指数函数和对数函数的重点知识
指数、对数函数基本知识点
基本初等函数知识点知识点一:指数及指数幂的运算1.根式的概念 的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n 次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1)(2)(3)知识点二:指数函数及其性质1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域为.且图象过定点,即当时,变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).,那么①加法:②减法:③数乘:⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.且图象过定点,即当时,上是增函数上是减函数变化对图在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,1.幂函数概念形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.补充:函数1. 映射定义:设A,B是两个非空集合,如果按照某种对应法则f,对集合A 中任一元素x,在集合B中有唯一元素y与之对应,则称f是从集合A到集合B的映射。
指数对数函数基本知识点
指数对数函数基本知识点指数函数和对数函数是高中数学紧密相关的数学概念,对于理解和运用多种数学问题都是至关重要的。
下面将从定义、性质、图像和应用等几个方面进行详细介绍。
一、指数函数指数函数的定义是f(x)=a^x,其中a是一个正实数且a≠1,x是实数。
指数函数的特点包括:1.a^0=1,a^1=a。
2.指数函数的定义域是整个实数集。
3.当a>1时,指数函数是严格递增的;当0<a<1时,指数函数是严格递减的。
4.指数函数的图像可以分成两种情况:当a>1时,图像在x轴的右侧逐渐向上增长;当0<a<1时,图像在x轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。
二、对数函数对数函数的定义是f(x)=log_a(x),其中a是一个正实数且a≠1,x是正实数。
对数函数的特点包括:1. log_a(1)=0,log_a(a)=12.对数函数的定义域是正实数集。
3.当a>1时,对数函数是严格递增的;当0<a<1时,对数函数是严格递减的。
4.对数函数的图像可以分成两种情况:当a>1时,图像在y轴的右侧逐渐向上增长;当0<a<1时,图像在y轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。
三、指数函数和对数函数的性质1. 反函数性质:指数函数和对数函数互为反函数,即a^log_a(x)=x,log_a(a^x)=x。
2. 对数与指数的互化性质:log_a(x)=y等价于 a^y=x。
3.对于任意的正实数a,b和任意实数x,有如下几个基本性质:-a^x*a^y=a^(x+y)- (a^x)^y = a^(xy)- (ab)^x = a^x * b^x-a^(-x)=1/(a^x)-(a/b)^x=a^x/b^x- log_a(xy) = log_a(x) + log_a(y)- log_a(x^y) = y * log_a(x)- log_a(1/x) = -log_a(x)- log_a(x/y) = log_a(x) - log_a(y)四、指数和对数函数的图像指数函数和对数函数的图像可以通过制作表格来得到,然后连接各个点形成曲线图。
指数函数与对数函数(讲义)
(一)基础知识回顾:1.二次函数:当¹a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab 2,下同。
,下同。
2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)∞)上随自变量增大函数值增大(简称递增)。
当a <0时,情况相反。
情况相反。
3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。
1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2). 2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-¹}和空集Æ,f (x )的图象与x 轴有唯一公共点。
轴有唯一公共点。
3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和Æ.f (x )图象与x 轴无公共点。
共点。
当a <0时,请读者自己分析。
时,请读者自己分析。
4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。
高中数学必修一指数函数对数函数知识点
高中数学必修一指数函数对数函数知识点高中数学必修一中,指数函数和对数函数是重要的知识点。
指数函数是一种以指数为自变量的函数,形式为y = a^x,其中a为底数,x为指数。
而对数函数是指数函数的逆运算,形式为y = loga(x),其中a为底数,x为真数。
以下是关于指数函数和对数函数的具体知识点。
一、指数函数的图像和性质1.指数函数的基本形式:-y=a^x,其中a>0且a≠12.指数函数的基本性质:-当0<a<1时,指数函数呈现递减的图像;-当a>1时,指数函数呈现递增的图像;-当a=1时,指数函数为常数函数y=1二、对数函数的图像和性质1.对数函数的基本形式:- y = loga(x),其中a > 0且a≠12.对数函数的基本性质:- 对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x;-对数函数的图像关于直线y=x对称;-对数函数的定义域为正实数集,值域为实数集。
三、指数函数和对数函数的运算性质1.指数函数的运算性质:-a^x*a^y=a^(x+y);- (a^x)^y = a^(xy);- (ab)^x = a^x * b^x;-a^0=1,其中a≠0。
2.对数函数的运算性质:- loga(xy) = loga(x) + loga(y);- loga(x^y) = y * loga(x);- loga(x/y) = loga(x) - loga(y);- loga(1) = 0,其中a≠0。
四、指数函数和对数函数的应用1.指数函数在生活中的应用:-经济增长模型中的应用;-指数衰减与物质的半衰期计算;-大自然中的指数增长现象。
2.对数函数在生活中的应用:-pH值的计算;-放大器的功率增益计算;-数字音乐的音量计算。
综上所述,指数函数和对数函数是高中数学必修一中的重要知识点。
掌握了指数函数和对数函数的基本形式、性质以及运算规律,能够理解其图像特征和在实际问题中的应用。
指数函数与对数函数例题和知识点总结
指数函数与对数函数例题和知识点总结一、指数函数的定义与性质指数函数的一般形式为$y = a^x$($a > 0$且$a ≠ 1$)。
其中,底数$a$决定了函数的性质。
当$a > 1$时,函数单调递增;当$0 < a < 1$时,函数单调递减。
