2019年广东省深圳市小升初数学试卷(含解析)

合集下载

2019年深圳市小升初数学综合模拟试卷(10套卷)(8-17)及答案详细解析

2019年深圳市小升初数学综合模拟试卷(10套卷)(8-17)及答案详细解析

小升初数学综合模拟试卷8一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG 边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?答案一、填空题:3.(37)将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形.4.(6年)今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年.5.(154)145×4-(139+143+144)=154.6.(421)这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.7.(5)由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径9.(16升)由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:故较少容器原有水量8×2=16(升).把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶二、解答题:1.(26棵)要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=262.(28米/秒,260米)(1980-1140)÷(80-50)=28(米/秒)28×50-1140=260(米)3.不可能.反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.4.(106元)(元).小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。

2019年深圳市小升初数学模拟试题(共8套)详细答案9

2019年深圳市小升初数学模拟试题(共8套)详细答案9

2019年深圳市小升初数学模拟试题(共8套)详细答案9小升初数学试卷一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。

4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、3.1与3. 相比()A 、3.1 大B 、3. 大C 、一样大23、 男生与女生的人数比是6:5,男生比女生多( )A 、B 、C 、24、 给分数的分母乘以3,要使原分数大小不变,分子应加上( )A 、3B 、7C 、14D 、2125、 车轮的直径一定,所行驶的路程和车轮的转数( )A 、成正比例B 、反比例C 、不成比例四、仔细计算.(5+12+12+4=33分)=________﹣27、 脱式计算(能简算的要简算)÷9+ × 12.69﹣4.12﹣5.880.6×3.3+×7.7﹣0.6 ( + )×24× .28、 解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ + + + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。

2019年深圳市小升初数学综合模拟试卷(10套卷)(19-28)及答案详细解析

2019年深圳市小升初数学综合模拟试卷(10套卷)(19-28)及答案详细解析

小升初数学综合模拟试卷19一、填空题:2.用1,2,3,4,5,6,7这七个数字组成三个两位数,一个一位数,并且使这四个数的和等于100,如果要求最小的两位数尽可能小,那么其中最大的两位数是______.3.小红和小明参加一个联欢会,在联欢会中,小红看到不戴眼镜的同联欢会的共有_______名同学.4.一次数学测验,六(1)班全班平均90分,男生平均88.5分,女生平均92分,这个班女生有18人,男生有______人.5.如图,M、N分别为平行四边形相邻两边的中点,若平行四边形面6.一个六位数□1997□能被33整除,这样的数是______.7.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是_______.8.有200多枚棋子摆成了一个n行n列的正方形,甲先从中取走10枚,乙再从中取走10枚,……,这样轮流取下去,直到取完为止.结果最后一枚被乙取走.乙共取走了______枚棋子.9.一艘油轮的船长已经50多岁,船上有30多名工作人员,其中男性占多数.如果将船长的年龄、男工作人员的人数和女工作人员的人数相乘,则积为15606,船上共有______名工作人员,船长的年龄是______岁.10.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔______分发一辆车.二、解答题:1.计算:2.有一种用六位数表示日期的方法,如用911206表示91年12月6日,也就是用前两位表示年,中间两位表示月,后两位表示日.如果用这种方法表示1997年的日期,全年中六个数字都不相同的日期共有多少天?3.少年歌手大奖赛的裁判小组由若干人组成,每名裁判员给歌手的最高分不超过10分.第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.60分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.68分.求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?4.A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:答案一、填空题:1.102.47要使最小的两位数尽可能小,最好十位是1,个位是2,此时四个数的个位之和应等于20,可找到这样的四个数2、5、6、7.在余下的数3、4中取4,可组成最大的两位数47.3.16如果小红和小明都戴眼镜或都不戴眼镜,那么他们看到的戴眼镜的比例应当相同,由于小明看到的戴眼镜的比例高,所以小红戴眼镜,小明不戴眼镜,因此总人数为4.24(92-90)×18÷(90-88.5)=24(人)5.6六个.6.919974,619971,219978a+b+1+9+9+7=a+b+26是3的倍数,因此a+b=1,4,7,10,13,16.(a+9+7)-(1+9+b)=a-b+6是11的倍数,因此a-b=5或b-a=6.因为a、b是整数,所以a+b与a-b同奇同偶,经试验,可找到以下三组解:7.51.2作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14-a=10+aa=2设空白部分面积为x,将上图转化为正方形盒子的面积为12+20+12+7.2=51.28.126因为棋子数是200多,且是一个平方数,所以行数n可能是15,16,17.若n=15,15×15=225,即共有225枚棋子.由于是甲先取10枚,乙再取10枚,因此第225枚棋子被甲取走,不合题意.若n=16,16×16=256,即共有256枚棋子,根据规则可知,第256枚被乙取走.若n=17,17×17=289,即共有289枚棋子.根据规则可知,第289枚被甲取走,不合题意.所以满足条件的棋子数是256枚,乙共取走260÷2-4=126(枚)9.35,51因为15606=2×3×3×3×17×17,且船长是50多岁,所以有2×3×3×3=54和3×17=51两种情况.若船长54岁,则男女工作人员各17名,不合题意,所以船长只能是51岁.此时男女工作人员的乘积为2×3×3×17,男女工作人员的人数分配有下面五种:(153,2),(102,3)(51,60),(34,9),(18,17).根据工作人员共有30多名和男多女少的条件可知,男有18人,女有17名满足.所以工作人员共有35名.因为无论是迎面来的车,还是后面追来的车,两车之间的距离总是一样的.所以设车速为x,有两车之间的距离为发车的时间间隔为二、解答题:1.0原式=a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ba+ca-cb=02.73天分类按月计算1月、2月、10月分别有5天;3月、4月、6月分别有10天;5月、8月分别有11天;12月有6天;7月、9月没有.5×3+10×3+11×2+6=733.9.28分.10名设裁判员有x名,那么(1)总分为9.64x;(2)去掉最高分后的总分为9.60(x-1),由此可知最高分为:9.64x-9.60(x-1)=0.04x+9.6(3)去掉最低分后的总分为9.68(x-1),由此可知最低分为:9.64x-9.68(x-1)=9.68-0.04x因为最高分不超过10,所以0.04x+9.6不超过10,也就是0.04x不超过0.4,由此可知x不超过10.当x取10时,最低分有最小值,是9.68-0.04×10=9.28(分)所以最低分是9.28分,裁判员有10名4.1至10题的正确答案是×、×、√、√、√、√、√、×、√、×观察A与B的答案可知,A、B有4道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道.由此可知第1、3、4、10题的答案分别是×、√、√、×.同理,B、C有4题答案相同,根据每人都是70分,所以4道答案相同的题都答对了,即第2、3、5、7题的答案分别是×、√、√、√.同理,A、C也有4题答案相同,这4道题都答对了,即第3、6、8、9题的答案分别是√、√、×、√.由此可知,1至10题的答案分别是×、×、√、√、√、√、√、×、√、×.小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC 面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B 两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.小升初数学综合模拟试卷23一、填空题:2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.7.55道数学题,分给甲、乙、丙三人计算。

【精品】2018-2019学年广东省深圳市小升初数学试卷(逐题解析版)

【精品】2018-2019学年广东省深圳市小升初数学试卷(逐题解析版)
第 5 页(共 21 页)
= 5400÷ 108%
= 5000(元) 答:该商品的进货价是 5000 元.
故答案为: 5000.
【点评】 解答此题的关键是分清两个单位“ 1”的区别,求单位“ 1”的百分之几用乘法
计算;已知单位“ 1”的百分之几是多少,求单位“ 1”用除法计算.
4.( 2 分)比与除法、分数比较,比的前项相当于除法的
元.
15.( 2 分)“春运”期间,从 A 城开往 B 城的长途客运汽车票价从 20 元提高到 25 元,提

%,“春运”后,价格恢复原价,又降价
%.
二、判断题. (对的画“√” ,错的画“ ? ”,每小题 2 分,共 12 分.)
16.( 2 分)正方形、等腰梯形、三角形和圆都是轴对称图形.
17.( 2 分)把 2.4:1.2 化简比,结果是 2.
A .6: 5
B .6: 11
C. 5: 11
24.( 2 分) 200 克药水中,含药 20 克,药与水的比是(

A .1: 9
B .1: 10
C. 1: 11
25.( 2 分)在 4: 5 中,比的前项除以 8,要使比值不变,比的后项应(

A .加上 8
B .乘 8
C.除以 8
26.( 2 分)一段路,甲 3 时走完,乙 4 时走完,甲、乙两人速度的最简整数比是(
8% ,则该笔记本电脑
4.( 2 分)比与除法、分数比较,比的前项相当于除法的
当于除法的
,分数的
,比值 相当于除法的
,分数的 ,分数的
,后项相 .
5.(2 分)已知小圆的半径是 2 厘米,大圆的半径是 3 厘米,小圆和大圆周长的比是

2019年深圳市小升初数学综合模拟试卷(10套卷)(57-66)及答案详细解析

2019年深圳市小升初数学综合模拟试卷(10套卷)(57-66)及答案详细解析

小升初数学试卷57一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、 0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。

4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、 3.1与3. 相比()A 、 3.1 大B 、3. 大C 、一样大23、 男生与女生的人数比是6:5,男生比女生多( )A 、B、C 、24、 给分数的分母乘以3,要使原分数大小不变,分子应加上( )A 、3B 、7C 、14D 、2125、 车轮的直径一定,所行驶的路程和车轮的转数( )A 、成正比例B 、反比例C 、不成比例四、仔细计算.(5+12+12+4=33分)1÷0.75+﹣ 2.1×÷9+ ×12.69﹣4.12﹣5.880.6×3.3+ ×7.7﹣0.6( + )×24× .28、 解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、 列式计算(1)一个数的 是60的 ,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣++ + + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。

