b样条曲线
B样条曲线
P4 P2
P0
F282.c 二次 B-样条曲线
4.三次B样条曲线 分段三次B样条曲线由相邻四个顶点 定义,其表达式为: P(t)=F0,3(t)•B0+F1,3(t)•B1+F2,3(t)•B2
+F3,3(t)•B3 (0≤t≤1) 可见,由 n 个顶点定义的完整的三次 B样条曲线是由 n-3 段分段曲线连接 而成的。很容易证明,三次B样条曲
角点共线的方法。
Q4
Q1
P1
。
P0
Q2
Q0
P2 Q3
• 四角点共线
若要使B样条曲线段之间切接入一段直线,可运用四
角点共线的方法。 Q5
Q1
Q2 。P1
P0
Q0
P2
P3
。
Q3 Q4
6.5 Bézier曲面和B样条曲面
6.5.1 Bézier曲面
Bézier曲面及控制网格演示动画
曲面的形状、位置由边界上的四个角点决定。中间角点只 反映曲面的凹凸程度。
三段曲线的形状。
角点重叠和角点共线(*)
• 二重角点
若要使B样条曲线与特征多边形相切,可运用二重角
点的方法。 P0
Q0 Q(0-1)
P1
Q1
Q2
P2
Q3
Q4
• 三重角点
若要使B样条曲线产生一个尖点1
P2 P3
Q1
P0
P4
Q5
Q0
Q6
• 三角点共线
若要使B样条曲线产生反向弧切接的效果,可运用三
✓用di1、di2、di3、di4(i=1,2,3,4 )构建四条V向曲线C1、C2、C3和C4(图中虚线);
✓参数v在[0,1] 之间取
b样条曲线曲率简易求解算法
b样条曲线曲率简易求解算法摘要:I.引言- 介绍b 样条曲线- 阐述曲率在曲线设计中的重要性II.b 样条曲线的定义与性质- 定义b 样条曲线- 介绍b 样条曲线的性质III.曲率的计算方法- 详细介绍b 样条曲率的计算方法- 解释各参数的含义及计算过程IV.曲率简易求解算法- 介绍曲率简易求解算法- 阐述算法的原理与步骤V.算法实现与分析- 给出算法实现代码- 分析算法的效率与准确性VI.结论- 总结文章内容- 指出算法的局限性与改进方向正文:I.引言b 样条曲线是一种具有广泛应用的曲线类型,广泛应用于计算机图形学、数值分析、建模等领域。
在曲线设计中,曲率是一个重要的参数,它反映了曲线在某一点处的弯曲程度。
因此,如何高效地计算b 样条曲率成为曲线处理领域的一个研究热点。
本文将介绍一种曲率简易求解算法,并对算法的原理与实现进行详细分析。
II.b 样条曲线的定义与性质b 样条曲线是一种以基函数和控制点加权求和表示的曲线,具有局部性和加权特性。
b 样条曲线可以表示为:C(u) = Σ[Ni(u) * Pi]其中,Ni(u) 是基函数,Pi 是控制点,u 是参数值。
b 样条曲线的性质包括:1) 局部性,即在某一区间内,曲线可以用基函数和控制点的有限和表示;2) 加权特性,即不同控制点对曲线的贡献程度不同,权重由基函数决定。
III.曲率的计算方法b 样条曲率的计算方法主要依赖于de Boor 算法,该算法利用b 样条曲线的性质,通过递归方式计算曲率。
具体计算过程如下:1) 计算第一阶导数C"(u):C"(u) = Σ[Ni(u) * Ni(u)]2) 计算第二阶导数C""(u):C""(u) = Σ[Ni(u) * (Ni(u) + Ni(u+1))]其中,Ni(u) 表示第i 个基函数在参数u 处的取值,Ni(u+1) 表示第i 个基函数在参数u+1 处的取值。
B样条曲线
Bezier曲线
给定P0、P1、P2、P3,三次曲线的参数形式如下:
三次曲线的动态图如下:
对于三次曲线,可由线性贝塞尔曲线描述的中介点 Q0、Q1、Q2,和由二次曲线描述的点R0、R1所建 构。P0、P1、P2、P3四个点在平面或在三维空间中 定义了三次方贝塞尔曲线。曲线起始于P0走向P1, 并从P2的方向来到P3。一般不会经过P1或P2;这两 个点只是在那里提供方向资讯。P0和P1之间的间距, 决定了曲线在转而趋进P3之前,走向P2方向的“长 度有多长”。
Bezier曲线
更高阶的贝塞尔曲线,可以用以下公式表示:用表示由点 P0、P1、…、Pn所决定的贝塞尔曲线。则有:
高阶曲线的动态图如下:
要“画”出贝塞尔曲线,一般需要进行 较多的计算,然后绘制出来。
Bezier曲线 Bezier曲线的一般化形式:
即:
其中多项式:
又称作 n 阶的伯恩斯坦基底多项式,定义 00 = 1。
B样条曲线
Bezier曲线改变一点曲线整体受影响
B样条曲线
B样条曲ቤተ መጻሕፍቲ ባይዱ的优点:
易于进行局部修改; 更逼近特征多边形;
是低阶次的曲线。
B样条曲线改变一点曲线局部受影响
B样条曲线
均匀B样条曲线的参数表达式为:
式中为n次B样条基函数,其形式为:
其中
B样条曲线
B样条曲线的C语言实现
#include<graphics.h> #include<conio.h> float px[10]={50,90,150,120,220,300,380,320,450,500}; float py[10]={100,60,50,150,240,100,100,200,250,130}; void B_spline() { float a0,a1,a2,a3,b0,b1,b2,b3; int k,x,y; float i,t,dt,n=10; setcolor(15); dt=1/n; for(k=0;k<10;k++) { if(k==0) moveto(px[k],py[k]); lineto(px[k],py[k]); } setcolor(4); for(k=0;k<10-3;k++) { if(getch()==17)exit();
