ANSYS与ansoft电机仿真步骤
ANSOFT软件在电机设计中的应用教程
建模过程中注意事项
物体必须封闭。 物体之间可以完全包含,不可以交叉。 物体边的分段数不可太低。 尽量避免过尖锐的物体,必要时要做钝化处理。 应用布尔运算后,原物体并不被删除,而是被指定为Non_model,物体处于隐藏状态。
建模基本操作
选择Model/Drawing Plane命令,设置模型的绘制 平面。选项中包括XY Plane和RZ Plane.
暂态场激励源为电流源,电压源以及外接电路。
4设定边界条件及激励源
电流源设置
4设定边界条件及激励源
电压源设置
4设定边界条件及激励源
外电路中设置激励源
4设定边界条件及激励源
两相导通的三相无刷直流电机
Ia Im Ix Im
I
b
Im
Iy Im
I
c
0
Iz 0
三相星接正弦永磁同步电机
Ia Im Ix Im
选择Model/Drawing Size重新定义模型区域的大 小。
选择Model/Drawing Units来定义模型所用的单位。 创建模型。建议通过画直线和圆弧来完成场域边
界的建立。 需要的时候,利用Edit,Reshape和Arrange菜单命
令修改你所建立的模型。
绕组注意事项
连接要正确。 尽量用不同颜色标明。 同相分组。
3设定模型材料属性(Setup Materials)
选中物体,从材料库中选择所需材料,点击“Assign”。 添加新材料 材料的属性也可以用函数来赋值。
排除物体 有些情况下,可能让一些物体不参加计算,这时,就可以利用排 除该物体来实现该目的。一种典型的情况是,对于一个闭合的场 域问题(如由第一类边界包围的一个电场区域)背景可以不参加 计算,这时就可以利用排除背景来实现。具体做法为:选择要排 除的物体,点击Exclude。可Include来恢复物体。
电机电磁仿真基本流程
电机电磁仿真基本流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!电机电磁仿真基本流程一、准备工作阶段1. 确定仿真目标:明确电机电磁仿真的目标,例如分析电机的性能、优化电机设计、预测电机的温升等。
ANSOFT软件在电机设计中的应用教程
ANSOFT软件在电机设计中的应用教程引言:ANSYS公司是全球领先的工程模拟软件开发商之一,旗下的ANSOFT 软件是一套专门应用于电磁场模拟及电磁场与电路耦合仿真的工具。
该软件被广泛应用于电机设计、电机驱动器设计、变压器设计、高频设备设计等领域。
本文将重点介绍ANSOFT软件在电机设计中的应用。
一、ANSOFT软件简介ANSOFT软件是一套电磁场模拟及电磁场与电路耦合仿真工具,主要包含HFSS、Maxwell、Simplorer等几个工具。
其中,HFSS(High Frequency Structural Simulator)是ANSYS公司开发的基于有限元理论的高频结构模拟软件;Maxwell是一款用于模拟电气、电磁和机械系统中静态和动态行为以及互连行为的软件;Simplorer是一款用于嵌入式系统和电子系统设计的面向对象、基于模板和分层技术的多领域仿真环境。
二、ANSOFT软件在电机设计中的应用1.基于有限元法的电机磁场分析ANSOFT软件可通过HFSS工具,对电机中的磁场进行分析。
用户可根据实际问题建立三维模型,并设置电机的几何参数、材料属性等。
通过求解电磁场方程,可以得到电机中的各种磁场分布,如磁感应强度、磁感应线等。
这些分析结果可以直观地展示出电机的性能,为电机设计提供重要参考依据。
2.电机热分析电机在工作过程中会产生大量的热量,热问题是影响电机性能的重要因素之一、ANSOFT软件可通过HFSS和Maxwell工具,对电机的热问题进行仿真分析。
用户可设置电机的绝热条件、材料的热导率等参数,并进行热传导的数值模拟。
通过分析电机的温度分布和热耦合效应,可以评估电机的热稳定性,避免因温度过高而导致的损坏或性能下降。
3.电机电磁与电路耦合仿真在电机设计中,电机通常与驱动器和电路连接。
ANSOFT软件的Simplorer工具可以实现电机电磁与电路的耦合仿真。
用户可将电机的电磁模型与电路模型相结合,进行电机的驱动力学仿真。
直流电机ansys仿真参数设置
直流电机ansys仿真参数设置
ANSYS仿真是直流电机进行模拟测试的重要工具,其可以分析模拟直流电机的物理性能参数,并针对不同应用需求提供相应的计算和调整。
本文将详细介绍ANSYS仿真设置参数的步骤,并以直流电机模拟测试为例,说明如何有效地设置参数。
首先,需要选择直流电机作为计算对象,然后配置模拟测试所需的相关参数。
具体而言,有必要考虑电机的构造参数和运行参数的影响。
包括电机的功率、转数和安装参数等,以及控制模式、输出转矩和特性等仿真测试参数。
接下来,需要根据直流电机的运行特性设置ANSYS仿真的相应参数。
这包括设定模拟步骤数量,即模拟步骤之间时间间隔;定义不同参数的运动范围区间,它可以指定系统特性;时间和步长控制方式,用于控制模拟结果的精度及稳定性。
还有一些相关参数也可以设置,这些参数指定了模拟测试中直流电机的电磁特性及汽车系统参数,比如摩擦力、热力学效应、负载及驱动系统等参数,都必须考虑到。
