新湘教版9年级上
初中数学湘教版九年级上册第2章 一元二次方程2.5 一元二次方程的应用-章节测试习题(23)
章节测试题1.【题文】某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?【答案】应将商品的售价定为12元或16元.【分析】设售价为x元,则有(x-进价)(每天售出的数量-×10)=每天利润,解方程求解即可.【解答】设售价为x元,根据题意列方程得(x-8)(200-×10)=640,整理得:(x-8)(400-20x)=640,即x2-28x+192=0,解得x1=12,x2=16.故将每件售价定为12或16元时,才能使每天利润为640元.原价为10元,则定价为12元和16元都符合题意(加价减销),故应将商品的售价定为12元或16元.2.【题文】某商场从厂家以每件21元的价格购进一批商品,若每件的售价为a 元,则可卖出(350-10a)件,商场计划要赚450元,则每件商品的售价为多少元?【答案】26元或30元【分析】首先根据总利润=单件利润×数量列出方程,从而求出方程的解得出答案.【解答】解:依题意有(a-21)(350-10a)=450,a2-56a+780=0,解得:a1=26,a2=30.答:每件商品的售价为26元或30元.3.【题文】某电冰箱厂每个月的产量都比上个月增长的百分数相同.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了1.2万台.(1)求该厂今年产量的月平均增长率为多少?(2)预计7月份的产量为多少万台?【答案】(1)20%;(2)8.64万台.【分析】(1)设每个月的月平均增长率为x,则5月的产量为5(1+x)台,6月份的产量为5(1+x)2台,由此即可根据6月份比5月份多生产1.2万台可得方程:5(1+x)2-5(1+x)=1.2,解方程即可得到所求答案;(2)根据(1)中所得结果即可按7月份的产量为5(1+x)3,即可计算出7月份的产量了.【解答】(1)设该厂今年产量的月平均增长率是x,根据题意得:5(1+x)2-5(1+x)=1.2解得:x=-1.2(舍去),x=0.2=20%.答:该厂今年的产量的月增长率为20%;(2)7月份的产量为:5(1+20%)3=8.64(万台).答:预计7月份的产量为8.64万台.4.【题文】某商场将每件进价为80元的某种商品原来按每件100出售,一天可售出100件,后来经过市场调查,发现这种商品每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?【答案】(1)商场经营该商品原来一天可获利润2000元;(2)每件商品应降价2元或8元.【分析】(1)不降价时,利润=不降价时商品的单件利润×商品的件数;(2)设每件商品应降价x元,可根据:降价后的单件利润×降价后销售的商品的件数=2160,来列出方程,求出未知数的值即可得.【解答】(1)(100-80)×100=2000(元),答:商场经营该商品原来一天可获利润2000元;(2)设每件商品应降价x元,依题意得:(100-80-x)(100+10x)=2160,即x2-10x+16=0,解得:x1=2,x2=8,答:每件商品应降价2元或8元.5.【题文】3月初某商品价格上涨,每件价格上涨20%.用3000元买到的该商品件数比涨价前少20件.3月下旬该商品开始降价,经过两次降价后,该商品价格为每件19.2元.(1)求3月初该商品上涨后的价格;(2)若该商品两次降价率相同,求该商品价格的平均降价率.【答案】(1)3月初该商品价格上涨后变为每件30元;(2)该商品价格的平均降价率为20%.【分析】(1)设3月初该商品原来的价格为x元,根据“每件价格上涨20%,用3000元买到的该商品件数比涨价前少20件”列出方程并解答;(2)设该商品价格的平均降价率为y,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是30(1-y),第二次后的价格是30(1-y)2,据此即可列方程求解;【解答】解:(1)设3月初该商品原来的价格为x元,依题意得:=20解方程得:x=25,经检验:x=25是原方程的解,25(1+20%)=30.答:3月初该商品上涨后的价格为每件30元;(2)设该商品价格的平均降价率为y,依题意得:30(1-y)2=19.2解得:y1=1.8(舍),y2=20%.答:该商品价格的平均降价率为20%.6.【题文】为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年计划投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2017年预计建设了多少万平方米廉租房?【答案】(1)每年市政府投资的增长率为50%;(2)2017年预计建设了27万平方米的廉租房.【分析】(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.【解答】解:(1)设每年市政府投资的增长率为x,依题意得:3(1+x)2=6.75解得x1=0.5=50%x2=-2.5(舍去)答:每年市政府投资的增长率为50%(2)12(1+50%)2=27答:2017年预计建设了27万平方米的廉租房.7.【题文】现将进货单价为100元的商品按每件150元售出时,就能卖出300件.已知这批商品每件涨价5元,其销售量将减少10件.问为了赚取19200元利润,同时也为了尽快减少库存,问售价应定为多少?【答案】180元【分析】根据题意,找到等量关系“一件商品的利润×卖出商品的数量=利润”,设出未知数,列方程求解即可.【解答】解:设涨价x元.(150+x-100)(300-10×)=19200解得x1=70,x2=30为了尽快减少库存,∴售价应定为180元.8.【题文】春暖花开,市民纷纷外出踏青,某种品牌鞋专卖店抓住机遇,利用10周年店庆对其中畅销的M款运动鞋进行促销,M款运动鞋每双的成本价为800元,标价为1200元.(1)M款运动鞋每双最多降价多少元,才能使利润率不低于20%;(2)该店以前每周共售出M款运动鞋100双,2018年3月的一个周末,恰好是该店的10周年店庆,这个周末M款运动鞋每双在标价的基础上降价m%,结果这个周末卖出的M款运动鞋的数量比原来一周卖出的M款运动鞋的数量增加了m%,这周周末的利润达到了40000元,求m的值.【答案】(1)M款运动鞋每双最多降价240元,才能使利润率不低于20%;(2)m的值为60.【分析】(1)设M款运动鞋每双降价元,根据利润=售价-进价,即可得出关于的一元一次不等式,解之即可得出的取值范围,取其内的最大正整数即可得出结论;令则根据总利润=单双运动鞋的利润×销售数量,即可得出关于y的一元二次方程,解之取其正值即可得出结论.【解答】(1)设M款运动鞋每双降价元,根据题意得:解得:答:M款运动鞋每双最多降价240元,才能使利润率不低于20%.(2)令则根据题意得:整理得:解得:或y=0(不合题意,舍去),答:m的值为60.9.【题文】某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【答案】(1)x+10元;(2)每个定价为70元,应进货200个.(3)每个定价为65元时得最大利润,可获得的最大利润是6250元.【分析】(1)根据利润=销售价-进价列关系式,(2)总利润=每个的利润×销售量,销售量为400-10x,列方程求解,根据题意取舍,(3)利用函数的性质求最值.【解答】由题意得:(1)50+x-40=x+10(元),(2)设每个定价增加x元,列出方程为:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使进货量较少,则每个定价为70元,应进货200个,(3)设每个定价增加x元,获得利润为y元,y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,当x=15时,y有最大值为6250,∴每个定价为65元时得最大利润,可获得的最大利润是6250元.10.【题文】欣欣服装店经销某种品牌的童装,进价为50元/件,原来售价为110元/件,每天可以出售40件,经市场调查发现每降价1元,一天可以多售出2件.(1)若想每天出售50件,应降价多少元?(2)如果每天的利润要比原来多600元,并使库存尽快地减少,问每件应降价多少元?(利润=销售总价-进货价总价)【答案】(1)5;(2)30.【分析】(1)降低1元增加2件,可知若想每天出售50件,降低(50-40)÷2元,列出算式即可.(2)利润=售价-进价,根据一件商品的利润乘以销售量得到总利润,列出方程求解即可.【解答】解:(1)(50-40)÷2=10÷2=5(元).答:应降价5元;(2)设每件商品降价x元.根据题意得:(110-x-50)×(40+2x)=40×(110-50)+600解得:x1=10,x2=30.∵使库存尽快地减少,∴x=30.答:每件应降价30元.11.【题文】某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外,上市时,有一外商按市场价格10元/千克收购了2000千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨0.5元,但冷库存放这批猴头菇时每天需要支出各种费用合计220元,而且这种猴头菇在冷库中最多能保存130天,同时,平均每天有6千克的猴头菇损坏不能出售.(1)若外商要将这批猴头菇存放x天后一次性出售,则x天后这批猴头菇的销售单价为______元,销售量是______千克(用含x的代数式表示);(2)如果这位外商想获得利润24000元,需将这批猴头菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)【答案】(1)10+0.5x,2000-6x;(2)40.【分析】(1)根据猴头菇的销售单价市场价格+0.5×存放天数和销售量=原购入量-6×存放天数列出代数式即可;(2)利用总利润-各种费用-收购成本即可列出方程求解.【解答】解:(1)10+0.5x,2000-6x;(2)由题意得:(10+0.5x)(2000-6x)-10×2000-220x=24000,解得x1=40,x2=200(不合题意,舍去)答:这位外商想获得利润24000元需将这批猴头菇存放40天后出售.12.【题文】为响应国家全民阅读的号召,社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)如果每年的增长率相同,预计2018年图书借阅总量是多少本?【答案】(1)20%,(2)12960本【分析】(1)、首先设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,然后根据增长前的数量×(1+增长率)增长次数=增长后的数量列出一元二次方程,从而得出x的值;(2)、根据增长率求出2018年的数量.【解答】解:(1)、设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得:7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=-2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)、10800(1+0.2)=12960(本).