第三节 B-样条曲线
关于递推定义的系数
t − ti ti + k − t N i ,k +1 (t ) = N i ,k (t ) + N i +1,k (t ),i = 0,1,..., n ti + k −1 − ti ti + k − ti +1
ti ti
ti+1 ti+1 ti+1
t
t t
N i ,k −1 (t ) N i +1,k −1 (t ) N 'i ,k (t ) = (k − 1) − ti + k −1 − ti ti + k − ti +1
N i ,k (t )在l重节点处至少为k −1 − l次参数连续。
2012-3-5
28
问题:3阶B样条曲线生成
N i ,k (t )在区间[ti , ti + k ]上有定义,称后者为前者的支撑区间。
2012-3-5 20
3阶B-样条基函数图形
N i ,3 (t )
N i ,3 (t )的图形
2012-3-5
21
3阶B样条曲线示例
t2
T=[t0,t1,…,tn+1,tn+2,tn+3]
2012-3-5
t n +1
16
2012-3-5
续前页:
当t ∈ [ti , ti +1 )时: t − ti N i ,3 (t ) = N i , 2 (t ) tii+ 2 − ti +
t − ti t − ti ti + 2 − t = ( N i ,1 (t ) + N i +1,1 (t )) ti + 2 − ti ti +1 − ti ti + 2 − ti +1
数据库系统B样条曲线性质及类型划分
1、局部支承性:反过来,对每一个区间(u i ,u i+k ),至多只有k 个基函数在其上非零四、B 样条基函数的主要性质=∈≥+otherwise u u u u B k i i k i 0],[0)(,而Bezier 在整个区间非02、权性:3、连续性1)(0,≡∑=ni k i u B ],[11+−∈n k u u u B i,k (u)在r 重节点处的连续阶不低于k-1-r4、分段参数多项式:Bi,k (u)在每个长度非零的区间[ui,ui+1)上都是次数不高于k-1的多项式,它在整个参数轴上是分段多项式五、B样条函数的主要性质1、局部性:k阶B样条曲线上的一点至多与k个控制顶点有关,与其它控制顶点无关,至多影响到定义在区间移动曲线的第i个控制顶点Pi上那部分曲线的形状,对曲线其余部分不发生影响2、变差缩减性:设平面内n+1 个控制顶点构成B样条曲线P(t) 的特征多边形。
在该平面内的任意一条直线与P(t) 的交点个数不多于该直线和特征多边形的交点个数3、几何不变性:B样条曲线的形状和位置与坐标系的选择无关4、凸包性:B 样条曲线落在P i 构成的凸包之中。
其凸包区域小于或等于同一组控制顶点定义的Bezier 曲线凸包区域Bezier 曲线的凸包性凸包凸包就是包含右边这6个顶点的最小凸多边形。
凸多边形是把多边形的每条边延长,其它边都在它的同一侧该性质导致顺序k+1个顶点重合时,由这些顶点定义的k 次B样条曲线段退化到这一个重合点;顺序k+1个顶点共线时,由这些顶点定义的k次B样条曲线形状?当节点沿参数轴均匀等距分布,即u i+1-u i = 常数> 0时,表示均匀B 样条函数六、B 样条曲线类型的划分1、均匀B 样条曲线(uniform B-spline curve ){}6,5,4,3,2,1,0{}1,8.0,6.0,6.0,4.0,2.0,0均匀B 样条的基函数呈周期性。
即给定n 和k ,所有的基函数有相同形状。
第七章 B样条曲线
V2k、V3k和V4k四个点, 该四点构成u向的一个特
d1
征多边形,定义一条新 2
的曲线P(u,vk);
d11
v
d14
d13
C1 d22
d23
C2 d32
d21
d31
u
d24 d33 C3 d4
2
d41
d34
d44 d43
C4
v
C1
C2 C3
V1k
V2k V3k
u
C4
V4k
✓当参数vk在[0,1] 之间取不同值时, P(u,vk)沿箭头方向扫描,即得到由 给定特征网格dij(i=1,2,3,4 j=1,2,3,4) 定义的双三次均匀B样条曲面片 P(u,v)。
t [0,1]
1
2
3
4
5
t
四段二次(三阶)均匀B样条基函数
曲线的起点和终点值:
pi
(0)
1 2
(Pi
Pi 1 ),
pi
(1)
1 2
(Pi1
Pi2 )
均匀二次B样条曲线起点和终点处的导数:
pi(0) Pi1 Pi , pi(1) Pi2 Pi1
P1
P2
P0
P3
四个控制点的二次周期性B样条曲线
第七章 B样条曲线曲面
Bezier曲线有许多优越性,但有几点不足: 一、控制多边形的顶点个数决定了Bezier曲线的