最后,应给定模拟的终止条件,并且可以调整ANSYS仿真参数,以增强系统的表现,例如采用线性编码器、抗饱和等参数调节控制;同时可根据模拟结果,实时监控直流电机的特性,观察何种运行条件下汽车系统的性能最佳,从而确定能够有效提升系统性能的参数配置。
综上所述,ANSYS仿真设置参数的全过程可以分为四大步骤:确定模拟对象并配置实验参数;根据直流电机的运行特性设置ANSYS仿真参数;设置模拟测试的其他参数;调整ANSYS仿真参数,促进系统性能改善。
通过这些步骤,可有效地选择和调整ANSYS仿真参数,以达到模拟测试期望的结果,并为直流电机产品设计提供有力支撑。
Ansys(Ansoft)MaxwellRMxprt电机仿真入门详细教程
Ansys(Ansoft)MaxwellRMxprt电机仿真入门详细教程最近课题需要使用ANSYS对三相交流感应电机进行一些仿真,关于ANSYS分析的资料网上很多,但感觉对于新手来说最麻烦和最艰难的还是刚开始那个阶段。
之前在网上搜索了一下感觉也没有非常傻瓜的入门教程,后来在外网上找到一个不错的教程(电机建模,电机分析),在这里以文字的方式进行分析总结一下。
在教程中使用的ANSYS版本是18.2,因为需要进行电磁仿真,所以还需要另外安装相应版本的Ansys Electronics Suite。
才能使用教程中的Maxwell和RMxprt模块。
接下来对整个步骤做一下详细的说明。
整个分析过程主要包括两部分:(1)在RMxprt快速建立三相交流电机的仿真模型(2)对模型进行分析(1)建立电机模型Step1:打开ANSYS workbench,并从软件左边拖拽一个RMxprt分析模块到右侧活动窗口,随后双击Setup进入ANSYS电气分析模块。
Step2:在软件左侧项目管理的窗格内,右键点击RMXprtDesign1并在弹出的对话框中选择感应电机。
Step3:随后单机页面上的添加求解步骤按钮,按下图所示设置电机的相关额定参数。
Step4:双击左侧项目栏中的Machine分支,如退所示设置电机的一些基本信息Step5:双击左侧任务栏里的Stator分支,俺如果所示设置定子参数,随后双击Stator目录下的Slot项目,在弹出的菜单栏中取消勾选Autodesign,随后再次双击SLot分支,如图所示设置定子相关参数。
Step6:双击左侧项目栏中Stator分支下的Winding,如下图所示对电机定子绕组进行参数设置Step7:接下来同理先双击Rotor进行转子参数设置,双击Rotor Slot进行转子槽设计,双击Winding进行转子绕组设计Step8:双击左侧任务栏中的Shaft,对电机轴的参数进行设定Step9:完成以上电机参数设置后可以选择页面上的Validate按钮进行参数检查,没有问题的话可以保存,随后点击选项栏里的Analyze All 和 Solution Data,可以查看点击查看所构造点击的一些基本参数。
ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较.
期末大作业题目:简单直流致动器ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙学科(专业):机械工程学号:21225169所在院系:机械工程学系提交日期2013 年 1 月1、 背景简述:ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。
而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。
本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。
现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。
2、 问题描述:简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。
衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。
模型为轴对称。
3、 ANSYS 仿真操作步骤:第一步:Main menu>preferences第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete第三步:设置单元行为模拟模型的轴对称形状,选择Options(选项)第四步:定义材料Preprocessor>Material Props>•定义空气为1号材料(MURX = 1)•定义衔铁为2号材料(MURX = 1000)•定义线圈为3号材料(自由空间导磁率,MURX=1)第五步:建立衔铁面、线圈面、空气面Preprocessor>Modeling>Greate>Area>Rectangle>By Dimensions 建立衔铁面建立线圈面建立空气面最终结果第六步:用Overlap迫使全部平面连接在一起Preprocessor> Modeling>Booleans>Operate> Overlap>Areas 按Pick