答:预计2018年图书借阅总量是12960本.13.【题文】某商场销售一种学生用计算器,进价为每台20元,售价为每台30元时,每周可卖160台,如果每台售价每上涨2元,每周就会少卖20台,但厂家规定最高每台售价不能超过33元,当计算器定价为多少元时,商场每周的利润恰好为1680元?【答案】32【分析】设每台计算器涨价为x元.根据题意可以列出相应的方程,从而可以得到当计算器定价为多少元时,商场每周的利润恰好为1680元,注意厂家规定最高每台售价不能超过33元.【解答】解:设每台计算器涨价为x元.根据题意得:(30+x-20)(160-×20)=1680解得,x1=2,x2=4.∵x≤33-30=3,∴x=2符合题意,∴此时计算器的售价为30+2=32(元).答:当计算器定价为32元时,商场每周的利润恰好为1680元.14.【题文】苏宁电器销售某种冰箱,每台的进货价为2600元,调查发现,当销售价为3000元时,平均每天能售出8台,而当销售价每降低100元时,平均每天就能多售出8台.商场要使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价为多少元?【答案】要使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为2850元时.【分析】销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每台的盈利×销售的件数=5000元,即可列方程求解.【解答】解:设每台冰箱价格降低100x元,销售量为8+8x,(3000−100x−2600)(8+8x)=5000,解得x=1.5,冰箱定价=3000−100x=3000−100×1.5=2850(元),答:要使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为2850元.15.【题文】文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?【答案】当店主对该种钢笔上涨5元时,每月进货量为150支;当店主对该种钢笔上涨11元时,每月进货量为90支.【分析】设上涨x元,根据利润=销售量×(定价-进价),列出方程,求解即可.【解答】解:设每支钢笔应该上涨x元钱,根据题意得:(20+x-16)(200-10x)=1350解得:x1=5,x2=11∴每支钢笔应该上涨5元或11元钱,月销售利润为1350元;∴当店主对该种钢笔上涨5元时,每月进货量为200-10×5=150支.当店主对该种钢笔上涨11元时,每月进货量为200-10×11=90支.16.【题文】今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书______本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【答案】(1)(300-10x);(2)每本书应涨价5元.【分析】(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,∴每天可售出书(300-10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.【解答】(1)∵每本书上涨了x元,∴每天可售出书(300-10x)本.故答案为:300-10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40-30+x)(300-10x)=3750,整理,得:x2-20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.17.【题文】一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该学校最终向园林公司支付了8800元;请问学校购买了多少棵树苗?【答案】80棵.【分析】根据设该校共购买了x棵树苗,由题意得:x[120-0.5(x-60)]=8800,进而得出即可.【解答】∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x[120-0.5(x-60)]=8800,解得:x1=220,x2=80.当x=220时,120-0.5×=40<100,∴x=220(不合题意,舍去);当x=80时,120-0.5×(80-60)=110>100,∴x=80.答:该校共购买了80棵树苗.18.【题文】55.如图是一块矩形铁皮,将四个角各剪去一个边长为2米的正方形后,剩下的部分做成一个容积为90立方米的无盖长方体箱子,已知长方体箱子底面的长比宽多4米,求矩形铁皮的面积.【答案】矩形铁皮的面积是117平方米.【分析】设矩形铁皮的长为x米,则宽为(x-4)米,无盖长方体箱子的底面长为(x-4)米,底面宽为(x-4-4)米,根据运输箱的容积为90立方米建立方程求出其解即可.【解答】设矩形铁皮的长为x米,则宽为(x-4)米,由题意,得(x-4)(x-8)×2=90,解得:x1=13,x2=-12(舍去),∴矩形铁皮的宽为:13-4=9米,矩形铁皮的面积是:13×9=117(平方米).答:矩形铁皮的面积是117平方米.19.【题文】如图,为了给小区居民增加锻炼场所,物业拟在一宽为40米、长为60米的矩形区域内的四周修建宽度相同的鹅卵石小路,阴影部分用作绿化当阴影部分面积为800平方米时,小路宽x为多少米.【答案】小路的宽为10米.【分析】分别表示出阴影部分的矩形的长和宽,然后利用矩形的面积公式列出方程求解.【解答】解:设小路的宽为x米,根据题意得:,解得:或舍去答:小路的宽为10米.20.【题文】一辆汽车,新车购买价20万元,第一年使用后折旧,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同已知在第三年年末,这辆车折旧后价值万元,求这辆车第二、三年的年折旧率.【答案】这辆车第二、三年的年折旧率为【分析】设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1-20%)(1-x)元,第三年折旧后的而价格为20(1-20%)(1-x)2元,与第三年折旧后的价格为11.56万元建立方程求出其解即可.【解答】设这辆车第二、三年的年折旧率为x,有题意,得.整理得:...解得:不合题意,舍去.,即.答:这辆车第二、三年的年折旧率为.。
最新湘教版九年级数学(初三)上册3.6位似 第1课时位似图形的概念及画法课件
随堂练习
4.如图,E是平行四边形ABCD的边BC延长线上的一点,连接
AE交CD于点F,则图中位似图形共有( C )
A.1对 B.2对 C.3对 D.4对
随堂练习
5.如图,矩形ABCD与矩形A′B′C′D′是位似图形,A是位似 中心,已知矩形ABCD的周长为24,BB′=4,DD′=2,则矩 形ABCD的面积为___3_2_____.
位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边
形A′B′C′D′的面积比为( A )
A.4∶9 B.2∶5 C.2∶3 D.3∶2
随堂练习
3.下列说法不正确的是( B )
A.位似图形一定是相似图形 B.相似图形不一定是位似图形 C.位似图形上任意一对对应点到位似中心的距离之比等 于相似比 D.位似图形中每组对应点所在的直线必相互平行
July 12, 2020
要求的图形.
课程讲授
2 位似图形的画法
问题2:如果在四边形外任选一个点 O,分别在 OA、
OB、OC、OD 的反向延长线上取 A′ 、B′ 、C′、D′,
使得OA' = OB' = OC' = OD' = 1 呢?如果点 O 取在四
OA OB OC OD 2
边形 ABCD 内部呢?分别画出这时得到的图形.
丽生,活感像谢春你天的一阅样读阳。光,心情像桃花一样美 6Ju、莫ly吾愁1生前2,也路20有无20涯知7/,已12而,/2知天02也下0 无 谁涯人。不识9时君5。分99时时55分分91时2-5Ju分l-1220-7J.u1l2-2.20072.102.2020 丽,感谢你的阅读。 76、纸人生上生命得贵太来相过终知短觉,暂浅何,,用今绝金天知 与 放此钱弃事。了要明20躬天.7.行不12。一20定2.07能..71.得212到02.0。7..719.2时1。2522分00.792.时01年25。分7月210212-2J0日u年l星-72月0期71日.122日二.2星〇02期二0日〇
湘教版九年级数学上册教学计划
九年级数学上册教学计划一、基本情况:本学期我继任九年级156班数学,这班共有学生人,上学期期末检测及格人,及格率为%,平均分;100分以上人,72—99分人,60—71分人,40~59分人,30~40分人;30分以下人。
本班学生基础较差,两极分化太严重,且低分太多。
大部分学生学习态度不端正,不少学生对学习数学失去了信心。
为做好本学期的教育教学工作,特制定本计划。
二、指导思想:九年级数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。
通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
三、教学内容:本学期所教九年级数学包括第一章反比例函数,第二章一元二次方程,第三章图形的相似,第四章锐角三角函数,第五章用样本推断总体。
四、教学目标:在《反比例函数》这章,让学生理解反比例函数的概念,关系式,掌握反比例函数的图像与性质,能用反比例函数解决实际问题。
在《一元二次方程》这章,让学生了解一元二次方程的各种解法并能运用一元二次方程和函数解决一些数学问题,逐步提高观察和归纳分析能力,体验数学结合的数学方法。
同时学会对知识的归纳、整理、和运用。
从而培养学生的思维能力和应变能力。
《图形的相似》要掌握线段的比和比例的基本性质及黄金分割,掌握相似三角形的判断及性质以及应用。
《锐角三角函数》要熟练掌握锐角三角比的意义及特殊角的三角比。
知道用计算器进行有关三角比的计算。
理解解直角三角形的概念。
掌握解直角三角形的方法及其应用。
《用样本推断总体》要学会总体平均数与方差的估计方法,掌握统计的简单应用。
五、教学重点、难点《反比例函数》的重点是:掌握反比例函数的图像与性质;难点是:用反比例函数解决实际问题。
最新湘教版九年级数学(初三)上册4.4 第2课时 与坡度、方位角有关的应用问题 课件
约等于 293 .
如图,一铁路路基的横断面为等腰梯形,路基 的顶宽(即等腰梯形的上底长)为10.2m,路基的坡度 i=1:1.6,等腰梯形的高为6.2m.求路基的底宽(精确到 0.1m)和坡角α(精确到1′).
答:路基底宽为30.0m, 坡角 α = 32.
例2 如图,海岛A四周20海里周围内为暗礁区,一 艘货轮由东向西航行,在B处见岛A在北偏西60˚,航 行24海里到C,见岛A在北偏西30˚,货轮继续向西航 行,有无触礁的危险?
i hl
坡度通常写成 1 : m 的形式. 如图中的∠MPN叫作坡角(即山坡与地平面的夹角).
显然,坡度等于坡角的正切. 坡度越大,山坡越陡.
例1 如图,一山坡的坡度 i = 1:1.8,小刚从
山坡脚下点P上坡走了24m到达点N,他上升 了多少米(精确到0.1m)?这座山坡的坡角是多 少度(精确到1′)?