指数函数的定义域为$R$,值域为$(0, +\infty)$。
例如,函数$y = 2^x$是一个底数为$2$(大于$1$)的指数函数,它在$R$上单调递增。
二、对数函数的定义与性质对数函数是指数函数的反函数,一般形式为$y =\log_a x$($a > 0$且$a ≠ 1$)。
其中,对数的底数$a$同样决定了函数的性质。
当$a > 1$时,函数在$(0, +\infty)$上单调递增;当$0 < a <1$时,函数在$(0, +\infty)$上单调递减。
对数函数的定义域为$(0, +\infty)$,值域为$R$。
例如,函数$y =\log_2 x$是一个底数为$2$(大于$1$)的对数函数,它在$(0, +\infty)$上单调递增。
三、指数函数与对数函数的图象指数函数$y = a^x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(0, 1)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(0, 1)$,从左到右逐渐下降。
对数函数$y =\log_a x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(1, 0)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(1, 0)$,从左到右逐渐下降。
四、指数运算与对数运算的性质指数运算性质:1、$a^m \times a^n = a^{m + n}$2、$\frac{a^m}{a^n} = a^{m n}$3、$(a^m)^n = a^{mn}$4、$a^0 = 1$($a ≠ 0$)对数运算性质:1、$\log_a (MN) =\log_a M +\log_a N$2、$\log_a \frac{M}{N} =\log_a M \log_a N$3、$\log_a M^n = n \log_a M$4、$\log_a a = 1$5、$\log_a 1 = 0$五、例题分析例 1:比较大小比较$2^{03}$和$03^2$的大小。
指数函数与对数函数知识点总结
指数函数与对数函数知识点总结一、指数函数1、指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a ≠ 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。
需要注意的是,底数\(a\)的取值范围,当\(a = 1\)时,函数就变成了\(y = 1^x = 1\),是一个常函数,不符合指数函数的定义;当\(a < 0\)时,对于某些\(x\)的值,\(a^x\)无意义,比如\((-2)^{\frac{1}{2}}\)就没有实数解。
2、指数函数的图象当\(a > 1\)时,指数函数\(y = a^x\)的图象是上升的,经过点\((0, 1)\),在\(R\)上单调递增;当\(0 < a < 1\)时,指数函数\(y = a^x\)的图象是下降的,经过点\((0, 1)\),在\(R\)上单调递减。
我们可以通过几个特殊的点,比如\((0, 1)\)、\((1, a)\)、\((-1, \frac{1}{a})\)等来大致描绘指数函数的图象。
3、指数函数的性质(1)定义域:\(R\)(2)值域:\((0, +∞)\)(3)恒过定点\((0, 1)\)(4)单调性:当\(a > 1\)时,在\(R\)上单调递增;当\(0 <a < 1\)时,在\(R\)上单调递减(5)函数值的变化情况当\(a > 1\)时,若\(x > 0\),则\(a^x > 1\);若\(x = 0\),则\(a^x = 1\);若\(x < 0\),则\(0 < a^x < 1\)。
当\(0 < a < 1\)时,若\(x > 0\),则\(0 < a^x < 1\);若\(x = 0\),则\(a^x = 1\);若\(x < 0\),则\(a^x > 1\)。
4、指数运算的性质(1)\(a^m × a^n = a^{m + n}\)(2)\(\frac{a^m}{a^n} = a^{m n}\)(\(a ≠ 0\))(3)\((a^m)^n = a^{mn}\)(4)\((ab)^n = a^n b^n\)这些运算性质在化简指数表达式和进行指数运算时经常用到。
指数函数和对数函数知识点总结
指数函数和对数函数知识点总结一、指数函数:1.基本概念:指数函数是形如y=a^x(a>0,且a≠1)的函数,其中a称为底数,x 称为指数,a^x称为底数a的x次幂。
2.基本性质:(1)a^0=1,任何数的0次幂等于1;(2)a^x*a^y=a^(x+y),相同底数的指数幂相乘,底数不变,指数相加;(3)a^x÷a^y=a^(x-y),相同底数的指数幂相除,底数不变,指数相减;(4)(a^x)^y=a^(x*y),指数幂的乘积再乘方,指数相乘;(5)a^(-x)=1/(a^x),任何数的负指数满足倒数规律。
3.常见指数函数:(1)指数函数y=2^x:以2为底的指数函数,可以用来描述2的x 次幂关系,是一种常见的指数型增长函数,图像逐渐向上凸起。
二、对数函数:1.基本概念:对数函数是指y=loga(x),其中a>0,且a≠1,a称为底数,x称为真数,y称为以a为底x的对数。
2.基本性质:(1)loga(1)=0,底数为任何正数时,1的对数都是0;(2)loga(a)=1,底数为任何正数时,底数的对数都是1;(3)loga (x*y) = loga(x) + loga(y),对数相乘,真数取乘积,对数相加;(4)loga (x/y) = loga(x) - loga(y),对数相除,真数取商,对数相减;(5)loga(x^k) = k * loga(x),对数乘方,真数取底数的k次方,对数乘以指数。
3.常见对数函数:(1)常用对数函数:y=log10(x),其中底数为10,对数函数可以简写为y=log(x)。
常用对数函数是以10为底的对数函数,输入一个正实数x,输出满足10^y=x的y值。
(2)自然对数函数:y=ln(x),其中底数为e。
自然对数函数是以e 为底的对数函数,输入一个正实数x,输出满足e^y=x的y值。
三、指数函数与对数函数的关系:四、指数函数与对数函数的应用:1.科学中的指数增长:指数函数常常用于描述原子衰变、细胞分裂和放射性物质的衰变等过程。
初中数学指数函数与对数函数的性质知识点总结
初中数学指数函数与对数函数的性质知识点总结一、指数函数的性质:1. 定义:指数函数是以指数为自变量,底数固定的函数。
形如f(x) = a^x,其中a是正实数,且a≠1。
2. 指数函数的图像特点:a) 当0<a<1时,函数图像在y轴上方逐渐逼近x轴正半轴;b) 当a>1时,函数图像在y轴下方逐渐逼近x轴正半轴;c) a=1时,指数函数为常数函数,图像为y = 1。
3. 指数函数的性质:a) 当x∈R时,指数函数f(x) > 0,即指数函数的值始终大于0;b) 指数函数的增减性:当x1 < x2时,若a > 1,则a^x1 < a^x2;若0 < a < 1,则a^x1 > a^x2。
4. 指数函数的特殊性质:a) a^0 = 1,任何数的0次方等于1;b) a^m * a^n = a^(m+n),指数的乘法法则;c) (a^m)^n = a^(m*n),幂的乘方法则;d) a^(-n) = 1/(a^n),负指数的倒数性质。