阶次; 二、不能作局部修改; 三 、Bezier曲线的拼接比较复杂。
• 1972年,Gordon、Riesenfeld等人发展了 1946年Schoenberg提出的样条方法 , 提出 了B样条方法,在保留Bezier方法的优点, 克服了Bezier方法的弱点。
B样条曲线与曲面
四、B样条曲线与曲面Bezier曲线具有很多优越性,但有二点不足:1)特征多边形顶点数决定了它的阶次数,当n较大时,不仅计算量增大,稳定性降低,且控制顶点对曲线的形状控制减弱;2)不具有局部性,即修改一控制点对曲线产生全局性影响。
1972年Gordon等用B样条基代替Bernstein基函数,从而改进上述缺点。
B样条曲线的数学表达式为:在上式中,0 ≤ u ≤ 1;i= 0, 1, 2, …, m所以可以看出:B样条曲线是分段定义的。
如果给定 m+n+1 个顶点 Pi ( i=0, 1, 2,…, m+n),则可定义m+1 段 n 次的参数曲线。
在以上表达式中:Nk,n(u) 为 n 次B样条基函数,也称B样条分段混合函数。
其表达式为:式中:0 ≤ u ≤1k = 0, 1, 2, …, n1.均匀B样条曲线1 一次均匀B样条曲线的矩阵表示空间n+1个顶点(i = 0,1,…,n)定义n段一次(k=0,1,n=1)均匀B样条曲线,即每相邻两个点可构造一曲线段Pi(u),其定义表达为:=(1-u)Pi-1 + u Pi= N0,1(u)Pi-1 + N1,1(u)Pi第i段曲线端点位置矢量:,且一次均匀B样条曲线就是控制多边形。
2 二次均匀B样条曲线的空间n+1个顶点的位置矢量(i=0,1,…,n)定义n-1段二次(k=0,1,2, n=2)均匀B样条曲线,每相邻三个点可构造一曲线段Pi(u)(i=1,…,n-1),其定义表达为:=(1 - 2 u + u 2)Pi-1 +(1 + 2 u - 2u2)Pi +u 2 Pi+1= N0,2(u)Pi-1 + N1,2(u)Pi + N2,2(u)Pi+1端点位置矢量:,,即曲线的起点和终点分别位于控制多边形Pi-1Pi和PiPi+1的中点。
若、、三个顶点位于同一条直线上,蜕化成直线边上的一段直线。
端点一阶导数矢量:,,,,即曲线的起点切矢和终点切矢分别和二边重合,且相邻两曲线段在节点处具有一阶导数连续。
B样条曲线在图形学中的应用
02
边界表示
截面线表示
• 利用B样条曲线表示三维模型的边界曲面
• B样条曲线用于表示三维模型的截面线
• 可以提高模型重建的精度和效率
• 可以用于模型的参数化设计和编辑
B样条曲线在三维曲线与曲面绘制中的应用
曲面绘制
• B样条曲线用于表示三维曲面的参数化表示
• 可以用于曲面的细分、拼接等操作
曲线绘制
• 利用B样条曲线表示三维曲线
• 可以实现高质量的图像修复
• 可以实现有效的图像去噪效
效果
果
B样条曲线在图像压缩与编码中的
应用
01
图像压缩
• 利用B样条曲线进行图像的降维表示
• 可以实现高效的图像压缩效果
02
图像编码
• B样条曲线用于表示图像中的关键点信
息
• 可以提高图像编码的效率和可靠性
06
B样条曲线在其他领域中的应用
B样条曲线在建筑设计中的应用
图像分割
边缘检测
• 利用B样条曲线逼近图像中的纹理和颜色信息
• B样条曲线用于表示图像中的边缘信息
• 可以实现精确的图像分割效果
• 可以提高边缘检测的准确性和鲁棒性
B样条曲线在图像修复与去噪中的应用
图像修复
图像去噪
• 利用B样条曲线进行图像的局
• B样条曲线用于表示图像中的
部修复和填充
平滑区域
• 可以实现平滑、连贯的曲线效果
B样条曲线在三维动画与游戏设计中的应用
模型动画
角色动画
01
02
• B样条曲线用于表示三维模
• 利用B样条曲线表示角色的
型的运动轨迹和形状变化
骨骼关节运动轨迹
b样条
2)网格离散法.该法的基本思想是先将曲面离散为 由小平面片组成的网格,当网格足够细密时,可以 认为已经非常接近真实曲面.对分别表示不同曲面 的两张网格,利用平面片求交法求得交线,并以此 交线近似代表曲面间的交线.该法原理简明,便于 实现,适用范围广,任意参数曲面均可利用该方法 求交.但为获得精确的交线,则必须生成非常细密 的网格,这将导致占用内存多、计算花费大.因此, 实际工作中很少单一使用网格法,通常将其与其他 方法结合使用.
20:06
一张参数曲面有两个参数,两张曲面共有四 个参数变量. 三参数迭代法时,两曲面的四个参数中只有 三个参数参与迭代过程,而保持另—个参数 固定不变.这实际上就是计算不变参数的等 参数线与另一张曲面的交点. 采用四参数迭代过程时,两张曲面片的四各 参数都参与迭代过程,四者都有可能改变
20:06
曲面求交中的迭代法
为求得精确的交点,Newton—Raphon迭代法得到 了广泛应用.该法的优点为 1)计算精度高、速度快.在初值选择比较合理的情 况下,一般仅需迭代二至三次,就可以使交点的精 度从百分之几提高至万分之几甚至百万分之一的数 量级. 2)适用范围比较广.只要能获得曲面的几何位置、 切矢、法矢等信息,不论什么类型的曲面都可以使 用迭代法.其缺点是时初值的要求较严格,初值选 择不当.可能导致迭代不收敛,也就无法得到精确 的交点.
