proe制作轮胎模型

合集下载

基于ProE EMX的滑轮制品注塑模具设计

基于ProE EMX的滑轮制品注塑模具设计

基于Pro/E EMX的滑轮制品注塑模具设计EMX(Expert Moldbase Extension)是Pro/E中一套功能强大的三维模架设计插件,用于设计和细化注塑模模架。

结合Pro/Moldesdign模块,注塑模成型零件设计完成后,可以建立与之相配套的标准模架及设备、导向件、定位环、浇口衬套、螺钉、顶杆、定位销及支柱等辅助零件,完成模具装配,并可进一步进行开模仿真及干涉检查,最后自动生成2D工程图及物料清单表(BOM )。

Pro/Engineer EMX具备以下特点:(1)通过2D特定图形用户界面,快速实时预览、添加、修改模架部件;自动完成诸如余隙切口、螺纹孔、组件安装、顶杆修饰等工作;(2)内建大量模架库,支持多个模架组件供应商信息,可以从模架和组件供应商中预先定制组件和部件;(3)智能模具组件及组装;(4)可自动生成模具及各模板的2D工程图,自动创建BOM表。

(5)可进行干涉检查及开模仿真。

自动检验整个模具的开启顺序,其中包括滑块、提钩和顶杆等的动作。

图1 滑轮模型1、塑件工艺性分析滑轮塑件的实体模型如图1所示,其总体尺寸为:直径98mm,总高度26mm,两边各有4个加强筋,结构呈对称分布,塑件壁厚3mm.该塑件要求外观质量好,有一定的强度和刚度。

材料为聚酰胺66(PA66 ),耐磨性好、强度高、易成型,大批量生产。

在模具设计前必须对塑件进行工艺性分析,包括质量属性、厚度检测和拔模斜度检测等,计算制品的质量和体积,检查制品结构中是否存在倒勾、壁厚严重不匀及拔模斜度不合理等现象。

使用"分析(Analysis )→模型(Model) →质量属性(Mass Properties)"命令,输入制件材料密度1. lg/cm3,系统自动完成滑轮模型质量属性的计算,结果为:体积=44681.17mm3,曲面面积=31558.8 mm2,质量=49.15g。

同样,用此法可以计算出带浇注系统的开模件的质量属性并与所选注射机注射量进行匹配,以提高注塑工艺的可靠性。

轮胎数模绘制方法

轮胎数模绘制方法

轮胎数模绘制方法(最新版4篇)目录(篇1)I.轮胎数模绘制方法的概念和意义II.轮胎数模绘制方法的分类和特点III.轮胎数模绘制方法的应用和案例分析IV.总结正文(篇1)一、概念和意义轮胎数模绘制方法是利用计算机软件进行轮胎模型设计和绘制的技能。

其意义在于提高设计效率和准确性,减少人工错误,并且可以方便地进行各种分析和优化。

二、分类和特点1.基于曲线和曲面的绘制方法:利用曲线和曲面对轮胎进行建模,具有简单易用、可调整性强等特点。

2.基于网格的绘制方法:通过构建网格对轮胎进行建模,适用于复杂的轮胎形状,但需要更多的计算资源。

3.基于离散点的绘制方法:通过对离散点进行采样和拟合,实现对轮胎的建模,适用于低精度的应用场景。

三、应用和案例分析1.汽车设计:利用轮胎数模绘制方法可以快速准确地设计出符合要求的轮胎,提高设计效率。

2.轮胎优化:通过对轮胎数模进行优化,可以提高轮胎的性能和寿命。

3.动力学分析:利用轮胎数模绘制方法可以进行车辆动力学分析,为车辆设计和优化提供依据。

四、总结轮胎数模绘制方法是一种重要的计算机辅助设计技术,具有广泛的应用前景。

目录(篇2)I.轮胎数模绘制方法的概念II.轮胎数模绘制方法的应用场景III.轮胎数模绘制方法的实现步骤IV.轮胎数模绘制方法的优缺点正文(篇2)轮胎数模绘制方法是一种利用计算机软件进行轮胎设计的方法。

它通过数字模型来模拟轮胎的结构和性能,以便设计师可以更好地了解轮胎的设计效果并进行调整。

以下是对轮胎数模绘制方法的详细介绍。

一、概念轮胎数模绘制方法是一种基于计算机辅助设计的技术,用于创建和修改轮胎的数字模型。

这些模型可以通过计算机软件进行仿真和分析,以便设计师更好地理解轮胎的设计和性能。

二、应用场景轮胎数模绘制方法广泛应用于汽车、自行车、摩托车和卡车等车辆的轮胎设计中。

设计师可以利用该方法进行参数化设计,快速生成各种不同设计的轮胎模型,并对其进行仿真和分析,以优化设计。

ProE的汽车轮胎设计

ProE的汽车轮胎设计

Pro/E的汽车轮胎设计1绪论1.1 塑料成型模具在加工工业中的地位Pro/ENGINEER是美国PTC公司开发的大型CAD/CAM/CAE集成软件,简称为Pro/E,是目前非常流行的具有单一数据库、参数化、基于特征的三维实体造型软件系统。

汽车轮胎上的花纹不单是美观之用,比如南方雨水多的城市,应选排水性较好的花纹轮胎,有规则的小块状的花纹;经常越野和跑长途的,则可以选择大块状的花纹。

塑料材料影响着塑料汽车轮胎制品的质量。

首先,汽车轮胎型腔的形状、尺寸、表面光洁度、分型面、进浇口和排气槽位置以及脱模方式等对制件的尺寸和形状精度以及制件的物理性能、机械性能、电性能、内应力大小、各向同性、外观质量、表面光洁度、气泡、凹痕、烧焦、银纹等都有十分重要的影响。

其次,汽车轮胎上的花纹不单是美观之用,比如南方雨水多的城市,应选排水性较好的花纹轮胎,有规则的小块状的花纹;经常越野和跑长途的,则可以选择大块状的花纹。

车轮胎的重要性就不再讲了,但是汽车轮胎却是汽车比较薄弱的部位,广州汽车团购提醒车主们汽车的四只车轮,包括备用轮胎,一定要每月定期检查。

汽车轮胎检查时要同时观察轮胎表面是否有裂痕或划伤。

在全自动生产时还要保证制品能自动从模具上脱落。

另外,汽车轮胎对塑料制品的成本也有相当的影响。

除简易汽车轮胎外,一般来说制模费是十分昂贵的,一副优良的注射模具可生产制品百万件以上,压制模约能生产二十五万件。

当批量不大的时候,塑料费用在制件成本中所占比例将会很大,这时应尽可能地采用结构合理而简单的汽车轮胎,以降低成本。

现代塑料制品中合理的加工工艺、高效的设备、先进的Pro/E软件是必不可少的三项重要因素,尤其是塑料材料对实现塑料加工工艺要求,塑料制件使用要求和造型设计起着重要作用。

本文分别讲述了汽车车轮和汽车车轮的制造工艺,其中铝合金车轮的制造工艺有铸造、锻造以及前沿的旋压-流动复合成形工艺和辗压-旋压复合成形工艺,钢制车轮的制造工艺有轮辋辊压技术、轮辐冲压技术以及前沿的辊压整体成形技术,分析了各个工艺的优缺点及代表性的生产厂家,阐述了前沿的车轮制造工艺和整个车轮行业的发展趋势。

Marc模拟汽车轮胎的建模技巧

Marc模拟汽车轮胎的建模技巧

为方便具有轮胎非线性分析需求的用户熟悉Marc(Marc Mentat)中轮胎建模的方法和流程,针对某汽车轮胎的装配、充气、在路面承受后轮胎的变形和应力分析进行描述。

一、使用Marc Mentat建立轮胎二维轴对称模型模拟装配到轮辋和充气过程首先根据轮胎的结构和尺寸参数在Mentat中建立下图所示的有限元模型(195/65R15汽车轮胎),用户可以使用Marc Mentat直接创建轮胎截面的几何模型和有限元模型,也可以利用Mentat提供的接口,将其他CAD或CAE软件创建的模型导入到Mentat中进行后续材料参数、边界条件、分析参数等的定义。

Mentat提供了多种商用的CAD和CAE软件的接口,具体可以参考Marc用户手册的介绍。

本例出示的轮胎模型包括橡胶胎面、带束层、胎冠(tread、base、rubber)以及布帘等加强结构(bead、rebar1、rebar2)。

如下图所示:轮胎截面有限元模型(二维轴对称)橡胶材料部分可以采用Marc提供的Mooney模型定义,根据实际材料特性输入相应的材料参数即可。

Marc Mentat提供了多种模拟橡胶材料的本构模型和实验曲线拟合工具,用户可以根据供应商提供的或实测的该橡胶材料的实验曲线(应力-应变曲线)选择合适的超弹性材料模型进行拟合,并由Mentat自动计算和应用材料参数到模型中。

具体步骤可参考Marc用户手册或基础培训教程中的相关介绍。

详细内容可参考mar103教程中的介绍.轮胎各部分材料类型分布对于加强材料,这里包括了两类,一类是金属圈bead结构,直接采用各向同性材料本构模型,输入相应的结构材料参数,例如弹性模量、泊松比等即可。

另一类加强筋材料采用嵌入式模型(本例中加强筋单元嵌入到rubber基体材料中),用于模拟轮胎橡胶材料中嵌入的布帘和加强筋结构,这些结构可以指定为Marc中的rebar单元来模拟。

Marc支持一种基体材料中同时嵌入多层和多种加强筋材料的定义,这些加强筋结构可以分层分布在基体材料不同的厚度处、加强筋的铺设方向、截面积以及数量等均可以根据实际结构定义。

Proe弧面分度凸轮建模实例(附详细程序)

Proe弧面分度凸轮建模实例(附详细程序)

弧面分度凸轮三维建模已知设计条件:凸轮转速n=300r/min,连续旋转,从动转盘有8 工位,中心距C=180mm,载荷中等。

选择改进正弦运动规律为所设计弧面分度凸轮机构的运动规律。

参数如下:项目实例计算凸轮角速度ω1=πX 300=101T/s凸轮分度期转角β1=120°=2/3π凸轮停歇期转角θd=360°-120°=4/3π凸轮角位移θ凸轮和转盘的分度期时间∥s 0=(2"rr/3)/10-rr=1/15s凸轮和转盘停歇时间幻/s td=(2ar/10"rr)一1/15=2/15s凸轮分度廓线旋向及旋向系数P 选取左旋L,P=+1凸轮分度廓线头数日选取H=1转盘分度数,按设计要求的工位数,选定,=8转盘滚子数Z=1×8=8转盘分度期运动规律抛物线一直线一抛物线转盘分度期转位角盼/(。

) 妒,=360。

/8=45。

中心距C=180mm凸轮转速n=300r/min旋向系数P=+1分度数I=8凸轮头数H=1转盘滚子数Z=1*8=8凸轮宽度B=90分度期转角θf = 120°停歇期转角θd = 240°凸轮节圆半径rp1=96mm滚子宽度b=30mm滚子半径Rr=22mm凸轮顶弧半径rc=75.29mm我们将分别作出与滚子左面接触的一系列凸轮轮廓曲线,分度期1L、2R、2L、3R ,停歇期与滚子左右接触的轮廓曲线,然后将这些线生成曲面,最后生成实体。

1 凸轮定位环面内圆直径Di为直径的基础圆柱体打开Pro/ENGINEER,进入Pro/ENGINEER三维造型窗口,在“基础特征”工具栏上单击“拉伸”命令,选择“FRONT”面为草绘平面,绘制φ154.69的圆,并双向拉伸90mm.2 建立1L 轮廓曲线1)建立推程段轮廓面曲线①. 新建.prt 文件打开Pro/E Wildfire 三维绘图软件,新建->零件->实体,建立文件。

轮胎数模绘制方法

轮胎数模绘制方法

轮胎数模绘制方法
1. 先确定轮胎的形状和尺寸,包括轮胎的外形曲线、直径、宽度等参数。

2. 根据轮胎的外形曲线,在绘制软件中创建一个轮胎的初始模型,可以使用曲线绘制工具或者进行线段拼接以形成整个轮胎的轮廓。

3. 根据轮胎的直径和宽度,在模型中创建与轮胎形状相匹配的轮胎面板,可以是平面、圆柱形或其他形状的面板。

4. 使用绘制工具,在轮胎面板上添加纹理细节,如轮胎花纹和边缘细节,以增加模型的真实感。

5. 将轮胎模型分割成多个部分,如胎面、胎侧、胎肩等,并使用各种绘制工具为每个部分添加所需的细节。

6. 调整轮胎模型的参数,如曲率、倾斜度、倒角等,以更好地逼近实际轮胎的形状。

7. 通过增加或减少控制点,对轮胎曲线进行调整,以确保模型与实际轮胎的曲线匹配。

8. 使用着色工具为轮胎模型添加适当的材质和颜色,以使轮胎看起来像是真实的物体。

9. 在绘制软件中进行渲染和照明调整,以提高模型的视觉效果,并使其更加逼真。

10. 对轮胎模型进行优化和调整,以确保模型的多边形数量适中,并进行必要的修正和修饰,以提高模型的细节和质量。

小研基于PROE5.0在轮胎模具设计上的应用

小研基于PROE5.0在轮胎模具设计上的应用

小研基于PROE5.0在轮胎模具设计上的应用0 引言轮胎花纹不仅与轮胎表面生热、耐磨性以及噪声等有密切关系,对汽车的功率消耗、油量消耗、驾驶性能及安全行驶也有着直接影响,因此轮胎花纹的设计及其制造越来越受到重视。

花纹设计主要考虑防滑和散热及增加轮胎抓地力等,使轮胎在纵向、侧向与路面有良好的附着性,从而有效地传递牵引力和制动力。

轮胎花纹的主要作用就是增加胎面与路面间的磨擦力,以防止车轮打滑。

轮胎花纹提高了胎面接地弹性,在胎面和路面间切向力(如驱动力、制动力和横向力)的作用下,花纹块能产生较大的切向弹性变形。

切向力增加,切向变形随之增大,接触面的“磨擦作用”也就随之增强,进而抑制了胎面与路面打滑或打滑趋势。

这在很大程度上消除了无花纹(光胎面)轮胎易打滑的弊病,使得与轮胎和路面间磨擦性能有关的汽车性能——动力性、制动性、转向操纵性和行驶安全性的正常发挥有了可靠的保障。

1.轮胎模具设计方法的选择传统的轮胎模具设计过程是根据轮胎厂提供的轮胎二维图进行模具的二维图纸设计。

但是在二维中对轮胎花纹的空间形状进行设计描述非常困难,也非常不正确。

在模具投入加工时会发生很多的问题,比如花纹沟底部太尖以及给出的剖面不合理等。

因此,在轮胎模具设计中考虑到花纹剖面的复杂性,以及花纹沟是复杂的三维空间结构,要准确反映花纹沟的形状,利用传统的二维CAD 设计手段很难达到相应的要求。

目前的常用的3D 软件主要是CATIA 、UG、PROE。

CATIA 软件参数化功能强大,建模功能中此步骤可以用DEVELOP来实现。

但CATIA 软件本身对电脑的软硬件的要求都很高。

所用企业不多,现汽车的组车厂陆续在使用。

UG 的通用平台现在还不能很好的实现,需借助外挂的程序MAP.GRX 来实现,该外挂我找了好久没有找到。

该程式怀疑是工程师自己的编写的,有待考证。

综合考虑各种产品的性能优势,在轮胎活络模具的基础部件轮胎花纹基模设计过程中选用PTC 公司的三维软件PROE 5.0 软件可满足要求。

UG轮胎建模

UG轮胎建模
约束功能绘制如图所示草图。
4 项目五 建模综合实训
绘制草图
任务4 创建轮胎模型
1.基体建模 4)隐藏尺寸标注,采用修剪
功能和倒圆角(半径为R 2)功能 完成草图修整,结果如图所示。
5 项目五 建模综合实训
修整曲线
任务4 创建轮胎模型
1.基体建模 5)以外圆圆心为端点,绘制
3 条斜直线通过外侧圆弧。单击 “镜像”按钮“ ”,以水平线为 镜像轴镜像3 条斜直线。再以外 圆圆心为中心,绘制半径为R 133 的圆弧,结果如图所示。

], 弹出“阵列几何
体”对话框,设置如图所示参数,
单击选择“部件导航器”中的

”,单击“确定”按钮,
生成图中的实体。
27 项 目 五 建 模 综 合 实 训
阵列特征
任务4 创建轮胎模型
知识与技能拓展
1.拆分体 (1)绘制如图1所示的用
于分割轮胎和轮毂的曲面。 (2)单击“曲面操作”工
具栏中的“拆分体”按钮 “ ”,弹出如图2所示的 “拆分体”对话框。
21 项 目 五 建 模 综 合 实 训
创建旋转曲面
任务4 创建轮胎模型
2.创建横向槽 5)单击“基准平面”按钮
“ ”,弹出“基准平面”对话框, 创建平行于“YZ ”平面且距离为 “48”的基准平面。
6)在新建的基准面上绘制如图 所示的草图。
22 项 目 五 建 模 综 合 实 训
绘制草图
任务4 创建轮胎模型
1.基体建模 2)选择两条复合曲线,投影
至“XY ”平面,隐藏相关图素, 结果如图所示。
12 项 目 五 建 模 综 合 实 训
绘制投影曲线
任务4 创建轮胎模型
1.基体建模 3)单击“草图”按钮“ ”,

proe带轮工程图教程

proe带轮工程图教程

使用【创建一般视图】工具、【创建尺寸】工具等1【打开】菜单命令,在弹出的【文件打开】对话框中选择前面复制到硬盘上【文件,单击2 选择【视图管理器】工具图管理器】对话框中的【截面】选项卡,单击图图3 选择【工具】【选项】菜单命令,如图97-8所示,弹出选项对话框,如图取消【仅显示从文件载入的选项】复选框,按字母顺序找到参数“drawing_setup_file D:\97\iso.dtl”按钮确认修改参数值,接着找到参数“tol_modenominal”,同样单击按钮确认修改参数值,最后单击按钮接受参数修改,按钮关闭【选项】对话框。

4 选择【文件】/【新建】菜单命令,弹出【新建】对话框,选择新建类型为【绘图】消【使用缺省模板】选择框,如图所示,单击【确定】按钮,弹出【新建图】对话框,所示,系统默认将已经打开的“97.prt”模型作为工程图的原模型,指定绘图模板为,单击按钮,在弹出的【打开】对话框中修改文件路径到本例操作步骤a4_prt.frm”模板文件,单击按钮将其打开并返回按钮,创建一个新的工程图文件。

5 选择【创建一般视图】工具,在绘图区域左上角的位置单击鼠标左键,确定主视图的放置位置,模型的轴侧视图被添加到绘图区域,如图所示,同时系统弹出【绘图视图】对话框。

修改视图类型为视图,如图97-13所示,单击按钮确认修改。

选择要修改的类别为【比例】,激活【定制比例】单选框并定义比例为0.667,如图97-14图6 默认情况下创建好的视图是不能被移动的,选中主视图,在其上单击鼠标右键,在弹出的右键快捷菜单中取消【锁定视图移动】命令,如图97-20所示,然后在主视图上按下鼠标左键不放,移动鼠标将视图移动到合适的位置后松开鼠标左键确认放置,如图7 选择【插入】→【绘图视图】→【详细】菜单命令,如图97-22所示,系统弹出【选取】图8 选择【基准平面开关】工具,关闭基准平面的显示。

选择【显示/拭除】工具出【显示/拭除】对话框,如图97-26所示,单击按钮,按钮凹下显示表示被选中,如图所示,用来显示中心线,单击按钮,系统弹出【确认】对话框,单击在模型中定义的中心线被显示出来,单击【选取】按钮,关闭【显示9 单击按钮右侧的按钮,在弹出的子工具条中选择【通过偏移距离创建图元】工具系统弹出【偏距操作】菜单管理器,如图97-28所示,选择【单一图元】菜单命令,然后选择上一步骤显示出来的中心线,如图所示,选择完成后在中心线上出现一个向下的箭头表示偏移的方向,如图97-30所示,在消息输入窗口输入然后单击按钮向下产生一条偏移直线,如图97-31所示,按照同样的方法定义偏移距离为-41.6875,向上也产生一条偏移直线,如图97-32所示;进一步再按照类似相同的方法,选择图97-33所示的投影边,定义偏移距离分别为-11.3333、-28.3333,在创建两条竖直偏移直线,如图97-34所示,连续单击两次鼠标中键结束并完成偏距图元的绘制,此时刚绘制的四条直线仍然以红色高亮显示表示仍然被选中,在其中任意一条直线上单击鼠标右键,在弹出的快捷菜单中选择【线型】菜单命令,如图所示,系统弹出【修改线体】对话框,修改线型为CTRLFONT_S_L,如图按钮接受修改,单击,关闭【修改线体】对话框,此时图图10 选择【创建尺寸】工具,创建标注尺寸,并修改尺寸属性,完成带轮工程图的绘制,效果如图97-38所示。

轮胎模型

轮胎模型
轮胎模型
一、轮胎模型简介 二 、ADAMS/TIRE 三、轮胎的特性文件
严金霞
2009年1月
• 轮胎是汽车重要的部件,它的结构参数和力学特性决定 着汽车的主要行驶性能。轮胎所受的垂直力、 纵向力、 侧向力和回正力矩对汽车的平顺性、 操纵稳定性和安全 性起重要作用。 • 轮胎模型对车辆动力学仿真技术的发展及仿真计算结果 有很大影响,轮胎模型的精度必须与车辆模型精度相匹 配。因此,选用轮胎模型是至关重要的。由于轮胎具有 结构的复杂性和力学性能的非线性,选择符合实际又便 于使用的轮胎模型是建立虚拟样车模型的关键。
• SWIFT模型(Short Wave Intermediate Frequency TIRE Model) • SWIFT模型是由荷兰Delft工业大学和TNO联合开发的,是 一个刚性环模型,在环模型的基础上只考虑轮胎的0阶转动 和1阶错动这两阶模态,此时轮胎只作整体的刚体运动而并 不发生变形。在只关心轮胎的中低频特性时可满足要求。由 于不需要计算胎体的变形,刚性环模型的计算效率大大提高, 可用于硬件在环仿真进行主动悬架和ABS的开发。在处理面 外动力学问题时,SWIFT使用了魔术公式。
• FTire模型(Flexible Ring Tire Modle) • 是由德国Esslingen大学的Michael Gipser领导小组开发的, 是基于柔性环模型的物理模型,是一个2.5维非线性轮胎模型。
• 它的主要特征是: • (1)弹性环不仅能描述面内振动,也能描述面外特性(侧偏特 性)。胎体沿圆周方向离散,也可在胎体宽度方向离散; 胎体 单元间用弹簧相连,在胎体单元上有一定数量的胎面单元; • (2)轮辋与轮胎用径、切、侧3个方向的分布弹簧相连。轮辋 可在面内平移和转动, 也可在面外运动。环与轮辋间采用了弹 簧并联一个串联的弹簧—阻尼单元的形式 • (3)轮胎自由半径和弹簧刚度随轮胎转速的变化而变化; • (4)采用了复杂非线性的摩擦模型描述胎面橡胶的摩擦特性, 即摩擦系数为压力和滑移速度的函数;

《轮胎模型》课件

《轮胎模型》课件
《轮胎模型》ppt课件
目录
Contents
• 轮胎模型简介 • 轮胎模型的设计与制作 • 轮胎模型的应用 • 轮胎模型的发展趋势 • 轮胎模型的未来展望
01 轮胎模型简介
轮胎模型的定义
总结词
简述轮胎模型的概念
详细描述
轮胎模型是指根据真实轮胎的比例制作的模型,通常用于展示、教学和模拟等 场景。
轮胎模型的作用
个性化定制
满足用户个性化需求,提供定制化的轮胎产品和服务,提高用户满 意度。
THANKS
智能化
智能化轮胎模型是指通过集成传感器、控制器和执行器等智能元件,实 现轮胎的智能化管理和控制。
智能化轮胎模型能够实时监测轮胎的工作状态和环境参数,如胎压、温 度、磨损等,并通过无线通信技术将数据传输到智能终端或云平台。
智能化轮胎模型还可以根据轮胎的工作状态和环境参数进行自动调节和 控制,如自动充气、自动调整胎压等,以提高轮胎的使用性能和安全性 。
需求。
海外市场拓展
加强国际市场开拓,提高轮胎产 品在国际市场的知名度和竞争力

多元化产品线
在保持轮胎主业的同时,积极拓 展与轮胎相关的多元化业务,如
橡胶制品、汽车配件等。
用户体验优化
舒适性提升
通过优化轮胎结构设计、采用新型材料等方式,提高轮胎的舒适 性和静音性能,提升用户驾驶体验。
智能化服务
提供智能化服务,如通过手机APP实时监测轮胎状态、提供轮胎维 护和更换建议等,方便用户使用。
轻量化
为了提高轮胎的性能,材 料应尽量选择轻量化的材 质。
可塑性
材料应具有良好的可塑性 ,以便于将设计理念转化 为具体的轮胎模型。
制作流程
初步设计
根据设计理念和实际需 求,进行初步设计。

直接用圆柱体快速轮胎的建模过程

直接用圆柱体快速轮胎的建模过程

直接用圆柱体快速轮胎的建模过程
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
大家好,在今天的教案中,我将要给大家展示的是不用plane和焊接,直接用圆柱体快速轮胎建模,该教程简单易学,实用性也很强。

我们先来看一下效果图:
1、建立一个cylinder,加一个可编辑多边形修改器,选取中间的点
2、在顶视图中旋转,选中如图的面
3、按多边形插入-按法线挤出-转换选择到边
4、切角-选中前边的面,del
5、选中后边的面,del-选中前边最里边的边界,使用缩放工具配合shift键拉伸-选中我们刚才拉伸出来的面b5E2RGbCAP
6、使用insert命令插入新面-新面按法线方向挤出
7、继续拉伸
8、在front视图中再新建一个cylinder-删除前边的面-删除后边的面-选中前边的边界,切角-和上边的操作类似,向里拉伸-选中如图所示的面,insert出新的面p1EanqFDPw
9、把新面推进去-推进去一点,并进行切角-按边界挤出来-把新边界切角-继续拉伸
10、切角后最后"封盖"(cap命令>-后边我们也是类似的操作,先拉伸一下-使用移动工具调整一下
11、最后看看最终素材模型的效果
再来一张
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

基于PRO_E的轮胎有限元模型建立方法

基于PRO_E的轮胎有限元模型建立方法

第23卷第3期 黑 龙 江 工 程 学 院 学 报(自然科学版) V ol.23 .32009年9月 Journal ofH eilongjiang Institute of T echnolog ySep.,2009基于PRO/E 的轮胎有限元模型建立方法王 岳1,齐晓杰2,王 强2(1.哈尔滨理工大学机械动力工程学院,黑龙江哈尔滨150050;2.黑龙江工程学院汽车工程系,黑龙江哈尔滨150050)摘 要:利用PRO /E 强大的三维模型建立功能,便捷、高效地建立轮胎几何模型。

借助PRO /E 与A N SYS 之间的接口技术,将三维模型导入AN SY S 平台下进行材料定义、网格划分,从而得到轮胎的有限元模型。

关键词:P RO/E;A N SYS;有限元模型中图分类号:U 463.341 文献标识码:A 文章编号:1671 4679(2009)03 0007 04The method of tires 'FE modeling by PRO/EWANG Yue 1,Q I Xiao Jie 2,WANG Qiang 2(1.Colleg e o f M echanical &Po wer Eng ineer ing,Har bin U niv ersity o f Science and T echnolog y,H ar bin 150050,China;2.Dept.of A utomobile Eng ineering ,H eilongjiang Institute of T echnolog y ,H ar bin 150050,China)Abstract:The 3D solid model of tire is established based on the stro ng 3D entity design functio n of Pro/E softw ar e.T hen leading the mo del to ANSYS is introduced by co nnecting Pro/E and ANSYS softw are for defining the material property,and a mesh g eneration is studied.An metho d of estabilishing the finite ele m ent m odel of tire is pro vided.Key words:PRO/E;A NSYS;FE m odeling收稿日期:2009 04 07作者简介:王 岳(1984~),男,硕士研究生,研究方向:车辆工程.由于计算机水平的飞速发展,有限元技术的应用已经扩展到很多领域,并取得了明显的成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合运用拉伸特征、孔特征、填充阵列、环形弯折、特征阵列、曲线曲面特征等,完成下列轮胎模型的制作。

图8-22
主要步骤如下:
(1)建立下列拉伸特征。

图8-23
(2)建立下列拉伸特征。

图8-24
(3)利用方向阵列对第(2)步中建立的特征进行阵列,阵列距离为80,数量为15个。

图8-25
(4)对第(2)步中建立的特征进行拔摸,拔摸曲面为上面的面,拔摸枢轴为Right基准面,拔摸角度为8度。

图8-26
(5)对第(4)步中建立的拔摸特征进行参照阵列。

图8-27
(6)对第(4)步中建立的拔摸特征上面两条边进行完全倒圆角。

图8-28
(7)对上一步中建立的完全倒圆进行参照阵列。

图8-29
(8)利用特征操作工具,对上面的所有特征进行以Right基准面的镜像复制。

(a)镜像复制的结果(b)特征操作菜单
图8-30
(9)对上面的建立的实体进行环行弯折,并建立轮胎的轴线A_1,结果如下。

图8-31
(10)穿过轴线A_1建立基准面DTM1。

图8-32
(11)以DTM1为草绘平面,利用旋转特征建立轮毂,旋转特征的截面如图8-33,结果如图8-34所示。

图8-33
图8-34
(12)利用拉伸特征建立轮毂上的孔。

(a)孔特征
(b)截面
图8-35 (13)对轮毂上的孔进行阵列。

图8-36 (14)建立倒圆角特征(另一侧同样处理)。

(a)倒圆角1 (b)倒圆角2
(c)倒圆角3 (d)倒圆角4
图8-37
(15)建立倒圆角特征(按shift键选种环上的两条边可选种整个环上的边,需要补充一条小边的倒圆角。

另一侧同样处理)。

(a)边环倒圆角(b)小边倒圆角
图8-38
(16)对下图所示的15条边倒圆角,半径为5。

(17)对下图所示的15条边倒圆角,半径为3。

(18)对下图所示的15条边倒圆角,半径为15。

图8-41 (19)对下图所示的15条边倒圆角,半径为5。

图8-42。

相关文档
最新文档