All第七步:平面要求与物理区和材料联系起来Preprocessor>Meshing> Meshing Attributes>Picked Areas用鼠标点取衔铁平面Preprocessor>Meshing> Meshing Attributes>Picked Areas选取线圈平面第八步:加磁通量平行边界条件Preprocessor>Solution>Define loads>apply>magnetic>boundary>Vector Poten>Flux par’1>On lines选取如下边界线段第九步:智能尺寸选项来控制网格大小Preprocessor>-Meshing>Size Cntrls>smartsize>basic第十步:网格生成Preprocessor >Meshing>Mesh>Areas>Free>Pick All结果如下:第十步:衔铁定义为一个单元组件(1)选择衔铁平面Utility>select>entities(2)选择与已选平面相对应的单元(3)图示衔铁单元Utility>plot>elements第十一步:使单元与衔铁组件联系起来Utility>Select>Comp/Assembly>Create Component第十二步:加力边界条件标志Preprocessor>Solution>Define loads>apply>magnetic>Magnetic>Flag>Comp Force第十三步:给线圈平面施加电流密度(1)选择线圈平面Utility>Select>Entity(2)得到线圈截面积.Preprocessor>Modeling>Booleans>Operate Operate>Calc Geometric Items>Of Areas选择OK(3)将线圈面积赋予参数CAREAUtility>Parameter>Get Scalar Data第十四步:把电流密度加到平面上Preprocessor> Solution>Define loads>Apply>Excitation>Curr Density>On Areas第十五步:solve进行计算Preprocessor> Solution >solve>electromagnet>Static Analysis>Opt & Solve第十六步:后处理(1)生成磁力线圈General Postproc>plot results>Contour Plot>2D flux lines(2)计算电磁力General Postproc>Elec&Mag Calc>Component Based>Force(3)显示总磁通密度值(BSUM)General Postproc>Plot Results>Contour Plot>Nodal Solution最后结果如下:此时,完成了用ANSYS仿真分析简单直流致动器的全部过程,之后将附上用ansoft 仿真同一简单直流致动器的结果并做简单比较。
ansysEMI仿真教程分解
SIwave电源完整性仿真教程V1.0目录1软件介绍 (2)2.1功能概述 (2)2.2操作界面 (3)2.3常用热键 (4)2仿真的前期准备 (5)2.1软件的准备 (5)2.2 PCB文件导入 (5)2.2.1 Launch SIwave方式 (5)2.2.1 ANF+CMP方式 (6)2.3 PCB的Validation Check (8)2.4 PCB叠层结构设置 (11)2.5仿真参数设置 (12)2.6 RLC参数修正 (13)2.6.1 RLC的自动导入 (13)2.6.2检视自动导入的RLC默认值 (15)2.6.3批量修改RLC值 (18)2.6.4套用大厂的RLC参数 (19)3 SIwave仿真模式 (20)3.1谐振模式 (20)3.2激励源模式 (25)3.3 S参数分析 (30)4实例仿真分析 (31)4.1从Allegro中导入SIwave (31)4.2 Validation Check (32)4.3叠层结构设置 (33)4.4无源参数RLC修正 (33)4.5平面谐振分析 (36)4.6目标阻抗(Z参数)分析 (39)4.7选取退耦电容并添加 (43)4.8再次运行仿真查看结果 (44)5问题总结 (46)5.1 PCB谐振的概念 (46)5.2为何频率会有实部和虚部 (47)5.3电容的非理想特性影响 (47)5.4地平面完整与回流路径连续 (48)5.5电源目标阻抗 (48)1软件介绍2.1功能概述Ansoft SIwave主要用于解决电源完整性问题,采用全波有限元算法,只能进行无源的仿真分析。
Ansoft SIwave虽然功能强大,但并非把PCB导入,就能算出整块板子的问题在哪里。
还需要有经验的工程设计人员,以系统化的设计步骤导入此软件检查PCB设计。
主要功能如下:1.计算共振模式在PDS电源地系统结构(层结构、材料、形状)的LAYOUT之前,我们可以计算出PDS电源地系统的共有的、内在的共振模式。
Ansys静电场仿真工作演示
2定义路径
3由两个节 点定义路径
1设置 路径
设置将要显示结果的路径
108
3点击 确定路径
选中左右二个节点
1第一个 节点
2第二个 节点
109
命名路径
110
关闭路径显示信息文件
111