20:06
4)迭代法.迭代法本身并不能构成一个独立的求 交方法.与所有不动点迭代法一样,应用迭代法求 交线之前,首先必须给出交点的初始估计值,而交 点的初始估计值必须通过其他求交方法得到.因此, 迭代求交常同其它求交方法结合使用,作为交点精 化的一种手段.迭代法的主要过程是根据初始估计 点的几何性质(如坐标位置、切矢、法矢、曲率等) 运用Newton方拄得到一个较原估计点更接近于目 标点(即精确交点)的估计点.如此反复进行,直到 求得的交点满足所要求的精度.该法的优点是在初 值比较好时其收敛速度非常快,而且能应用于任意 参数曲面包括Coons曲面和等距面等,因此应用非 常广泛.其主要缺点是对初值的要求比较苛刘,初 值选择不当有可能导致迭代不收敛
b样条曲线
t ti t ik 1 t i
Ni,k1 (t)
tik t tik ti1
Ni1,k1 (t),
k 2
该递推公式表明:欲确定第i个k阶B样条Ni,k(t),需要用 ti ,ti+1 ,…ti+k 共k+1个节点,称区间[ti , ti+k]为Ni,k(t)的支撑区间。
曲线方程中,n+1个控制顶点Pi (i=0,1,…n) 要用到n+1个k阶B样条 基 Ni,k(t) 。 支 撑 区 间 的 并 集 定 义 了 这 一 组 B 样 条 基 的 节 点 矢 量 T=[t0 ,t1 ,…tn+k ]。
Ni 1,k 1(t )
其中Pi的调和函数Ni是在区间ti<=t<ti+k的k阶多项式,这个多项式 是分段的,每一段多项式不相同。不为0的这k段是将区间ti<=t<ti+k 分k个部分,即ti<=t<ti+1、ti+1<=t<ti+2、……、ti+k-1<=t<ti+k, 每个区间对应一段k阶多项式。在t的其余区间为0。
3.3.2 B样条曲线的性质
1. 局部性
k 阶B样条曲线上参数为 t [ti , ti1] 的一点P(t)至多与k个控制顶点
Pj(j=i-k+1,…i)有关,与其它控制顶点无关;移动该曲线的第i个控 制顶
点Pi至多影响到定义在区间(ti,ti+k) 上那部分曲线的形状, 对曲线的 其余
1 Ni,1(t) 0
ti t ti1 Otherwise
Ni,k (t)
t ti tik 1 ti
Ni,k1(t)
计算机图形学实验报告B样条曲线
千里之行,始于足下。
计算机图形学实验报告B样条曲线B样条曲线是计算机图形学中常用的一种曲线表示方法。
它通过插值曲线的控制点来定义曲线的形状,并且具有较好的平滑性。
本次实验中,我们使用C++语言实现了B样条曲线的生成和显示,并进行了相应的实验和分析。
实验目的:1.了解B样条曲线的原理和算法;2.掌握B样条曲线的生成和显示方法;3.通过实验观察和分析B样条曲线的性质。
一、B样条曲线的原理B样条曲线是一种基于控制点的插值曲线,它通过一系列连续的基函数(B 样条基函数)来插值控制点,从而生成曲线。
B样条曲线的基本原理如下:1.选择一组控制点P0,P1,…,PN-1;2.定义一组节点向量U={u0,u1,…,um},其中u0<=u1<=…<=um;3.通过插值曲线的标准等式,通过计算线性组合来计算曲线上每个点的坐标。
二、B样条曲线的算法1.计算节点向量U;2.定义B样条基函数;3.计算曲线上每个点的坐标。
三、实验步骤和结果1.计算节点向量U:在实验中,我们选择均匀节点向量,即ui=i,其中i=0,1,…,m。
这样的节点向量比较简单,而且能够生成比较平滑的曲线。
第1页/共3页锲而不舍,金石可镂。
2.定义B样条基函数:B样条基函数是用来插值曲线的重要部分,它可以通过递归定义来实现。
在实验中,我们使用了三次B样条基函数,其递归定义如下:N(i,1)(u)={1,u∈[ui,ui+1];0,否则}N(i,k)(u)=[(u-ui)/(ui+k-1-ui)]*N(i,k-1)(u)+(ui+1-u)/(ui+k-ui+1)*N(i+1,k-1)(u)3.计算曲线上每个点的坐标:通过计算线性组合来计算曲线上每个点的坐标。
具体计算方法如下:P(u)=sum(B(i,k)(u)*Pi,i=0 to n-1),其中B(i,k)(u)=N(i,k)(u)/sum(N(j,k)(u))四、实验结果和分析在实验中,我们通过改变控制点的位置和数量,生成了不同的B样条曲线,并进行了显示和分析。
b样条曲线曲率简易求解算法
b样条曲线曲率简易求解算法摘要:一、背景介绍二、B样条曲线的基本概念1.控制点2.节点3.次数三、B样条曲线的曲率求解方法1.切线方向求解2.曲率求解公式四、简易求解算法步骤1.确定控制点2.计算切线方向3.计算曲率4.应用曲率求解公式五、算法实例演示六、算法优缺点分析1.优点2.缺点七、结论与展望正文:一、背景介绍在计算机图形学、计算机辅助设计等领域,B样条曲线(B-spline curve)是一种广泛应用的曲线表示方法。
它具有较好的局部性和灵活性,可以方便地控制曲线的形状。
然而,B样条曲线的曲率求解一直是一个较为复杂的问题。
本文将介绍一种简易的B样条曲线曲率求解算法,以期为相关领域的研究和实践提供参考。
二、B样条曲线的基本概念1.控制点:B样条曲线由一系列控制点确定,这些控制点共同决定了曲线的形状。