二、对数函数的性质:1. 定义:对数函数是以对数为自变量的函数。
形如f(x) = loga(x),其中a是正实数且不等于1,x为大于0的实数。
2. 对数函数的图像特点:a) 在a>1时,函数的图像在y轴右侧逐渐逼近x轴正半轴;b) 在0<a<1时,函数的图像在y轴左侧逐渐逼近x轴正半轴;c) a=1时,对数函数为常数函数,图像为y = 0。
3. 对数函数的性质:a) 当x∈(0,+∞)时,对数函数f(x) > 0,即对数函数的值始终大于0;b) 对数函数的增减性:当x1 < x2时,若a > 1,则loga(x1) <loga(x2);若0 < a < 1,则loga(x1) > loga(x2)。
4. 对数函数的特殊性质:a) loga(a) = 1,任何数以自身为底的对数等于1;b) loga(1) = 0,任何底数为正数的对数以1为真数的对数等于0;c) loga(M*N) = loga(M) + loga(N),对数的乘法法则;d) loga(M/N) = loga(M) - loga(N),对数的除法法则;e) loga(M^n) = n * loga(M),对数的乘方法则;f) loga(c) = 1/logc(a),对数的换底公式。
高中数学-指数函数对数函数知识点
高中数学-指数函数对数函数知识点指数函数、对数函数知识点知识点内容:1.整数和有理指数幂的运算:当a≠0时,aⁿ×aᵐ=aⁿ⁺ᵐ;aⁿ÷aᵐ=aⁿ⁻ᵐ;(aⁿ)ᵐ=aⁿᵐ2.指数函数y=aᵐ⁄ⁿ(a>0.m,n∈N*,且n>1)的性质:①解析式:y=aᵐ⁄ⁿ(a>0.且a≠1)②图象:过点(0,1),在a>1时,在R上是增函数,在0<a<1时,在R上是减函数③单调性:在定义域R上当a>1时,在R上是增函数当0<a<1时,在R上是减函数④极值:在R上无极值(最大、最小值)⑤奇偶性:非奇非偶函数典型题:1.把0.9017x=0.5化为对数式为log0.9017(0.5)=x2.把lgx=0.35化为指数式为x=10⁰.³⁵3.计算:2×6⁴³=6⁴⁴⁹4.求解:(2+1)⁻¹+(2-1)⁻²sin45°=0.5915.指数函数y=aᵐ⁄ⁿ(a>0.m,n∈N*,且n>1)的图象过点(3,π),求f(0)、f(1)、f(-3)的值f(0)=a⁰⁄ⁿ=1f(1)=aᵐ⁄ⁿ=a³⁄ⁿf(-3)=a⁻⁹⁄ⁿ6.求下列函数的定义域:① y=2-x²,定义域为R② y=1⁄(4x-5)-2,定义域为R-{5⁄4}7.比较下列各组数的大小:① 1.2<2.5<1.2+0.5,0.4-0.1<0.4-0.2② 0.3=0.4=0.4=0.3,<2112③ (2³)²<(3²)³<(2²)³8.求函数y=(x²-6x+17)⁄2的最大值,最大值为159.函数y=(a-2)x在(-∞,+∞)上是减函数,则a的取值范围为a>310.函数y=(a²-1)x在(-∞,+∞)上是减函数,则a的取值范围为|a|>1x其中a为底数,x为真数,y为对数。
高考数学二轮复习 指数函数和对数函数
高考数学二轮复习 指数函数和对数函数一.知识整理: 基本概念及相关知识点:1、对数、对数的底数、真数:一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b=N ,那么数b 叫做以a 为底N 的对数,记为log a N =b .a 叫做对数的底数.N 叫做真数.负数和零没有对数.2、常用对数:通常将以10为底的对数叫做常用对数.3、自然对数:以e 为底的对数叫自然对数,N 的自然对数log a N 简记作ln N .4、对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么(1)log a (MN )=log a M +log a N ; (2)NMa log =log a M -log a N ; (3)log a M n=n log a M (n ∈R ). 5、对数换底公式: bNN a a b log log log(a >0,a ≠1,b >0,b ≠1,N >0)6、指数函数:函数y =a x(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 7、指数函数的图象与性质:a >1 0<a <1图 像(1)定义域:R (2)值域:(0+∞)(3)过点(0,1),即x =0时,y =1 (4)在R 上是增函数(4)在R 上是减函数8、对数函数:函数y = log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 9、对数函数的图象与性质:a >1 0<a <1图 像性 质(1)定义域:(0,+∞) (2)值域:R(3)过点(1,0),即x =1时,y =0 (4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数10、指数方程与对数方程:在指数里含有未知数的方程叫做指数方程.在对数符号后面含有未知数的方程叫做对数方程.它们都属于超越方程,一般不可用初等方法求解. 11、最简单的指数方程:xa =b (a >0,a ≠1,b >0),它的解是x =a log b 12、最简单的对数方程:a log x =b (a >0,a ≠1),它的解是x =ba 概念辨析: 1.指数函数(1) 指数函数的定义:函数y =a x叫做指数函数,其中a 是一个大于零且不等于1的常量.函数的定义域是实数集R .在定义中,必须注意:①指数函数的形状,例如y =-2x,121+⎪⎭⎫ ⎝⎛=x y 都不能认为是指数函数,它们都是有关指数函数的复合函数;②指数函数的底在应用时的范围;③指数函数的定义域在求复合函数定义域的应用.(2) 在函数y =a x中规定底数a >0且a ≠1的理由:如果a =0,则当x >0时,a x恒等于0;当x ≤0时,a x无意义. 如果a <0,比如y =(-4)x ,这时对于41=x ,21=x ,等等,在实数范围内,函数值不存在. 如果a =1,y =1x=1是一个常量,对它就没有研究的必要.为了避免上述情况,所以规定底数a >0且a ≠1.(3) 指数函数y =a x在其底数a >1及0<a <1这两种情况下图象特征和性质如下:底数a >1 0<a <1图象xyOy=1y=a x (a>1)xyOy=1y=a x (0<a<1)性质①定义域 (-∞,+∞)②值域 (0,+∞).图象都位于x 轴上方且以x 轴为渐近线函数值的分布情况 ③当时x =0,y =1.图象都经过点(0,1) .④当x >0时,y >1当x <0时,0<y <1 ④当x >0时,0<y <1 当x<0时,y >1单调性⑤在(-∞,+∞)上是增函数⑤在(-∞,+∞)上是减函数注:① 注意根据图象记忆和应用性质:② 性质④可表述为:若(a -1)x >0,则a x>1;若(a -1)x <0,则0<a x<1. ③ 性质③实际上是性质④与性质②的推论. 2.对数(1) 对数的定义:如果a (a >0且a ≠1)的b 次幂等于N ,就是a b=N ,那么数b 就叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数,log a N 也叫做对数式.