July 12, 2020
039、:0少成57年功.1易都2.学永20老远20难不09成会:0,言57一弃.1寸 ,2.光放20阴弃20不者09可永:0轻远50。不9。会:05成:0功37。.12.202009:057.12.2020
盛开的春地去方春,又在回这,醉新人桃芬换芳旧的符季。节在,那愿桃你花 409、:0桃57花.1潭2.水20深20千09尺:0,57不.1及2.汪20伦20送09我:0情50。9:05:037.12.202009:057.12.2020 盛开的地方,在这醉人芬芳的季节,愿你 74.、12敏不.2而要02好为07学它.1,的2.不结20耻束20下而09问哭:0。 ,50。应9当7:0.15为20.9它2:0的250:开073始.1029而.:20笑052:。00309:0509:0509:05:0309:05:03
湘教版初中数学7-9年级(上下册)电子课本汇总(下载看文末)
湘教版初中数学7-9年级(上下册)电子课本汇总(下载看文末)l 湘教版初中7-9年级数学知识点总结汇编湘教版初中数学教材解读教材是实施《义务教育数学课程标准》的载体。
新课改以来,尽管在教材编写过程中出现了“一纲多本”,也许它们编写的理念、结构和呈现方式不尽相同,但在这些教材的后面站着的都是“立德树人”这四个大字,在这四个字的背后,是有良好的数学素养、深刻的文化自信的一代新人。
而这一切的发生离不开课堂,教材的落地在课堂,在于教师对教材的解读。
下面我以八年级湘教版初中数学教材上下册为例进行解读,以期大家了解编者意图,便于我们有效的使用教材。
NO.1一、教材的逻辑主线SPRING春暖花开好天气教材内容总体来说涉及初中数学四个部分:数与代数、空间与图形、统计与概率、综合与实践。
各个部分侧重点各不相同。
(1)数与代数的逻辑主线着重于建模和算法“数与代数”部分,教材自始至终重视数学建模,并随时渗透算理算法,发展学生的数学建模和数学运算核心素养。
例如,八上第4章“一元一次不等式(组)”、八下第4章“一次函数”,都是先把实际情境抽象成数学问题,并用数学符号建立一元一次不等式、一次函数得到模型的;然后通过模型算出结果,并用此去解释其他现实问题,从而让学生体会建模的过程,理解不等式、函数是刻画现实世界数量关系的有效模型。
同时,为了浅显易懂地渗透算法,教材采用形象、生动的卡通流程图给出了一般的解法步骤,例如八上1.5节的内容采用了流程图,将解可化为一元一次方程的分式方程的步骤以及建立方程模型解决实际问题的步骤呈现出来。
(2)空间与图形的逻辑主线注重于变换“几何几何,想烂老壳”,可见几何的学习历来是初中数学的难点。
为了突破难点,教材从学生已有的经验出发,通过图形变换来研究图形的性质,从而发展学生的数学抽象、直观想象、逻辑推理的核心素养。
如八下 2.3“中心对称和中心对称图形”,让学生认识了中心对称;八上2.3“等腰三角形”、2.4“线段的垂直平分线”等一些问题的探究,都是用变换的观点来认识图形,并在探究图形性质的过程中进行合情推理与演绎推理。
新湘教版九年级数学上册《统计的简单应用》课件
2. 下表是我国2006—2010年第一产业在国民生产总值中 的比例数据:
年份 比 例(%)
2006 2007 2008 2009 2010 11.3 11.1 11.3 10.3 10.1
(1)请根据表中数据,建立直角坐标系,并描出坐标 (年份,第一产业在国民生产总值中的比例);
(2)试用直线表示第一产业在我国国民生产总值中的 比例在近几年内的发展趋势.
练习
1. 某工厂需要A ,B ,C三种原料用于生产,为了合理 进料以维持正常生产,工厂随机统计了两周中每天 原料消耗(单位:t)的情况:
星 星星星星星星星星星星星星星 期 期期期期期期期期期期期期期
日 一二三四五六日一二三四五六
A
32 25 26 26 30 28 27 28 25 25 30 24 26 30
合计
频数 4 7 8 18 28 17 9 5 4
100
频率 0.04 0.07 0.08 0.18 0.28 0.17 0.09 0.05 0.04
1
(2)估计该校500名12岁男孩中身高小于134cm的人数.
由上表可知,身高小于134cm的男孩出现的 频率为0.04+0.07+0.08=0.19.又随机抽取的这100名 男孩的身高组成了一个简单随机样本,因而可以 用这个样本的频率(0.19)作为该校500名12岁男 孩相应频率的估计.
解 由于是随机抽取,即总体中每一件产品
都有相同的机会被抽取,因此,随机抽取
的1000件产品组成了一个简单随机样本, 因而可以用这个样本的次品率 10 = 1
1000 100 作为对这批产品的次品率的估计,从而
这批产品的次品率为1%.
动脑筋
湘教版九年级上册数学教案(全册)【精编】
第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t的变化,平均速度v发生了怎样的变化?(4)平均速度v是所用时间t的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y之间可以表示成y=kx(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动.三、运用新知,深化理解1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;(2)压强p一定时,压力F与受力面积S的关系;(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx(k是常数,k≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h,是反比例函数;(2)F=pS,是正比例函数;(3)F=W/s ,是反比例函数; (4)y=m/x ,是反比例函数. 3.当m 为何值时,函数y=224m x -是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m=3/2.所以反比例函数的解析式为y=4x. 4.当质量一定时,二氧化碳的体积V 与密度ρ成反比例.且V=5m 3时,ρ=1.98kg /m 3 (1)求p 与V 的函数关系式,并指出自变量的取值范围. (2)求V=9m 3时,二氧化碳的密度. 解:略5.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x =2与x =3时,y 的值都等于19.求y 与x 间的函数关系式.分析:y1与x 成正比例,则y1=k1x ,y2与x2成反比例,则y2=k2x2,又由y =y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y 与x 间的函数关系式.解:因为y 1与x 成正比例,所以y 1=k 1x ;因为y 2与x 2成反比例,所以y 2=22k x ,而y =y 1+y 2,所以y=k 1x+22k x,当x =2与x =3时,y 的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.1”中第1、3、5题.教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6x的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y 轴右边的各点,当横坐标x 逐渐增大时,纵坐标y 如何变化?y 轴左边的各点是否也有相同的规律?(2)这两条曲线会与x 轴、y 轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题:(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y 随自变量x 的变化是如何变化的? 【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动: (1)可以用画反比例函数y=-6x的图象的方式与步骤进行自主探索其图象; (2)可以通过探索函数y=6x 与y=-6x 之间的关系,画出y=-6x的图象. 【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而增大.探究4:反比例函数的性质反比例函数y=-6x与y=6x的图象有什么共同特征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=kx(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=kx与y=-kx(k≠0)的图象关于x轴或y轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解1.教材P9例1.2.如果函数y=2x k+1的图象是双曲线,那么k=.【答案】 -23.如果反比例函数y=3kx-的图象位于第二、四象限内,那么满足条件的正整数k的值是.【答案】 1,24.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kbx的图象在第象限.【答案】二、四5.反比例函数y=1x的图象大致是图中的( ).解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限. 【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】 C7.已知函数23()2m y m x --为反比例函数. (1)求m 的值;(2)它的图象在第几象限内?在各象限内,y 随x 的增大如何变化? (3)当-3≤x ≤-12时,求此函数的最大值和最小值.8.作出反比例函数y=12x的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围. 解:列表:由图知: (1)y =3; (2)x =-6; (3)0<x <69.作出反比例函数y=-4x的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围. 解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=kx的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=kx的图象,根据图象,回答下列问题:(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-3x上,则y1、y2中较小的是.【答案】 y22.已知点A(x1,y1),B(x2,y2)是反比例函数y=kx(k>0)的图象上的两点,若x1<0<x2,则有( ).A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<0【答案】 A3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是( )A.b1<b2B.b1=b2C.b1>b2D.大小不确定【答案】 D4.函数y=-1x的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则( )A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【答案】 A5.已知点P(2,2)在反比例函数y=kx(k≠0)的图象上,(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.6.已知y=kx(k ≠0,k 为常数)过三个点A(2,-8),B(4,b),C(a ,2). (1)求反比例函数的表达式; (2)求a 与b 的值. 解:(1)将A (2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16x; (2)将B (4,b )代入反比例解析式得:b=-4;将C (a ,2)代入反比例解析式得:2=-16a,即a=-8.7.已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上? 分析:(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.解:(1)设:反比例函数的解析式为:y=kx(k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1k ,k =-2.即反比例函数的解析式为:y=-2x.(2)点A(-5,m)在反比例函数y=-2x图象上,所以m=25-- =25 ,点A 的坐标为(-5,25).点A 关于x 轴的对称点(-5,-25)不在这个图象上;点A 关于y 轴的对称点(5, 25)不在这个图象上;点A 关于原点的对称点(5,-25)在这个图象上; 【教学说明】通过练习,巩固本节课数学内容. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时反比例函数的图象与性质(3)教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P(-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k1x,y= 2kx,其中,k1,k2是常数,且均不为0.由于这两个函数的图象交于P(-3,4),则P(-3,4)是这两个函数图象上的点,即点P的坐标分别满足这两个表达式.