2.节点:节点是B样条曲线上的关键点,它们将曲线划分为若干段,每段的曲率由相邻节点决定。
3.次数:B样条曲线的次数表示曲线上最多可以取样的点的数量。
次数越高,曲线越平滑。
三、B样条曲线的曲率求解方法B样条曲线的曲率求解方法主要包括切线方向求解和曲率求解公式。
1.切线方向求解:在B样条曲线上,相邻两个节点之间的切线方向可以通过插值基函数计算得到。
基函数的值决定了切线方向上的权重,从而影响曲线的弯曲程度。
2.曲率求解公式:B样条曲线的曲率可以通过切线方向的改变率求得。
在相邻两个节点间,曲率表示为切线方向的变化量除以节点间距。
四、简易求解算法步骤1.确定控制点:根据需求设定一定数量的的控制点,以确定B样条曲线的初始形状。
2.计算切线方向:利用插值基函数计算相邻节点间的切线方向。
3.计算曲率:根据切线方向的改变率,计算B样条曲线的曲率。
4.应用曲率求解公式:将计算得到的曲率应用于B样条曲线,得到最终的曲线形状。
五、算法实例演示以下是一个简单的B样条曲线曲率求解算法实例。
设定四个控制点分别为(0,0),(1,2),(2,4),(3,6),次数为3。
b样条曲线的一般表达式
B 样条曲线的一般表达式B 样条曲线是一种用于曲线拟合和插值的数学工具,具有很好的局部性和灵活性。
本文将介绍 B 样条曲线的一般表达式,以及其应用场景和优点。
B 样条曲线是一种用于曲线拟合和插值的数学工具,由Schatzman 和 Thomas 于 1967 年提出。
与常见的多项式插值和样条插值不同,B 样条曲线采用基函数和控制点来描述曲线,具有很好的局部性和灵活性。
B 样条曲线的一般表达式为:$$P(x) = sum_{i=0}^n lambda_i B_i(x)$$其中,$P(x)$表示曲线在$x$点的值,$lambda_i$是控制点,$B_i(x)$是基函数。
B 样条曲线的基函数是通过 B-spline 函数生成的。
B-spline 函数是一种用于描述曲线或曲面的数学函数,具有很好的局部性和光滑性。
B-spline 函数的定义如下:$$B_i(u) = begin{cases}u^0 & text{if } u leq i(i-u)^i & text{if } i < u leq i+1u^i & text{if } u > i+1end{cases}$$其中,$u$表示曲线或曲面上的某个点,$i$表示 B-spline 函数的阶数。
B 样条曲线的控制点是指在曲线或曲面上选取的一些点,通过这些点的值可以控制曲线或曲面的形状。
B 样条曲线的控制点可以通过以下公式计算:$$lambda_i = frac{1}{p_i - p_{i-1}}$$其中,$p_i$表示曲线或曲面上的第$i$个控制点,$p_{i-1}$表示曲线或曲面上的第$i-1$个控制点。
B 样条曲线的优点在于,它可以很好地适应曲线的局部性和复杂性,同时具有很好的计算效率和精度。
B样条曲线
08-09第二学期
二次B样条曲线的性质
先对 P(t)求导得:
P(t) t
111
2 1
1 0
B0 B1 B2
然后分别将 t=0,t=0.5,t=1 代入 P(t)
和 P’(t),可得:
P(0)=1/2(B0+B1), P(1)=1/2(B1+B2); P’(0)=B1-B0, P’(1)=B2-B1; P(1/2)=1/2{1/2[P(0)+P(1)]+B1} P’(1/2)=1/2(B2-B0)=P(1)- P(0)
P04 P14
P44
P03
P02 P01
P11 P21
P31
P41
P(0,v)
P20
P10
P30
Pn0 ,
P00
P(u,0) P40
赤峰学院计算机系
Bézier曲面的端点和边界线
计算机图形学
08-09第二学期
n m1
nm
P(u, v)
Bi,n (u)B j,m (u) pij
i0 j0
u, v [0,1]
使曲线与特征多边形相切; 使曲线通过指定点; 指定曲线的端点; 指定曲线端点的约束条件。
赤峰学院计算机系
计算机图形学
08-09第二学期
B样条曲线的适用范围
对于特征多边形的逼近性
二次B样条曲线优于三次B样条曲线
三次Bezier曲线优于二次Bezier曲线
• 相邻曲线段之间的连续性
二次B样条曲线只达到一阶导数连续
B样条曲线是由 n-3 段分段曲线连接
而成的。很容易证明,三次B样条曲
线在连接处达到二阶连续。 ***
赤峰学院计算机系
B样条曲线
3.3.1 B样条的递推定义和性质 样条的递推定义和性质
4. B样条曲线类型的划分
非均匀Bezier曲线 曲线 非均匀 任意分布的节点矢量 T=[t0,t1,…,tn+k],只要在数学上成立(节点 ,只要在数学上成立( 序列非递减,两端节点重复度≤k,内节点重复度≤k-1)都可选取。这 序列非递减,两端节点重复度 ,内节点重复度 )都可选取。 样 的 节 点 矢 量 定 义 了 非 均 匀 B 样 条 基 。 例 T=(0 11,16) 如:T=(0,0,2,2,3,5,8,11,16)
t ∈[t k −1 , tn+1 ]
(3) 微分公式
N′ k (t) = i,
k −1 ti+k−1 − ti
Ni,k−1(t) -