2019年深圳市小升初数学综合模拟试卷(10套卷)(58-67)及答案详细解析

2019年深圳市小升初数学综合模拟试卷(10套卷)(58-67)及答案详细解析

小升初数学试卷58一、填空题:(每题2分,共20分)1、6公顷80平方米=________平方米,42毫升=________立方厘米=________立方分米,80分=________时.2、奥运会每4年举办一次.北京奥运会是第29届,那么第24届是在________年举办的.3、在横线里填写出分母都小于12的异分母最简分数.=________+________=________+________.4、一个圆柱形的水桶,里面盛有18升水,正好盛满,如果把一块与水桶等底等高的圆锥形实心木块完全浸入水中,这时桶内还有________升水.5、如果a= b,那么a与b成________比例,如果= ,那么x与y成________比例.6、花店里有两种玫瑰花,3元可以买4枝红玫瑰,4元可以买3枝黄玫瑰,红玫瑰与黄玫瑰的单价的最简整数比是________.7、一个四位数4AA1能被3整除,A=________.8、如图,两个这样的三角形可以拼成一个大三角形,拼成后的三角形的三个内角的度数比是________或者________.9、如图,把一张三角形的纸如图折叠,面积减少.已知阴影部分的面积是50平方厘米,则这张三角形纸的面积是________平方厘米.10、有一串数,,,,,,,,,,,,,,,,…,这串数从左开始数第________个分数是.二、选择题:(每题2分,共16分)11、甲、乙两堆煤同样重,甲堆运走,乙堆运走吨,甲、乙两堆剩下的煤的重量相比较()A、甲堆重B、乙堆重C、一样重D、无法判断12、下面能较为准确地估算12.98×7.09的积的算式是()A、12×7B、13×7C、12×8D、13×813、已知a能整除19,那么a()A、只能是19B、是1或19C、是19的倍数D、一定是3814、甲数除以乙数的商是5,余数是3,若甲、乙两数同时扩大10倍,那么余数()A、不变B、是30C、是0.3D、是30015、小圆半径与大圆直径之比为1:4,小圆面积与大圆面积比为()A、1:2B、1:4C、1:8D、1:1616、下面的方框架中,()具有不易变形的特性.A、B、C、D、17、在下面形状的硬纸片中,把它按照虚线折叠,能折成一个正方体的是()A、B、C、D、18、一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A、36平方厘米B、72平方厘米C、108平方厘米D、216平方厘米三、计算题:(共24分)19、计算下列各题,能简算的要简算:(1)69.58﹣17.5+13.42﹣2.5(2)×(×19﹣)(3)+ + +(4)[1﹣(﹣)]÷.20、求未知数x的值:(1):x=15%:0.18(2)x﹣x﹣5=18.四、动手操作题:21、如图(1),一个长方形纸条从正方形的左边开始以每秒2厘米的速度沿水平方向向右行驶,如图(2)是运动过程中长方形纸条和正方形重叠部分的面积与运动时间的关系图.(1)运动4秒后,重叠部分的面积是多少平方厘米?(2)正方形的边长是多少厘米?(3)在图(2)的空格内填入正确的时间.五、应用题:(第1题~第4题每题6分,第5题8分,共32分)22、泰州地区进入高温以来,空调销售火爆,下面是两商场的促销信息:文峰大世界:满500元送80元.五星电器:打八五折销售.“新科”空调两商场的挂牌价均为每台2000元;“格力”空调两商场的挂牌价均为每台2470元.问题:如果你去买空调,在通过计算比较一下,买哪种品牌的空调到哪家商场比较合算?23、两辆汽车同时从A地出发,沿一条公路开往B地.甲车比乙车每小时多行5千米,甲车比乙车早小时到达途中的C地,当乙车到达C地时,甲车正好到达B地.已知C地到B地的公路长30千米.求A、B两地之间相距多少千米?24、盒子里有两种不同颜色的棋子,黑子颗数的等于白子颗数的.已知黑子颗数比白子颗数多42颗,两种棋子各有多少颗?25、一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2.现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?26、甲、乙、丙三人合作完成一项工程,共得报酬1800元,三人完成这项工程的情况是:甲、乙合作8天完成工程的,接着乙、丙又合作2天,完成余下的,然后三人合作5天完成了这项工程,按劳付酬,各应得报酬多少元?答案解析部分一、<b >填空题:(每题2</b><b >分,共20</b><b>分)</b>1、【答案】60080;42;0.042;1【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算,体积、容积进率及单位换算【解析】【解答】解:(1)6公顷80平方米=60080平方米;(2)42毫升=42立方厘米=0.042立方分米(3)80分=时.故答案为:60080,42,0.042,.【分析】(1)把6公顷乘进率10000化成80000平方米再与80平方米相加.(2)立方厘米与毫升是等量关系二者互化数值不变;低级单位立方厘米化高级单位立方分米除以进率1000.(3)低级单位分化高级单位时除以进率60.2、【答案】1988【考点】日期和时间的推算【解析】【解答】解:29﹣24=5(届),4×5=20(年),2008﹣20=1988(年).答:第24届汉城奥运会是在1988年举办的.故答案为:1988.【分析】要求第24届奥运会是在那年举办,要先求出24届与29届相差几届,根据每4年举办一次,相差几届,就是几个4年,然后用2008减去相差的时间,即得到24届的举办时间.3、【答案】;;;【考点】最简分数【解析】【解答】解:故答案为:、、、.【分析】根据要求,把写成分母都小于12的异分母最简分数,把分子11写成9+2,变成,然后约分即可,再把11写成8+3,变成进行约分.4、【答案】12【考点】关于圆锥的应用题【解析】【解答】解:18×(1﹣)=18×=12(升)答:这时桶内还有12升水.【分析】把一块与水桶等底等高的圆锥形实心木块完全浸入水中,说明圆锥占据的体积是里面水的体积的,那桶内的水是原来的(1﹣),根据分数乘法的意义,列式解答即可.5、【答案】正;反【考点】正比例和反比例的意义【解析】【解答】解:因为a=b,所以a:b= (一定)是比值一定;所以a与b成正比例;因为=,所以xy=15×8=120(一定)所以x与y成反比例.故答案为:正,反.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.6、【答案】9:16【考点】求比值和化简比【解析】【解答】解:红玫瑰:3÷4=0.75(元)黄玫瑰:4÷3=(元)0.75:=(0.75×12):(×12)=9:16;答:甲、乙两种铅笔的单价的最简整数比是9:16.故答案为:9:16.【分析】根据“总价÷数量=单价”,分别求出红玫瑰与黄玫瑰的单价,再作比化简即可.7、【答案】2或5或8【考点】2、3、5的倍数特征【解析】【解答】解:当和为9时:4+A+A+1=9,A=2,当和为12时:4+A+A+1=12,A=3.5,当和为15时:4+A+A+1=15,A=5,当和为18时:4+A+A+1=18,A=6.5,当和为21时:4+A+A+1=121,A=8.故答案为:2或5或8.【分析】能被3整除,说明各个数位上的数相加的和能被3整除,4+A+A+1的和一定是3的倍数,因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么4+A+A+1=23,23<24,那么它们的数字和可能是6,9,12,15,18,21,当和为6时,A=0.5不行;当和等于9时,A=2,可以;当和为12时,A=3.5不行;当和为15时,A=5可以;当和为18时,A=6.5不行;当和为21时,A等于8可以.8、【答案】1:1:1;1:1:4【考点】图形的拼组【解析】【解答】解:(1)当以长直角边为公共边时,如图它的三个角的度数的比是:(30°+30°):60°:60°=60°:60°:60°=1:1:1;(2)当以短直角边时,如图它的三个角的度数的比是30°:30°:(60°+60°)=30°:30°:120°=1:1:4.故答案位:1:1:1或者1:1:4.【分析】两个这样的三角形拼成一个大三角形的方法有两种,一种是以长直角边为公共边,另一种是以短直角边为公共边,然后根据各个角的度数,算出它们之间的比,据此解答.9、【答案】200【考点】简单图形的折叠问题【解析】【解答】解:因为折叠后面积减少,所以阴影部分的面积占三角形纸的面积的:1﹣﹣=,所以角形纸的面积:50÷=200(平方厘米).答:张三角形纸的面积是200平方厘米.故答案为:200.【分析】根据面积减少,先求出阴影部分面占三角形纸的面积的份数,即1﹣﹣=,然后用阴影部分面积除以所占的份数计算即可得解.10、【考点】数列中的规律【解析】【解答】解:分母是11的分数一共有;2×11﹣1=21(个);从分母是1的分数到分母是11的分数一共:1+3+5+7+ (21)=(1+21)×11÷2,=22×11÷2,=121(个);还有10个分母是11的分数;121﹣10=111;是第111个数.故答案为:111.【分析】分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有5个,分子是1,2,3,2,1;分母是4的分数有7个;分子是1,2,3,4,3,2,1.分数的个数分别是1,3,5,7…,当分母是n时有2n﹣1个分数;由此求出从分母是1的分数到分母是11的分数一共有多少个;分子是自然数,先从1增加,到和分母相同时再减少到1;所以还有10个分母是11的分数,由此求解.二、<b >选择题:(每题2</b><b >分,共16</b><b>分)</b>11、【答案】D【考点】分数的意义、读写及分类【解析】【解答】解:由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多.故选:D.【分析】由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多:如果两堆煤同重1吨,第一堆用去它的,即用了1×= 吨,即两堆煤用的同样多,则剩下的也一样多;如果两堆煤重量多于1吨,第二堆用的就多于吨,则第一堆剩下的多;如果两堆煤重量少于1吨,第二堆的就少于堆,则第二堆剩下的多;据此即可解答.12、【答案】B【考点】数的估算【解析】【解答】解:因为12.98×7.09≈13×7,所以较为准确地估算12.98×7.09的积的算式是B.故选:B.【分析】根据小数乘法的估算方法:把相乘的因数看成最接近它的整数来算.12.98最接近13,7.09最接近7,所以较为准确地估算12.98×7.09的积的算式是B.13、【考点】整除的性质及应用【解析】【解答】解:因为a能整除19,所以19÷a的值是一个整数,因为19=1×19,所以a是1或19.故选:B.【分析】若a÷b=c,a、b、c均是整数,且b≠0,则a能被b、c整除,或者说b、c能整除a.因为a能整除19,所以19÷a的值是一个整数,所以a是1或19.14、【答案】B【考点】商的变化规律【解析】【解答】解:甲数除以乙数商是5,余数是3,如果甲数和乙数同时扩大10倍,那么商不变,仍然是5,余数与被除数和除数一样,也扩大了10倍,应是 30.例如;23÷4=5…3,则230÷40=5…30.故选:B.【分析】根据商不变的性质“被除数和除数同时扩大或缩小相同的倍数(0除外),商不变”,可确定商仍然是5;但是余数变了,余数与被除数和除数一样,也扩大了10倍,由此确定余数是30.15、【答案】B【考点】比的意义,圆、圆环的面积【解析】【解答】解:设小圆半径为x,则大圆直径为4x,由题意得:小圆面积:πx2大圆面积:π(4x÷2)2=4πx2所以小圆面积与大圆面积比:πx2:4πx2=1:4故选:B.【分析】设小圆半径为x,则大圆直径为4x,利用圆的面积=πr2,分别计算得出大圆与小圆的面积即可求得它们的比.16、【答案】A【考点】三角形的特性【解析】【解答】解:因为三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,所以选择A.故选:A.【分析】根据三角形和平行四边形的知识,知道三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,据此判断.17、【答案】B【考点】正方体的展开图【解析】【解答】解:根据正方体展开图的特征,选项A、C、D不能折成正方体;选项B 能折成一个正方体.故选:B.【分析】根据正方体展开图的11种特征,选项A、C、D都不是正方体展开图,不能折成正方体;只有选项B属于正方体展开图的“1﹣4﹣1”型,能折成一个正方体.18、【答案】D【考点】简单的立方体切拼问题【解析】【解答】解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D.【分析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.三、<b >计算题:(共24</b><b >分)</b>19、【答案】(1)解:69.58﹣17.5+13.42﹣2.5=(69.58+13.42)﹣(17.5+2.5)=83﹣20=63;(2)解:×(×19﹣)= ××(19﹣1)= ××18=9(3)解:+ + += ×(﹣+ ﹣+ ﹣+ ﹣)= ×(﹣)= ×= ;(4)解:[1﹣(﹣)]÷=[1﹣]÷= ÷=1【考点】运算定律与简便运算,分数的四则混合运算【解析】【分析】(1)利用加法交换律与减法的性质简算;(2)利用乘法分配律简算;(3)把分数拆分简算;(4)先算小括号里面的减法,再算中括号里面的减法,最后算除法.20、【答案】(1)解::x=15%:0.1815%x=0.18×15%x=0.2715%x÷15%=0.27÷15%x=1.8;(2)解:x﹣x﹣5=18x﹣5=18x﹣5+5=18+5x=23x×3=23×3x=69【考点】方程的解和解方程,解比例【解析】【分析】(1)先根据比例的基本性质:两内项的积等于两外项的积,把方程转化为15%x=0.18×,再依据等式的性质,方程两边同除以15%求解;(2)先化简方程得x﹣5=18,再依据等式的性质,方程两边同加上5再同乘上3求解.四、<b >动手操作题:</b>21、【答案】(1)解:长方形的长是:2×4=8(厘米),宽是2厘米,重叠的面积是:8×2=16(平方厘米);答:运行4秒后,重叠面积是16平方厘米。

2019年广东省深圳市小升初数学试卷

2019年广东省深圳市小升初数学试卷

2019年广东省深圳市小升初数学试卷一、选择题.1. 如果X÷13=13,那么13X=()A.1 3B.16C.19D.1272. 3x−7错写成3(x−7),结果比原来()A.多43B.少3C.少14D.多143. 一个两位数,十位上的数字是6,个位上的数字是a,表示这个两位数的式子是()A.60+aB.6+aC.6+10aD.6a4. 甲袋有a千克大米,乙袋有b千克大米,如果从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等。

列成等式是()A.a+8=b−8B.a−b=8×2C.(a+b)÷2=8D.a−8=b5. 甲、乙、丙、丁四人参加某次电脑技能比赛。

甲、乙两人的平均成绩为a分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为()分。

A.a+6B.4a+1.5C.4a+6D.a+1.56. 电影院第一排有m个座位,后面一排都比前一排多1个座位。

第n排有()个座位。

A.m+nB.m+n+1C.m+n−1D.mn7. 2x−28÷2=4,这个方程的解是()A.x=5B.x=9C.x=10D.x=208. 下面几句话中错误的一句是()A.判断方程的解是否正确,只要把方程的解代入原方程,看方程左右两边是否相等B.等式的两边同时乘或除以一个数,所得结果仍是等式C.a2不一定大于2a二、填空题.三数之和是120,甲数是乙数的2倍,丙数比乙数多20,丙数是________.已知4x+8=20,那么2x+8=________.爸爸说:“我的年龄比小明的4倍多3.”小明说:“我今年a岁。

”用含有字母的式子表示爸爸的年龄,写作________;如果小明今年8岁,那么爸爸今年________岁。

果园里有苹果树和梨树共45棵,其中梨树有a棵,苹果树比梨树多________棵。

在一场篮球比赛中,小红共投中________个三分球,________个两分球,发球还的5分,在这场比赛中,小红共得________分。

深圳市2019-2020小学毕业小升初数学试卷附试题答案( 2)

深圳市2019-2020小学毕业小升初数学试卷附试题答案( 2)

) cm3。
二、判断。(对的打“√”,错的打“ ”)( 分)
1. 0℃表示没有温度。 2. 圆柱的侧面积一定,则它的高和底面半径成反比例。
() ()
3. 有因数 4 的年份一定是闰年。
4. 如右图,任意摸出一个球,从甲箱中摸到黑色球
1黑 2白
的可能性与从乙箱中摸到黑色球的可能性相同。

()
3黑
3白
3.