因此,4=k1×(-3),4=23k-解得,k1=43- k2=-12所以,正比例函数解析式为y=43-x,反比例函数解析式为y=-12x.函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1= ;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S2= ;S1与S2有什么关系?为什么?【归纳结论】反比例函数y=kx(k≠0)中比例系数k的几何意义:过双曲线y=kx(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A 是反比例函数y=kx 的图象上的一点,AB 丄x 轴于点B ,且△ABO 的面积是3,则k 的值是( )A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k|. 解:根据题意可知:S △AOB =12|k|=3,又反比例函数的图象位于第一象限,k >0,则k =6.【答案】 C 2.反比例函数y=6x 与y=2x在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )A. 12B.2C.3D.1分析:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,再根据反比例函数系数k 的几何意义分别求出四边形OEAC 、△AOE 、△BOC 的面积,进而可得出结论.解:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,∵由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3, S △BOC =1,∴S △AOB =S 四边形OEAC -S △AOE -S △BOC =6-3-1=2.【答案】 B3.已知直线y =x +b 经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C ,求k 、b 的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x -3.又因为点B(-2,m)也在直线y =x -3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k =-2×(-5)=10. 4.已知反比例函数y=1k x的图象与一次函数y =k 2x -1的图象交于A(2,1). (1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析:(1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2.1=2k2-1,k2=1.所以反比例函数的解析式为:y=2x;一次函数解析式为:y=x-1.(2)点A(2,1)关于坐标原点的对称点是A′(-2,-1).把A′点的横坐标代入反比例函数解析式得,y=22=-1,所以点A在反比例函数图象上.把A′点的横坐标代入一次函数解析式得,y=-2-1=-3,所以点A′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由 (1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和 (4)都是利用函数的图象进行解题.一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y 的值在-1≤y ≤3范围内时,相应的x 的值为:-1≤x ≤1.(4)从图象可知,y 随x 的增大而减小,又m +1>m ,所以y 1>y 2.或解:当x 1=m 时,y 1=-2m +1;当x 2=m +1时,y 2=-2×(m +1)+1=-2m -1所以y 1-y 2=(-2m +1)-(-2m -1)=2>0,即y 1>y2.6.如图,一次函数y =kx +b 的图象与反比例函数y=mx的图象交于A 、B 两点. (1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x 的取值范围.分析:(1)把A 、B 两点坐标代入两解析式,即可求得一次函数和反比例函数解析式. (2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=FS,请你判断:当F一定时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=FS,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.(2)因为F=450N,所以当S=0.005m2时,由p=FS得:p=450/0.005=90000(Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y 与x的函数关系式是,自变量x的取值范围是.【答案】y=12x;x>03.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是 (不考虑x的取值范围).【答案】y=90 x4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( )【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是( ).A.y=3000xB.y=6000xC.y=3000xD.y=6000x【答案】D7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( )。
湘教版九年级数学上学期(第一学期)《一元二次方程》应用题归类练习及答案解析.docx
(新)湘教版九年级数学上册 一元二次方程 应用题归类练习前言:(新)湘教版九年级数学上册一元二次方程的应用主要讲了三种类型的应用题:①增长率问题,引例(动脑筋)和例1。
②销售、利润问题,例2。
③几何图形的面积与动点移动形成的几何图形的面积,引例(动脑筋)例3,例4。
复习题中还出现了数字方面的应用题。
无论哪一种题型都离不开教材第50页的议一议,要建立好一元二次方程的模型,才能去很好的解一元二次方程。
在这里把(新)湘教版九年级数学上册一元二次方程的应用归一下类,供大家参考!一、 增长率问题:1、某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为7600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为 .2、2015年1月20日遵义市政府工作报告公布:2013年全市生产总值约为1585亿元,经过连续两年增长后,预计2015年将达到2180亿元.设平均每年增长的百分率为x ,可列方程为 .3、某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的平均增长率x 相同,则下列方程正确的是( )A.250(1)196x +=B. 25050(1)196x ++=C.()()250501501196+x x +++=D. ()()505015012196+x x +++=4、满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?5、全民健身和医疗保健是社会普遍关注的问题,2014年,某社区共投入30万元用于购买健身器材和药品.(1)若2014年社区购买健身器材的费用不超过总投入的,问2014年最低投入多少万元购买药品?(2)2015年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少,但社区在这两方面的总投入仍与2014年相同.①求2014年社区购买药品的总费用;②据统计,2014年该社区积极健身的家庭达到200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的,与2014年相比,如果2015年社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比相同,那么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,求2015年该社区健身家庭的户数.二、销售、利润问题:6、新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为.7、百货大楼服装柜销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要使平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?请先填空后再列方程求解:设每件童装降价元,那么平均每天就可多售出件,现在一天可售出件,每件盈利元.8、水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?9、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?10、某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把化简后的结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.11、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?12、某公司生产的商品的市场指导价为每件150元,公司的实际销售价格可以浮动x个百分点(即销售价格=150(1+x%)),经过市场调研发现,这种商品的日销售量y(件)与销售价格浮动的百分点x之间的函数关系为y=﹣2x+24.若该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%.(1)求该公司生产销售每件商品的成本为多少元?(2)当实际销售价格定为多少元时,日销售利润为660元?(说明:日销售利润=(销售价格一成本)×日销售量)(3)该公司决定每销售一件商品就捐赠a元利润(a≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于﹣2时,扣除捐赠后的日销售利润随x增大而减小,直接写出a的取值范围.三、面积、动点问题:13、在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶上宽度相同的金色纸边,制成一幅矩形挂图(如图②),使整个挂图的面积是80平方分米,设金色纸边宽为x分米,可列方程为.14、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,则可列方程.15、如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?16、如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:(1)当t=1秒时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3cm?(3)当t= 以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)17、已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:(1)经过秒时,求△PBQ的面积;(2)当t为何值时,△PBQ是直角三角形?(3)是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.18、如图所示,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.(1)如果P、Q分别从A、B同时出发3秒,则四边形APQC的面积是.(2)如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.(3)如果P、Q分别从A、B同时出发,经过几秒钟后,以P、Q、B三点为顶点的△与△ABC相似?19、如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q 分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP= 6cm,BQ= 12cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10cm2?(4)经过几秒时△BPQ的面积达到最大?并求出这个最大值.四、数字问题:20、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x名学生,根据题意,列出方程为.21、根据题意,列出方程:已知某两位数,个位数字与十位数字之和为12,个位数字与十位数字之积为32,求这个两位数;五、行程问题:22、“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.一元二次方程应用题归类练习参考答案:1、8100×(1﹣x)2=7600 .2、1585(1+x)2=2180 .3、C4、解:(1)设平均每次降价的百分率是x,根据题意列方程得,5000(1﹣x)2=4050,解得:x1=10%,x2=1.9(不合题意,舍去);答:平均每次降价的百分率为10%.