(2) 指数式与对数式的互化a b =N b =log a N (a >0且a ≠1,N >0)(3) 对数恒等式:N a Na =log (a >0,a ≠1,N >0)(4) 对数的性质:① 负数和零没有对数. ② 1的对数是零,即log a 1=0. ③ 底的对数等于1,即log a a =1. (5) 对数运算法则(a >0且a ≠1,M >0,N >0)① log a (MN )= log a M +log a N ② N M NMa a alog log log -=③ M n M a na log log =(n ∈R ) ④M nM a nalog 1log =(n ∈R ,n ≠0) (6) 对数换底公式:bNN a a b log log log =(a >0,a ≠1,b >0,b ≠1,N >0)推论:ab b a log 1log =b mnb a n a m log log =(7) 常用对数与自然对数.① 常用对数既是以10为底的对数,简记为lg N (N >0).② 自然对数即是以无理数e =2.71828…为底的对数,简记为ln N (N >0). (8)对可化为形如)(x f a=)(x g a(a >0,a ≠1)的指数方程,可转化为它的同解方程f (x )=g (x )求解;因为当且仅当幂指数相等时同底的幂相等.而对可化为形如a log f (x )= a log g (x )(a >0,a ≠1)的对数方程,在转化为方程f (x )=g (x )求解时,必须把所得的解代回原方程检验;因为从前者变为后者时,x 的取值范围可能扩大,有可能产生增根.某些指数方程与对数方程可以分别化为关于xa 与a log x 的可解方程,这时可用换元法先求出xa 与a log x 的值,再求x 的值;特别对形如x a2+b ·xa +c =0,可用换元法化为二次方程,先求出xa 或a log x ,再求x .但解对数方程时,始终要注意变形的同解性. 二.课堂练习:1.设a ,b ,c 都是正数,且3a=4b =6c ,那么 [ ]2.已知1<x <d , 令a=(x d log )2, b=2log x d , c=()x d d log log ,则[ ].A .a <b <cB .a <c <bC .c <b <aD .c <a <b3.已知y=loga(2-ax)在[0,1]上是x 的减函数,则a 的取值范围是 [ ].A .(0,1)B .(1,2)C .(0,2)D .(2,+∞)4 定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x+1),其中x ∈(-∞,+∞),那么( )A g (x )=x , h (x )=lg(10x +10-x+2)B g (x )=21[lg(10x +1)+x ],h (x )= 21[lg(10x+1)-x ] C g (x )=2x ,h (x )=lg(10x +1)-2x D g (x )=-2x ,h (x )=lg(10x+1)+2x5 当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是( )A1oyx B1oyx C1oy x D1oyx6.若函数 a x f x+-=131)((a ≠0)是奇函数,则满足65)(=x f 的x 的取值集合为( ). (A) { log 32 } (B) { 1 } (C) {2 log 32 }(D) φ7.已知函数f ( x )的图象关于坐标原点成中心对称图形,且x < 0时,xx f ⎪⎭⎫⎝⎛=31)(,那么⎪⎭⎫⎝⎛21f 的值等于( ). (A)33(B) 3- (C) 3(D) 33-8.若2145-⎪⎭⎫⎝⎛=m ,3156-⎪⎭⎫ ⎝⎛=n , 2156-⎪⎭⎫⎝⎛=p ,则( ). (A) m < p < n (B) n < m < p (C) p < m < n(D) n < p < m9.函数y = log 2x 与)4(log 21x y =的图象( ).(A )关于直线x = 1对称 (B )关于直线y = x 对称 (C )关于直线y =-1对称 (D )关于直线y = 1对称10.函数5log log 2241++⎪⎪⎭⎫⎝⎛=x x y 在区间[2,4]上的最大值是( )(A) 4(B) 7(C)423 (D)4111.已知 -1≤x ≤2,则函数f(x)=3+2·3x+1-9x 的最大值为 最小值为 ; 12.方程 9-x-2·31-x= 27的解集为_____________________________.13.方程 log x (3x +4)=2的解集为__________________________.14.函数⎪⎭⎫⎝⎛-=12log 2x y 的反函数是________. 15.已知函数f (x )=log a (2-ax )在[0,1]上是x 的减函数,则实数a 的取值范围是____________. 16.方程log 2(9-2x)=3-x 的解集是__________. 17.已知函数()()0,1,022log <≠>-+=b a a bx bx x f a(1)求函数f(x)的定义域; (2)判断函数f(x)的奇偶性,并说明理由; (3)指出函数f(x)的单调区间; (4)求函数f(x)的反函数f-1(x).18.设10<<a ,函数()33log +-=x x x f a的定义域为[]n m ,,值域为[()1log -n a , ()1log -m a ]. (1)求证: m >3;(2)求a 的取值范围.19.已知函数f(x)=lg(ax-b x )(a >1>b >0).(1)求y=f(x)的定义域;(2)在函数y=f(x)的图象上是否存在不同的两点,使过这两点的直线平行于x 轴.20.函数f(x)=x a log 在区间[2,+∞)上总有|f(x)|>1成立,求实数a 的取值范围.21.已知函数f(x)=()12log 22++x ax . (1)若f(x)的定义域是R ,求实数a 的取值范围; (2)若f(x)的值域为R ,求实数a 的取值范围.22.已知函数()()()1,01log 2≠>--=a a x x x f a(1)求f(x)的定义域; (2)指出f(x)的单调性,并证明你的结论; (3)求满足f(x)<2的x 的取值范围.三.课后练习:1.设5x=1.5,(0.5)y =0.75,则x ,y 满足 [ ]. A .x >0,y >0 B .x <0,y <0 C .x >0,y <0 D .x <0,y >0 2.若loga2<logb2<0,则正确的大小关系是 [ ]. A .0<a <b <1 B .0<b <a <1 C .a >b >1 D .b >a >1 3.如果0<a <1,且x >y >1,则下列不等式中正确的是 [ ].A .a x <a yB .x a log >y a logC .x a ->y a -D .xa >y a4.函数()x f 的定义域是[]1,1-,那么函数⎪⎪⎭⎫ ⎝⎛x f 21log 的定义域是 [ ]A .⎥⎦⎤⎢⎣⎡2,21B .(0,2]C .[2,+∞)D .⎥⎦⎤⎝⎛21,05.若0<a <1, 则函数f(x)=loga(x+4)的图象一定不通过 [ ]. A .