2
的体积大。
1 3
× 3.14 ×(62 × 3-32 × 6)=56.52(cm3)
六、1.(1)9 千米 (2)包往返合算。8+(6 × 2-3)× 1.2=18.8(元)
2. 方法一:
大苹果质量:100 × 2 +2 3=40(千克)
小苹果质量:100
×
3 2+
3=60(千克)
大小苹果总售价:5.5 × 100=550(元) 大小苹果售价:(5 × 2)∶(4 × 3)=5∶6
)是 1 时;(
)千克减少它的 30%是 0.77 千克。
4.
一个分数与它本身相加、相减、相除,所得的和、差、商相加得1
1 3
,这个分数是(
)。
5.
规定

=5

1 2
,其中
, 是自然数,则 6 ※ 10=(
)。
6. 下面是我校五年级二班学生的座位图,用( , )表
示每位学生的座位位置。(3 分)
个 8
运给丙,运费 35 × 5=175(元); 仓运 60 吨给甲,运 15 吨给丙,运费 60 × 4+15 × 7=345(元)。
总运费:270+175+345=790(元)
小学毕业小升初数学试卷(2)

2019年深圳市小升初数学综合模拟试卷(10套卷)(3-12)及答案详细解析

2019年深圳市小升初数学综合模拟试卷(10套卷)(3-12)及答案详细解析

小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。

2019年深圳市小升初数学模拟试题(共3套)详细答案【优质试卷】

2019年深圳市小升初数学模拟试题(共3套)详细答案【优质试卷】

2019年深圳市小升初数学模拟试题(共3套)详细答案【优质试卷】小升初数学试卷一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。

4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D 、它们的乘积22、 3.1 与3. 相比( )A 、3.1 大B 、3. 大C 、一样大23、 男生与女生的人数比是6:5,男生比女生多( )A 、B 、C 、24、 给分数的分母乘以3,要使原分数大小不变,分子应加上( )A 、3B 、7C 、14D 、2125、 车轮的直径一定,所行驶的路程和车轮的转数( )A 、成正比例B 、反比例C 、不成比例四、仔细计算.(5+12+12+4=33分)=________﹣ 27、 脱式计算(能简算的要简算)÷9+ × 12.69﹣4.12﹣5.880.6×3.3+×7.7﹣0.6 ( + )×24× .28、 解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ + + + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。

2019年深圳市小升初数学模拟试题(共4套)详细答案【优质试卷】

2019年深圳市小升初数学模拟试题(共4套)详细答案【优质试卷】

2019年深圳市小升初数学模拟试题(共4套)详细答案【优质试卷】小升初数学试卷一、填空(每空1分,20分)1、三千六百万八千三百写作________,这个数四舍五入万位约是________万.2、分母是6的最大真分数是________,它的分数单位是________.3、把2:1.75化成最简整数比是________,这个比的比值是________.4、打完一份稿件,甲需要4小时,乙需要6小时,甲、乙二人所用时间的整数比是________,工作效率的最简整数比是________.5、在0.6、、66%和0.67这四个数中,最大的数是________,最小的数是________.6、把一个高是4分米的圆柱体沿着底面直径垂直锯开,平均分成两块,它们的表面积比原来增加了12平方分米,圆柱的底面直径是________.7、4.8181…用循环小数简便写法记作________,保留两位小数约是________.8、一个三角形三个内角度数的比是4:3:2,这个三角形是________三角形,最小的内角是________度.9、1 的分数单位是________,再添上________个这样的分数单位就变成最小的质数.10、12、36和54的最大公约数是________,最小公倍数是________.二、判断.(每题1分,5分)11、植树节,我校植树102棵,全部成活,成活率为102%.________(判断对错)12、甲数比乙数多25%,那么乙数比甲数少.________(判断对错)13、所有的质数都是奇数.________(判断对错)14、如果= 那么x与y中成反比例.________(判断对错)15、2克盐放入100克水中,含盐率为2%.________(判断对错)三、选择正确答案的序号,填在括号内(每题1分,5分)16、把36分解质因数是()A、36=4×9B、36=2×2×3×3C、36=1×2×2×3×317、有无数条对称轴的图形是()A、等边三角形B、正方形C、圆D、不确定18、两个不同质数相乘的积一定是()A、偶数B、质数C、合数19、大卫今年a岁,小顺今年(a﹣3)岁,再过5年他们相差的岁数是()A、aB、3C、a﹣320、一个半圆的半径是r,它的周长是()A、πrB、πr+rC、πr+2r四、计算+ =________ × =________+0.375=________ =________22、求x的值.3x+4=5.8x:=60:5.23、计算(能简算的数简算)① × + ×②(+ )×16③ ÷(2﹣÷ )④[2+(54﹣24)× ]× .24、列式计算(1)某数除以7的商比7大7,求某数.(方程解)(2)3减去2除以6的商,再加上结果是多少?25、求阴影部分的面积.(单位:厘米)五、应用题.26、造纸厂去年计划造纸1600吨,实际造纸1800吨,实际超产百分之几?27、小明读一本课外书,前6天每天读25页,以后每天多读15页,又经过4天正好读完,这本课外书有多少页?28、一个长方形操场,周长是180m,长与宽的比是5:4,这个操场的面积是多少平方米?29、化工车间有男工人56名,女工人42名,这个车间的工人总数正好是全厂工人总数的,全厂共有多少名工人?30、一个正方体的原材料,它的棱长是10厘米.现要截成一个体积最大的圆柱体零件,那么,截去部分的体积是多少立方厘米?六、推理.31、甲、乙、丙、丁四位同学进行国际象棋比赛,并决出一、二、三、四名.已知:①甲比乙的名次靠前.②丙、丁都爱踢足球.③第一、三名在这次比赛时才认识.④第二名不会骑自行车,也不爱踢足球.⑤乙、丁每天一起骑自行车上学.请你判断出各自的名次.答案解析部分一、<b >填空(每空1</b><b >分,20</b><b>分)</b>1、【答案】3600 8300;3601【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:三千六百万八千三百写作:3600 8300;3600 8300≈3601万.故答案为:3600 8300,3601.【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;省略“万”后面的尾数求它的近似数,要把万位的下一位千位上的数进行四舍五入,再在数的后面带上“万”字.2、【答案】;【考点】分数的意义、读写及分类【解析】【解答】解:分母是6的最大真分数是,它的分数单位是.故答案为:,.【分析】分子小于分母的分数是真分数,一个分数的分母是几,它的分数单位就是几分之一.3、【答案】8:7①【考点】求比值和化简比【解析】【解答】解:(1)2:1.75=(2×4):(1.75×4)=8:7;(2)2:1.75=2÷1.75= ;故答案为:8:7;.【分析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.4、【答案】2:3;3:2【考点】简单的工程问题【解析】【解答】解:(1)4:6=2:3答:甲、乙二人所用时间的整数比是2:3.(2):=3:2答:工作效率的最简整数比是3:2故答案为:2:3,3:2.【分析】(1)依据求两个数的比的方法即可解答,(2)把这份稿件字数看作单位“1”,先表示出两人是工作效率,再根据求两个数的比的方法,以及比的基本性质即可解答.5、【答案】0.67;0.6【考点】小数大小的比较,小数、分数和百分数之间的关系及其转化【解析】【解答】解:=0.6,66%=0.66;0.6<0.66<0.67,所以最大数为0.67,最小数为0.6.故答案为:0.67;0.6.【分析】先把分数、百分数化成小数,再进行比较,进一步还原为原数,即可解决问题.6、【答案】1.5分米【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【解析】【解答】解:12÷2÷4=1.5(分米),答:圆柱的底面直径是1.5分米.故答案为:1.5分米.【分析】“圆柱体沿着底面直径垂直锯开,平均分成两块”则表面积比原来增加了两个以圆柱的底面直径和高为边长的长方形的面积,已知高是4分米,利用长方形的面积公式可以求出圆柱的底面直径.7、【答案】4. ;4.82【考点】小数的读写、意义及分类,近似数及其求法【解析】【解答】解:4.8181…用循环小数简便写法记作4. ,保留两位小数约是4.82;故答案为:4. ,4.82.【分析】4.8181…是循环小数,循环节是81,简记法:在循环节的首位和末位的上面各记一个小圆点;将此数保留两位小数,就是精确到百分位,看千分位上的数是否满5,再运用“四舍五入”的方法求出近似数即可.8、【答案】锐角;40【考点】按比例分配应用题,三角形的内角和【解析】【解答】解:2+3+4=9,最大的角是:180°×=80°所以这个三角形三个内角度数都小于90度,此三角形是锐角三角形;最小的角是:180°× =40°,故答案为:锐角,40°.【分析】三角形的内角和为180°,进一步直接利用按比例分配求得份数最大和最小的角即可得出结论.9、【答案】;2【考点】分数的意义、读写及分类,合数与质数【解析】【解答】解:的分数单位是.2﹣= ,再添上2个这样的分数单位就变成最小的质数.故答案为:;2.【分析】(1)一个分数的分数单位看分母,分母是几,分数单位就是几分之一,分子是几,它就含有几个这样的单位.(2)最小的质数是2,用2减去原分数的结果,再看有几个分数单位即可解答.10、【答案】6;108【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:12=2×2×336=2×2×3×354=2×3×3×3最大公约数是2×3=6,最小公倍数是2×2×3×3×3=108.故答案为:6,108.【分析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.二、<b >判断.(每题1</b><b >分,5</b><b>分)</b>11、【答案】错误【考点】百分率应用题【解析】【解答】解:102÷102×100%=100%答:成活率是100%.故答案为:错误.【分析】成活率是指成活的棵数占总棵数的百分比,计算方法是:成活的棵数÷植树总棵数×100%=成活率,代入数据求解即可.12、【答案】错误【考点】百分数的加减乘除运算【解析】【解答】解:25%÷(1+25%)=25%÷125%=答:乙数比甲数少.故答案为:错误.【分析】根据“甲数比乙数多25%,”知道是把乙数看作单位“1”,即甲数是乙数的(1+25%),然后用25%除以甲数即得乙数比甲数少几分之几,即可求解.13、【答案】错误【考点】奇数与偶数的初步认识,合数与质数【解析】【解答】解:根据质数和奇数的定义,2是质数,但不是奇数,“所有的质数都是奇数”的说法是错误的.故答案为:错误.【分析】只有1和它本身两个因数的自然数为质数.不能被2整除的数为奇数,也就是说,奇数除了没有因数2外,可以有其它因数.14、【答案】错误【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:如果= ,则x:y== ,是比值一定,所以,如果= ,那么x与y成正比例.故答案为:错误.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.15、【答案】错误【考点】百分率应用题【解析】【解答】解:×100%≈0.0196×100%=1.96%答:盐水的含盐率约是1.96%.故答案为:错误.【分析】含盐率,即盐水中盐的重量占盐水重量的百分之几,计算公式为:×100%,由此解答即可.三、<b >选择正确答案的序号,填在括号内(每题1</b><b>分,5</b><b>分)</b>16、【答案】B【考点】合数分解质因数【解析】【解答】解:A,36=4×9,4和9都是合数,所以不正确;B,36=2×2×3×3;符合要求,所以正确;C,36=1×2×2×3×3,其中1既不是质数,也不是合数,所以不正确;故选B.【分析】分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.17、【答案】C【考点】确定轴对称图形的对称轴条数及位置【解析】【解答】解:等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴,故选:C.【分析】根据图形的性质结合轴对称的定义即可作出判断.18、【答案】C【考点】奇数与偶数的初步认识,合数与质数【解析】【解答】解:两个不同的质数的乘积除了1和它们本身外,还有这两个不同的质数的积,所以它是合数.故选:C.【分析】根据质数与合数的意义,质数只有1和它本身两个因数,合数除了1和它本身还有别的因数.两个不同的质数的乘积除了1和它们本身外,还有这两个不同的质数的积,所以它是合数.19、【答案】B【考点】年龄问题【解析】【解答】解:(a+5)﹣(a﹣3+5),=a﹣a+5﹣5+3,=3(岁).故选:B.【分析】据题意可知,大卫比小顺大:a﹣(a﹣3)=3岁,再过再过5年他们同时增长了5岁,所以再过5年他们相差的岁数是仍是3岁.20、【答案】C【考点】圆、圆环的周长【解析】【解答】解:已知半径是r,所在圆的周长=2πr,半圆面的周长:2πr÷2+2r=πr+2r,故选:C.【分析】根据圆的周长公式C=2πr,先求出圆周长的一半,再加直径,就是半圆的周长.四、<b >计算</b>21、【答案】4.97;12;210;;;0.1;0.5;8;14【考点】分数的加法和减法,小数乘法,小数除法【解析】【分析】根据小数和分数加减乘除法的计算方法进行计算.15﹣﹣根据减法的性质进行简算.22、【答案】解:①3x+4=5.83x+4﹣4=5.8﹣43x=1.8x=0.6②x:=60:55x= ×605x=405x÷5=40÷5x=8【考点】方程的解和解方程,解比例【解析】【分析】①依据等式的性质,方程两边同时减去4,再同时除以3即可求解.②根据比例的性质两个内项之积等于两个外项之积进行化简方程,再依据等式的性质,方程两边同时除以5即可.23、【答案】解:① × + ×= += ;②(+ )×16= ×16+ ×16=2.5+2=4.5;③ ÷(2﹣÷ )= ÷(2﹣1)= ÷1= ;④[2+(54﹣24)× ]×=[2+30× ]×=[2+20]×=22×=10.【考点】整数、分数、小数、百分数四则混合运算【解析】【分析】①先算乘法,再算加法;②运用乘法的分配律进行简算;③先算小括号里的除法,再算减法,最后算括号外的除法;④先算小括号里的减法,再算中括号里的乘法,然后算中括号里的加法,最后算括号外的乘法.24、【答案】(1)解:设某数是x,x÷7﹣7=7x÷7﹣7+7=7+7x÷7=14x÷7×7=14×7x=98答:这个数是98.(2)(3﹣2÷6)+=3﹣+=+=【考点】方程的解和解方程【解析】【分析】(1)设某数是x,根据题意可得x÷7﹣7=7,然后解方程即可求解;(2)2除以6的商为2÷6,3减去2除以6的商的差为3﹣2÷6,则它们的差再加上计算25、【答案】解:①3.14×(12÷2)2÷2,=3.14×36÷2,=56.52(平方厘米),答:阴影部分的面积是56.52平方厘米.②3×2﹣3.14×(2÷2)2,=6﹣3.14,=2.86(平方厘米),答:阴影部分的面积是2.86平方厘米.【考点】组合图形的面积【解析】【分析】(1)阴影部分的面积等于直径12厘米的半圆面积与底12厘米,高6厘米的三角形的面积之差,据此即可解答;(2)阴影部分的面积等于长宽分别是3厘米、2厘米的长方形的面积与半径2厘米的圆的面积之差,据此即可解答.五、<b >应用题.</b>26、【答案】解:(1800﹣1600)÷1600=200÷1600,=12.5%.答:实际超产12.5%【考点】百分数的实际应用【解析】【分析】计划造纸1600吨,实际造纸1800吨,则实际比计划多造纸1800﹣1600吨,根据分数除法的意义,用超产的部分除以计划产量即得超产百分之几.27、【答案】解:25×6+(25+15)×4=150+40×4=150+160=310(页)答:这本书共有310页【考点】整数四则混合运算【解析】【分析】前6天每天读25页,根据乘法的意义,前6天读了25×6页,又以后每天多读15页,则以后每天读25+15页,又读了4天读完,则后四天读了(25+15)×4页,根据加法的意义,将前6天与后4天读的页数相加,即得这本书共有多少页.28、【答案】解:180÷2=90(米)90×=50(米)90×=40(米)50×40=2000(平方米)答:这个操场的面积是2000平方米【考点】按比例分配应用题,长方形、正方形的面积【解析】【分析】已知长方形操场的周长是180m,那么长和宽的和为180÷2=90(米),根据长与宽的比是5:4,求出长和宽,根据长方形面积公式,求出面积即可.29、【答案】解:(56+42)=98× ,=343(人);答:全厂共有343人【考点】分数除法应用题【解析】【分析】化工车间有男工人56名,女工人42名,则共有工人56+42人,由于这个车间的工人总数正好是全厂工人总数的,根据分数除法的意义可知,全厂共有(56+42)÷人.30、【答案】解:103﹣3.14×()2×10=1000﹣3.14×25×10=1000﹣785=215(立方厘米)答:截去部分的体积是215立方厘米【考点】圆柱的侧面积、表面积和体积【解析】【分析】这个圆柱与的底面直径和高都等于这个正方体的棱长时,体积最大,用这个正方体的体积减去圆柱的体积就是截取部分的体积.根据圆柱的体积计算公式“V=πr2h”及正方体的体积计算公式“V=a3”即可分别求出圆柱、正方体的体积.六、<b >推理.</b>31、【答案】解:因为丙、丁都爱踢足球,乙、丁每天一起骑自行车上学,第二名不会骑自行车,也不爱踢足球,所以甲是第二名;根据第一、三名在这次比赛时才认识.且甲是第二名,而丁和丙乙都很熟,所以一三名只能是丙和乙,再根据第一条可知乙是第三,则丙是第一,那么剩下的丁是第四;答:甲第二,乙第三,丙第一,丁第四【考点】逻辑推理【解析】【分析】根据①甲比乙的名次靠前,那么甲只能是第一,二,三名中的一个;根据②丙、丁都爱踢足球,⑤乙、丁每天一起骑自行车上学,④第二名不会骑自行车,也不爱踢足球,所以甲是第二名;根据③第一、三名在这次比赛时才认识.且甲是第二名,而丁和丙乙都很熟,所以一三名只能是丙和乙,再根据第一条可知乙是第三,则丙是第一,那么剩下的丁是第四;据此解答即可.小升初数学试卷一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。

