定点dsp与浮点dsp的比较
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定点dsp与浮点dsp的比较
DSP数字信号处理器是一种特别适合于进行数字信号处理的微处理器,主要用于实时快速地实现各种数字信号处理算法
定点运算DSP数字信号处理器在应用中已取得了极大的成功,而且仍然是D SP应用的主体。然而,随着对DSP处理速度与精度、存储器容量、编程的灵活性和方便性要求的不断提高、自80年代中后期以来,各DSP生产厂家陆续推出了各自的32bit浮点运算DSP。
定点DSP指令集
定点DSP指令集是按两个目标来设计的:
·使处理器能够在每个指令周期内完成多个操作,从而提高每个指令周期的计算效率。
·将存贮DSP程序的存储器空间减到最小(由于存储器对整个系统的成本影响甚大,该问题在对成本敏感的DSP应用中尤为重要)。
和定点运算DSP相比,浮点运算DSP具有许多优越性:
浮点运算DSP比定点运算DSP的动态范围要大很多。定点DSP的字长每增加1bit,动态范围扩大6dB。16bit字长的动态范围为96dB。程序员必须时刻关注溢出的发生。例如,在作图像处理时,图像作旋转、移动等,就很容易产生溢出。这时,要么不断地移位定标,要么作截尾。前者要耗费大量的程序空间和执行时间,后者则很快带来图像质量的劣化。总之,是使整个系统的性能下降。在处理低信噪比信号的场合,例如进行语音识别、雷达和声纳信号处理时,也会发生类似的问题。而32bit浮点运算DSP的动态范围可以作到1536dB,这不仅大大扩大了动态范围,提高了运算精度,还大大节省了运算时间和存储空间,因为大大减少了定标,移位和溢出检查。
由于浮点DSP的浮点运算用硬件来实现,可以在单周期内完成,因而其处理速度大大高于定点DSP。这一优点在实现高精度复杂算法时尤为突出,为复杂算法的实时处理提供了保证。
32bit浮点DSP的总线宽度较定点DSP宽得多,因而寻址空间也要大得多。这一方面为大型复杂算法提供了可能、因为省的DSP目标子程序已使用到几十MB存储器或更多;另一方面也为高级语言编译器、DSP操作系统等高级工具软件的应用提供了条件。
DSP的进一步发展,必然是多处理器的应用。新型的浮点DSP已开始在通信口的设置和强化、资源共享等方面有所响应
======================================================
TI科学家谈浮点DSP未来发展
自十多年前浮点数字信号处理器(DSP)诞生以来,便为实时信号处理提供了算术上更为先进的备选方案。不过,定点器件至今仍是业界的主流--当然低成本是主要原因。定点DSP每器件产品的价格很低,这对大规模大众市场应用而言是相当重要的优势。
相比较而言,浮点DSP能够实现更快速而简便的开发,因此对开发成本比单位制造成本重要的小规模应用而言,更是最佳的选择。
最近几年,高密度集成与支持改善使两种DSP在使用方便性与成本上都较为接近。目前,器件类型的选择越来越取决于应用数据集是否要求浮点格式的更多计算功能。因此,设计大规模量产信号处理应用的开发人员现在开始发现浮点格式更多的内在价值。他们将视线投向传统定点DSP开发模式之外的领域,并探索浮点DSP 所带来的设计机遇。
不同的数字格式
定点与浮点DSP的基本差异在于它们各自对数据的数字表示法不同。定点硬件严格执行整数运算,而浮点DSP 既支持整数运算又支持实数运算,后者以科学计数法进行了标准化。字长为16 位的定点DSP 实现(rovide) 64K 的精度,带符号整数值范围为-215 至215-1。
与此相对比,浮点DSP将数据路径分为两部分:一是可用作整数值或实数基数的尾数,二是指数。在支持业界标准单一精确运算的32位浮点DSP中,尾数为24位,指数为8位。由于其较长的字长与取幂范围,该器件支持16M 的精度范围,这样的动态范围大大高于定点格式可提供的精确度。实施业界标准双精度(64 位,包括一个53 位的尾数与11 位的指数)的器件还可实现更高的精确度。