(2)方案一的房款是:4050×100×0.98+3600=400500(元);方案二的房款是:4050×100﹣1.5×100×12×2=401400(元)∵400500元<401400元.5、解:(1)设2014年购买药品的费用为x万元,根据题意得:30﹣x≤×30,解得:x≥10,则2014年最低投入10万元购买药品;(2)①设2014年社区购买药品的费用为y万元,则购买健身器材的费用为(30﹣y)万元,2015年购买健身器材的费用为(1+50%)(30﹣y)万元,购买药品的费用为(1﹣)y万元,根据题意得:(1+50%)(30﹣y)+(1﹣)y=30,解得:y=16,30﹣y=14,则2014年购买药品的总费用为16万元;②设这个相同的百分数为m,则2015年健身家庭的户数为200(1+m),2015年平均每户健身家庭的药品费用为(1﹣m)万元,依题意得:200(1+m)•(1﹣m)=(1+50%)×14×,解得:m=±,∵m>0,∴m==50%,∴200(1+m)=300(户),则2015年该社区健身家庭的户数为300户.6、(40﹣x)(20+2x)=1200 .7、请先填空后再列方程求解:设每件童装降价x 元,那么平均每天就可多售出2x 件,现在一天可售出20+2x 件,每件盈利40﹣x 元.解:设每件童装降价x元,则(40﹣x)(20+2x)=1200即:x2﹣30x+200=0解得:x1=10,x2=20∵要扩大销售量,减少库存∴舍去x1=10答:每件童装应降价20元.8、(1)100+200x (用含x的代数式表示);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元.9、解:(1)设每件衬衫应降价x元,根据题意得(40﹣x)(20+2x)=1200,整理得2x2﹣60x+400=0解得x1=20,x2=10.因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降20元.答:每件衬衫应降价20元.(2)设商场平均每天赢利y元,则y=(20+2x)(40﹣x)=﹣2x2+60x+800=﹣2(x2﹣30x﹣400)=﹣2[(x﹣15)2﹣625]=﹣2(x﹣15)2+1250.∴当x=15时,y取最大值,最大值为1250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.10、解:(1)销售单价(元)x销售量y(件)1000﹣10x销售玩具获得﹣10x2+1300x﹣30000利润w(元)(2)﹣10x2+1300x﹣30000=10000,解之得:x1=50 x2=80,答:玩具销售单价为50元或80元时,可获得10000元销售利润.11、解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.12、解:(1)设该公司生产销售每件商品的成本为z元,依题意得:150(1﹣12%)=(1+10%)z,解得:z=120,答:该公司生产销售每件商品的成本为120元;(2)由题意得(﹣2x+24)[150(1+x%)﹣120]=660,整理得:x2+8x﹣20=0,解得:x1=2,x2=﹣10,此时,商品定价为每件135元或153元,日销售利润为660元;(3)根据题意得:1≤a≤6.13、(2x+6)(2x+8)=80 .14、(80+2x)(50+2x)=5400 .15、解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.16、解:(1)如图1,∵四边形ABCD是矩形,∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.∵CQ=1cm,AP=2cm,∴AB=6﹣2=4cm.∴S==5cm2.答:四边形BCQP面积是5cm2;(2)如图1,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t.∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=9,解得:t=.如图2,作PE⊥CD于E,∴∠PEQ=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∴PE=BC=2cm,BP=CE=6﹣2t.∵CQ=t,∴QE=t﹣(6﹣2t)=3t﹣6在Rt△PEQ中,由勾股定理,得(3t﹣6)2+4=9,解得:t=.综上所述:t=或;(3)如图3,当PQ=DQ时,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t.∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.∵PQ=DQ,∴PQ=6﹣t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t=.如图4,当PD=PQ时,作PE⊥DQ于E,∴DE=QE=DQ,∠PED=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∴PE=BC=2cm.∵DQ=6﹣t,∴DE=.∴2t=,解得:t=;如图5,当PD=QD时,∵AP=2t,CQ=t,∴DQ=6﹣t,∴PD=6﹣t.在Rt△APD中,由勾股定理,得4+4t2=(6﹣t)2,解得t1=,t2=(舍去).综上所述:t=,,,.故答案为:,,,.17、解:(1)经过秒时,AP=cm,BQ=cm,∵△ABC是边长为3cm的等边三角形,∴AB=BC=3cm,∠B=60°,∴BP=3﹣=cm,∴△PBQ的面积=BP•BQ•sin∠B=×××=;(2)设经过t秒△PBQ是直角三角形,则AP=tcm,BQ=tcm,△ABC中,AB=BC=3cm,∠B=60°,∴BP=(3﹣t)cm,△PBQ中,BP=(3﹣t)cm,BQ=tcm,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,当∠BQP=90°时,BQ=BP,即t=(3﹣t),t=1(秒),当∠BPQ=90°时,BP=BQ,3﹣t=t,t=2(秒),答:当t=1秒或t=2秒时,△PBQ是直角三角形.(3)过P作PM⊥BC于M,△BPM中,sin∠B=,∴PM=PB•sin∠B=(3﹣t),∴S△PBQ=BQ•PM=•t•(3﹣t),∴y=S△ABC﹣S△PBQ=×32×﹣×t×(3﹣t)=t2﹣t+,∴y与t的关系式为y=t2﹣t+,假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的,则S四边形APQC=S△ABC,∴t2﹣t+=××32×,∴t2﹣3t+3=0,∵(﹣3)2﹣4×1×3<0,∴方程无解,∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的.18、解:(1)如果P、Q分别从A、B同时出发3秒,那么AP=3cm,BQ=6cm,则BP=3cm.四边形APQC的面积=△ABC的面积﹣△PBQ的面积=×6×8﹣×6×3=24﹣9=15(cm2).故答案为15cm2;(2)设经过x秒钟,S△PBQ=8cm2,BP=6﹣x,BQ=2x,∵∠B=90°,∴BP×BQ=8,∴×(6﹣x)×2x=8,∴x1=2,x2=4,答:如果点P、Q分别从A、B同时出发,经过2或4秒钟,S△PBQ=8cm2;(3)设经过y秒后,以P、Q、B三点为顶点的三角形与△ABC相似:①若△PBQ~△ABC,则有=,即=,解得:y=;②若△QBP~△ABC,则有=,即=,解得:y=.答:经过或秒后,以P、Q、B三点为顶点的三角形与△ABC相似.19、解:(1)由题意,得AP=6cm,BQ=12cm,∵△ABC是等边三角形,∴AB=BC=12cm,∴BP=12﹣6=6cm.(2)∵△ABC是等边三角形,∴AB=BC=12cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∴∠BPQ=30°,∴BP=2BQ.∵BP=12﹣x,BQ=2x,∴12﹣x=2×2x,解得x=,当∠QPB=90°时,∴∠PQB=30°,∴BQ=2PB,∴2x=2(12﹣x),解得x=6.答:6秒或秒时,△BPQ是直角三角形;(3)作QD⊥AB于D,∴∠QDB=90°,∴∠DQB=30°,∴DB=BQ=x,在Rt△DBQ中,由勾股定理,得DQ=x,∴=10,解得x1=10,x2=2,∵x=10时,2x>12,故舍去,∴x=2.答:经过2秒△BPQ的面积等于10cm2.;(4)∵△BPQ的面积==﹣x2+6x,∴当x==6时,△BPQ的面积最大,此时最大值为﹣×62+6×6=18.故答案为:6cm、12cm.20、x(x﹣1)=1640 .21、解:设个位数字为x,则十位数字为12﹣x,由题意得:x(12﹣x)=32;22、解:(1)设原时速为xkm/h,通车后里程为ykm,则有:,解得:,答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+m)=1600,解得:m1=20,m2=0(不合题意舍去),答:m的值为20.。
九年级上册数学教学计划湘教版(实用9篇)
九年级上册数学教学计划湘教版(实用9篇)九年级上册数学教学计划湘教版第1篇本学期,我担任九年级班主任工作,通过这两年的培养,大部分学生的行为习惯已经养成,学习热情较高。
但由于两级分化比较严重,仍有一部分学生纪律观念淡薄,自控能力差,学习成绩极不够理想。
作为一名班主任,我更应该努力去调动学生的学习积极性,时刻注意班级的情况,使本学期的班主任工作顺利、有序进行,特制定如下工作计划:一、培养良好的班风。
抓好班级一日常规,抓好自习课纪律,每节课都实施以班长为首的班干部轮流负责制,提高自习课堂效率。
利用班会等课余时间,对学生进行行为习惯的养成教育。
作为班主任,本人要做到早上早到班级、平时多去班级,及时纠正学生的不良习惯,逐步形成守纪、进取、勤奋的班风。
二、加强班级管理,培养提高班干部的管理能力。
首先,鼓励并要求大家严格遵守《中学生日常行为规范》、《班规》,重点从提高学生树立文明意识做起,从小事做起,建立更加良好的行为习惯和心理习惯。
要求学生力争做到不迟到、不早退、不旷课,积极参加学校组织的各项活动,为班争光。
养成良好的生活习惯,保持周围环境的整洁卫生,每天负责监督。
同时也保持个人的卫生和服饰整洁,班主任做到常督促,勤督促。
开学初,要及时召开班会,明确本学期的目标,要求学生树立强烈的责任感,要在学习及做人中都体现出积极性和先进性。
其次,严格要求班干部在知识、能力上取得更大进步,在纪律上以身作则,力求从各方面给全班起到模范带头作用;充分发挥班干部的作用,提高他们的管理组织能力。
每周定期召开班干部会议、使他们明确职责。
充分调动其工作积极性,鼓励他们协助班主任管理好班级。
三、做好个别学生的教育工作。
面向全体学生,分类施教。
加强对后进生的辅导,要从关心、爱护每个学生的角度出发,全面了解、关心学生。
及时了解学生的心理变化,掌握他们成长道路上的发展情况。
做好这些特殊学生的教育工作。
具体做法如下:1、在教育这样学生时,多结合其身上的优点,重新帮他们找回自信,逐渐引导他们形成一个好的习惯。
最新湘教版初中数学九年级上册5.1总体平均数与方差的估计1优质课教案
51 总体平均数与方差的估计1理解并掌握总体平均数与方差的概念2掌握总体平均数与方差的基本计算(重点,难点)一、情境导入要从两名田径运动员中选择一名代表我市参加省里的田径比赛为了使选拔公平,每位运动员都进行了多次测试,结果两名运动员的测试结果的平均数是相同的那么怎样确定派谁去参赛更好?二、合作探究探究点一:样本平均数估计总体平均数【类型一】利用样本平均数估算总体数量“立定跳远”是我市初中毕业生体育测试项目之一测试时,记录下学生立定跳远的成绩,然后按照评分标准转化为相应的分数,满分10分其中男生立定跳远的评分标准如下:(注:成绩栏里的每个范围,含最低值,不含最高值)某校九年级有480名男生参加立定跳远测试,现从中随机抽取10名男生测试成绩(单位:米)如下:196 238 256 204 234 217 260226 187 232请完成下列问题:(1)求这10名男生立定跳远成绩的平均数;(2)如果将9分以上定为“优秀”,请你估计这480名男生中得优秀的人数解析:(1)根据平均数的计算公式=错误!计算即可:(2)根据图表得出优秀的人数,再用优秀的人数除以抽查的总人数求出频率,最后乘以480,即可得出答案解:(1)根据题意得:=错误!(196+238+256+204+234+217+260+226+187+232)=225(米);(2)因为抽查的10名男生中得分(9分)(含9分)以上有6人,所以有480×错误!=288人;答:该校480名男生中得到优秀的人数是288人方法总结:此题考查了用样本估计总体和平均数,用到的知识点是平均数的计算公式=错误!,频率=频数÷总数,用样本估计整体数量,用总体容量×样本的百分比即可【类型二】利用样本平均数估算总体水平某农科所培育了两种玉米良种,在一样大小的甲、乙两块实验地里种植实验,一段时间后,从甲,乙两块实验地中各抽取10株,分别测得它们的株高如下(单位:c):甲:25,41,40,37,22,14,19,39,42,21;乙:27,16,44,27,44,16,40,40,16,40哪块实验地的玉米苗长得高一些?解析:对甲、乙两块实验地的玉米苗的平均株高进行比较后作出判断解:甲=错误!(25+41+40+37+22+14+19+39+42+21)=错误!×300=30(c),乙=错误!(27+16+44+27+44+16+40+40+16+40)=错误!×310=31(c),∵甲<乙,∴乙实验地里的玉米苗长得较高方法总结:本题考查学生对于样本平均数的理解和应用,用样本平均数去估计总体平均数,要注意所选取的样本应为简单随机样本探究点二:样本方差估计总体方差小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定根据图中信息,估计这两个人中新手是W解析:从图中可以看出小李的成绩波动较大,估计小李是新手,故填小李方法总结:此题考查学生对于样本方差概念的理解和解读图表的能力,要能够从图表提供的数据中发现规律方差反映了数据的稳定程度,其值越小,数据越稳定三、板书设计错误!错误!教学过程中,注重引导学生就生活实例展开联想,直观地感受数学与生活的紧密联系在自主探究和合作交流过程中,适时引入新知识并鼓励学生积极思考通过引导学生学习新的数学方法,开拓思维,进一步提升学生认知能力。
一。新湘教版本初中九年级上册的数学学习教学计划清单
合用标准文案新湘教版数学九年级上册授课计划塞波中学:陈静宜一、基本情况:本学期我担当塞波中学九年级1个班的数学授课工作,我深感教育授课的压力很大,在本学期的数学授课中务必精耕细作。
使用的教材是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在授课中贯彻新课标精神?这要求在授课过程中拥有创新意识、每一个授课环节都必定巧做安排。
为此,特拟定本计划。
二、指导思想:以党和国家的教育授课目的为指导,依照九年义务教育数学课程标准来推行,其目的是教书育人,使每个学生都能够在数学学习过程中获得最适合自己的发展。
经过九年级数学的授课,供应参加生产实践和进一步学习所必需的数学基础知识与基本技术,进一步培养学生的运算能力、思想能力和空间想象能力,能够运用所学知识解决实责问题,培养学生的数学创新意识、优异个性质量以及初步的唯物主义观。
三、授课内容:文档大全合用标准文案本学期所教初三数学包括第一章反比率函数,第二章一元二次方程,第三章图形的相似,第四章锐角三角函数,第五章用样本推断整体四、授课目的:教育学生掌握基础知识与基本技术,培养学生的逻辑思想能力、运算能力、空间见解和解决简单实责问题的能力,使学生渐渐学会正确、合理地进行运算,渐渐学会观察解析、综合、抽象、概括。
会用概括演绎、类比进行简单的推理。
培养学生应用数学知识解决问题的能力。
知识技术目标:理解并掌握反比率函数在生活中的意义。
掌握一元二次方程的相关见解;会解一元二次方程;能成立一元二次方程的模型解决实责问题;理解命题、定理、证明等见解;能正确写出证明;掌握锐角三角函数的性质;理解直角三角形的性质;能运用三角函数及勾股定理解直角三角形;掌握相似三角形的见解、性质及判断方法;掌握概率的计算方法;理解概率在生活中的应用。
过程方法目标:培养学生的观察、研究、推理、概括的能力 ,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提升知识综合应用能力。
态度感情目标:进一步感觉数学与平常生活密不能分的联系 ,同时对学生进行辩证唯物主义世界观教育。
湘教版语文9年级上册目录
湘教版语文9年级上册目录第一单元1、风筝(鲁迅)2、忆读书(冰心)3、山中避雨(丰子恺)口语交际--自我介绍与提问写作--记一件事写字--楷书与行楷第二单元5、回忆我的母亲(朱德)7、我的老师(海伦·凯勒)口语交际--采访任课老师写字--写一个人综合性学习--学会利用图书馆第三单元9、春(朱自清)11、竹林深处人家(黄蒙田)口语交际--说家乡写作--描写景物综合性学习--调查社会用字的情况第四单元13、空城计(罗贯中)4、我的第一次文学尝试(马克·吐温)6、小巷深处(林莉)8、"两弹"元勋邓稼先(顾迈南)10、济南的冬天(老舍)12、树林和草原(屠格涅夫)14、美猴王(吴承恩)15、心声(黄蓓佳)16、勇气(狄斯尼)口语交际--说特征,猜同学写作--写童年的故事写字--行楷字的笔画组合第五单元17、犟龟(米切尔·恩德)18、小溪流的歌(严文井)19、基因畅想(漆孝诗)20、如果人类也有尾巴(坎斯·彼勒)口语交际--讲故事,评故事写作--编写童话或科幻故事综合性学习--现代科技给我们带来了什么?第六单元21、《论语》六则原书第4则替换为:子曰:“知之者不如好知者,好之者不如乐之者”原书第5则删除,第6则改为第5则。
新增第六则:“子曰:吾十有五……不逾矩”(最新替换)22、《世说新语》二则(刘义庆)期行乘船23、伤仲永(王安石)24、木兰诗25、诗五首寄人(张泌)删除杂诗(王维)夜雨寄北(李商隐)淮上与友人别(郑谷)送杜少府之任蜀州(王勃)酬乐天扬州初逢席上见赠(刘禹锡)口语交际--交谈学习体会写作--改写《木兰诗》第七单元26、卖油翁(欧阳修)27、三峡(郦道元)28、古文二则蔡勉旃坚还亡友财(徐珂)戴震难师(段玉裁)29、陌上桑30、诗五首闻王昌龄左迁龙标遥有此寄(李白)登飞来峰(王安石)题破山寺后禅院(常建)(删除《江南春》(杜牧))望岳(杜甫)观沧海(曹操)口语交际--古诗文朗诵写作一我将这样度过寒假附录一:名著引读(一):《西游记》《哈里·波特与魔法石》《童年》附录二:汉字的形体附录三:常用标点符号用法附录四:应用文示例留言条请假条借条收条。
最新湘教版九年级数学上册《锐角三角函数》全章教学设计(精品教案).docx
第四章锐角三角函数第一课时(总第52课时)课题:锐角三角函数(1)教学目标:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
能根据正弦概念正确进行计算2、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
3、通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课操场里有一个旗杆,老师让小明去测量旗杆高度。
(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
你想知道小明怎样算出的吗? 二、探索新知、分类应用问题一、为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。
现测得斜坡与水平面所成角的度数是30o ,为使出水口的高度为35m ,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC 中,∠C=90o ,∠A=30o ,BC=35m,求AB根据“再直角三角形中,30o 角所对的边等于斜边的一半”,即可得AB=2BC=70m.即需要准备70m 长的水管结论:在一个直角三角形中,如果一个锐角等于30o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于21 问题二、如图,任意画一个Rt △ABC ,使∠C=90o ,∠A=45o ,计算∠A 的对边与斜边的比ABBC,能得到什么结论?3411?(学生思考)结论:在一个直角三角形中,如果一个锐角等于45o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于22。
(湘教版)九年级上册数学全册教案【精选】
第1章反比例函数1.1 反比例函数教学目标【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.教学过程一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:(3)随着时间t的变化,平均速度v发生了怎样的变化?(4)平均速度v 是所用时间t 的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点? 【归纳结论】一般地,如果两个变量x,y 之间可以表示成y=kx(k 为常数且k ≠0)的形式,那么称y 是x 的反比例函数.其中x 是自变量,常数k 称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t ,其中自变量t 可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t 代表的是时间,且时间不能为负数,所有t 的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动. 三、运用新知,深化理解 1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm 2,它的一边是acm ,这边上的高是hcm ,则a 与h 的函数关系;(2)压强p 一定时,压力F 与受力面积S 的关系;(3)功是常数W 时,力F 与物体在力的方向上通过的距离s 的函数关系.(4)某乡粮食总产量为m 吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x 的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=kx(k是常数,k ≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h ,是反比例函数; (2)F =pS ,是正比例函数; (3)F=W/s ,是反比例函数; (4)y=m/x ,是反比例函数. 3.当m 为何值时,函数y=224m x-是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m 的值.解:由反比例函数的定义可知:2m -2=1,m=3/2.所以反比例函数的解析式为y=4x.4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3(1)求p与V的函数关系式,并指出自变量的取值范围.(2)求V=9m3时,二氧化碳的密度.解:略5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=22kx,而y=y1+y2,所以y=k1x+22kx,当x=2与x=3时,y的值都等于19.【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.1”中第1、3、5题.教学反思学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.1.2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6x的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.思考:(1)观察上图,y 轴右边的各点,当横坐标x 逐渐增大时,纵坐标y 如何变化?y 轴左边的各点是否也有相同的规律?(2)这两条曲线会与x 轴、y 轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=3x的图形,并思考下列问题: (1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y 随自变量x 的变化是如何变化的? 【归纳结论】一般地,当k>0时,反比例函数y=kx的图象由分别在第一、三象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而减小.探究3:反比例函数y=-6x的图象.可以引导学生采用多种方式进行自主探索活动: (1)可以用画反比例函数y=-6x的图象的方式与步骤进行自主探索其图象; (2)可以通过探索函数y=6x 与y=-6x 之间的关系,画出y=-6x的图象. 【归纳结论】一般地,当k<0时,反比例函数y=kx的图象由分别在第二、四象限内的两支曲线组成,它们与x 轴、y 轴都不相交,在每个象限内,函数值y 随自变量x 的增大而增大.探究4:反比例函数的性质反比例函数y=-6x 与y=6x的图象有什么共同特征? 【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.【归纳结论】反比例函数y=kx(k ≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=k x 与y=-kx(k ≠0)的图象关于x 轴或y 轴对称.【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解 1.教材P9例1.2.如果函数y =2x k +1的图象是双曲线,那么k = . 【答案】 -23.如果反比例函数y=3k x-的图象位于第二、四象限内,那么满足条件的正整数k 的值是 .【答案】 1,24.已知直线y =kx +b 的图象经过第一、二、四象限,则函数y=kbx的图象在第象限. 【答案】 二、四 5.反比例函数y=1x的图象大致是图中的( ).解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限. 【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】 C7.已知函数23()2m y m x --为反比例函数.(1)求m 的值;(2)它的图象在第几象限内?在各象限内,y 随x 的增大如何变化? (3)当-3≤x ≤-12时,求此函数的最大值和最小值.8.作出反比例函数y=12x的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围. 解:列表:由图知: (1)y =3; (2)x =-6; (3)0<x <69.作出反比例函数y=-4x的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围. 解:列表:由图知: (1)y =-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.第2课时反比例函数的图象与性质(2)教学目标【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.教学过程一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=kx的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=kx的图象,根据图象,回答下列问题:(1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y 1),B(-2,y 2)是该函数图象上的两点且-3<0,-2<0.所以点A 、B 都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y 1>y 2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法. 三、运用新知,深化理解1.若点A(7,y 1),B(5,y 2)在双曲线y=-3x上,则y 1、y 2中较小的是 . 【答案】 y 22.已知点A(x 1,y 1),B(x 2,y 2)是反比例函数y=kx(k >0)的图象上的两点,若x 1<0<x 2,则有( ).A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.y 2<y 1<0 【答案】 A3.若A(a 1,b 1),B(a 2,b 2)是反比例函数图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( )A.b 1<b 2B.b 1=b 2C.b 1>b 2D.大小不确定 【答案】 D 4.函数y=-1x的图象上有两点A(x 1,y 1),B(x 2,y 2),若0<x 1<x 2,则( ) A.y 1<y 2 B.y 1>y 2 C.y 1=y 2 D.y 1、y 2的大小不确定 【答案】 A5.已知点P(2,2)在反比例函数y=kx(k ≠0)的图象上,(1)当x=-3时,求y 的值;(2)当1<x <3时,求y 的取值范围.6.已知y=kx(k ≠0,k 为常数)过三个点A(2,-8),B(4,b),C(a ,2).(1)求反比例函数的表达式; (2)求a 与b 的值. 解:(1)将A (2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16x; (2)将B (4,b )代入反比例解析式得:b=-4;将C (a ,2)代入反比例解析式得:2=-16a,即a=-8.7.已知反比例函数的图象过点(1,-2). (1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A 关于两坐标轴和原点的对称点是否还在图象上? 分析:(1)反比例函数的图象过点(1,-2),即当x =1时,y =-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A 在反比例函数的图象上,易求出m 的值,再验证点A 关于两坐标轴和原点的对称点是否在图象上.解:(1)设:反比例函数的解析式为:y=kx(k ≠0).而反比例函数的图象过点(1,-2),即当x =1时,y =-2.所以-2=1k ,k =-2.即反比例函数的解析式为:y=-2x.(2)点A(-5,m)在反比例函数y=-2x 图象上,所以m=25-- =25 ,点A 的坐标为(-5,25).点A 关于x 轴的对称点(-5,-25)不在这个图象上;点A 关于y 轴的对称点(5, 25)不在这个图象上;点A 关于原点的对称点(5,-25)在这个图象上; 【教学说明】通过练习,巩固本节课数学内容. 四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第7题.教学反思教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.第3课时反比例函数的图象与性质(3)教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P(-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k1x,y= 2kx,其中,k1,k2是常数,且均不为0.由于这两个函数的图象交于P(-3,4),则P(-3,4)是这两个函数图象上的点,即点P的坐标分别满足这两个表达式.因此,4=k1×(-3),4=23k-解得,k1=43- k2=-12所以,正比例函数解析式为y=43-x,反比例函数解析式为y=-12x.函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函数y=6x的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1= ;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S2= ;S1与S2有什么关系?为什么?【归纳结论】反比例函数y=kx(k≠0)中比例系数k的几何意义:过双曲线y=kx(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A是反比例函数y=kx的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是( )A.3B.-3C.6D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k|. 解:根据题意可知:S △AOB =12|k|=3,又反比例函数的图象位于第一象限,k >0,则k =6.【答案】 C 2.反比例函数y=6x 与y=2x在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )A. 12B.2C.3D.1分析:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,再根据反比例函数系数k 的几何意义分别求出四边形OEAC 、△AOE 、△BOC 的面积,进而可得出结论.解:分别过A 、B 作x 轴的垂线,垂足分别为D 、E ,过B 作BC ⊥y 轴,点C 为垂足,∵由反比例函数系数k 的几何意义可知,S 四边形OEAC =6,S △AOE =3, S △BOC =1,∴S △AOB =S 四边形OEAC -S △AOE -S △BOC =6-3-1=2.【答案】 B3.已知直线y =x +b 经过点A(3,0),并与双曲线y=kx的交点为B(-2,m)和C ,求k 、b 的值.解:点A(3,0)在直线y =x +b 上,所以0=3+b ,b =-3.一次函数的解析式为:y =x -3.又因为点B(-2,m)也在直线y =x -3上,所以m =-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=kx上,所以k =-2×(-5)=10. 4.已知反比例函数y=1k x的图象与一次函数y =k 2x -1的图象交于A(2,1). (1)分别求出这两个函数的解析式;(2)试判断A 点关于坐标原点的对称点与两个函数图象的关系.分析:(1)因为点A 在反比例函数和一次函数的图象上,把A 点的坐标代入这两个解析式即可求出k 1、k 2的值.(2)把点A 关于坐标原点的对称点A ′坐标代入一次函数和反比例函数解析式中,可知A ′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2. 1=2k 2-1,k 2=1.所以反比例函数的解析式为:y=2x;一次函数解析式为:y =x -1. (2)点A(2,1)关于坐标原点的对称点是A ′(-2,-1).把A ′点的横坐标代入反比例函数解析式得,y=22=-1,所以点A 在反比例函数图象上.把A ′点的横坐标代入一次函数解析式得,y =-2-1=-3,所以点A ′不在一次函数图象上.5.已知一次函数y =kx +b 的图象经过点A(0,1)和点B(a,-3a),a <0,且点B 在反比例函数的y=-3x的图象上.(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由 (1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和 (4)都是利用函数的图象进行解题.一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y 的值在-1≤y ≤3范围内时,相应的x 的值为:-1≤x ≤1.(4)从图象可知,y 随x 的增大而减小,又m +1>m ,所以y 1>y 2.或解:当x 1=m 时,y 1=-2m +1;当x 2=m +1时,y 2=-2×(m +1)+1=-2m -1所以y 1-y 2=(-2m +1)-(-2m -1)=2>0,即y 1>y2.6.如图,一次函数y =kx +b 的图象与反比例函数y=mx的图象交于A 、B 两点. (1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x 的取值范围.分析:(1)把A 、B 两点坐标代入两解析式,即可求得一次函数和反比例函数解析式. (2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.1.3反比例函数的应用教学目标【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.教学过程一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=FS,请你判断:当F一定时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:(3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=FS,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.(2)因为F=450N,所以当S=0.005m2时,由p=FS得:p=450/0.005=90000(Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y 与x的函数关系式是,自变量x的取值范围是.【答案】y=12x;x>03.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数关系是 (不考虑x的取值范围).【答案】y=90 x4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( )【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是( )A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是( ).A.y=3000xB.y=6000xC.y=3000xD.y=6000x【答案】D7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( )【答案】A8.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.。
新湘教版九年级数学上册课件:余弦
用计算器求锐角的余弦值,要用到 cos 键:
例如:求cos16°,cos42°的值.
cos16° cos cos42° cos
按键的顺序
1
6
=
4
2
=
显示结果 0.961 261 695 0.743 144 825
由于计算器的型号与功能的不同,按相应的说明书使用.
1.用计算器求锐角的正弦值和余弦值(精确到0.0001):
的余弦, 记作 cos,
cos
角的邻边
斜边
.
根据上述证明过程看出:对于任意锐角α,有
cos=sin 90- ,
sin=cos90 .
例
题
求 cos30 ,cos 60 ,cos 45 的值.
cos30 sin 90 30 sin 60 3 ,
2
cos 60 sin 90 60 sin 30 1 ,
2
cos 45 sin 90 45 sin 45 2 .
2
1.在Rt △ABC 中, ∠C= 90º, AC=5,
练习
AB=7.求 cos A ,cos B 的值. B
答案: cos A 5 , cos B 2 6 .
操作(1) cos 50 0.6428 (2) cos 70 0.3420
(3) cos15 0.9659
如何用计算器求 sin1036, cos 7523 呢?
由于1si°n=6100′,因3660此 10,36就 得1到0 它3660的值 ,.从而用计算器去求
2
45
cos2
45
1 2
2 2
2
九年级上册语文湘教版知识点
九年级上册语文湘教版知识点九年级上册语文湘教版知识点【1.沁园春雪】1.给加点的字注或根据注音写汉字素裹(guǒ)折腰(yāo)谦逊(xùn)风骚(sāo)红zhuāng素裹(装)顿失tāotāo(滔滔)江山多jiāo(娇)一代天jiāo(骄)2.根据意思写词语①莽莽:无边无际。
②顿失滔滔:(黄河)立刻失去了波涛滚滚的气势。
描写黄河水结冰的景象。
③山舞银蛇,原驰蜡象:群山好像(一条条)银蛇在舞动。
高原(上的丘陵)好像(许多)白象在奔跑。
“原”指高原,即_原。
蜡象,白色的象。
④红装素裹:形容雪后天晴,红日和白雪交相辉映的壮丽景色。
红装,原指妇女的艳装,这里指红日为大地披上了红装。
素裹,原指妇女的淡装,这里指皑皑白雪覆盖着大地。
⑤分外妖娆:格外婀娜多姿。
3.文学常识_字润之,湖南湘潭韶山人,伟大的无产阶级革命家、军事家、政治家、诗人。
代表作有《论持久战》《_股》《论人民民主专政》《反对自由主义》《沁园春-雪》《卜算子-咏梅》《沁园春-长沙》。
“沁园春”是词牌名,“雪”是题目,内容跟“沁园春”没有关系【2雨说】1.给加点的字注或根据注音写汉字禁锢(gù)留滞(zhì)喑哑(yīn)喧嚷(xuān)温声细语(wēn)洗礼(xǐlǐ)田pǔ(圃)suō衣(蓑)qiǎngbǎo(襁褓)街qú(衢)润如油g āo(膏)2.根据意思写词语①田圃:田地和园圃.②喧嚷:喧哗,大声吵闹.③洗礼:_接受入教者举行的一种宗教仪式.④襁褓:包裹婴儿的布或被.⑤温声细语:用温和的声音轻轻地说话.⑥润如油膏:形容土地肥沃;细腻光滑得像油,像脂肪涂抹的一般。
3.文学常识郑愁予,1933年生于山东济南,原名郑文韬,原籍河北,中国台湾当代诗人。
其成名作《错误》被誉为“现代抒情诗的绝唱”。
有诗集《梦土上》、《衣钵》、《寂寞的人坐着看花》等。
【3.星星变奏曲】1.给加点的字注或根据注音写汉字颤动(chàn)凝望(níng)安慰(wèi)柔软(róu)疲倦(pí)覆盖(fù)闪shuò(烁)朦lóng(胧)jì寞(寂)冻jiāng(僵)苦nàn(难)2.根据意思写词语①凝望:目光凝聚在某个物体上。
湘教版九年级上册数学教学进度表(共8篇)
湘教版九年级上册数学教学进度表(共8篇)第一篇:引言本教学进度表针对湘教版九年级上册数学课程,旨在为学生提供一个清晰的研究路线图,确保教学内容得到有效覆盖,并帮助学生掌握数学知识与技能。
第二篇:教学目标知识与技能1. 掌握有理数的乘方;2. 理解实数的性质;3. 熟练运用一次函数和二次函数解决实际问题;4. 理解锐角三角函数的概念;5. 掌握解一元一次方程和一元二次方程;6. 理解概率的基本概念;7. 掌握几何图形的性质和计算;8. 熟练运用数学知识解决生活中的问题。
过程与方法1. 培养学生的逻辑思维能力;2. 提高学生的问题解决能力;3. 培养学生的团队合作能力;4. 培养学生的创新思维能力。
第三篇:教学内容第一单元:有理数的乘方1. 有理数的乘方概念;2. 有理数的乘方运算;3. 有理数的乘方在实际问题中的应用。
第二单元:实数的性质1. 实数的概念;2. 实数的性质;3. 实数在实际问题中的应用。
第三单元:一次函数和二次函数1. 一次函数的概念和性质;2. 二次函数的概念和性质;3. 一次函数和二次函数在实际问题中的应用。
第四单元:锐角三角函数1. 锐角三角函数的概念;2. 锐角三角函数的性质;3. 锐角三角函数在实际问题中的应用。
第五单元:解一元一次方程和一元二次方程1. 一元一次方程的解法;2. 一元二次方程的解法;3. 方程在实际问题中的应用。
第六单元:概率1. 概率的基本概念;2. 概率的计算;3. 概率在实际问题中的应用。
第七单元:几何图形1. 几何图形的性质;2. 几何图形的计算;3. 几何图形在实际问题中的应用。
第八单元:数学与生活1. 数学在日常生活中的应用;2. 数学在科学和技术中的应用;3. 数学在其他领域的应用。
第四篇:教学安排第一单元:有理数的乘方- 课时:2课时- 教学方法:讲解、练第二单元:实数的性质- 课时:3课时- 教学方法:讲解、讨论第三单元:一次函数和二次函数- 课时:4课时- 教学方法:讲解、实验第四单元:锐角三角函数- 课时:2课时- 教学方法:讲解、练第五单元:解一元一次方程和一元二次方程- 课时:3课时- 教学方法:讲解、练第六单元:概率- 课时:2课时- 教学方法:讲解、实验第七单元:几何图形- 课时:4课时- 教学方法:讲解、练第八单元:数学与生活- 课时:2课时- 教学方法:讲解、讨论第五篇:教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的研究状态。
湖南湘教版九年级上册语文目录
湖南湘教版九年级上册语文目录第一单元
任务一自主欣赏
1 沁园春·雪
2 我爱这土地
3 乡愁(余光中)
4 你是人间的四月天
5 我看
任务二自由朗诵
任务三尝试创作
名著导读(一)《艾青诗选》:如何读诗
第二单元
6 敬业与乐业
7 就英法联军远征中国致巴特勒上尉的信
8* 论教养
9* 精神的三间小屋
写作观点要明确
综合性学习君子自强不息
第三单元
10 岳阳楼记
11 醉翁亭记
12* 湖心亭看雪
13 诗词三首
行路难(其一)/酬乐天扬州初逢席上见赠/水调歌头
写作议论要言之有据
课外古诗词诵读(一)
商山早行/月夜忆舍弟/长沙过贾谊宅/左迁至蓝关示侄孙湘
第四单元
14 故乡
15 我的叔叔于勒
16* 孤独之旅
写作学习缩写
综合性学习走进小说天地
第五单元
17 中国人失掉自信力了吗
18 怀疑与学问
19 谈创造性思维
20* 创造宣言
写作论证要合理
口语交际讨论
第六单元
21 智取生辰纲
22 范进中举
23* 三顾茅庐
24* 刘姥姥进大观园
写作学习改写
名著导读(二)《水浒传》:古典小说的阅读
课外古诗词诵读(二)
丑奴儿·书博山道中壁/行香子/无题/咸阳城东楼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新湘教版9年级上Unit 4 Topic 2 试题Topic 2 The spaceship is so magical!Ⅰ. 单项选择。
()1. A number of foreigners to China for a visit.A. has comeB. have comeC. comesD. coming()2. My watch is made Shanghai and is not.A. of; herB. from; hersC. in; sheD. in; hers()3. This room a reading room in our school.A. is used asB. is used forC. is used byD. used for()4. Look! This bamboo chair Li Lei. It looks cool.A. is made ofB. is made fromC. is made inD. is made by()5. Mr. Smith is the man who this new kind of machine.A. inventB. inventedC. is inventedD. is inventing()6. Grandma was ill. That was why she upstairs last night.A. was helpedB. was helpingC. helpedD. has helped()7. He often makes his sister , but this time he was made by his sister.A. laugh; to laughB. laugh; laughC. laugh; laughingD. to laugh; to laugh()8 . English is very useful for us with foreigners.A. communicateB. communicatesC. to mommunicateD. communicating()9. Lily prefers computer games reading novels.A. playing; toB. to play; toC. playing; thanD. to play; than()10. My watch has stopped. It seems that I’ll go and this afternoon.A. have repaired itB. to repairC. have it repairedD. have it repair()11. About 1,000 buses in this factory next year.A. will be producedB. will produceC. have producedD. have been produced()12. Students eat, drink or smoke in the computer room.A. aren’t allowedB. aren’t allowed toC. didn’t allowedD. didn’t allowed to()13. If everyone makes contributions our environment, our world will become more and more beautiful.A. protectB. protectingC. to protectD. to protecting()14. Nobody can answer such difficult questions, Wang Ming.A. exceptB. amongC. butD. and()15. She not only taught us English, but also taught us history.A. tooB. eitherC. alsoD. as wellⅡ. 词汇。
A. 根据句意及单词首字母完成句子1. The building is so tall that we have to take a l up and down everyday.2.—What’s the ruler made of?—It’s made of s . It’s used for measuring things.3.—Can I use your pen? Mine has no i .—Here you are!4. I can’t hear you clearly. Will you please r it?5. Students should use the computers and Internet properly or they willi their studies and health a lot.he cried, but began to laugh.2. , he has been to the Great Wall twice.3. We all know salt sea water.4. Computers students for sending and receiving the message.5. Don’t be late for the meeting, , you must come to the meeting ontime.Ⅲ. 根据汉语意思提示完成句子。
1. 据说,中国将在2008年发射神州Ⅶ飞船。
China will send up Shenzhou Ⅶmanned spaceship in 2008.2. 爱迪生作为一名伟大的发明家被全世界人民所熟知。
Thomas Edison a great inventor by thepeople all over the world.3. 科学家警告道,我们要充分利用各种资源,因为他们正变得越来越匮乏。
Scientists warn that we shouldall kinds of resources, because they are getting less and less.4. 全世界人民都对中国经济的发展速度感到惊奇。
The people around the world thedevelopment speed of China’s economy.5. 只要你有信心,就一定能取得成功。
You must make great success you haveconfidence.Ⅳ. 情景交际。
选择适当的句子补全对话。
A: 1B: Mir? Who’s she?A: No. Mir isn’t a person. It’s the name of a space station.B: A space station? Is it the Russian space station? 2 What does “Mir”mean?A: It means “peace” in Russian. Mir came down to the earth last month. As it came lower(太平洋)two weeks ago.B: 3 I hope no one was inside when it crashed.A: No. It was empty. The Russians decided to bring it down.B: Why?A: 4 It was up in space for 15 years. They don’t need Mir any more.B: I would really like to go into space! 5A: Yes, me too. Maybe one day we will be able to take holidays and meetⅤ. 任务型阅读。
The car was invented just a century ago. You may know all kinds of car s’names, but many people don’t know who was the inventor of the first car. The first car was invented not by a German, but an American. His name was Henry Ford.Henry was born in a poor family. He was the eldest of six children. When he was a boy, he was interested in fixing watches and machines. When he was twelve years old, his mother died. Soon he had to work in a machine shop for two dollars and fifty cents a week. In the evening he repaired watches for another dollar a week. The hard life made him strong and able.At that time there was another interest in the life of the young Ford. He drea- med to make a machine. It could run without horse. So named “horseless carriage”. He overcame(克服)a lot of difficulties and in April 1893, the “horseless carriage” was finally finished. It was the first car.Later Henry Ford founded the Ford Moto Company(福特汽车公司). He was really the first inventor of the car in the world.根据短文内容,回答下列问题。