2019年深圳市小升初数学综合模拟试卷(10套卷)(44-53)及答案详细解析

2019年深圳市小升初数学综合模拟试卷(10套卷)(44-53)及答案详细解析

小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。

2019年深圳市小升初数学试卷(附解析)

2019年深圳市小升初数学试卷(附解析)

2019年深圳市小升初数学试卷一、选择题.2.3x﹣7错写成3(x﹣7),结果比原来()A.多43 B.少3 C.少14 D.多14【分析】根据题意知道,用3(x﹣7)减去3x﹣7,得出的数大于0说明结果比原来大,得出的数小于0说明结果比原来小.【解答】解:3(x﹣7)﹣[3x﹣7]=3x﹣21﹣3x+7=﹣14答:3x﹣7错写成3(x﹣7),结果比原来少14,故选:C.3.一个两位数,十位上的数字是6,个位上的数字是a,表示这个两位数的式子是()A.60+a B.6+a C.6+10a D.6a【分析】两位数=十位数字×10+个位数字.【解答】解:因为十位数字为6,个位数字为a,所以6个10与1个a的和为:60+a.故选:A.4.甲袋有a千克大米,乙袋有b千克大米,如果从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等.列成等式是()A.a+8=b﹣8 B.a﹣b=8×2 C.(a+b)÷2=8 D.a﹣8=b【分析】根据“从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等”,那么现在甲袋就有a﹣8千克,乙袋就有b+8千克,得出原来甲袋的大米比乙袋的多,并且两袋相差8×2千克,由此找出a、b之间的关系.【解答】解:根据题意得出两袋大米相差8×2千克,即a﹣b=8×2;故选:B.5.甲、乙、丙、丁四人参加某次电脑技能比赛.甲、乙两人的平均成绩为a 分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为()分.A.a+6 B.4a+1.5 C.4a+6 D.a+1.5【分析】由题意得:甲加乙总分为2a,丙的成绩为a+9,丁的成绩为a﹣3,因此他们四人的平均成绩为(2a+a+9+a﹣3)÷4,据此解答.【解答】解:(2a+a+9+a﹣3)÷4=(4a+6)÷4=a+1.5答:他们四人的平均成绩为(a+1.5)分.故选:D.6.电影院第一排有m个座位,后面一排都比前一排多1个座位.第n排有()个座位.A.m+n B.m+n+1 C.m+n﹣1 D.mn【分析】第1排m个,第2排(m+1)个,第3排(m+2)个,…,从而找到规律,求出第n排的座位.【解答】解:根据题意得:第n排有(m+n﹣1)个座位.故选:C.7.2x﹣28÷2=4,这个方程的解是()A.x=5 B.x=9 C.x=10 D.x=20【分析】首先根据等式的性质,两边同时加上14,然后两边再同时除以2即可.【解答】解:2x﹣28÷2=42x﹣14+14=4+142x=182x÷2=18÷2x=9所以这个方程的解是x=9,故选:B.8.下面几句话中错误的一句是()A.判断方程的解是否正确,只要把方程的解代入原方程,看方程左右两边是否相等B.等式的两边同时乘或除以一个数,所得结果仍是等式C.a2不一定大于2a【分析】根据相关知识点,逐项分析后,进而确定错误的选项.【解答】解:A、判断方程的解是否正确的方法是:把方程的解代入原方程,看方程左右两边是否相等;所以原说法正确B、根据等式的性质,可知在等式的两边同时乘或除以一个不为0的数,所得等式才能仍是等式;所以原说法错误C、当a=0或2时,a2等于2a,所以a2不一定大于2a;所以原说法正确故选:B.二、填空题.9.三数之和是120,甲数是乙数的2倍,丙数比乙数多20,丙数是45 .【分析】本题数量关系比较复杂,甲数是乙数的2倍,丙数比乙数多20,甲数和丙数都同乙数有关系,因此本题用方程解比较简单.【解答】解:设乙数为x,则甲数为2x,丙数为x+20.2x+x+x+20=1204x+20=1204x+20﹣20=120﹣204x=1004x÷4=100÷4x=25.25+20=45.答;丙数是45.故答案为45.10.已知4x+8=20,那么2x+8=14 .【分析】根据等式的性质,求出方程4x+8=12的解,再把x的值代入2x+8.据此解答.【解答】解:4x+8=20,4x+8﹣8=20﹣8,4x÷4=12÷4,x=3,把x=3代入2x+8得2x+8=2×3+8=6+8=14.故答案为:14.11.爸爸说:“我的年龄比小明的4倍多3.”小明说:“我今年a岁.”用含有字母的式子表示爸爸的年龄,写作4a+3岁;如果小明今年8岁,那么爸爸今年35 岁.【分析】(1)根据题意知道,爸爸的年龄=小明的年龄×4+3.把字母代入,即可得出爸爸的年龄;(2)把小明的年龄代入(1)所求出的式子,即可得出爸爸今年的年龄.【解答】解:a×4+3,=4a+3(岁),(2)把a=8,代入4a+3,即,4a+3,=4×8+3,=32+3,=35(岁),故答案为:4a+3岁,35.12.果园里有苹果树和梨树共45棵,其中梨树有a棵,苹果树比梨树多45﹣2a棵.【分析】先求出苹果树的棵数,再用苹果的棵数减去梨的棵数,就是要求的答案.【解答】解:45﹣a﹣a,=45﹣2a(棵);答:苹果树比梨树多45﹣2a棵.故答案为:45﹣2a.13.在一场篮球比赛中,小红共投中a个三分球,b个两分球,发球还的5分,在这场比赛中,小红共得3a+2b+5 分.【分析】用三分球的得分加二分球的得分加发球得分,即可求出总得分.【解答】解:3×a+2×b+5=3a+2b+5(分)故答案为:3a+2b+5.14.1只青蛙1张嘴,2只眼睛4条腿,扑通扑通跳下水,2只青蛙2张嘴,4只眼睛8条腿,扑通扑通跳下水,…n只青蛙n张嘴,2n只眼睛4n条腿,扑通扑通跳下水.【分析】要求n只青蛙几张嘴,几只眼睛,几条腿,首先分析“1只青蛙1张嘴,2只眼睛4条腿”这个条件,然后用乘法进一步解答即可.【解答】解:n×1=n(张)n×2=2n(只)n×4=4n(条)故填n,2n,4n.15.小林买4支钢笔,每支a元;又买了5本练习本,每本b元.一共付出的钱数可用式子4a+5b来表示;当a=0.5,b=1.2时,一共应付出8 元.【分析】(1)买4支钢笔,每支a元,买钢笔共花4a元;买5本练习本,每本b元,买练习本共花5b元;一共付出的钱数可用式子4a+5b来表示;(2)把a=0.5,b=1.2代入4a+5b中,即可求出一共应付的钱数.【解答】解:共付出的钱数可用式子表示为:4a+5b;当a=0.5,b=1.2时,一共应付出:4a+5b,=4×0.5+5×1.2,=2+6,=8(元).故答案为:4a+5b,8.16.已知x=5是方程ax﹣3=12的解,那么方程ay+4=25的解是y=7 .【分析】把x=5代入ax﹣3=12,依据等式的性质求出a的值,再把a的值代入方程ay+4=25,再依据等式的性质进行求解.【解答】解:把x=5代入ax﹣3=12可得:5a﹣3=125a﹣3+3=12+35a=155a÷5=15÷5a=3把a=3代入ay+4=25可得:3y+4=253y+4﹣4=25﹣43y=213y÷3=21÷3y=7故答案为:y=7.17.在①3x+4x=48 ②69+5n③5+3x>60 ④12﹣3=9⑤x+x﹣3=0 中,是方程的有①⑤,是等式的有①④⑤.【分析】等式是指用“=”连接的式子,方程是指含有未知数的等式;据此进行分类.【解答】解:①3x+4x=48,既含有未知数,又是等式,所以既是等式,又是方程;②69+5n,只是含有未知数的式子,所以既不是等式,又不是方程;③5+3x>60,是含有未知数的不等式,所以既不是等式,又不是方程;④12﹣3=9,只是用“=”连接的式子,没含有未知数,所以只是等式,不是方程;⑤x+x﹣3=0,既含有未知数,又是等式,所以既是等式,又是方程;所以方程有:①⑤,等式有:①④⑤.故答案为:①⑤,①④⑤.三、解答题(共2小题,满分0分)18.【分析】算式①、③根据四则混合运算的运算顺序计算即可.算式②、④可据乘法分配律进行计算即可尤其注意第二题中的数据.【解答】解:①100.4﹣9+0.77÷1.1,=100.4﹣9+0.7,=91.4+0.7,=92.1;②98.7×0.9+98.7,=98.7×(0.9+1),=187.53;19.解方程或比例.四、解决问题.20.甲乙两车同时从相距135千米的两地相对开出,1.5小时后相遇,甲的速度是每小时48千米,求乙车速度是每小时多少千米?(列方程解答)【分析】首先找出题中的等量关系式,(甲车速度+乙车速度)×相遇时间=两地间的路程,由此列方程解答即可.【解答】解:设乙车速度是每小时x千米,(48+x)×1.5=135,48+x=135÷1.548+x=90x=90﹣48x=42;答:乙车速度是每小时42千米.21.一桶油,第一次用去油的总千克数的30%,第二次用去10千克,两次共用去这桶油的2/5.这桶油有多少千克?用去两次后还剩多少千克?【分析】要求这桶油有多少千克,要找出10千克对应的分率,即10千克是这桶油的几分之几,通过题意可知,这桶油的(2/5﹣30%)是10千克,根据已知一个数的几分之几是多少,求这个数用除法解答;两次共用去这桶油的,根据一个数乘分数的意义即可得出结论.【解答】解:10÷(2/5﹣30%)=100(千克),100×2/5=40(千克);答:这桶油有100千克.用去两次后还40少千克.22.红星机床厂上个月计划秤机床200台,实际比计划多生产40台,实际产量是计划的百分之几?【分析】夏秋出是i的产量是多少台,然后用实际的产量除以计划的产量即可.【解答】解:(200+40)÷200,=240÷200,=120%;答:实际产量是计划的120%.23.学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?【分析】由题意得,把315本科普读物平均分成3+4=7份,又因五年级比六年级少一份,于是用除法可以求出每一份的数量,也就是五年级比六年级少的本数,问题即可得解.【解答】解:315÷(3+4)×(4﹣3),=315÷7×1,=45(本);答:五年级比六年级少借45本.24.希望小学要买60个足球,现有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同.甲店:买10个足球免费赠送2个,不足10个不赠送.乙店:每个足球优惠5元.丙店:购物每满200元,返还现金30元.为了节省费用,希望小学应到哪个商店购买?为什么?【分析】由题意可得,甲店:买50个,送10个刚好60个,即化买50个足球的钱即可;乙店:即每个足球25﹣5=20元;丙店:先算出买60个球花60×25=1500元,1500除以200=7.5,返还30×7=210元,用花的总钱数减去返还的即可;【解答】解:甲:50×25=1250(元);乙:60×(25﹣5)=1200(元);丙:60×25=1500(元),1500÷200=7.5(个),1500﹣30×7=1290(元);1200元<1250元<1290元,所以乙最划算;答:到乙店购买便宜,最划算.。

2019年深圳市小升初数学综合模拟试卷(10套卷)(24-33)及答案详细解析

2019年深圳市小升初数学综合模拟试卷(10套卷)(24-33)及答案详细解析

小升初数学综合模拟试卷24一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。

三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?答案一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、…、92、96,共25个,其中含有数字0的有7个(00、 04、 08、 20、 40、 60、 80),其余 18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有 630+162=792(个).10. x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以 a+f+d+c=20又 a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则 a+d+c+f=2x+10.所以 2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.小升初数学综合模拟试卷25一、填空题:2.三个不同的三位数相加的和是2993,那么这三个加数是______.3.小明在计算有余数的除法时,把被除数472错看成427,结果商比原来小5,但余数恰巧相同.则该题的余数是______.4.在自然数中恰有4个约数的所有两位数的个数是______.5.如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.6.现有2克、3克、6克砝码各一个,那么在天平秤上能称出______种不同重量的物体.7.有一个算式:五入的近似值,则算式□中的数依次分别是______.8.某项工作先由甲单独做45天,再由乙单独做18天可以完成,如果甲乙两人合作可30天完成。

2019年深圳市小升初数学综合模拟试卷(10套卷)(5-14)及答案详细解析

2019年深圳市小升初数学综合模拟试卷(10套卷)(5-14)及答案详细解析

小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a 绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)小升初数学综合模拟试卷6一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31= 19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.小升初数学综合模拟试卷7一、填空题:2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.么回来比去时少用______小时.4.7点______分的时候,分针落后时针100度.5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆.9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是______.10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做______次能使6个学生都面向北.二、解答题:1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n 是多少?3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.答案一、填空题:1.(1)2.(5∶6)周长的比为5∶6.4.(20)5.(3)根据弃九法计算.3145的弃九数是4,92653的弃九数是7,积的弃九数是1,29139□685,已知8个数的弃九数是7,要使积的弃九数为1,空格内应填3.6.(1/3)7.(30)8.(10)设24辆全是汽车,其轮子数是24×4=96(个),但实际相差96-86=10(个),故(4×24-86)÷(4-3)=10(辆).9.甲先把(4,5),(7,9),(8,10)分组,先写出6,则乙只能写4,5,7,8,9,10中一个,乙写任何组中一个,甲则写另一个.10.(6次)由6个学生向后转的总次数能被每次向后转的总次数整除,可知,6个学生向后转的总次数是5和6的公倍数,即30,60,90,…据题意要求6个学生向后转的总次数是30次,所以至少要做30÷5=6(次).二、解答题:1.(4)由图可知空白部分的面积是规则的,左下角与右上角两空白部分面积和为3个单位,右下为2个单位面积,故阴影:9-3-2=4.2.(1089)9以后,没有向千位进位,从而可知b=0或1,经检验,当b=0时c=8,满足等式;当b=1时,算式无法成立.故所求四位数为1089.3.本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n 行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.4.可以先从两个自然数入手,有偶数,可被2整除,结论成立;当其中无偶数,奇数之和是偶数可被2整除.再推到3个自然数,当其中有3的倍数,选这个数即可;当无3的倍数,若这3个数被3除的余数相等,那么这3个数之和可被3整除,若余数不同,取余1和余2的各一个数和能被3整除,类似断定5个,6个,…,整数成立.利用结论与若干个数之和有关,构造k个和.设k个数是a1,a2,…,ak,考虑,b1,b2,b3,…bk其中b1=a1,b 2=a1+a2,…,bk=a1+a2+a3+…+ak,考虑b1,b2,…,bk被k除后各自的余数,共有b;能被k整除,问题解决.若任一个数被k除余数都不是0,那么至多有余1,2,…,余k-1,所以至少有两个数,它们被k除后余数相同.这时它们的差被k整除,即a1,a2…,ak中存在若干数,它们的和被k整除.小升初数学综合模拟试卷8一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG 边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?答案一、填空题:3.(37)将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形.4.(6年)今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年.5.(154)145×4-(139+143+144)=154.6.(421)这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.7.(5)由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径9.(16升)由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:故较少容器原有水量8×2=16(升).把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶二、解答题:1.(26棵)要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=262.(28米/秒,260米)(1980-1140)÷(80-50)=28(米/秒)28×50-1140=260(米)3.不可能.反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.4.(106元)(元).小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。

2019年广东省深圳市小升初数学期末统考试卷(含详细解析)

2019年广东省深圳市小升初数学期末统考试卷(含详细解析)

2019年广东省深圳市小升初数学试卷一、选择题.1.如果1133X ÷=,那么1(3X = ) A .13 B .16 C .19 D .1272.37x -错写成3(7)x -,结果比原来( )A .多43B .少3C .少14D .多143.一个两位数,十位上的数字是6,个位上的数字是a ,表示这个两位数的式子是( )A .60a +B .6a +C .610a +D .6a4.甲袋有a 千克大米,乙袋有b 千克大米,如果从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等.列成等式是( )A .88a b +=-B .82a b -=⨯C .()28a b +÷=D .8a b -=5.甲、乙、丙、丁四人参加某次电脑技能比赛.甲、乙两人的平均成绩为a 分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为( )分.A .6a +B .4 1.5a +C .46a +D . 1.5a +6.电影院第一排有m 个座位,后面一排都比前一排多1个座位.第n 排有( )个座位.A .m n +B .1m n ++C .1m n +-D .mn7.22824x -÷=,这个方程的解是( )A .5x =B .9x =C .10x =D .20x =8.下面几句话中错误的一句是( )A .判断方程的解是否正确,只要把方程的解代入原方程,看方程左右两边是否相等B .等式的两边同时乘或除以一个数,所得结果仍是等式C .2a 不一定大于2a二、填空题.9.三数之和是120,甲数是乙数的2倍,丙数比乙数多20,丙数是 .10.已知4820x +=,那么28x += .11.爸爸说:“我的年龄比小明的4倍多3.”小明说:“我今年a 岁.”用含有字母的式子表示爸爸的年龄,写作 ;如果小明今年8岁,那么爸爸今年 岁.12.果园里有苹果树和梨树共45棵,其中梨树有a 棵,苹果树比梨树多 棵.13.在一场篮球比赛中,小红共投中a 个三分球,b 个两分球,发球还的5分,在这场比赛中,小红共得 分.14.1只青蛙1张嘴,2只眼睛4条腿,扑通扑通跳下水,2只青蛙2张嘴,4只眼睛8条腿,扑通扑通跳下水,⋯n 只青蛙 张嘴, 只眼睛 条腿,扑通扑通跳下水.15.小林买4支钢笔,每支a 元;又买了5本练习本,每本b 元.一共付出的钱数可用式子来表示;当0.5a =, 1.2b =时,一共应付出 元.16.已知5x =是方程312ax -=的解,那么方程425ay +=的解是 .17.在①3448x x +=②695n +③5360x +>④1239-=⑤30x x +-= 中,是方程的有 ,是等式的有 .三、解答题(共2小题,满分0分)18.计算.(能简便计算的要简便计算)100.490.77 1.1-+÷ 98.70.998.7⨯+8213[()]95104÷+⨯ 33127355-⨯-⨯. 19.解方程或比例.(1)13139288x -= (2)280.40.1x = (3)1730.92x -= (4)132213545x += (5)212.5236x -= (6)355148x ⨯-= 四、解决问题.20.甲乙两车同时从相距135千米的两地相对开出,1.5小时后相遇,甲的速度是每小时48千米,求乙车速度是每小时多少千米?(列方程解答)21.一桶油,第一次用去油的总千克数的30%,第二次用去10千克,两次共用去这桶油的25.这桶油有多少千克?用去两次后还剩多少千克? 22.红星机床厂上个月计划秤机床200台,实际比计划多生产40台,实际产量是计划的百分之几?23.学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?24.希望小学要买60个足球,现有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同.甲店:买10个足球免费赠送2个,不足10个不赠送.乙店:每个足球优惠5元.丙店:购物每满200元,返还现金30元.为了节省费用,希望小学应到哪个商店购买?为什么?。

2019年广东省深圳市小升初招生入学数学试卷(含解析)印刷版

2019年广东省深圳市小升初招生入学数学试卷(含解析)印刷版

2019年广东省深圳市小升初招生入学数学试卷一、比眼力,你能把每题中正确答案的序号都写在()里(14分)1.(2分)一个三角形,三个内角度数的比为2:5:3,则此三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定2.(2分)一批水泥,用去,剩下的是用去的()A.B.C.D.3.(2分)一台电冰箱的原价是2400元,现在按七折出售,求便宜了多少元?列式是()A.2400÷70%B.2400×70%C.2400×(1﹣70%)D.2400÷(1﹣70%)4.(2分)已知:a×=b×1=c÷,且a、b、c都不等于0,则a、b、c中最小的数是()A.a B.b C.c5.(2分)用100个盒子装杯子,每盒装的个数都不相同,并且每盒不空,那么至少要用()杯子.A.100B.500C.1000D.50506.(2分)一个小数的小数点向右移动一位,比原数大5.4,原来的这个小数是()A.0.6B.5.4C.0.54D.0、457.(2分)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果的价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果()个.A.10B.100C.20D.160二、细心填一填,你一定行(共22分,每小题2分)8.(2分)四川汶川特大地震发生以来,全国共接收国内外社会各界捐赠款物(截至2008年9月25日12时)总计(五百九十四亿六千万零八十元),括号里的数写作,省略亿后面的尾数约是.9.(2分)水是由氢气和氧气按1:8的质量比反应生成的.如果要生成54千克的水,需要氢气千克.10.(2分)一个正方形的边长增加2cm,面积增加20cm2,扩大后正方形面积为cm2.11.(2分)工地上有a吨水泥,每天用去b吨,用了2天.用式子表示剩下的吨数是.如果a=20,b=4,那么剩下的是吨.12.(2分)如图中,平行四边形的面积是30平方厘米,图中甲、乙两个三角形的面积比是13.(2分)小明在超市买一种学生橡皮,如图:小明有3.6元,他能买到块这种橡皮.14.(2分)规定一种运算:a#b=ab+2a﹣1,则6#5=15.(2分)A,B,C,D,E,F六个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A→F,B→D,C→E,D→B,E→A,F→C.开始时,A,B,C,D,E,F拿着各自的玩具,传递完2002轮时,有个小朋友又拿到了自己的玩具.16.(2分)已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是.17.(2分)5年前爸爸的年龄是儿子的5倍,6年后,爸爸和儿子的年龄之和是64岁,那么儿子今年岁,爸爸今年岁.18.(2分)一次数学竞赛中共有20道题,规定答对一道得5分,答错或不答一题扣2分,得到65分才能晋级,小明若想晋级,他至少要答对道题.三、神机妙算显身手、怎样简便怎样算.(15分)19.(10分)怎样简便怎样算.①2009+999×2009 ②4.2×0.36+42×6.4%③(3.75+4.1+2.35)×9.8 ④÷[(+1.25)×]﹣⑤四、解方程(9分)20.(9分)解方程①3.5x=39.6+2.7x ②1﹣80%x=③0.4:0.25=五、实践与应用.(共40分)21.(10分)如图,一个梯形的上底是5厘米,下底是8厘米.三角形的高是4厘米,并把三角形分为面积相等的甲乙两部分,求阴影部分的面积.22.(5分)希望小学装修多媒体教室.计划用边长30厘米的釉面方砖铺地,需要900块,实际用边长50厘米的方大理石铺地,需要多少块?(用比例知识解答)23.(6分)小明“五一”放假准备去旅游,他把汽车从深圳到广州的情况制成下面的统计图.请你回答下面的问题.①汽车从深圳行驶到东莞时的速度是每小时行千米.②汽车在往广州千米处休息了一段时间,休息了小时.③看了这个统计图,请你再提出一个数学问题并解决这个问题.24.(6分)找规律并计算.①观察下面的算式,按规律再写2组:﹣═;;……②根据上面的发现,试计算:+++++++25.(6分)一家服装厂出售两种服装,一种每件售价24元,可赚20%;另一种每件售价也是24元,但赔本20%.如果两种服装各卖出一件后,是赚钱还是赔本?赚(赔)了多少钱?26.(6分)四只猴子吃桃,第一只猴子吃的是另外三只猴子总数的一半,第二只猴子吃的是另外三只猴子的,第三只猴子吃的是另外三只猴子吃的,第四只猴子吃了26个.问第一只猴子吃了几个桃子?27.(6分)某班学生要栽一批树苗.若每个人分配k棵树苗,则剩下38棵;若每个学生分配9棵树苗,则还差3棵.那么k是多少棵树苗?2019年广东省深圳市小升初招生入学数学试卷参考答案与试题解析一、比眼力,你能把每题中正确答案的序号都写在()里(14分)1.(2分)一个三角形,三个内角度数的比为2:5:3,则此三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【分析】已知三角形三个内角的度数之比,可以设一份为k,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设三个内角的度数分别为2k,5k,3k.则2k+5k+3k=180°,10k=180°,k=18°,2k=36°,5k=90°,3k=54°,则这个三角形是直角三角形.故选:B.2.(2分)一批水泥,用去,剩下的是用去的()A.B.C.D.【分析】一批水泥,用去,还剩下1﹣=,则剩下的是用去的:=.【解答】解:(1﹣)=,=.故选:C.3.(2分)一台电冰箱的原价是2400元,现在按七折出售,求便宜了多少元?列式是()A.2400÷70%B.2400×70%C.2400×(1﹣70%)D.2400÷(1﹣70%)【分析】七折是指现价是原价的70%,把原价看成单位“1”,现价比原价便宜(1﹣75%),用原价乘上这个分率就是便宜的钱数.【解答】解:2400×(1﹣70%)=2400×30%=720(元)答:便宜了720元.故选:C.4.(2分)已知:a×=b×1=c÷,且a、b、c都不等于0,则a、b、c中最小的数是()A.a B.b C.c【分析】a×=b×1=c÷=c×,在积相等的情况下,其中的一个因数越大,另一个因数就越小,因为>>,所以a>c>b,即b最小.【解答】解:a×=b×1=c÷=c×;因为>>,所以a>c>b,即b最小.故选:B.5.(2分)用100个盒子装杯子,每盒装的个数都不相同,并且每盒不空,那么至少要用()杯子.A.100B.500C.1000D.5050【分析】用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,所以又100种不同的装法,要求至少需要多少个杯子,那么可以从最少的个数装起:即每个盒子里的杯子数分别为1、2、3、4、5、6…100,由此可得出所需要的杯子数为:1+2+3+4+5+…+100,利用高斯求和的方法即可解决问题.【解答】解:根据题干分析可得:每个盒子里的杯子数分别为1、2、3、4、5、6…100,所以需要的杯子数为:1+2+3+4+5+ (100)=(1+100)×(100÷2),=101×50,=5050(个),故选:D.6.(2分)一个小数的小数点向右移动一位,比原数大5.4,原来的这个小数是()A.0.6B.5.4C.0.54D.0、45【分析】小数点向右移动一位,这个数就扩大10倍,设原数为x,那么扩大后的数为10x,10x﹣x=5.4解这个方程求出x.【解答】解:设原来这个数为x,那么扩大后的数为10x.10x﹣x=5.49x=5.4x=0.6答:原来这个数是0.6.故选:A.7.(2分)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果的价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果()个.A.10B.100C.20D.160【分析】根据题意,先求出买进和卖出一个苹果的单价,再根据单价,数量,和总价的关系,即可求出答案.【解答】解:15÷(2÷5﹣1÷4),=15÷(﹣),=15÷,=100(个),答:他必须卖出100个;故选:B.二、细心填一填,你一定行(共22分,每小题2分)8.(2分)四川汶川特大地震发生以来,全国共接收国内外社会各界捐赠款物(截至2008年9月25日12时)总计(五百九十四亿六千万零八十元),括号里的数写作59460000080,省略亿后面的尾数约是595亿.【分析】写这个数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0;省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.【解答】解:五百九十四亿六千万零八十元写作59460000080,省略亿后面的尾数约是595亿.故答案为:59460000080,595亿.9.(2分)水是由氢气和氧气按1:8的质量比反应生成的.如果要生成54千克的水,需要氢气6千克.【分析】由“水是由氢气和氧气按1:8的质量比生成的”可求出氢气占水质量的几分之几,然后根据乘法的意义,解决问题.【解答】解:54×=54×=6(千克)答:需要氢气6千克.故答案为:6.10.(2分)一个正方形的边长增加2cm,面积增加20cm2,扩大后正方形面积为36cm2.【分析】如图所示,正方形的边长增加后,则图形增加部分由2个长为原正方形的边长,宽为2厘米的长方形和一个边长为2厘米的正方形组成,增加部分的面积已知,从而可以求出原正方形的边长,也就能求原正方形的面积,原正方形的面积加上增加的面积,就是扩大后正方形面积.【解答】解:原正方形的边长:(20﹣2×2)÷2÷2,=16÷2÷2,=8÷2,=4(厘米);扩大后正方形面积:4×4+20,=16+20,=36(平方厘米);答:扩大后正方形面积是36平方厘米.故答案为:36.11.(2分)工地上有a吨水泥,每天用去b吨,用了2天.用式子表示剩下的吨数是a﹣2b.如果a =20,b=4,那么剩下的是12吨.【分析】要用式子表示剩下的吨数,首先分析“每天用去b吨,用了2天”这两个条件,求出用去的吨数,再用总共的水泥吨数减去用去的就是还剩的;然后把a=20,b=4,代入前面的式子算出答案.【解答】解:a﹣b×2=a﹣2b当a=20,b=4时,a﹣2b=20﹣2×4=20﹣8=12(吨)故填a﹣2b,12.12.(2分)如图中,平行四边形的面积是30平方厘米,图中甲、乙两个三角形的面积比是3:1【分析】(1)根据平行四边形的对角线把平行四边形平均分成了两个面积相等的三角形的特点,可知甲的面积和△ABC的面积相等;(2)因为BD=2DC,根据高一定时,三角形的面积与底成正比的性质可得:S△ABC:S乙=3:1,而S与S甲的面积相等,由此即可解决问题△ABC【解答】解:因为BD=2DC,所以S△ABC:S乙=3:1,平行四边形的对角线的性质可得:S甲=S△ABC,故甲、乙两个三角形的面积之比是:3:1;答:甲、乙两个三角形的面积比是3:1.故答案为:3:1.13.(2分)小明在超市买一种学生橡皮,如图:小明有3.6元,他能买到12块这种橡皮.【分析】根据题意,可用公式总价÷单价=数量进行计算,然后再看购买的橡皮里面有几个2就会送几块橡皮,最后在用购买的橡皮数量加赠送的数量即可.【解答】解:3.6÷0.45=8(块)8÷2=4(块)8+4=12(块)答:他能买到12块橡皮.故答案为:12.14.(2分)规定一种运算:a#b=ab+2a﹣1,则6#5=41【分析】根据所给出的等式a#b=ab+2a﹣1,找出新的运算方法,再根据新的运算方法解决问题即可.【解答】解:6#5=6×5+2×6﹣1=30+12﹣1故答案为:41.15.(2分)A,B,C,D,E,F六个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A→F,B→D,C→E,D→B,E→A,F→C.开始时,A,B,C,D,E,F拿着各自的玩具,传递完2002轮时,有2个小朋友又拿到了自己的玩具.【分析】求出六位小朋友的玩具回到自己手中要传递的次,也就是完成一个循环需要的游戏轮数.要求2002轮时有几个又拿到了自己的玩具,用2002除以周期数即可求解.【解答】解:A小朋友:A﹣F,F﹣C,C﹣E,E﹣A,共经历4轮;B小朋友:B﹣D,D﹣B,共经历2轮;C小朋友:C﹣E,E﹣A,A﹣F,F﹣C,共经历4轮;D小朋友:D﹣B,B﹣D,共经历2轮;E小朋友:E﹣A,A﹣F,F﹣C,C﹣E,共经历4轮;F小朋友:F﹣C,C﹣E,E﹣A,A﹣F,共经历4轮;所以A、C、E、F四位小朋友传4轮玩具就能回到自己手中,所以周期是4,B、D两位小朋友传2轮玩具就能回到自己手中,所以周期是2.2002÷4=500(组)…2(轮)2002÷2=1001(组)所以传完2002轮时,B、D两位小朋友拿到了自己的玩具,共计2人.16.(2分)已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是24.【分析】根据“9个数的平均数是72”,可以求出这9个数的和是多少;再根据“去掉一个数后,余下的数平均数为78”,又可求出余下的8个数的和是多少;进一步求出去掉的数是多少.【解答】解:9个数的和:72×9=648,余下的8个数的和:78×8=624,去掉的数是:648﹣624=24.答;去掉的数是24.故答案为;24.17.(2分)5年前爸爸的年龄是儿子的5倍,6年后,爸爸和儿子的年龄之和是64岁,那么儿子今年12岁,爸爸今年40岁.【分析】6年后,爸爸和儿子的年龄之和是64岁,那么5年前爸爸和儿子的年龄之和是64﹣(6+5)×2=42岁,然后根据和倍公式可以求出5年前儿子的年龄,即:42÷(5+1)=7(岁),则5年前爸爸的年龄是7×5=35(岁),再分别加上5就是今年爸爸和儿子的年龄.=64﹣22=42(岁)42÷(5+1)=7(岁)7+5=12(岁)7×5=35(岁)35+5=40(岁)答:儿子今年12岁,爸爸今年40岁.故答案为:12;40.18.(2分)一次数学竞赛中共有20道题,规定答对一道得5分,答错或不答一题扣2分,得到65分才能晋级,小明若想晋级,他至少要答对15道题.【分析】答错或不答一题扣2分,不仅不得分,还要倒扣2分,相当于每错一道要丢5+2=7分.假设他全做对了,应得100分,现在得了65分,说明他被扣了100﹣65=35分,故他做错35÷7=5道,做对15道才能晋级.列式为:20﹣(5×20﹣65)÷(5+2).【解答】解:20﹣(5×20﹣65)÷(5+2)=20﹣35÷7=20﹣5=15(道)答:他至少要答对15道题.故答案为:15.三、神机妙算显身手、怎样简便怎样算.(15分)19.(10分)怎样简便怎样算.①2009+999×2009②4.2×0.36+42×6.4%③(3.75+4.1+2.35)×9.8④÷[(+1.25)×]﹣⑤【分析】①根据乘法分配律简算;②根据乘法分配律简算;③先根据加法交换律简算小括号里面的,再根据乘法分配律简算;④先算小括号里面的加法,再算中括号里面的乘法,然后算中括号外面的除法,最后算括号外的减法;⑤先根据乘法分配律把分子和分母分别化简,再约分.【解答】解:①2009+999×2009=2009×(1+999)=2009×1000=2009000②4.2×0.36+42×6.4%=4.2×(0.36+0.64)=4.2×1=4.2③(3.75+4.1+2.35)×9.8=(3.75++2.35+4.1)×9.8=(6.1+4.1)×9.8=10.2×9.8=(10+0.2)×9.8=10×9.8+0.2×9.8=98+1.96=99.96④÷[(+1.25)×]﹣=÷[×]﹣=÷﹣=﹣=⑤====1四、解方程(9分)20.(9分)解方程①3.5x=39.6+2.7x②1﹣80%x=③0.4:0.25=【分析】(1)根据等式的基本性质先给等式两边同时减去2.7x,得0.8x=39.6,再给等式两边同时除以0.8计算即可;(2)根据等式的基本性质先给等式两边同时加上80%x,再给等式两边同时减去,最后给等式两边同时除以0.8计算即可;(3)根据比例的基本性质得0.4x=0.25×12,再根据等式的基本性质先给等式两边同时除以0.4计算即可.【解答】解:(1)3.5x=39.6+2.7x3.5x﹣2.7x=39.60.8x=39.6x=49.5(2)1﹣80%x=1﹣80%x+80%x=0.6+80%x0.8x=1﹣0.60.8x=0.4x=0.5(3)0.4:0.25=0.4x=0.25×120.4x=3x=7.5五、实践与应用.(共40分)21.(10分)如图,一个梯形的上底是5厘米,下底是8厘米.三角形的高是4厘米,并把三角形分为面积相等的甲乙两部分,求阴影部分的面积.【分析】根据题意,三角形的高即为阴影部分梯形的高,可用梯形的下底减去梯形的上底等于乙部分三角形的底,三角形甲乙两部分的底相等,再用梯形的上底减去甲部分的底就为阴影部分梯形的下底,然后再根据梯形的面积公式进行计算即可得到答案.【解答】解:[5﹣(8﹣5)+5]×4÷2,=[5﹣3+5]×4÷2,=[2+5]×4÷2,=7×4÷2,=28÷2,=14(平方厘米);答:阴影部分的面积为14平方厘米.22.(5分)希望小学装修多媒体教室.计划用边长30厘米的釉面方砖铺地,需要900块,实际用边长50厘米的方大理石铺地,需要多少块?(用比例知识解答)【分析】根据题意知道,多媒体教室地面的面积一定,一块方砖的面积×方砖的块数=教室的面积(一定),即一块方砖的面积和方砖的块数成反比例,由此列式解答即可.【解答】解:设需要x块,50×50×x=30×30×900,x=,x=324,答:需要324块.23.(6分)小明“五一”放假准备去旅游,他把汽车从深圳到广州的情况制成下面的统计图.请你回答下面的问题.①汽车从深圳行驶到东莞时的速度是每小时行100千米.②汽车在往广州200千米处休息了一段时间,休息了0.5小时.③看了这个统计图,请你再提出一个数学问题并解决这个问题.【分析】①通过观察折线统计图可知:汽车从深圳行驶到东莞时的速度是每小时行驶100千米.②通过观察折线统计图可知:汽车在往广州200千米处休息了一段时间,休息了0.5小时.③从深圳到广州的路程有多少千米?通过观察折线统计图可知:从深圳到广州的路程有300千米.据此解答.【解答】解:①汽车从深圳行驶到东莞时的速度是每小时行驶100千米.②汽车在往广州200千米处休息了一段时间,休息了0.5小时.③从深圳到广州的路程有多少千米?通过观察折线统计图可知:从深圳到广州的路程有300千米.故答案为:100;200、0.5.24.(6分)找规律并计算.①观察下面的算式,按规律再写2组:﹣═;;……②根据上面的发现,试计算:+++++++【分析】根据拆项公式=﹣拆项后通过加减相互抵消即可简算.【解答】解:+++++++=﹣+﹣+﹣+…+﹣=﹣=25.(6分)一家服装厂出售两种服装,一种每件售价24元,可赚20%;另一种每件售价也是24元,但赔本20%.如果两种服装各卖出一件后,是赚钱还是赔本?赚(赔)了多少钱?【分析】先把第一件衣服的成本价看成单位“1”,售价是成本价的(1+20%),它对应的数量是120元,由此用除法求出成本价,进而求出赚了多少钱;再把第二件衣服的成本价看成单位“1”,售价是成本价的(1﹣20%),它对应的数量是120元,由此用除法求出成本价,进而求出赔了多少钱;再把赚的钱数和赔的钱数比较即可.【解答】解:第一件成本价为:24÷(1+20%)=24÷120%=20(元)第一件赚的钱数为:24﹣20=4(元)第二件成本价为:24÷(1﹣20%)=24÷80%=30(元)第二件赔的钱数为:30﹣24=6(元)因为4<6,所以这两种服装各买出一件后赔了6﹣4=2(元)答:卖这两件衣服总的是赔本,赔了2元.26.(6分)四只猴子吃桃,第一只猴子吃的是另外三只猴子总数的一半,第二只猴子吃的是另外三只猴子的,第三只猴子吃的是另外三只猴子吃的,第四只猴子吃了26个.问第一只猴子吃了几个桃子?【分析】把桃子的总数量看作单位“1”,则第一只猴子的吃了总数的=,则第二只猴子的吃了总数的=,则第三只猴子的吃了总数的=,第四只猴子吃了总数的1﹣﹣,得到的这个分率对应的具体数是26个,进一步求出总数,再根据第一只猴子的吃了总数的=,用乘法计算即可.【解答】解:26÷(1﹣)×=26÷×=120×=40(个)答:第一只猴子共吃了40个桃子.27.(6分)某班学生要栽一批树苗.若每个人分配k棵树苗,则剩下38棵;若每个学生分配9棵树苗,则还差3棵.那么k是多少棵树苗?【分析】第一次每个人分配k棵树苗,第二次每个学生分配9棵树苗,两次分配每个人相差(9﹣k)棵树苗,第一次分配过后剩下38棵,第二次分配过后差3棵,两次差41棵,用相差总数除以每个人分配的棵数即可表示出分配人数,即41÷(9﹣k),因为41的因数为1和41,所以9﹣k=41或者9﹣k=1,通过判断是否符合题干要求即可求出k.【解答】解:41÷(9﹣k)表示分配人数因为分配人数是整数所以9﹣k=41或者9﹣k=1k=﹣32(舍)或k=8答:k是8棵树苗.。

广东省深圳市南山区2019年小升初数学试卷及参考答案

广东省深圳市南山区2019年小升初数学试卷及参考答案

5. 如图,这个圆的直径是6厘米,把这个圆剪拼成一个近似的长方形,那么这个长方形的宽约________厘米,长方形 的长约是________厘米。
6. 六年级有40人参加体育达标测试,及格率为95%,则不及格的有________人。
7. 笑笑把1000元压岁钱存入银行,存期三年,年利率为3.33%。到期时,笑笑一共可以取出________元。
四 、 计 算 ( 20分 )
30. 直接写得数。 1-10%= 24×4%=
1÷25%=
4- =
31. 化简比。 (1) 0.16:0.6 (2) : 32. 求比值。 (1) 32:16 (2) :0.5 33. 递等式计算。(能简算的要简算) (1) (2) (3) 34. 解方程。 (1) x-60%=80 (2) 70%m+20%m=36 (3)
(1)
(2) 40. 从广州到香港,原来乘火车全程大约需要2小时,现在广州到香港的高速铁路开通后,时间缩短了 ,现在从广州
到香港乘坐高铁需要多少小时?
41. 乘坐空调公交车每人需投币2元,如果刷IC卡,则每次扣费1.6元,刷卡比投币便宜了百分之几? 42. 配制一种醋饮料2400克,醋与水的比为1:11。醋、水各需要多少克? 43. 有一袋大米,第一周吃了总数的15%,第二周吃了总数的35%,第二周比第一周多吃了8千克,这袋大米原有多少
47. 有一个书架上摆有两层书,上层书的数量与下层书的数量比是5:6,从上层拿30本书到下层后,上、下两层书数 量之比为3:4。上、下两层原来各有多少本书?
参考答案 1.
2.
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

2019年深圳市小升初数学综合模拟试卷(10套卷)(4-13)及答案详细解析

2019年深圳市小升初数学综合模拟试卷(10套卷)(4-13)及答案详细解析

小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S△C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a 绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)小升初数学综合模拟试卷6一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31= 19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.小升初数学综合模拟试卷7一、填空题:2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.么回来比去时少用______小时.4.7点______分的时候,分针落后时针100度.5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆.9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是______.10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做______次能使6个学生都面向北.二、解答题:1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n 是多少?3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.答案一、填空题:1.(1)2.(5∶6)周长的比为5∶6.4.(20)5.(3)根据弃九法计算.3145的弃九数是4,92653的弃九数是7,积的弃九数是1,29139□685,已知8个数的弃九数是7,要使积的弃九数为1,空格内应填3.6.(1/3)7.(30)8.(10)设24辆全是汽车,其轮子数是24×4=96(个),但实际相差96-86=10(个),故(4×24-86)÷(4-3)=10(辆).9.甲先把(4,5),(7,9),(8,10)分组,先写出6,则乙只能写4,5,7,8,9,10中一个,乙写任何组中一个,甲则写另一个.10.(6次)由6个学生向后转的总次数能被每次向后转的总次数整除,可知,6个学生向后转的总次数是5和6的公倍数,即30,60,90,…据题意要求6个学生向后转的总次数是30次,所以至少要做30÷5=6(次).二、解答题:1.(4)由图可知空白部分的面积是规则的,左下角与右上角两空白部分面积和为3个单位,右下为2个单位面积,故阴影:9-3-2=4.2.(1089)9以后,没有向千位进位,从而可知b=0或1,经检验,当b=0时c=8,满足等式;当b=1时,算式无法成立.故所求四位数为1089.3.本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n 行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.4.可以先从两个自然数入手,有偶数,可被2整除,结论成立;当其中无偶数,奇数之和是偶数可被2整除.再推到3个自然数,当其中有3的倍数,选这个数即可;当无3的倍数,若这3个数被3除的余数相等,那么这3个数之和可被3整除,若余数不同,取余1和余2的各一个数和能被3整除,类似断定5个,6个,…,整数成立.利用结论与若干个数之和有关,构造k个和.设k个数是a1,a2,…,ak,考虑,b1,b2,b3,…bk其中b1=a1,b 2=a1+a2,…,bk=a1+a2+a3+…+ak,考虑b1,b2,…,bk被k除后各自的余数,共有b;能被k整除,问题解决.若任一个数被k除余数都不是0,那么至多有余1,2,…,余k-1,所以至少有两个数,它们被k除后余数相同.这时它们的差被k整除,即a1,a2…,ak中存在若干数,它们的和被k整除.小升初数学综合模拟试卷8一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG 边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?答案一、填空题:3.(37)将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形.4.(6年)今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年.5.(154)145×4-(139+143+144)=154.6.(421)这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.7.(5)由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径9.(16升)由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:故较少容器原有水量8×2=16(升).把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶二、解答题:1.(26棵)要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=262.(28米/秒,260米)(1980-1140)÷(80-50)=28(米/秒)28×50-1140=260(米)3.不可能.反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.4.(106元)(元).小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。

2019年广东省深圳市小升初数学试卷

2019年广东省深圳市小升初数学试卷

计算.(能简便计算的要简便计算)
98.7×0.9+98.7
100.4﹣9+0.77÷1.1
÷[( + )× ]
12﹣ ×7﹣ ×3.
19.解方程或比例. (1) x﹣ =
(2) =
(3)7 ﹣3x=0.9
(4) x+1 =3
(5) x﹣2.5=2
(6) ×5﹣ x=1
四、解决问题. 20.甲乙两车同时从相距 135 千米的两地相对开出,1.5 小时后相遇,甲的速度是每小时 48
就有 a﹣8 千克,乙袋就有 b+8 千克,得出原来甲袋的大米比乙袋的多,并且两袋相差 8
×2 千克,由此找出 a、b 之间的关系.
【解答】解:根据题意得出两袋大米相差 8×2 千克,
即 a﹣b=8×2;
故选:B.
【点评】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母
正确的表示出来,然后根据题意列式计算即可得解.
棵.
13.在一场篮球比赛中,小红共投中 a 个三分球,b 个两分球,罚球还得了 5 分,在这场比
赛中,小红共得
分.
14.1 只青蛙 1 张嘴,2 只眼睛 4 条腿,扑通扑通跳下水,
2 只青蛙 2 张嘴,4 只眼睛 8 条腿,扑通扑通跳下水,…
n 只青蛙
张嘴,
只眼睛
条腿,扑通扑通跳下水.
15.小林买 4 支钢笔,每支 a 元;又买了 5 本练习本,每本 b 元.一共付出的钱数可用式子
11.爸爸说:“我的年龄比小明的 4 倍多 3.”小明说:“我今年 a 岁.”用含有字母的式子表
示爸爸的年龄,写作 4a+3 岁 ;如果小明今年 8 岁,那么爸爸今年 35 岁.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年广东省深圳市小升初数学试卷一、选择题.1.如果X÷=,那么X=()A.B.C.D.2.3x﹣7错写成3(x﹣7),结果比原来()A.多43B.少3C.少14D.多143.一个两位数,十位上的数字是6,个位上的数字是a,表示这个两位数的式子是()A.60+a B.6+a C.6+10a D.6a4.甲袋有a千克大米,乙袋有b千克大米,如果从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等.列成等式是()A.a+8=b﹣8B.a﹣b=8×2C.(a+b)÷2=8D.a﹣8=b5.甲、乙、丙、丁四人参加某次电脑技能比赛.甲、乙两人的平均成绩为a分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为()分.A.a+6B.4a+1.5C.4a+6D.a+1.56.电影院第一排有m个座位,后面一排都比前一排多1个座位.第n排有()个座位.A.m+n B.m+n+1C.m+n﹣1D.mn7.2x﹣28÷2=4,这个方程的解是()A.x=5B.x=9C.x=10D.x=208.下面几句话中错误的一句是()A.判断方程的解是否正确,只要把方程的解代入原方程,看方程左右两边是否相等B.等式的两边同时乘或除以一个数,所得结果仍是等式C.a2不一定大于2a二、填空题.9.三数之和是120,甲数是乙数的2倍,丙数比乙数多20,丙数是.10.已知4x+8=20,那么2x+8=.11.爸爸说:“我的年龄比小明的4倍多3.”小明说:“我今年a岁.”用含有字母的式子表示爸爸的年龄,写作;如果小明今年8岁,那么爸爸今年岁.12.果园里有苹果树和梨树共45棵,其中梨树有a棵,苹果树比梨树多棵.13.在一场篮球比赛中,小红共投中a个三分球,b个两分球,发球还的5分,在这场比赛中,小红共得分.14.1只青蛙1张嘴,2只眼睛4条腿,扑通扑通跳下水,2只青蛙2张嘴,4只眼睛8条腿,扑通扑通跳下水,…n只青蛙张嘴,只眼睛条腿,扑通扑通跳下水.15.小林买4支钢笔,每支a元;又买了5本练习本,每本b元.一共付出的钱数可用式子来表示;当a=0.5,b=1.2时,一共应付出元.16.已知x=5是方程ax﹣3=12的解,那么方程ay+4=25的解是.17.在①3x+4x=48 ②69+5n③5+3x>60 ④12﹣3=9⑤x+x﹣3=0 中,是方程的有,是等式的有.三、解答题(共2小题,满分0分)18.计算.(能简便计算的要简便计算)100.4﹣9+0.77÷1.198.7×0.9+98.7÷[(+)×]12﹣×7﹣×3.19.解方程或比例.(1)9x﹣=(2)=(3)7﹣3x=0.9(4)2x+1=3(5)x﹣2.5=2(6)×5﹣x=1四、解决问题.20.甲乙两车同时从相距135千米的两地相对开出,1.5小时后相遇,甲的速度是每小时48千米,求乙车速度是每小时多少千米?(列方程解答)21.一桶油,第一次用去油的总千克数的30%,第二次用去10千克,两次共用去这桶油的.这桶油有多少千克?用去两次后还剩多少千克?22.红星机床厂上个月计划秤机床200台,实际比计划多生产40台,实际产量是计划的百分之几?23.学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?24.希望小学要买60个足球,现有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同.甲店:买10个足球免费赠送2个,不足10个不赠送.乙店:每个足球优惠5元.丙店:购物每满200元,返还现金30元.为了节省费用,希望小学应到哪个商店购买?为什么?2019年广东省深圳市小升初数学试卷参考答案与试题解析一、选择题.1.如果X÷=,那么X=()A.B.C.D.【分析】根据方程X÷=求出X的值,再带入X即可.【解答】解:X÷=,X÷×=×,X=;把X=带入X,=;故选:D.2.3x﹣7错写成3(x﹣7),结果比原来()A.多43B.少3C.少14D.多14【分析】根据题意知道,用3(x﹣7)减去3x﹣7,得出的数大于0说明结果比原来大,得出的数小于0说明结果比原来小.【解答】解:3(x﹣7)﹣[3x﹣7]=3x﹣21﹣3x+7=﹣14答:3x﹣7错写成3(x﹣7),结果比原来少14,故选:C.3.一个两位数,十位上的数字是6,个位上的数字是a,表示这个两位数的式子是()A.60+a B.6+a C.6+10a D.6a【分析】两位数=十位数字×10+个位数字.【解答】解:因为十位数字为6,个位数字为a,所以6个10与1个a的和为:60+a.故选:A.4.甲袋有a千克大米,乙袋有b千克大米,如果从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等.列成等式是()A.a+8=b﹣8B.a﹣b=8×2C.(a+b)÷2=8D.a﹣8=b【分析】根据“从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等”,那么现在甲袋就有a﹣8千克,乙袋就有b+8千克,得出原来甲袋的大米比乙袋的多,并且两袋相差8×2千克,由此找出a、b之间的关系.【解答】解:根据题意得出两袋大米相差8×2千克,即a﹣b=8×2;故选:B.5.甲、乙、丙、丁四人参加某次电脑技能比赛.甲、乙两人的平均成绩为a分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为()分.A.a+6B.4a+1.5C.4a+6D.a+1.5【分析】由题意得:甲加乙总分为2a,丙的成绩为a+9,丁的成绩为a﹣3,因此他们四人的平均成绩为(2a+a+9+a﹣3)÷4,据此解答.【解答】解:(2a+a+9+a﹣3)÷4=(4a+6)÷4=a+1.5答:他们四人的平均成绩为(a+1.5)分.故选:D.6.电影院第一排有m个座位,后面一排都比前一排多1个座位.第n排有()个座位.A.m+n B.m+n+1C.m+n﹣1D.mn【分析】第1排m个,第2排(m+1)个,第3排(m+2)个,…,从而找到规律,求出第n排的座位.【解答】解:根据题意得:第n排有(m+n﹣1)个座位.故选:C.7.2x﹣28÷2=4,这个方程的解是()A.x=5B.x=9C.x=10D.x=20【分析】首先根据等式的性质,两边同时加上14,然后两边再同时除以2即可.【解答】解:2x﹣28÷2=42x﹣14+14=4+142x=182x÷2=18÷2x=9所以这个方程的解是x=9,故选:B.8.下面几句话中错误的一句是()A.判断方程的解是否正确,只要把方程的解代入原方程,看方程左右两边是否相等B.等式的两边同时乘或除以一个数,所得结果仍是等式C.a2不一定大于2a【分析】根据相关知识点,逐项分析后,进而确定错误的选项.【解答】解:A、判断方程的解是否正确的方法是:把方程的解代入原方程,看方程左右两边是否相等;所以原说法正确B、根据等式的性质,可知在等式的两边同时乘或除以一个不为0的数,所得等式才能仍是等式;所以原说法错误C、当a=0或2时,a2等于2a,所以a2不一定大于2a;所以原说法正确故选:B.二、填空题.9.三数之和是120,甲数是乙数的2倍,丙数比乙数多20,丙数是45.【分析】本题数量关系比较复杂,甲数是乙数的2倍,丙数比乙数多20,甲数和丙数都同乙数有关系,因此本题用方程解比较简单.【解答】解:设乙数为x,则甲数为2x,丙数为x+20.2x+x+x+20=1204x+20=1204x+20﹣20=120﹣204x=1004x÷4=100÷4x=25.25+20=45.答;丙数是45.故答案为45.10.已知4x+8=20,那么2x+8=14.【分析】根据等式的性质,求出方程4x+8=12的解,再把x的值代入2x+8.据此解答.【解答】解:4x+8=20,4x+8﹣8=20﹣8,4x÷4=12÷4,x=3,把x=3代入2x+8得2x+8=2×3+8=6+8=14.故答案为:14.11.爸爸说:“我的年龄比小明的4倍多3.”小明说:“我今年a岁.”用含有字母的式子表示爸爸的年龄,写作4a+3岁;如果小明今年8岁,那么爸爸今年35岁.【分析】(1)根据题意知道,爸爸的年龄=小明的年龄×4+3.把字母代入,即可得出爸爸的年龄;(2)把小明的年龄代入(1)所求出的式子,即可得出爸爸今年的年龄.【解答】解:a×4+3,=4a+3(岁),(2)把a=8,代入4a+3,即,4a+3,=4×8+3,=32+3,=35(岁),故答案为:4a+3岁,35.12.果园里有苹果树和梨树共45棵,其中梨树有a棵,苹果树比梨树多45﹣2a棵.【分析】先求出苹果树的棵数,再用苹果的棵数减去梨的棵数,就是要求的答案.【解答】解:45﹣a﹣a,=45﹣2a(棵);答:苹果树比梨树多45﹣2a棵.故答案为:45﹣2a.13.在一场篮球比赛中,小红共投中a个三分球,b个两分球,发球还的5分,在这场比赛中,小红共得3a+2b+5分.【分析】用三分球的得分加二分球的得分加发球得分,即可求出总得分.【解答】解:3×a+2×b+5=3a+2b+5(分)故答案为:3a+2b+5.14.1只青蛙1张嘴,2只眼睛4条腿,扑通扑通跳下水,2只青蛙2张嘴,4只眼睛8条腿,扑通扑通跳下水,…n只青蛙n张嘴,2n只眼睛4n条腿,扑通扑通跳下水.【分析】要求n只青蛙几张嘴,几只眼睛,几条腿,首先分析“1只青蛙1张嘴,2只眼睛4条腿”这个条件,然后用乘法进一步解答即可.【解答】解:n×1=n(张)n×2=2n(只)n×4=4n(条)故填n,2n,4n.15.小林买4支钢笔,每支a元;又买了5本练习本,每本b元.一共付出的钱数可用式子4a+5b来表示;当a=0.5,b=1.2时,一共应付出8元.【分析】(1)买4支钢笔,每支a元,买钢笔共花4a元;买5本练习本,每本b元,买练习本共花5b 元;一共付出的钱数可用式子4a+5b来表示;(2)把a=0.5,b=1.2代入4a+5b中,即可求出一共应付的钱数.【解答】解:共付出的钱数可用式子表示为:4a+5b;当a=0.5,b=1.2时,一共应付出:4a+5b,=4×0.5+5×1.2,=2+6,=8(元).故答案为:4a+5b,8.16.已知x=5是方程ax﹣3=12的解,那么方程ay+4=25的解是y=7.【分析】把x=5代入ax﹣3=12,依据等式的性质求出a的值,再把a的值代入方程ay+4=25,再依据等式的性质进行求解.【解答】解:把x=5代入ax﹣3=12可得:5a﹣3=125a﹣3+3=12+35a=155a÷5=15÷5a=3把a=3代入ay+4=25可得:3y+4=253y+4﹣4=25﹣43y=213y÷3=21÷3y=7故答案为:y=7.17.在①3x+4x=48 ②69+5n③5+3x>60 ④12﹣3=9⑤x+x﹣3=0 中,是方程的有①⑤,是等式的有①④⑤.【分析】等式是指用“=”连接的式子,方程是指含有未知数的等式;据此进行分类.【解答】解:①3x+4x=48,既含有未知数,又是等式,所以既是等式,又是方程;②69+5n,只是含有未知数的式子,所以既不是等式,又不是方程;③5+3x>60,是含有未知数的不等式,所以既不是等式,又不是方程;④12﹣3=9,只是用“=”连接的式子,没含有未知数,所以只是等式,不是方程;⑤x+x﹣3=0,既含有未知数,又是等式,所以既是等式,又是方程;所以方程有:①⑤,等式有:①④⑤.故答案为:①⑤,①④⑤.三、解答题(共2小题,满分0分)18.计算.(能简便计算的要简便计算)98.7×0.9+98.7100.4﹣9+0.77÷1.1÷[(+)×]12﹣×7﹣×3.【分析】算式①、③根据四则混合运算的运算顺序计算即可.算式②、④可据乘法分配律进行计算即可尤其注意第二题中的数据.【解答】解:①100.4﹣9+0.77÷1.1,=100.4﹣9+0.7,=91.4+0.7,=92.1;②98.7×0.9+98.7,=98.7×(0.9+1),=187.53;③÷[(+)×]=÷[(+)×]=÷,=;④12﹣×7﹣×3,=12﹣×(7﹣3),=12﹣2.4,=9.6;19.解方程或比例.(1)9x﹣=(2)=(3)7﹣3x=0.9(4)2x+1=3(5)x﹣2.5=2(6)×5﹣x=1【分析】(1)根据等式的性质,方程的两边同时加上,然后方程的两边同时除以9求解;(2)根据比例的基本性质的性质,把原式化为0.4x=28×0.1,然后方程的两边同时除以0.4求解;(3)根据等式的性质,方程的两边同时加上3x,把方程化为3x+0.9=7,方程的两边同时减去0.9,然后方程的两边同时除以3求解.(4)根据等式的性质,方程的两边同时减去1,然后方程的两边同时除以2求解;(5)根据等式的性质,方程的两边同时加上2.5,然后方程的两边同时除以求解;(6)先计算×5=,根据等式的性质,方程的两边同时加上x,把原式化为x+1=,方程的两边同时减去1,然后方程的两边同时除以求解.【解答】解:(1)9x﹣=9x﹣+=+9x=29x÷9=2÷9x=(2)=0.4x=28×0.10.4x÷0.4=28×0.1÷0.4x=7(3)7﹣3x=0.97﹣3x+3x=0.9+3x3x+0.9=73x+0.9﹣0.9=7﹣0.93x=6.63x÷3=6.6÷3x=2.2(4)2x+1=32x+1﹣1=3﹣12x=12x÷2=1÷2x=(5)x﹣2.5=2x﹣2.5+2.5=2+2.5x=4x÷=4÷x=7(6)×5﹣x=1﹣x=1﹣x+x=1+xx+1=x+1﹣1=﹣1x=x÷=÷x=四、解决问题.20.甲乙两车同时从相距135千米的两地相对开出,1.5小时后相遇,甲的速度是每小时48千米,求乙车速度是每小时多少千米?(列方程解答)【分析】首先找出题中的等量关系式,(甲车速度+乙车速度)×相遇时间=两地间的路程,由此列方程解答即可.【解答】解:设乙车速度是每小时x千米,(48+x)×1.5=135,48+x=135÷1.548+x=90x=90﹣48x=42;答:乙车速度是每小时42千米.21.一桶油,第一次用去油的总千克数的30%,第二次用去10千克,两次共用去这桶油的.这桶油有多少千克?用去两次后还剩多少千克?【分析】要求这桶油有多少千克,要找出10千克对应的分率,即10千克是这桶油的几分之几,通过题意可知,这桶油的(﹣30%)是10千克,根据已知一个数的几分之几是多少,求这个数用除法解答;两次共用去这桶油的,根据一个数乘分数的意义即可得出结论.【解答】解:10÷(﹣30%)=100(千克),100×=40(千克);答:这桶油有100千克.用去两次后还40少千克.22.红星机床厂上个月计划秤机床200台,实际比计划多生产40台,实际产量是计划的百分之几?【分析】夏秋出是i的产量是多少台,然后用实际的产量除以计划的产量即可.【解答】解:(200+40)÷200,=240÷200,=120%;答:实际产量是计划的120%.23.学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?【分析】由题意得,把315本科普读物平均分成3+4=7份,又因五年级比六年级少一份,于是用除法可以求出每一份的数量,也就是五年级比六年级少的本数,问题即可得解.【解答】解:315÷(3+4)×(4﹣3),=315÷7×1,=45(本);答:五年级比六年级少借45本.24.希望小学要买60个足球,现有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同.甲店:买10个足球免费赠送2个,不足10个不赠送.乙店:每个足球优惠5元.丙店:购物每满200元,返还现金30元.为了节省费用,希望小学应到哪个商店购买?为什么?【分析】由题意可得,甲店:买50个,送10个刚好60个,即化买50个足球的钱即可;乙店:即每个足球25﹣5=20元;丙店:先算出买60个球花60×25=1500元,1500除以200=7.5,返还30×7=210元,用花的总钱数减去返还的即可;【解答】解:甲:50×25=1250(元);乙:60×(25﹣5)=1200(元);丙:60×25=1500(元),1500÷200=7.5(个),1500﹣30×7=1290(元);1200元<1250元<1290元,所以乙最划算;答:到乙店购买便宜,最划算.。

相关文档
最新文档