成本与方便易用性
浮点DSP 提供的计算能力更高,这也是其区别于定点DSP 功能的最大差异所在。但在浮点DSP 刚刚出现的20世纪90年代初期,其它因素往往掩盖了基本的数学计算问题。浮点功能需要的内部电路多,而32位数据路径比当时可用的定点器件要宽一倍。晶片面积越大,引脚数量就越多,封装也越大,这就大大提高了新款浮点器件的成本,因此数字化语音与电信集成卡(concentration c ard)等高产量应用仍更倾向于采用较低成本的定点器件。
当时,方便易用性抵消了成本问题带来的不利影响。浮点器件是最早支持 C 语言的DSP 之一,而定点DSP则仍须在汇编代码级上进行编程。此外,对浮点格式而言,实数运算可直接通过代码加入硬件运算中,而定点器件则必须通过软件才能间接执行实数运算,这就增加了算法指令并延长了开发时间。由于浮点DSP 易于编程,因此其最初主要用于开发工作强度较大的情况,如研究、原型开发、影像识别、工作站的三维图像加速器以及雷达等军用系统。
逐渐趋同
目前,早先的成本与易用性间的差异已经不那么明显了。总体说来,定点DSP 仍然在成本上有优势,而浮点DSP 仍然在易用性上有优势,但差别已经缩小很多,因此上述因素已经不再起决定作用了。
成本日益成为片上系统(SoC)集成与产量的问题,而不是DSP内核本身大小的
问题。在十年前还只能放置单个晶体管的空间,目前可放置数十个晶体管。目前,占据晶片面积最多的是存储器,而不是逻辑,而且许多基于DSP的产品都充分利用再扩展(rescaling)的优势,针对具体市场的需求集成了不只一个内核。定点DSP的成本仍然较低,因为其针对大众市场应用的产量很高;但是,如果大规模量产的需求出现,那么浮点器件也将受益于规模效益带来的同样的成本降低。
早期在易用性方面的差异也已经减小。高效的C编译程序与工具早已能支持定点DSP,为代码执行带来了可视性。直接采用浮点硬件实施实数运算仍有优势;但目前先进的建模工具、完整的数学函数库以及现成的算法降低了为定点器件开发复杂应用的难度。
浮点的精确度
目前,选用定点DSP还是浮点DSP归根结底在于应用数据集是否需要浮点算术功能。总体说来,设计人员应解决两个问题:数据集要求多高的精确度?数据集的可预见度有多大?
三个因素影响着浮点格式的内在高精度。首先,浮点DSP的24位I/O字长在整数与实数值方面可实现比定点器件中常用的16 位字长更高的精确度。第二,取幂大幅提高了应用可用的动态范围,较大的动态范围对处理极大数据集以及难以方便预计数据集范围的情况相当重要。第三,浮点硬件内部的数据表示法比定点器件更为精确,这就保证了最终结果的精确度更高。
最后一点应稍做解释。在DSP的内部架构中,三种数据字长相当重要,应当考虑。第一是I/O信号字长,正如我们已经说过的那样,其就浮点而言为24位,就定点DSP而言通常为16位。第二就是用于乘法的系数字长。定点系数为16位,与信号数据相同;但浮点系数则可能为24位或53位,这取决于所用的是单宽度精度还是双宽度精度。如果指数表示有意义的零,则精确度实际上会超过上述位数。
最后,就是保存乘加器(MAC)运算中间结果的字长,通常称作寄存器文件。对单一16位乘以16位的乘法而言,将需要32位的乘积;而就单一24位乘以24
位的尾数乘法而言,则需48位的乘积(指数有不同的数据路径)。但是,MAC 需要额外的位用于溢出空间(overflow headroom)。在16位定点器件中,溢出空间通常为8 位,这就使总的中间结果字长为40 位(16 个信号+16 个系数+ 8 个溢出)。
将相同大小的溢出空间集成到浮点DSP中将需要60个中间结果位(24个信号+24个系数+12个溢出),这将超过大多数应用对精度的要求。但就取幂而言,我们将结果标准化,这样所有24位或53位都有效,溢出位就不必要了。TI的TMS320C67x系列等浮点DSP允许开发人员在双精度内部运算与单精度I/O结合的模式下优化精确度与性能。其结果是得到的精确度比定点或单精度浮点运算提供的精确度高得多,但又不会产生完全双精度I/O 带来的周期问题。