第一象限 B .第二象限 C .第三象限 D .第四象限6.使函数y=log2(x2-2|x|)的单调递增的区间是 [ ]. A .(-∞,-2) B .(0,1) C .(0,2) D .(2,+∞)7.已知logab=-2,那么 a+b 的最小值是 [ ].A .2233B .2323C .233D .3228.函数5log log 21241+-⎪⎪⎭⎫ ⎝⎛=x x y 在区间[]4,2上的最小值是 [ ].A .4B .8C .423 D .419.已知奇函数f(x)满足f(x-1)=f(x+2)对任意x ∈R 成立,并且当()1,0∈x 时,()13-=xx f ,那么⎪⎪⎭⎫ ⎝⎛36log 31f 的值为 [ ] A .31-B .31C .34D .34- 10.函数f(x)=loga(a-ax)(a >0,a ≠1)的定义域为_____;值域为_____.11.若函数()1211-⎪⎭⎫ ⎝⎛=+x x f 的反函数为()x g ,则()1+x g 的解析式为12.设12>>>a b a ,则a b abb a blog ,log ,log 从小到大的顺序是 13.已知0<a <1,那么x 的方程x a =|x a log |的实根的个数是______.14.已知函数()x x f 3log 2+=,x ∈[1,9],则()[]()22x f x f y +=的最大值是______.15.已知函数()()a ax x x f 3log 221+-=在区间[)+∞,2上是减函数,则实数a 的取值范围是______.17.已知实数p ,q 满足()()()1lg 2lg log lg 3++-=q q p ,试求实数p 的取值范围.18.已知函数f(x)=ax 在闭区间[-2,2]上的函数值总小于2,求实数a 的取值范围.19.设a ∈R ,试讨论关于x 的方程lg(x-1)+lg(3-x)=lg(a-x)的实数解的个数.20.已知函数()()()x p x x x x f -+-+-+=222log 1log 11log (1)求f(x)的定义域;(2)求f(x)的值域.21.设0<a <1,x 和y 满足3log log 3log =-+y a x x x a .如果y 有最大值42,求这时a 和x 的值.答案提示:课堂练习:1.B2.D3.B4 解析 由题意 g (x )+h (x )=lg(10x+1) ①又g (-x )+h (-x )=lg(10-x +1) 即-g (x )+h (x )=lg(10-x+1) ②由①②得 g (x )=2x ,h (x )=lg(10x+1)-2x 答案 C 5 解析 当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数 答案 B6. C .由 f ( x )是奇函数,故f (-1)=-f ( 1 ),即⎪⎭⎫⎝⎛+--=+--a a 1311311,解得 21=a .于是21131)(+-=x x f . 65)(=x f ,即6521131=+-x,化简得 3x= 4 .因此 x =2 log 32 . 7.B . f ( x )为奇函数. 331212121-=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-f f .8.A .由函数 xy ⎪⎭⎫⎝⎛=56在R 上是增函数,可得 n > p ,从而否定(B )、(D ).又函数 21-=xy 在(0,+∞)上是减函数,可得m < p .9.C .在函数y = log 2x 图象上取一点P (1,0).可求得P 点关于直线x = 1的对称点为Q 1(1,0),P 点关于直线y = x 的对称点为Q 2(0,1),P 点关于直线y =-1的对称点为Q 3(1,-2),P 点关于直线y = 1的对称点为Q 4(1,2).经验证,其中只有Q 3点在函数)4(log 21x y =的图象上.10.D 11. 当t=3即x=1时,f(x)取最大值12,当t=9即 x=2时,f(x)取最小值-24. 12.{ -2 }.方程可化为 (3-x )2-6 (3-x)-27 = 0 .13.{ 4 } .解:x 2 = 3x + 4,并注意 x > 0,x ≠ 1. 14.y =2x +1+2 15.(1,2) 16.{0,3}.17. 所以f(x)的定义域为{x|x <2b 或x >-2b}.(2)对f(x)定义域内任意x ,有所以f(x)为奇函数.当a>1时在(0,+∞)上是增函数;当0<a<1时,在(0,+∞)上是减函数.它的单调性直观观察可得,如图2,于是有当a>1时,f(x)在(-∞,2b)上,在(-2b,+∞)上都是增函数,当0<a<1时,f(x)在(-∞,2b)上,在(-2b,+∞)上都是减函数.18.n>m,又由函数值域可知n>1,m>1,所以n>m>3,故m>3得证.y=logau为减函数,所以y=f(x)在[m,n]上为减函数,从而f(x)的值域为[f(n),ax2+(2a-1)x+3-3a=019.分析此题第(2)问是从几何角度探索函数图象的特征,但此函数图象并不会画,也不易画出,因此应转化为代数角度探索该函数相关的性质.(0,+∞).(2)先证f(x)在(0, +∞)上是增函数.任取0<x1<x2,由a>1>b>0,知ax1<ax2,bx1>bx2,所以0<ax1-bx1<ax2-bx2.因此 lg(ax1-bx1)<lg(ax2-bx2),即f(x1)<f(x2).所以f(x)在(0,+∞)上是增函数.假设函数y=f(x)的图象上存在不同的两点A(x1,y1),B(x2,y2),使直线AB平行于x轴,则x1≠x2,y1=y2.这与f(x)在(0,+∞)上是增函数(y1=y2则x1=x2)相矛盾.故在函数f(x)的图象上不存在不同的两点,使过这两点的直线平行于x轴.20.解依题意f(x)=logax在[2,+∞)上总有|f(x)|>1成立|logax|>1对任意x∈[2,+∞)都成立logax>1或logax<-1对任x∈[2,+∞)总成立y=logax在[2,+∞)上的最小值大于1或y=logax在[2,+∞)的最大值小于-1.而函数y=logax(x≥2)只有a>1有最小值loga2,只有当0<a<1时,有最大值loga2,于是有21.当a=0时,不等式化为2x+1>0,显然不合题意;综上可得,当a>1时,f(x) 的定义域是R.当a=0时,函数为u=2x+1,值域为R.符合题意;解得0<a≤1.综上所述当0≤a≤1时,f(x)的值域为R.课后作业:1.A 2.B 3.C 4.A 5.A 6.D 7.A 8.C 9.A10.a>1时(-∞,1),0<a<1时,(1,+∞);a>1时(-∞,1),0<a<1时,(1,+∞).11.()12log 2-+-x 12.b a aba b blog log log << 13.2 14.13 15.-4<a ≤420.(1)(1,p);(2)当p >3时,f(x)的值域为(-∞,2log2(p+1)-2];当1<p ≤3时,f(x)的值域为(-∞,1+log2(p-1))。
指数函数与对数函数知识点总结
指数函数与对数函数知识点总结一、指数函数的定义与性质1. 定义指数函数是以底数a(a>0且a≠1)为底的函数,一般表示为y=a^x,其中a是底数,x是指数,y是函数值。
2. 性质⑴当a>1时,指数函数是递增函数,图像上开;当0<a<1时,指数函数是递减函数,图像下降。
⑵当x=0时,a^0=1。
⑶当a>1时,随着x的增大,函数值y=a^x也会增大;当0<a<1时,随着x的增大,函数值y=a^x会减小。
3. 图像当底数a>1时,指数函数的图像是递增的曲线,图像上翘;当0<a<1时,指数函数的图像是递减的曲线,图像下降。
4. 应用指数函数在科学计算、生物增长、财经复利、工程技术等领域都有着重要的应用。
例如在计算机科学中,指数函数常用于指数衰减算法、指数增长算法等;在生物学中,指数函数常用于描述生物的增长规律;在金融领域中,指数函数用以描述利息的复利增长等。
二、对数函数的定义与性质1. 定义对数函数是指数函数的逆运算,一般表示为y=log_a(x),其中a是底数,x是真数,y是对数。
2. 性质⑴对数函数的定义域为x>0,值域为实数集。
⑵对数函数的图像是单调递增的曲线,在0处没有定义。
⑶特殊情况下,当底数a=10时,我们称为常用对数函数,一般表示为y=log(x);当底数a=e时,我们称为自然对数函数,一般表示为y=ln(x)。
3. 图像对数函数的图像是单调递增的曲线,图像在x轴的右侧。
4. 应用对数函数在科学计算、信息论、统计学、工程技术等领域都有着广泛应用。
例如在信息论中,对数函数用于计算信息量、信息熵等;在统计学中,对数函数用于描述正态分布、伯努利分布等;在工程技术中,对数函数用于解决指数增长问题、指数衰减问题等。
三、指数函数与对数函数的关系1. 反函数关系指数函数与对数函数是一对反函数,它们的定义域和值域互为对方的值域和定义域。
具体而言,对数函数y=log_a(x)中,x=a^y。
指数函数和对数函数知识点总结
指数函数和对数函数知识点总结一、指数函数1.定义:指数函数是以正数为底数、自变量为指数的函数。
一般形式为y=a^x,其中a>0且a≠12.特点:(1)当a>1时,指数函数呈递增趋势;(2)当0<a<1时,指数函数呈递减趋势;(3)a>1时,指数函数的图像在x轴的右侧逐渐上升,称为“增长指数函数”;(4)0<a<1时,指数函数的图像在x轴的右侧逐渐下降,称为“衰减指数函数”;(5)当x=0时,指数函数的值恒为1;(6)指数函数与直线y=0平行(若a>1)或经过点(0,1)(若0<a<1)。
3.基本性质:(1)a^m*a^n=a^(m+n);(2) (a^m)^n = a^(mn);(3) (ab)^m = a^m * b^m;(4)(a/b)^m=a^m/b^m。
二、对数函数1. 定义:对数函数是指以正数a(a>0且a≠1)为底数的对数。
一般形式为y=loga(x),其中x>0。
2.特点:(1)对数函数的定义域为正实数集(0,+∞),值域为实数集;(2) 指数函数y=a^x和对数函数y=loga(x)是互逆运算,即y=loga(a^x) = x,x=loga(a^x) = y;(3)当x>1时,对数函数的值大于0;(4)当0<x<1时,对数函数的值小于0;(5)a>1时,对数函数呈递增趋势;(6)0<a<1时,对数函数呈递减趋势;(7)当x=1时,对数函数的值恒为0;(8)对数函数的图像与直线y=x交于点(1,1)。
三、常用公式与性质1.e与自然对数:(1) e的定义:e=lim(1+1/n)^n,其中n为正整数;(2) 自然对数:ln(x)表示以e为底数的对数函数;(3) 自然对数的性质:ln(e^x)=x,e^(lnx)=x;2.指数方程与对数方程:(1)指数方程:a^x=b,其中a>0且a≠1;(2) 对数方程:loga(x)=b,其中a>0且a≠1;(3)指数方程求解的一般步骤:将方程两边取对数,利用对数的性质求解;(4)对数方程求解的一般步骤:将方程两边以a为底取指数,利用指数函数的性质求解。
指数函数和对数函数知识点总结
指数函数和对数函数知识点总结一、指数函数的定义和性质1.定义:指数函数是以一些正数a为底数的函数,形式为f(x)=a^x,其中a>0且a≠1、指数函数的定义域为实数集R,值域为正数集(0,+∞)。
2.指数函数的性质:(1)当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。
(2)指数函数的图像在直线y=0上方,且与y轴渐近。
(3) 指数函数的反函数是对数函数,即 f(x) = a^x 的反函数是 g(x) = logₐ(x)。
(4)指数函数的图像在(0,+∞)上是光滑的连续曲线。
3.常见的指数函数:(2)以10为底的指数函数:记作f(x)=10^x。
在计算科学领域中经常使用。
(3)以2为底的指数函数:记作f(x)=2^x。
在计算机科学和信息技术领域中广泛应用。
二、对数函数的定义和性质1. 定义:对数函数是指数函数的反函数,形式为 f(x) = logₐ(x),其中 a>0 且a ≠ 1、对数函数的定义域为正数集(0,+∞),值域为实数集 R。
2.对数函数的性质:(1)对数函数的图像与指数函数的图像关于直线y=x对称。
(2)当0<a<1时,对数函数是递增函数;当a>1时,对数函数是递减函数。
(3)对数函数的图像在x轴正半轴上方,且与x轴渐近。
(4) 对数函数的反函数是指数函数,即 f(x) = logₐ(x) 的反函数是g(x) = a^x。
(5) 对数函数的特殊性质:logₐ(1) = 0,logₐ(a) = 1,logₐ(a^x) = x。
3.常见的对数函数:(2) 以 10 为底的对数函数:记作 f(x) = log₁₀(x)。
在计算科学领域中经常使用。
(3) 以 2 为底的对数函数:记作 f(x) = log₂(x)。
在计算机科学和信息技术领域中广泛应用。
三、指数函数和对数函数的应用1.指数函数的应用:(1)复利计算:复利计算公式中的指数函数可以用来计算存款利息、投资收益等。
指数函数和对数函数复习(有详细知识点和习题详解)
指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。
另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。
整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。
其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。
例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。
二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。
例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。
例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。
二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。
当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。
规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。
高中数学指数函数与对数函数总结