k −1 Ni+1,k−1(t) ti+k − ti+1
其中Pi的调和函数Ni是在区间ti<=t<ti+k的 阶多项式, 其中Pi的调和函数Ni是在区间ti<=t<ti+k的k阶多项式,这个多项式 Pi的调和函数Ni是在区间ti<=t<ti+k 是分段的,每一段多项式不相同。不为0的这k段是将区间ti<=t<ti+k 是分段的,每一段多项式不相同。不为0的这k段是将区间ti<=t<ti+k 个部分, ti<=t<ti+1、ti+1<=t<ti+2、……、ti+k分k个部分,即ti<=t<ti+1、ti+1<=t<ti+2、……、ti+k-1<=t<ti+k, 每个区间对应一段k阶多项式。 的其余区间为0 每个区间对应一段k阶多项式。在t的其余区间为0。 例如: 例如:
B-样条曲线
Ni1,k 1
u
定义
0
0
0
4
B-样条基函数实例
n=3 (4个控制顶点)
u
k=3 三次(四阶)曲线
u=[0 0 0 1 2 2 2 2]
在 u = 0.6 处, 基函数的和为: N1,3+N2,3+N3,3+N4,3 =0.16+0.66+0.18+0.0= 1.0
5
B-样条曲线性质
B-样条曲线具有凸包性和几何不变性。 当曲线的两个端节点的重复度是k+1时
B-样条曲线具有类似于Bézier曲线的性质
端点插值性质 端点导数与控制的起始边与终止边相切
当n=k+1时,B-样条曲线就是一条Bézier曲线
6
B-样条曲线性质
局部性:当移动一个控制顶点时,只会影响曲线的一部 分,而不是整条曲线
三次B-样条曲线的局部性质
7
n
Ru Ri Ni,k u i0
u uk ,un1
3
B-样条曲线的定义
Ri为控制顶点,{Ri}i=0,1,…,n顺次连接称为曲线的 控制多边形
Ni,k(u)为单位化的B-样条基函数:
1
Ni,0
0
当ui u ui1 其它
Ni
,kuΒιβλιοθήκη u ui uik uiNi,k 1
u
uik 1 u uik 1 ui1
B-样条曲线实列
R2
R1
R3
R7
R0
R4
R6
R5
三次(四阶)B-样条曲线
2
B-样条曲线的定义
B-样条曲线是分段连续的多项式曲线, 其定义与节点向量密切相关
b样条曲线算法
b样条曲线算法B样条曲线算法是一种用于计算和绘制平滑曲线的数学算法。
它可以在计算机图形学、CAD、动画等领域中广泛应用。
本文将详细介绍B 样条曲线算法的原理、应用、优缺点等方面。
一、B样条曲线概述1.1 定义B样条曲线是一种由多个控制点组成的平滑曲线,它通过对控制点之间的插值来确定曲线形状。
1.2 历史B样条曲线最早由Isaac Jacob Schoenberg于1946年提出,但直到20世纪60年代才开始被广泛使用。
最初,它主要应用于航空工业中的飞机设计和建模。
1.3 特点B样条曲线具有以下特点:(1)平滑性:B样条曲线可以通过调整控制点来实现平滑过渡。
(2)局部性:每个控制点只影响相邻的几个插值段,不会影响整个曲线。
(3)灵活性:可以通过增加或删除控制点来改变曲线形状。
二、B样条曲线原理2.1 插值问题在计算机图形学中,插值是一个常见的问题。
插值问题通常可以概括为:给定一组数据点,如何通过这些数据点来构造一个平滑的曲线或曲面。
2.2 B样条基函数B样条曲线使用B样条基函数来进行插值。
B样条基函数是一组递归定义的多项式函数,它们具有局部性和平滑性。
2.3 B样条曲线方程B样条曲线可以表示为以下形式:C(u) = ΣNi=0 Bi,k(u)Pi其中,C(u)是曲线上的点,Ni是控制点的数量,Bi,k(u)是B样条基函数,Pi是控制点。
三、B样条曲线应用3.1 计算机图形学在计算机图形学中,B样条曲线广泛用于三维建模和动画制作中。
它可以用于创建平滑的曲面和复杂的几何体。
3.2 汽车设计在汽车设计中,B样条曲线被用于创建汽车外观的流畅轮廓。
它可以通过调整控制点来实现汽车外观的微调。
3.3 航空工业在航空工业中,B样条曲线被广泛用于飞机设计和建模。
它可以用于创建复杂的飞行器结构和机翼形状。
四、B样条曲线优缺点4.1 优点(1)平滑性:B样条曲线可以通过调整控制点来实现平滑过渡。
(2)局部性:每个控制点只影响相邻的几个插值段,不会影响整个曲线。
b样条曲线的定义域
• B样条曲线的基本概念 • B样条曲线的数学表达 • B样条曲线的应用场景 • B样条曲线的计算方法 • B样条曲线的优化与改进 • B样条曲线的实例展示
目录
Part
01
B样条曲线的基本概念
定义与性质
B样条曲线的定义
B样条曲线是一种参数曲线,定义在给定的节点区间上,通过控制多边形的顶点来逼近给 定的曲线。
基函数
多维B样条曲线的基函数是$N_{i,k}(t_1, t_2, ..., t_n)$,其中$i$表示控制点序列中的第$i$个点,$k$表示B样条曲线 的阶数。
控制点
多维B样条曲线的控制点是一个多维向量,改变控制点的值会影响曲线的形状。
均匀与非均匀B样条曲线
01
定义
均匀B样条曲线是指各段曲线的节点参数均匀分布,即各段曲线的长度
参数化优化
参数化方法选择
针对不同的应用场景和需求,选 择适合的参数化方法,如基于能 量的参数化方法、保形参数化方 法等。