1路径附加 变量
2变量命名
路径上附加变量
112
电场强度的模
选择路径上显示的变量
113
选取要画的 变量
准备画曲线
3电场边界条件
施加边界条件(第一类边界条件)
75
1电场边界
2线上 加电位
确定在线上加电位
76
1选中
2选中
选中最下面的二条边界线
77
给定边界电位 0
78
选中
选中半园边界线
79
给定边界条件 100V
80
1施加标志 2在线上
3选中线
施加无限单元标志
81
以箭头显示
标志施加完毕
82
1求解
开始求解
2划分方法 (映射)
4开始划分
划分网格:设定划分方法,选定区域,开始划分
70
警告(不是错误) 不影响计算
划分出辐射状无限单元(警告说明圆周方向分段数偏多)
71
3选定区域
1三角形
2自由 划分
选定第二个区域,准备划分网格
4开始划分
72
第二区域划分网格完毕
73
5、求解
74
1启动 求解模块
2施加荷载(包括源 和边界条件
设定线上划分单元数
61
1选中圆弧
2再选中圆弧
3点击 下一步设点单元数
同时选取两圆弧线
ANSYS仿真步骤
ANSYS仿真步骤1.问题定义:首先,需要明确要解决的问题。
这可能涉及到结构力学、流体动力学、电磁学等领域。
明确问题定义有助于确定所需的边界条件和初始条件。
2.几何建模:在进行仿真之前,需要进行几何建模。
可以使用ANSYS的几何工具或导入外部几何模型来创建模型。
确保模型几何形状、尺寸和边界正确。
3.网格划分:将几何模型划分成小的网格单元以进行数值计算。
网格应该足够细致以确保准确性,但也应考虑计算资源和时间的限制。
4.材料属性:定义材料的物理特性,如弹性模量、泊松比、热传导系数等。
根据材料的性质和实际情况选择适当的材料模型。
5.加载和边界条件:定义加载条件和边界条件,如力、温度、电场等。
这些条件将模拟实际问题中的外部作用和约束情况。
6.求解设置:设置求解器选项和模拟参数。
这包括选择适当的数值方法、收敛准则和迭代次数。
7.求解方程:使用ANSYS的求解器对定义的问题进行求解。
求解可能需要一定的计算时间,取决于模型的复杂性和网格的精细度。
8.结果分析:分析仿真结果,并与实际情况进行比较。
应根据问题定义的对象,选择合适的结果评估指标进行分析。
9.结果可视化:通过使用ANSYS的可视化工具,如Contour plots、矢量图、动画等,对结果进行可视化。
这有助于更好地理解和呈现仿真结果。
10.验证和优化:将仿真结果与已有实验数据进行对比,验证模型的准确性。
如果有必要,可以通过迭代优化过程来改进模型和结果。
下面是ANSYS仿真步骤的参考模板,可根据具体问题进行修改和扩展:1.问题定义:问题描述:所需解决的工程问题。
问题目标:明确问题的目标和要求。
2.几何建模:几何形状:描述模型的几何形状。
尺寸:定义模型的尺寸和比例。
3.网格划分:网格密度:选择适当的网格密度。
网格类型:选择适合问题的网格类型。
4.材料属性:材料类型:定义材料的类型和组成。
物理特性:定义材料的物理特性参数。
5.加载和边界条件:边界条件:定义模型的约束和边界条件。
ANSYS仿真步骤(参考模板)
1.Preprocessor/Modeling/Create/Areas/Rectangle/By dimensions输入:0,250e-6; 0,50e-6。
表示一个宽250微米,高50微米的矩形。
最后按OK按钮退出对话框。
1 / 102.Preprocessor/Modeling/Material Props/Material models/Structural/Linear/Elastic/Orthotropic 输入弹性参数Preprocessor/Modeling/Material Props/Material models/Structural/Density 输入密度 2330kg/m32 / 103.Preprocessor/Element Type/Add-Edit-Delete点击Add按钮,选择Shell,选择3D 4node 181,点击OK按钮退出。
3 / 104.Preprocessor/Sections/Shell/Lay-up/Add-EditThickness对话框输入2e-6,点击OK按钮退出。
4 / 105.Preprocessor/Meshing/Mesh ToolSize control: Global 点击Set按钮,在弹出的对话框的SIZE文本框中填入2.5e-6。
1235 / 106.Solution/Analysis Type/New Analysis/modal6 / 107. Solution/Analysis Type/Analysis OptionsNo. of modes to extract: 输入7。
去掉Expand mode shapes 的复选,使之从YES变为No。
在随后弹出的对话框中输入频率区间:0, 1e91327 / 108. Solution/Define Loads/Apply/Structural/Displacement/On Lines鼠标点选矩形左边的边,然后点击OK按钮退出。
基于ANSYS的永磁同步电机的设计与仿真
侯 鹏 1>2 ,周 国 鹏 2 ,万 仁 卓 1 ,周 芳 2 ,周 智 2
( 1 . 武 汉 纺 织 大 学 电 子 与 电 气 工 程 学 院 ,湖 北 武 汉 430200; 2 . 湖 北 科 技 学 院 工 程 技 术 研 究 院 ,湖 北 咸 宁 437100)
摘 要 :为 了 简 化 研 发 永 磁 电 动 机 的 设 计 周 期 ,本 文 提 出 了 一 种 基 于 Ansys Maxwell软 件 RMxprt电
态 运 行 有 限 元 计 算 与 分 析 ,验 证 了 电 磁 设 计 的 合 理 性 ,同 时 比 较 了 基 于 磁 路 法 RMxprt的 计 算 和
Maxwell2D有 限 元 分 析 相 结 合 的 电 机 设 计 过 程 Q结 果 表 明 ,有 限 元 分 析 法 的 精 度 优 于 磁 路 法 ,该 分
元 法 对 单 相 永 磁 同 步 电 机 进 行 了 仿 真 研 究 。在国 外 ,LiP〇等在文献[5]中应用场路耦合有限元法仿真 了 永 磁 同 步 电 机 的 稳 态 运 行 性 能 ,Gieras等在文
献 [6]中用有限元法计算了同步电动机的参数和性 能 ,文中参数仿真能真实地反映负载时磁场的饱和 程度。总 之 ,国内外学者对各种电机电磁场性能仿 真 分 析 取 得 了 一 些 成 果 ,很 明 显 利 用 有 限 元 法 分 析 电机磁场更精确,但利用有限元法分析各种电机模 型还有待完善。
本 文 将 采 用 有 限 元 法 对 永 磁 同 步 电 机 (PMSM) 内部电磁场进 行 数 值 计 算 与 仿 真 分 析 。首先基于 RMxprt模 块 建 立 永 磁 电 机 的 数 学 模 型 ,然 后 将 RMxprt模 块 生 成 的 几 何 模 型 导 入 Maxwell2D 模 块 , 利 用 Maxwell2D 模 块 对 电 机 进 行 有 限 元 仿 真 与 分 析 ,验证电机设计的合理性,并为进一步优化打下 基础。
基于ANSYS平台的电机NVH仿真分析流程
基于ANSYS平台的电机NVH仿真分析流程1前言电机NVH是指电机在运行过程中对外表现出的噪声、振动与声振粗糙度(Noise、Vibration、Harshness),其主要包括三个来源,即电磁噪声、机械噪声和空气动力噪声,在这三类噪声中,电磁噪声的频率相对来说处于高频段,尤其是与驱动器开关频率相关的电磁噪声的频率刚好处于人耳最敏感的噪声频率区间,其幅值基本上决定了电机NVH的整体指标,同时相较于其他两类噪声,电磁噪声更容易通过电机电磁和机械结构的优化设计进行有效的抑制,因此电机电磁振动噪声是我们重点关注的对象。
由于电机NVH问题的相关理论复杂,同时涉及电磁/结构/声学多学科,是典型的多物理场耦合问题,其仿真分析具有一定难度。
在ANSYS2019中,利用Maxwell2D/3D快速仿真电机在多转速下定、转子表面的频域电磁力并无缝链接到Workbench平台HarmonicResponse模块进行多转速谐响应分析,得到电机的ERP Level Waterfall图,用于分析电机在各转速下的谐振情况;同时多转速谐响应分析结果也可传递到Harmonic Acoustics模块进行Sound Power Level Waterfall的分析,用于进一步对电机噪声水平进行评估。
另外,借助于多目标优化模块可对包括电机NVH在内的各项性能指标进行参数化寻优,快速实现产品迭代创新。
本文以典型的8极48槽内置式永磁电机为例,详细介绍在ANSYS平台下电机NVH 仿真分析的流程,希望对各位工程师有所帮助。
2Maxwell电机参数化模型的建立本文虚构了一台典型的IPM电机方案,采用8极48槽,V字型磁钢,单层整距绕组,转子轴向分4段V型斜极,其他参数见表1。
表1电机参数极数8转子外径148.6mm槽数48转子内径80mm磁极类型V转子分段数4定子外径230mm绕组形式单层定子内径150mm跨距6铁心叠长100mm线圈匝数8Maxwell软件具有多种参数化建模方法,我们推荐采用软件内置UDP(User Defined Primitives)或自定义UDP的方式来建模,Maxwell内置了大量UDP模型,涵盖了各种常规电机的定、转子、绕组、机壳的模型,调用方法为Draw>User Defined Primitive>RMxprt,UDP模型中的所有几何尺寸皆可用变量进行定义以实现参数化。
Ansoft的相关应用及对电机的仿真
有限元分析软件Ansoft在电机领域中的应用一ansoft软件各模块的简单介绍1 RMxprt该软件用于探索电机设计空间、快速确定设计方案,并能进行优化设计它已经可以进行十三种电机类型的设计:三相感应电机单相感应电机永磁无刷直流电机永磁直流电机通用电机开关磁阻电机调速运行永磁同步电机自起动三相永磁同步电机三相同步电机三相同步发电机永磁同步发电机特点:✓向导式介面,参数化输入: 工作条件,几何尺寸, 材料特性✓基于磁网路法的快速解析分析✓详细的结果输出:图形和表格✓利用对称条件生成最小有限元分析模型,用于电机动态过程详细有限元分析✓参数化设计能力:尺寸、材料等无需指定。
可用一定变化范围的变量表示✓优化设计功能✓求解时考虑材料非线性b – h特性✓自动设计功能: 槽型设计和线规选择✓提供丰富的预设计电机模型库✓输入数据自动验证✓提供美国、中国材料库和公制、英制尺寸✓针对电机种类的多种绕组型式和用户定义绕组连接方式✓多种负栽种类: 恒功率、恒转矩、恒转速、风机水泵✓三维斜槽和端部效应✓无刷电机、开关磁阻电机、永磁同步电机驱动线路类型、控制方式选择和开关管参数设定2. Maxwell 2D二维电磁场、温度场,瞬态场分析软件,Maxwell® 2D 是一个功能强大、结果精确、易于使用的二维电磁场有限元分析软件,一般在电磁物体满足轴向均匀或RZ对称的条件下采用。
3. Maxwell 3D包括电场、稳态磁场和交流磁场、动态电磁场、损耗计算和热分析模块,其核心是针对三维电磁场分析而优化的有限元技术。
向导式的用户界面、精度驱动的自适应剖分技术和强大的后处理器使得Maxwell 3D成为业界最佳的高性能三维电磁设计软件。
可以分析涡流、位移电流、集肤效应和领近效应具有不可忽视作用的系统,得到电机、母线、变压器、线圈中涡流的整体特性。
功率损耗、线圈损耗、某一频率下的阻抗(R和L)、力、转矩、电感、储能等参数可以自动计算。
ansoft 二维瞬态发电机仿真
二维瞬态磁场发电机的仿真本实例介绍应用二维瞬态磁场求解器(Magnetostatic Solver)对永磁电机进行建模,求解和后处理。
一、创建2D工程1.点击PROJECTS创建一个新的工程。
2.在出现的窗口点击New,显示窗口如下:3.在Name项输入电机名称,在Type项选择Maxwell 2D Version 10,点击OK,显示窗口如下:创建2D模型Solver:Transisent1.点击Define Model/Draw model。
2.在出现窗口中点击Model/Drawing Size,显示窗口如下:3.将Minima项的X,Y值改变得到所建模型的大小。
点击Object/Polyline,在窗口下放依次输入模型的各点坐标。
点击Enter两次结束操作。
点击Zoom in 将所画的物体放大,用鼠标左键选中该物体,点击Edit/Duplicate/Mirror Duplicate,点击Y轴上两点。
4.点击Object/Arc/Clockwise,建立弧,在Number of segments输入段数。
5.选中所画的物体,点击Edit/Duplicate/Along Arc,将(0, 0)作为中点,在Angle项输入每槽所占的角度,在Total Number输入2,点击OK。
6.点击Object/Arc/Clockwise,将(0, 0)作为中点,将上图中左边槽的右下部作为弧的起点,将右边槽的左下部作为作为弧的终点。
7.点击Reshape/Edge/ Delete,删除左边槽。
8.点击Edit/Attributes/By Clicking,选中所画物体,选择Show Hatches,点击OK。
9.点击Object/Polyline,沿着槽的轮廓画线,将这一物体命名为Coil_1,颜色选为黄色。
10.点击Edit/Attributes/By Clicking,选中所画物体,不选Show Hatches,点击OK。
ANSYS与ansoft电机仿真步骤
ANSOFT建模1、在ANSOFT软件中建立电机模型第一步、在ANSOFT绘制电机模型第二步、选择“Modeler”菜单下的“Export”项会出现下面的窗口选择保存为“step”格式的文件。
这时可以退出ANSOFT软件。
ANSYS仿真一、稳态温度仿真第一步创建稳态温度仿真模型第二步、添加材料及属性,属性主要为“导热系数”选择“Engineering data”→”Edit”开始添加材料第三步、添加完材料后,导入在ANSOFT下创建的电机模型,选择“Geometry”按下面选项选择选择ANSOFT下保存的“step”格式的电机模型第四步、导入模型后,给模型添加材料。
选择“Model”→”Edit”进入下面的窗口,按下面的步骤给电机的各个部分选择对应的材料。
第五步、添加完材料后,返回主窗口,更新修改后的工程文件如果没有问题,会变为第六步、添加热载荷首先添加自由度,在温度场分析中选择为温度,按下面窗口选择。
接下来,编辑温度,并选择应用区域,这儿定义整个模型的初始温度相同。
下面添加热载荷,按下面的窗口选择,这里选择“热生成率”。
编辑添加的热生成率数值,并选择应用区域,这儿选择所有的绕组。
添加完载荷后,更新一下工程文件,通过后,可以选择“Solve”进行求解。
如果求解成功后,左边的窗口会变成右边的窗口。
第七步、查看仿真结果。
按下面的窗口选择观察变量。
二、瞬态温度仿真第一步、建立瞬态温度分析模型第二步、添加材料及属性,方法与稳态时相同。
但材料的属性不同,这里需要添加材料的“密度”、“导热系数“、“比热容”。
“Toolbar”窗口如下。
按照各个选项添加数据。
除了添加载荷不同,接下来的步骤与稳态时相同。
设置仿真步数为多步。
按下窗口设置载荷数据,设置为“阶梯数据”。
11/ 11。
Ansys仿真分析操作方法及界面介绍
Ansys仿真分析操作方法及界面介绍在现代工程设计领域中,仿真分析已经成为一种必备的工具。
Ansys作为一款全球知名的仿真分析软件,被广泛应用于航空航天、汽车、电子、建筑等领域。
本文将介绍Ansys仿真分析的操作方法及其界面,旨在帮助读者更好地使用和理解这个强大的工具。
一、Ansys的基本概述Ansys是一款基于有限元分析原理的计算机仿真软件,提供了对结构的静态和动态行为进行模拟分析的能力。
它可以帮助工程师预测和优化产品的性能,从而减少成本和时间。
Ansys包括多个子模块,如Mechanical、Fluent、Electronics等,每个子模块都专注于某个领域的仿真分析。
二、Ansys仿真分析的操作方法1. 创建几何模型:Ansys提供了多种几何建模工具,如实体建模、曲面建模、轮廓建模等。
用户可以根据具体需求选择适当的建模方法,创建几何模型。
2. 设定材料和属性:在仿真分析中,准确的材料和属性设置至关重要。
Ansys中提供了大量的材料数据库,用户可以根据需求选择相应的材料,并为其指定适当的属性。
3. 定义边界条件:边界条件对仿真分析结果具有重要影响。
Ansys允许用户定义各类边界条件,如约束、载荷、温度等。
通过合理设置边界条件,可以更准确地模拟实际工况。
4. 网格划分:网格是有限元分析的基础,也是Ansys仿真分析的关键步骤之一。
通过对几何模型进行网格划分,将其离散为多个小单元,从而进行数值计算和求解。
5. 设置分析类型:根据具体分析要求,选择适当的分析类型。
例如,对于静态结构分析,可以选择静力学分析类型;对于流体力学分析,可以选择流体流动分析类型。
6. 运行仿真计算:设置好所有必要的参数后,点击运行按钮,Ansys将开始进行仿真计算。
在计算过程中,可以随时监视仿真状态,并查看计算结果。
7. 结果处理和后处理:仿真计算完成后,Ansys提供了丰富的后处理工具,用于分析和可视化仿真结果。
用户可以绘制图形、生成报告,进一步研究和评估产品性能。
ANSYS CFD 电机温度场仿真分析流程
ANSYS CFD电机温度场仿真分析流程1前言电机是一种实现机电能量转换的电磁装置。
从19世纪末期起,电机就逐渐代替蒸汽机作为拖动生产机械的原动机。
电机在运行时将产生各种损耗,这些损耗转变成热量,使电机各部件发热,温度升高。
电机中的某些部件,特别是电机的绝缘,只能在一定的温度限值内才能可靠工作。
为维持电机的合理寿命,需要采取适当的措施将电机中的热量散发出去,使其在允许的温度限值内运行。
电机冷却的目的就是根据不同类型的电机选择一种合理的冷却方式,保证在额定运行状态下,电机各部分温度不超过国家标准允许的限值。
电机的冷却方式,主要是指对电机散热采用什么冷却介质和相应的流动途径。
改进电机的冷却技术,对提高电机的利用系数和效率及增加可靠性和寿命,特别对提高大型电机的单机容量,都具有重要的意义。
为了找到最佳的电机冷却方式,需要对电机在工作过程中的核心流动问题进行CFD仿真分析。
电机的CFD仿真分析的核心问题即是电机散热系统分析,涉及通风系统、通风部件、换热部件的设计优化问题以及电机核心部件的温升(起动时及额定工况)等问题。
2技术路线电机的稳态温度场仿真的分析流程如下图所示。
3实施过程以一个基于FLUENT的异步电机的稳态温度场分析为例进行说明。
3.1几何处理电机的温度场仿真既涉及到空气的流动,也涉及到热量在绕组和其他结构件之间的传递,属于流-固共轭换热的范畴,因此仿真计算域中既包含流体域,也包含固体域。
由于流体域和固体域两者是互补的关系,所以在抽取流体域之前,需要先对固体域做处理。
电机模型较为复杂,细节特征较多,而流场仿真分析对网格质量的要求较高,因此在保证计算精度的前提下,需要先对实际电机物理模型做一些合理的简化从而尽可能缩小计算的规模。
简化对象的选取是根据具体结构对温度场计算的影响程度来决定:如果局部的细节特征对温度场计算的影响和主要因素相比可以忽略不计,那么这些细节就可以去除;如果考察的对象是局部的细节特征,则需要建立局部细化模型,从而考虑具体的细节特征。
基于ANSYS平台的电机NVH仿真分析流程
基于ANSYS平台的电机NVH仿真分析流程电机噪声、振动和刺激(NVH)仿真分析是电机设计过程中的重要步骤之一,可以帮助工程师评估电机设计的噪声和振动水平,及其可能的影响。
以下是基于ANSYS平台的电机NVH仿真分析流程的详细步骤:1.几何建模:首先,需要根据电机的实际设计制作三维CAD模型。
该模型应包括电机的各个组成部分,如定子、转子、轴等。
可以使用ANSYS的CAD工具,如ANSYS DesignModeler来创建几何模型。
2.材料属性定义:在模型中给各个零件定义材料属性,包括密度、弹性模量、泊松比等。
这些参数可以通过实验测量或材料厂商提供的数据来确定。
3.网格划分:使用网格生成工具,例如ANSYS的Meshing工具,对几何模型进行网格划分。
在划分时需要根据模型的几何形状和要研究的问题选择适当的网格类型和大小。
4.边界条件和加载定义:在模型中设置几何边界条件和加载条件。
边界条件包括零件之间的约束,例如固定一些部分、连接面的接触等。
加载条件包括施加在电机上的力、电磁力、电磁扭矩等。
5.动力学模拟:使用ANSYS的多物理场仿真模块,如ANSYS Mechanical和ANSYS Fluent,对电机的动力学行为进行模拟。
这包括电机的电磁场、机械运动和流体流动等方面的仿真。
可以使用瞬态或稳态分析方法进行仿真。
6.声学特性模拟:使用ANSYS的声学模拟模块,如ANSYS Acoustics,对电机的噪声特性进行分析。
可以根据电机的振动情况计算噪声,并预测电机在不同负载、速度等工况下的噪声水平。
7.振动特性模拟:使用ANSYS的振动分析模块,如ANSYS Mechanical和ANSYS Workbench中的模态分析、频响分析和转子动力学分析等工具,对电机的振动特性进行分析。
可以评估电机在不同工况下的固有频率、动态特性和振动水平。
8.结果分析和优化:分析仿真结果,包括振动、噪声和应力等方面的结果。
基于ANSYS平台的电机NVH仿真分析流程
基于ANSYS平台的电机NVH仿真分析流程基于ANSYS平台的电机NVH仿真分析流程1前⾔电机NVH是指电机在运⾏过程中对外表现出的噪声、振动与声振粗糙度(Noise、Vibration、Harshness),其主要包括三个来源,即电磁噪声、机械噪声和空⽓动⼒噪声,在这三类噪声中,电磁噪声的频率相对来说处于⾼频段,尤其是与驱动器开关频率相关的电磁噪声的频率刚好处于⼈⽿最敏感的噪声频率区间,其幅值基本上决定了电机NVH的整体指标,同时相较于其他两类噪声,电磁噪声更容易通过电机电磁和机械结构的优化设计进⾏有效的抑制,因此电机电磁振动噪声是我们重点关注的对象。
由于电机NVH问题的相关理论复杂,同时涉及电磁/结构/声学多学科,是典型的多物理场耦合问题,其仿真分析具有⼀定难度。
在ANSYS2019中,利⽤Maxwell2D/3D快速仿真电机在多转速下定、转⼦表⾯的频域电磁⼒并⽆缝链接到Workbench平台HarmonicResponse模块进⾏多转速谐响应分析,得到电机的ERP Level Waterfall图,⽤于分析电机在各转速下的谐振情况;同时多转速谐响应分析结果也可传递到Harmonic Acoustics模块进⾏Sound Power Level Waterfall的分析,⽤于进⼀步对电机噪声⽔平进⾏评估。
另外,借助于多⽬标优化模块可对包括电机NVH在内的各项性能指标进⾏参数化寻优,快速实现产品迭代创新。
本⽂以典型的8极48槽内置式永磁电机为例,详细介绍在ANSYS平台下电机NVH 仿真分析的流程,希望对各位⼯程师有所帮助。
2Maxwell电机参数化模型的建⽴本⽂虚构了⼀台典型的IPM电机⽅案,采⽤8极48槽,V字型磁钢,单层整距绕组,转⼦轴向分4段V型斜极,其他参数见表1。
表1电机参数极数8转⼦外径148.6mm槽数48转⼦内径80mm磁极类型V转⼦分段数4定⼦外径230mm绕组形式单层定⼦内径150mm跨距6铁⼼叠长100mm线圈匝数8Maxwell软件具有多种参数化建模⽅法,我们推荐采⽤软件内置UDP(User Defined Primitives)或⾃定义UDP的⽅式来建模,Maxwell内置了⼤量UDP模型,涵盖了各种常规电机的定、转⼦、绕组、机壳的模型,调⽤⽅法为Draw>User Defined Primitive>RMxprt,UDP模型中的所有⼏何尺⼨皆可⽤变量进⾏定义以实现参数化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A N S O F T建模
1、在ANSOFT软件中建立电机模型
第一步、在ANSOFT绘制电机模型
第二步、选择“Modeler”菜单下的“Export”项会出现下面的窗口
选择保存为“step”格式的文件。
这时可以退出ANSOFT软件。
ANSYS仿真
一、稳态温度仿真
第一步创建稳态温度仿真模型
第二步、添加材料及属性,属性主要为“导热系数”
选择“Engineering data”→”Edit”
开始添加材料
第三步、添加完材料后,导入在ANSOFT下创建的电机模型,选择“Geometry”按下面选项选择
选择ANSOFT下保存的“step”格式的电机模型
第四步、导入模型后,给模型添加材料。
选择“Model”→”Edit”
进入下面的窗口,按下面的步骤给电机的各个部分选择对应的材料。
第五步、添加完材料后,返回主窗口,更新修改后的工程文件
如果没有问题,
会变为
第六步、添加热载荷
首先添加自由度,在温度场分析中选择为温度,按下面窗口选择。
接下来,编辑温度,并选择应用区域,这儿定义整个模型的初始温度相同。
下面添加热载荷,按下面的窗口选择,这里选择“热生成率”。
编辑添加的热生成率数值,并选择应用区域,这儿选择所有的绕组。
添加完载荷后,更新一下工程文件,通过后,可以选择“Solve”进行求解。
如果求解成功后,左边的窗口会变成右边的窗口。
第七步、查看仿真结果。
按下面的窗口选择观察变量。
二、瞬态温度仿真
第一步、建立瞬态温度分析模型
第二步、添加材料及属性,方法与稳态时相同。
但材料的属性不同,这里需要添加材料的“密度”、“导热系数“、“比热容”。
“Toolbar”窗口如下。
按照各个选项添加数据。
除了添加载荷不同,接下来的步骤与稳态时相同。
设置仿真步数为多步。
按下窗口设置载荷数据,设置为“阶梯数据”。
1 / 1。