指数函数与对数函数总结指数函数与对数函数总结一、 [知识要点]:1. 指数函数y =ax 与对数函数y =a log x 的比较:的比较:定义定义 图象图象 定义域 值域值域 性质性质奇偶性 单调性 过定点值的分布值的分布最值最值y =a x (a>0且a ≠1) 叫指数函数a>1 (-∞,+∞)∞)(0,+∞) 非奇 非偶 增函数(0,1)即a 0=1 x>0时y>1;0<x<1时 0<y<1 无最值无最值0<a<1 减函数x>0时0<y<1; 0<x<1时 y>1 y =a log (a>0且a ≠1) 叫对数函数a>1Oy x(0,+∞) (-∞,+∞)∞) 非奇非偶 增函数 (1,0) 即log a 1=0 x>1时y>0;0<x<1时 y<0 无最值无最值 0<a<1Oy x减函数x>1时y<0;0<x<1时 y>0 对称性函数y =ax 与y =a -x (a>0且a ≠1)关于y 轴对称;函数y =a x 与y =log a x 关于y =x 对称对称 函数y =log a x 与y =1log a x (a>0且a ≠1)关于x 轴对称轴对称 2. 记住常见指数函数的图形及相互关系以及常见对数函数的图形及相互关系及相互关系①②3. 几个注意点几个注意点(1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。
数的大小是对数函数性质应用的常见题型。
在具体比较时,可以首在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。
指数函数和对数函数的知识点及典型例题
指数函数和对数函数的知识点及典型例题一、指数的性质 (一)整数指数幂1.整数指数幂概念:an n a a a a 个⋅⋅⋅=)(*∈N n ()010a a =≠ ()10,n na a n N a-*=≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +⋅=∈ (2)()(),nm mn a a m n Z =∈(3)()()nn n ab a b n Z =⋅∈其中mnmnm na a a aa--÷=⋅=, ()1nn n n nn a a a b a b b b --⎛⎫=⋅=⋅= ⎪⎝⎭.3.a 的n 次方根的概念一般地,如果一个数的n 次方等于a ()*∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根,()*∈>N n n ,1例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-.说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0<n a ; ②若n 是偶数,且0>a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根;④()*∈>=N n n n ,100 ∴0=;⑤式子na 叫根式,n 叫根指数,a 叫被开方数。
∴na =.4.a 的n 次方根的性质一般地,若n 是奇数,则a a n n =;若n 是偶数,则⎩⎨⎧<-≥==00a a a aa a n n .5.例题分析:例.计算:407407-++解:407407-++52)25()25(22=-++= (二)分数指数幂1()10250a aa ==>()12430a aa ==>即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 幂的运算性质()nm mn a a =对分数指数幂也适用,例如:若0a >,则3223233a a a ⨯⎛⎫== ⎪⎝⎭,4554544a a a ⨯⎛⎫== ⎪⎝⎭, 23a =45a =.规定:(1)正数的正分数指数幂的意义是)0,,,1m na a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1mnm naa m n N n a-*==>∈>.2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用,即:()()10,,r s r s a a a a r s Q +=>∈()()()20,,sr rs a a a r s Q =>∈()()()30,0,rr r ab a b a b r Q =>>∈说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用; (2)0的正分数指数幂等于0,0的负分数指数幂没意义。
初中数学指数函数与对数函数的计算知识点总结
初中数学指数函数与对数函数的计算知识点总结指数函数和对数函数是初中数学中重要的概念,学好这两个函数的计算方法对于理解高中数学和实际问题具有重要意义。
本文将对初中数学指数函数与对数函数的计算知识点进行总结。
一、指数函数的计算知识点总结1. 指数幂的定义:对于任意的实数a和正整数n,a^n表示a连乘n 次,其中a称为底数,n称为指数。
2. 同底数幂相乘:当底数相同时,指数幂相乘等于底数不变,指数相加,即a^m * a^n = a^(m+n)。
3. 同底数幂相除:当底数相同时,指数幂相除等于底数不变,指数相减,即a^m / a^n = a^(m-n)。
4. 指数幂的幂:幂的指数就是指数幂的指数,即(a^m)^n = a^(m*n)。
5. 零指数幂:任意非零数的零次方等于1,即a^0 = 1(a ≠ 0)。
6. 负指数幂:任意非零数的负整数次方等于该数的倒数的绝对值的幂,即a^(-n) = 1 / a^n(a ≠ 0)。
二、对数函数的计算知识点总结1. 对数的定义:对于正数a(a ≠ 1),b(b > 0)和正整数n,n称为底数,b称为真数,记作logₐb=n,表示a的n次幂等于b。
2. 换底公式:logₐb = logₐc * log_cb,其中a,b,c为正数,且a,b 不等于1。
3. 常用对数和自然对数:以10为底的对数称为常用对数,记作logb,以自然常数e为底的对数称为自然对数,记作lnb。
三、指数函数与对数函数的性质1. 指数函数与对数函数是互为反函数的关系,即对于a^x = y,有logₐy = x。
2. 指数函数和对数函数的图像是关于直线 y = x 的对称图像。
3. 指数函数的图像随着底数的变化有不同的特征,如当底数大于1时,图像递增;当底数在0和1之间时,图像递减。
4. 对数函数的图像在底数大于1和小于1的情况下有不同的特征,如当底数大于1时,图像递增;当底数在0和1之间时,图像递减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数和对数函数的重点知识
重点、难点: 重点:指数函数和对数函数的概念、图象和性质。
难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数
y a y x x a ==,log 在a >1及01<<a 两种不同情况。
1、指数函数: 定义:函数()y a
a a x
=>≠01且叫指数函数。
定义域为R ,底数是常数,指数是自变量。
为什么要求函数y a
x
=中的a 必须a a >≠01且。
因为若a <0时,()y x