优化目标设定
根据实际需求,设定优化的目标 函数,如最小化能量、最大化保 形性等。
求解优化问题
采用合适的优化算法,如梯度下 降法、牛顿法等,求解优化问题 ,得到最优的参数化结果。
自适应节点插入技术
03
多维B样条曲线实例
f_{0}(x)g_{1}(y)f_{1}(x)g_{0}(y)+f_{1}(x)g_{1}(y) & (x,y) \in [0,1] \times [1,2] \\
f_{0}(x)g_{2}(y)f_{1}(x)g_{1}(y)+f_{2}(x)g_{0}(y)f_{2}(x)g_{1}(y)+f_{3}(x)g_{0}(y) & (x,y)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[
1 − 2 1 B0 1 t 1 − 2 2 0 B1 2 1 1 0 B2
]
式中,Bk为分段曲线的B特征多边形 的顶点:B0,B1,B2。对于第i段曲线的 Bk 即为:Pi,Pi+1,Pi+2 连续的三个顶 点。 (见下图)
t=0: i=0: Bi-1,n-1(t)=0; Bi,n-1(t)=1。 i=1: Bi-1,n-1(t)=1; Bi,n-1(t)=0。 i〈2: Bi-1,n-1(t)=0; Bi,n-1(t)=0。
(均出现 0 的非 0 次幂)
∴t=0
P (0) = P (t = 0) = n( P − P0 ) 1
P(1/2) P'(1/2) P0 Pm P2 P1
二次 Bezier 曲 线是一条抛物线
(2) 四个顶点 P0、P1、P2、P3 可 定义一条三次 Bezier 曲线:
P(t) = (1 − t) P0 + 3t(1 − t )P + 3t (1 − t)P2 + t P3 1
3 2 2 3
=t
式中:Pi:为各顶点的位置向量 Bi,n(t):为伯恩斯坦基函数
伯恩斯坦基函数的表达式为:
B i ,n n! (t ) = ⋅ t i ⋅ (1 − t ) n − i i !⋅ ( n − i )!
假如规定:0°=1,0!=1,则 t=0: i=0 ,Bi,n(t)=1 i≠0 ,Bi,n(t)=0 ∴P(0)=P0
下面我们通过对基函数求导,来分析 两端切矢的情况。
B (t ) = n[ Bi −1, n −1 (t ) − Bi , n −1 (t )]
' i ,n
得:
P ' ( t ) = n ∑ P i [ B i − 1 , n − 1 ( t ) − B i , n − 1 ( t )]
i=0 n −1
n! 0 n P ( 0) = ⋅ 0 ⋅ (1 − 0) ⋅ P0 = P0 1 ⋅ n!
t=1: i=n ,Bi,n(t)=1 i≠n ,Bi,n(t)=0 ∴P(1)=Pn
n! n 0 P(1) = ⋅ 1 ⋅ (1 − 1) ⋅ Pn = Pn n!⋅1 ⋅1
所以说,“只有第一个顶点和最后一个 顶点在曲线上”。即 Bezier曲线只通过多边折线的起点 和终点。
P3 P1
P4 P2 P0
4.三次B样条曲线 三次B 分段三次B样条曲线由相邻四个顶点 定义,其表达式为: P( t )=F0,3(t)•B0+F1,3(t)•B1+F2,3(t)•B2 +F3,3(t)•B3 (0[ t [ [ [1) 可见,由 n 个顶点定义的完整的三次 B样条曲线是由 n-3 段分段曲线连接 而成的。很容易证明,三次B样条曲 线在连接处达到二阶连续。 ***
B样条曲线是一种非常灵活的曲线, 曲线的局部形状受相应顶点的控制很 直观。这些顶点控制技术如果运用得 好,可以使整个B样条曲线在某些部 位满足一些特殊的技术要求。如: 可以在曲线中构造一段直线; 使曲线与特征多边形相切; 使曲线通过指定点; 指定曲线的端点; 指定曲线端点的约束条件。
三、B样条曲面
缺乏灵活性 一旦确定了特征多 边形的顶点数(m个),也就决定了曲 线的阶次(m-1次),无法更改; 控制性差 当顶点数较多时,曲 线的阶次将较高,此时,特征多边形 对曲线形状的控制将明显减弱;
不易修改 由曲线的混合函数可 看出,其值在开区间 ( 0 , 1 ) 内均不为 零。因此,所定义之曲线在 ( 0 < t < 1) 的区间内的任何一点均要受到全部顶 点的影响,这使得对曲线进行局部修 改成为不可能。
P P 在数学上,可以很容易将参数曲线段 P P 拓张为参数曲面片。因为无论是前面 P P P P 的 Bezier 曲线还是B样条曲线,它 P P v P v P P P 们都是由特征多边形控制的。而曲面 P P 是由两个方向(比如 P 和 v)的特征 u u u P 多边形来决定,这两个方向的特征多 双二次Bezier曲面和B样条曲面 边形构成特征网格。
2! B 0,2 (t ) = ⋅ t 0 ⋅ (1 − t ) 2 − 0 = (1 − t ) 2 0 !⋅ 2 ! 2! B 1, 2 ( t ) = ⋅ t 1 ⋅ (1 − t ) 2 − 1 = 2 t ⋅ (1 − t ) 1!⋅ 1! 2! 2 2−2 2 B 2,2 (t ) = ⋅ t ⋅ (1 − t ) = t 2 !⋅ 0 !
