吉林大学2009级计算机学院《离散数学II》试题(A)

吉林大学2009级计算机学院《离散数学II》试题(A)

吉林大学2009级计算机学院《离散数学II》试题(A)一、简答题(共20小题,每小题2分,共40分,不必证明,直接给出答案即可)1. 设S={a,b,c,d},定义ρ(S)上的二元运算“-”,使对于任意A 、B ∈ρ(S),A -B={x|x ∈A 且x ?B},问:该运算满足消去律吗?ρ(S)上存在幂等元吗?2. 所有的4元群都同构吗?所有的7元群都同构吗?3. 整区中是否存在零因子?整区中所有非零元素的乘法周期都相等吗?4. 设循环群G=(a),|G|=24,则G 中是否存在周期为5的元素?是否存在8元子群?5. 设a ∈GF(27)且a ≠0,求6a 和a 26。

6. 在R 13求424-。

7. 设(G ,·)是群,请给出满足方程a ·b ·x ·c =1的解x ,其中:1是G 的单位元,a 、b 、c ∈G 。

8. 设G={e,a,b,c,d,f,g},(G ,·)是群,e 是G 的单位元,计算a ·b ·c ·d ·f ·g 等于多少?9. 设循环群G=(a),H 是G 子群,则H 是正规子群吗?10. 写出模12剩余环的一个极大理想。

11. 域F 上的非0多项式f(x)有k (k 为非负整数)重根,则f(x)一定可约吗?12. 给出多项式x 5+5x 4+2x 3+3x+1的一个有理根。

13. 在R 2上给出两个多项式f(x)和g(x),满足f(x)≡g(x)但f(x)≠g(x)。

14. 在R 0上,多项式6x 5+14x 4+7x 3+21x 2-35x+7是否是质式?15. 求分圆多项式之积:Φ1(x)Φ2(x)Φ3(x)Φ6(x)。

16. q 元有限域中的非零元素一定都是多项式x q-1-1的根吗?17. 设(L ,≤)是一个半序格,与其等价的代数格为(L,×,⊕),设S ? L 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、简答题(共40分)
1.不满足,存在。

2.不是,是
3.没有,相等
4.不存在,存在;
5.0,1
6.8(或5);
7.x=b-1a-1c-1;
8.e;
9.是;
10.{0,2,4,6,8,10}或{0,3,6,9}。


11.不一定。

12.-1。

13.f(x)=x3+x2+x和g(x)=x
14.是
15.x6-1
16.不一定
17.不一定
18.不一定
19.一定
20.{a},{b},{c},{d}
二、 计算题(共30分)
1、 (1)I, (1 2 3), (1 3 2)
(2)H={ I, (2 3)}
(3)H 的左陪集:{ I, (2 3)}、{ I, (1 2) , (1 3 2)}、{ I, (1 3) , (1 2 3)}
H 的左陪集:{ I, (2 3)}、{ I, (1 2) , (1 2 3)}、{ I, (1 3) , (1 3 2)}
2、商式:x2+4x+6,余式:-6x-3(或x+4)
3、 (1)GF(3)、GF(9)
(2)首先求()481x x Φ=+。

(2)求()8x Φ在R 3[x]中的2次质式ϕ(x)。

x 4+1=(x 2-x-1)(x 2+x-1)=(x 2+2x+2)(x 2+x+2)= (2x 2+x+1)(2x 2+2x+1)
=(-x 2+x+1)(-x 2-x+1)。

(3)若取ξ=x ,则GF(9)={a 0+a 1ξ| a 0, a 1∈R 3}={0, 1, -1, ξ, 1-ξ, -1-ξ, -1+ξ,
1+ξ}
三、 证明题(共40分)
1、证明:(1)对任意的x,y ∈Z, σ(x+y)=a x+y =a x a y =σ(x)σ(y),即σ是同态的。

对于任意的x=a i ∈G ,x 有原像i 使σ(i)=a i =x ,即σ是满射。

(2)同态和N=6Z,因此 Z/N={5,4,3,2,1,0}。

2、证明:(1)①显然A 非空,因为1-1映射属于A ;
②(α⊕τ)(x)=α(x)+τ(x)∈Z 因此α⊕τ也是Z 到Z 的一个映射,即⊕运算封闭; ③对于任意的α,τ,ρ∈A ,有(α⊕(τ⊕ρ))(x)= α(x)+(τ ⊕)(x)= α(x)+τ(x)+ρ(x) =(α(x)+τ(x))+ρ(x)=( α⊕τ)(x)+ρ(x)=(( α⊕τ)⊕ρ)(x),即⊕运算满足结合律; ④对于A 中任意元素α,有把Z 中所有整数映射到0的映射f ,使得
(α⊕f)(x)= α(x)+f(x)= α(x)+0=α(x),即f 是右单位元;
⑤对于A 中任意的α,若α(x)=a ,A 中存在映射β,β(x)=-a ,于是(α⊕β)(x)= α(x)+
β(x)=a+(-a)=0,即β是α的右逆。

综合上述(A, ⊕)是群。

⑥由于(α⊕τ)(x)= α(x)+τ(x)= τ(x)+α(x)= (τ⊕α)(x),因此⊕满足交换律;
因此(A, ⊕)是Abel群。

(2)(α⊙(τ⊕ρ))(x)= α((τ⊕ρ)(x))= α((τ(x)+ρ(x))),而((α⊙τ)⊕(α⊙ρ))(x)= (α⊙τ)(x)+ (α⊙ρ)(x)= α(τ(x))+ α(ρ(x)),如α(x)=x2, τ(x)=x,
ρ(x)=1,则(α⊙(τ⊕ρ))(x)= α((τ⊕ρ)(x))= α((τ(x)+ρ(x)))=
α(x+1)=(x+1)2, ((α⊙τ)⊕(α⊙ρ))(x)= (α⊙τ)(x)+ (α⊙ρ)(x)=
α(τ(x))+ α(ρ(x))= α(x)+ α(1)=x2+12=x+1,既⊙对⊕不满足分配律。

3、
(1)证明:
①由于所有子群都包含1,所以1∈H,故H非空;
②对于任意a、b∈H,则有a、b∈每一个子群,故每一个子群中都有b-1,所以每
一个子群中都有ab-1,所以ab-1∈H。

(2)证明:反证法,假设存在a∈H,a的周期为0,则得到H’={…a-4,a-2,a0,a2,a4,a8…},则H’也是G的子群,但a∉H’,已知H是G的所有子群的交集,故a∉H,矛盾。

所以假设不成立,原结论成立。

(3)如果H为无限群,则G的每一个子群必无限;由(2)知,任意元素a∈H的周期n均有限,则(a)为G的n元有限子群,矛盾。

故H必为有限群。

已知H≠{1},故|H|=n必大于1,假设n不为质数,设n=hk,根据拉格朗日定理,必存在元素a∈H,满足a hk=1,则由a h生成的循环子群(a h)必为G的子群,则G的所有子群的交换群应该为(a h)而不是H,矛盾。

故原假设不成立,|H|一定是质数,故H一定是循环群。

相关文档
最新文档