=-4,当x =
1
4
时,函数值不存在。
a =0,y x =0,当x ≤0,函数值不存在。
a =1时,y x
=1对一切x 虽有意义,函数值恒为
1,但y x
=1的反函数不存在, 因为要求函数y a x =中的a a >≠01且。
1、对三个指数函数y y y x
x
x
==⎛⎝ ⎫⎭
⎪=21210
,,的图象的认识。
图象特征
函数性质
(1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x
>0; (2)图象都经过点(0,1);
(2)无论a 取任何正数,x =0时,y =1;
(3)y y x
x
==210,在第一象限内的纵坐
标都大于1,在第二象限内的纵坐标都小于1,y x
=⎛⎝ ⎫⎭⎪12的图象正好相反; (3)当a >1时,x a x a x
x
>><<⎧⎨⎪⎩⎪01
01
,则,则 当01<<a 时,x a x a x x
><<>⎧⎨⎪⎩⎪0101
,则,则
(4)y y x
x
==210,的图象自左到右逐渐上升,y x
=⎛⎝ ⎫
⎭
⎪12的图象逐渐下降。
(4)当a >1时,y a x
=是增函数,
当01<<a 时,y a x
=是减函数。
对图象的进一步认识,(通过三个函数相互关系的比较):
①所有指数函数的图象交叉相交于点(0,1),如y x
=2和y x
=10相交于()01,,
当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及
10222--<。
②y x
=2与y x
=⎛⎝ ⎫
⎭
⎪12的图象关于y 轴对称。
③通过y x =2,y x =10,y x
=⎛⎝ ⎫⎭
⎪12三个函数图象,可以画出任意一个函数y a
x
=(a a >≠01且)的示意图,如y x
=3的图象,一定位于y x
=2和y x
=10两个图象的中
间,且过点()01,,从而y x =⎛⎝ ⎫⎭⎪13也由关于y 轴的对称性,可得y x
=⎛⎝ ⎫
⎭
⎪13的示意图,即
通过有限个函数的图象进一步认识无限个函数的图象。
2、对数:
定义:如果a N a a b
=>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。
)
由于N a b =>0故log a N 中N 必须大于0。
当N 为零的负数时对数不存在。
(1)对数式与指数式的互化。
由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如:
求log .032524⎛⎝ ⎫
⎭
⎪
分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524⎛⎝
⎫
⎭
⎪=x ,再改写为指数式就比较好办。
解:设log .032524⎛⎝ ⎫
⎭
⎪=x
则即∴即032524
8258251
2
5241
212
032.log .x x
x =
⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪=-
⎛⎝ ⎫⎭
⎪=-
-
评述:由对数式化为指数式可以解决问题,反之由指数式化为对数式也能解决问题,因此必须因题而异。
如求35x
=中的x ,化为对数式x =log 35即成。
(2)对数恒等式: 由a N
b N b
a ==()log ()12
将(2)代入(1)得a N a N
log =
运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对
数的底数相同。
计算:
()
3
13
2
-log
解:原式==⎛⎝ ⎫⎭
⎪-=3
131
2
222
13
1
3
log log 。
(3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。
(4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+
,
②()log log log a a
a
M
N
M N M N R =-∈+
, ③()()log log a n a
N n N N R =∈+
④()log log a
n a
N n
N N R =∈+
1
3、对数函数:
定义:指数函数y a a a x
=>≠()01且的反函数y x a =log x ∈+∞(,)0叫做对数函数。
1、对三个对数函数y x y x ==log log 212
,,
y x =lg 的图象的认识。
图象特征
函数性质
(1)图象都位于 y 轴右侧; (1)定义域:R +
,值或:R ;
(2)图象都过点(1,0);
(2)x =1时,y =0。
即log a 10=;
(3)y x =log 2,y x =lg 当x >1时,图象在x 轴上方,当00<<x 时,图象在x 轴下方,y x =log 12
与上述情况刚好相反; (3)当a >1时,若x >1,则y >0,若01<<x ,则y <0; 当01<<a 时,若x >0,则y <0,若
01<<x 时,则y >0;
(4)y x y x ==log lg 2,从左向右图象是上升,而y x =log 12
从左向右图象是下降。
(4)a >1时,y x a =log 是增函数; 01<<a 时,y x a =log 是减函数。
对图象的进一步的认识(通过三个函数图象的相互关系的比较):
(1)所有对数函数的图象都过点(1,0),但是y x =log 2与y x =lg 在点(1,0)曲线是交叉的,即当x >0时,y x =log 2的图象在y x =lg 的图象上方;而01<<x 时,
y x =log 2的图象在y x =lg 的图象的下方,故有:log .lg .21515>;log .lg .20101<。
(2)y x =log 2的图象与y x =log 12
的图象关于x 轴对称。
(3)通过y x =log 2,y x =lg ,y x =log 12
三个函数图象,可以作出任意一个对数
函数的示意图,如作y x =log 3的图象,它一定位于y x =log 2和y x =lg 两个图象的中间,且过点(1,0),x >0时,在y x =lg 的上方,而位于y x =log 2的下方,01<<x 时,刚好相反,则对称性,可知y x =log 13
的示意图。
因而通过课本上的三个函数的图象进一步认识无限个函数的图象。
4、对数换底公式:
log log log log (.)log b a a n e g N N
b
L N N e N L N N =
===其中…称为的自然对数称为常数对数
27182810 由换底公式可得:
L N N e N
N n =
==lg lg lg ..lg 04343
2303 由换底公式推出一些常用的结论:
(1)log log log log a b a b b a b a ==1
1或·
(2)log log a m
a n
b m n b =
(3)log log a n
a n
b b =
(4)log a m
n a
m n
=
5、指数方程与对数方程*
定义:在指数里含有未知数的方程称指数方程。
在对数符号后面含有未知数的方程称对数方程。
由于指数运算及对数运算不是一般的代数运算,故指数方程对数方程不是代数方程而属
于超越方程。