B0 1 B1 0 B2
与以上这些式子所表达的性质相符的 曲线是何种形状:(见下图)
B1 P(1/2) P(0) P'(1/2) P(1)
M
B0
是什么曲线? 与Bezier曲线有 何差别?
B2
结论:分段二次B样条曲线是一条抛 物线;有n个顶点定义的二次B样条曲 线,其实质上是n-2段抛物线(相邻三 点定义)的连接,并在接点处达到一 阶连续。(见下图)
12 12 22 22 02 02 11 21 11 21 01 01 10 10 20 20 00 00
1.Bezier 曲面
连接全部曲线段所组成的整条曲线称 为 n 次B样条曲线。依次用线段连接 点 Pi+k (k=0,1,…,n)所组成的多边折 线称为B样条曲线在第i段的B特征多 边形。
3.二次B样条曲线 二次B 在二次B样条曲线中,n=2,k=0,1,2 故其基函数形式为:
1 2 j j 2 F0 ,2 (t ) = ∑0 ( − 1) ⋅ C 3 ⋅ ( t + 2 − j ) 2! j = 1 3! 3! 3! 2 1 2 2 2 ( t + 1) + = [ (t + 2 ) − t ] = ( t − 1) 2 3! 2! 2! 2 1 2 F1 , 2 ( t ) = ( − 2 t + 2 t + 1) 2 1 2 F 2 ,2 (t ) = t 2
P1
P2 P1
P2
P0 P1
P3
P0
P3
P3
P0
P2
1.Bezier曲线的数学表达式 .Bezier曲线的数学表达式 Bezier曲线是由多项式混合函数推导 出来的,通常 n+1 个顶点定义一个 n 次多项式。其数学表达式为:
P (t ) =
∑
n
i=0
Pi B i , n ( t )
(0 ≤ t ≤ 1)
[
3
t
2
−1 3 − 3 3 −6 3 t 1 ⋅ − 3 3 0 1 0 0
]
1 P0 P 0 1 ⋅ 0 P2 0 P3
***பைடு நூலகம்
二、B样条曲线 曲线到B样条曲线 1.从 Bezier 曲线到B样条曲线 曲线在应用中的不足: (1) Bezier 曲线在应用中的不足:
所以,根据式:
P (t ) =
∑
n
i=0
Pi B i , n ( t )
二次 Bezier 曲线的表达形式为: P(t)=(1-t)2⋅P0+2t(1-t)⋅P1+t 2 ⋅P2 (0≤t ≤ 1)
根据 Bezier 曲线的总体性质,可讨 论二次 Bezier 曲线的性质: P(t)=(1-t)2⋅P0+2t(1-t)⋅P1+t2 ⋅P2 P’(t)=2(t-1)⋅P0+2(1-2t)⋅P1+2t⋅P2 P(1/2)=1/2⋅[P1+1/2⋅(P0+P2)] PΧ(0)=2(P1-P0) PΧ(1)=2(P2-P1) PΧ(1/2)=P2-P0
' '
同理可得,当 t=1 时
P (1) = n ( Pn − Pn − 1 )
'
这两个式子说明:Bezier曲线在两端 点处的切矢方向与特征多边形的第一 条边和最后一条边相一致。
2.二次和三次Bezier曲线 二次和三次Bezier曲线 Bezier (1) 三个顶点:P0,P1,P2 可定义一条 二次(n=2) Bezier曲线: 其相应的混合函数为:
B样条曲线和曲面 3.1.2 B样条曲线和曲面
在我们工程中应用的拟合曲线,一般 地说可以分为两种类型:一种是最终 生成的曲线通过所有的给定型值点, 比如抛物样条曲线和三次参数样条曲 线等,这样的曲线适用于插值放样; 另一种曲线是,它的最终结果并不一 定通过给定的型值点,而只是比较好 地接近这些点,这类曲线(或曲面) 比较适合于外形设计。
因为在外形设计中(比如汽车、船舶), 初始给出的数据点往往并不精确;并 且有的地方在外观上考虑是主要的, 因为不是功能的要求,所以为了美观 而宁可放弃个别数据点。因此不须最 终生成的曲线都通过这些数据点。 另一方面,考虑到在进行外形设计时 应易于实时局部修改,反映直观,以 便于设计者交互操作。第一类曲线在 这方面就不能适应。
然后分别将 t=0,t=0.5,t=1 代入 P(t) 和 P’(t),可得: P(0)=1/2(B0+B1), P(1)=1/2(B1+B2); P’(0)=B1-B0, P’(1)=B2-B1; P(1/2)=1/2{1/2[P(0)+P(1)]+B1} P’(1/2)=1/2(B2-B0)=P(1)- P(0)
讨论:
( n − 1 )! B i −1,n −1 ( t ) = ⋅ t i − 1 ⋅ (1 − t ) n + 1 − i ( i − 1 )! ⋅ ( n − i )! ( n − 1 )! B i ,n −1 ( t ) = ⋅ t i ⋅ (1 − t ) n − 1 − i i !⋅ ( n − 1 − i )!
在以上表达式中: F k,n ( t ) 为 n 次B样条基函数,也称B 样条分段混合函数。其表达式为: