驱动芯片的选择
半桥电路和全桥驱动芯片
半桥电路和全桥驱动芯片1. 引言1.1 简介半桥电路和全桥驱动芯片是电子领域中常用的电路和芯片,用于驱动各种电力设备和电机。
半桥电路通过控制半导体器件的通断来实现对电机的控制,常用于单向转动的电机驱动;全桥驱动芯片则可以实现对双向转动电机的精细控制,具有更高的效率和精度。
半桥电路和全桥驱动芯片在工业、汽车、航空航天等各个领域都有着广泛的应用。
在汽车领域,半桥电路可以用于控制汽车的电动窗户、天窗等设备;全桥驱动芯片则可以用于控制电动汽车的电机,提高汽车的性能和节能效果。
这两种驱动方案的出现,提高了电机控制的精度和效率,为各种电力设备的应用提供了更多的选择。
在未来,随着电动化趋势的加速和自动化技术的不断发展,半桥电路和全桥驱动芯片的应用领域将会更加广泛,为人们的生活和工作带来更多的便利和创新。
1.2 应用领域半桥电路和全桥驱动芯片广泛应用于各种电力电子系统中。
它们在电机驱动、电动汽车、充电桩、UPS等领域中起到至关重要的作用。
在电机驱动系统中,半桥电路和全桥驱动芯片可以提供高效的电机控制,实现电机的快速启动和精确控制。
在电动汽车和充电桩中,半桥电路和全桥驱动芯片可以实现电池充电和电机驱动功能,提高系统的整体效率和性能。
在UPS系统中,半桥电路和全桥驱动芯片可以提供可靠的电力转换功能,确保电力系统的稳定运行。
半桥电路和全桥驱动芯片在各种电力电子系统中都有着广泛的应用前景,将会在未来的发展中发挥越来越重要的作用。
1.3 意义半桥电路和全桥驱动芯片作为电子领域中非常重要的组件,在现代电路设计中发挥着至关重要的作用。
它们在各种电子设备中都有广泛的应用,例如电动汽车驱动系统、直流电机控制系统、变频空调控制系统等。
在这些应用领域中,半桥电路和全桥驱动芯片能够有效地控制电流和电压,实现电子设备的高效工作。
半桥电路和全桥驱动芯片的意义在于它们能够提高电子设备的性能和可靠性。
通过合理设计和选择适合的驱动方案,可以有效地提高设备的工作效率,降低能耗,延长设备的使用寿命,同时减少故障率,提高设备的稳定性和可靠性。
步进电机驱动芯片选型指南
以下是中国步进电机网对步进电机驱动系统所做的较为完整的表述:1、系统常识:步进电机和步进电机驱动器构成步进电机驱动系统。
步进电机驱动系统的性能,不但取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。
对步进电机驱动器的研究几乎是与步进电机的研究同步进行的。
2、系统概述:步进电机是一种将电脉冲转化为角位移的执行元件。
当步进电机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。
3、系统控制:步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。
控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
4、用途:步进电机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电机驱动器性能提高),步进电机的需求量与日俱增。
步进电机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。
5、步进电机按结构分类:步进电机也叫脉冲电机,包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)等。
(1)反应式步进电机:也叫感应式、磁滞式或磁阻式步进电机。
其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。
一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到六分之一度);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。
(2)永磁式步进电机:通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。
关于LED驱动电源那些常见的十款经典LED驱动芯片
关于LED驱动电源那些常见的⼗款经典LED驱动芯⽚⽬前,芯⽚设计⾏业越来越多的⼚家加⼊了LED设计,设计出众多型号,在此从性能价格⽐⽅⾯详细的谈谈,怎样选择⾃⼰合适的IC,哪些IC最合适⾃⼰准备设计的产品。
为IC设计企业了解市场需要什么样的IC,应该制定什么价位中合适。
价格随时会变动只能为参考值。
质量和价格是决定是否采⽤的因数,符合产品设计质量参数要求很重要!价格更重要!1、美国CATALYST公司-CAT4201这个IC驱动1-7颗1W LED。
效率可达92%,6-28V电压输⼊范围降压型驱动应⽤设计。
它最⼤的优势是封装SOT23⼤⼩,线路简介,符合⽬前多数⼩体积灯杯设计使⽤要求。
⼤阻值范围电流调节,可以电位器宽阻值范围调节亮度,⽐如设计台灯等产品需要这样时。
2、美国国家半导体 LM3404LM3404和LM3402的线路⼀样,不同的是电流可以达到1A,驱动1-15pcsLED性价⽐较⾼。
上⾯所列IC规格都是内置MOS管,内置MOS管可以简化线路设计,⼩体积,降低设计综合成本,故障率也会降低。
因其⽬前IC⼯艺制成、成本等原因⼤于1A以上的LED驱动IC需要外置MOS管。
在我们⽇常产品设计中经常会遇到⼤电流设计,⽐如5W、10W等更⾼功率的设计要求,那只能选择外置MOS管的IC才可以。
3、褒贬不⼀的LED驱动芯⽚IC-AMC7150在当时AMC7150还是不错的,它有个很重要的因数就是价格,有不到2元的市场价格,是你采⽤它的理由。
AMC7150⽬前有⼏⼗家可以直接替换的IC型号,价格战会⽆法避免。
在设计参数要求不⾼的低压4-25V产品中可以选择它,基本驱动能⼒在3W以下应⽤设计。
⽐如1W串3颗或3W 1颗LED设计是稳定的。
4、欧洲Zetex公司-ZXLD1350这颗IC⽬前市场反应良好,也是SOT23⼩体积封装,输⼊7-30V电压降压恒流驱动1-7psc LED,线路简洁实⽤。
设计时Rs要紧靠IC避免供电电压⼤幅度不动,这样会影响恒流效果。
常见液晶驱动控制芯片详解
常见液晶驱动控制芯片详解前言因此各位朋友在选择LCD液晶模块的时候,在考虑到串行,还是并行的方式时,可根据其驱动控制IC的型号来判别,当然你还需要看你选择的LCD模块引脚定义是固定支持并行,还是可选择并行或串行的方式。
一、字符型LCD驱动控制IC市场上通用的8×1、8×2、16×1、16X2、16X4、20X2、20X4、40X4等字符型LCD,基本上都采用的KS0066 作为LCD 的驱动控制器。
二、图形点阵型LCD驱动控制IC2.1、点阵数122X32—SED1520。
2.2、点阵数128×64。
(1)RA8816,支持串行或并行数据操作方式,内置中文汉字字库。
(2)KS0108/RA8808,只支持并行数据操作方式,也是最通用的12864点阵液晶的驱动控制IC。
(3)ST7565,支持中行或并行数据操作方式。
(4)S6B0724,支持中行或并行数据操作方式。
(5)RA6963,支持并行数据操作方式。
2.3、其他点阵数如192×64、240×64、320X64、240X128 的一般都是采用RA6963驱动控制芯片。
2.4、点阵数320X240,通用的采用RA8835 内置ASCII字库,以及RA8806驱动IC内置ASCII和中文等字库。
这里列举的只是一些常用的,当然还有其他LCD 驱动控制IC,在写LCD 驱动时要清楚是哪个型号的IC,再到网上去寻找对应的IC 数据手册吧。
后面我将慢慢补上其它一些常见的。
三、12864 液晶的奥秘CD1601/1602和LCD12864 都是通常使用的液晶,有人以为12864是一个统一的编号,主要是12864 的液晶驱动都是一样的,其实12864只是表示液晶的点阵是128*64点阵,而实际的12864 有带字库的,也有不带字库的:有5V电压的,也有3.3V工作电压:归根到底的区别在于驱动控制芯片,常用的控制芯片有RA8816、KS0108/RA8808、RA6963等等。
三款步进电机驱动芯片的应用
E A L 使能端 E AB E 0 N BE N L = 所有输出为 OE A L = 正常工作 ,N B E I
R S T 上 电复 位 端 EE
S D GN 地 线
输 出 电流 为 1 。 A
T B 1 8驱 动芯 片的应 用 H 62
T 62 HB 1 8具 有 双 全 桥 M O F T 驱 SE
,
7
8 9 输 入 输 出
OS C
V B M
斩 波 频 率 控 制 端 : = 0 0 F f 4 K zC 3 0 F C 1 0 P ,= 4 H ; = 3 P ,
f 3 KH =1 0 z
动 , 导 通 电 阻 R n=05 Q , 高 耐 压 低 o 5 最 3V 6 DC, 电流 22 峰 值 )多种 细 分 可 大 A( ,
11 8) 自动 半 流 锁 定 功 能 , 衰 、 衰 、 /2 , 快 慢 混合 式衰 减 三 种 衰 减 方 式 可 选 , 置 温 度 内 保 护 及 过 流保 护等 功 能 。
T 62 HB 1 8的 引 脚 功 能 表 2所 示 是 T 62 HB 1 8的 引脚 功 能 。 设 计 简 要 说 明 图 1 所 示 是
M 1 M2是 细 分 数选 择 端 , M 1 M2 、 当 、 为 0, 整 步 ; 当 M 1 M2为 10时 12 0时 、 , /
细 分 : M1 M2为 O 1时 1 当 、 , 门6细 分 ; 当 M1 M2为 1 1时 1 细 分 。 、 , 8 /
T 6 1 H驱 动芯 片的应 用 HB 0 6
O2 1 电 阻 时 ,输 出 电 流 为 25 ; .Q/W A 当 选 用 O2 Q门W 电 阻 时 ,输 出 电流 为 2 .2 A
几种用于IGBT驱动的集成芯片
几种用于IGBT驱动的集成芯片2. 1 TLP250(TOSHIBA公司生产)在一般较低性能的三相电压源逆变器中,各种与电流相关的性能控制,通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。
同时,这一检测结果也可以用来完成对逆变单元中IGBT实现过流保护等功能。
因此在这种逆变器中,对IGBT驱动电路的要求相对比较简单,成本也比较低。
这种类型的驱动芯片主要有东芝公司生产的TLP250,夏普公司生产的PC923等等。
这里主要针对TLP250做一介绍。
TLP250包含一个GaAlAs光发射二极管和一个集成光探测器,8脚双列封装结构。
适合于IGBT或电力MOSFET栅极驱动电路。
图2为TLP250的内部结构简图,表1给出了其工作时的真值表。
TLP250的典型特征如下:1)输入阈值电流(IF):5 mA(最大);2)电源电流(ICC):11 mA(最大);3)电源电压(VCC):10~35 V;4)输出电流(IO):± 0.5 A(最小);5)开关时间(tPLH /tPHL):0.5 μ s(最大);6)隔离电压:2500 Vpms(最小)。
表2给出了TLP250的开关特性,表3给出了TLP250的推荐工作条件。
注:使用TLP250时应在管脚8和5间连接一个0.1 μ F的陶瓷电容来稳定高增益线性放大器的工作,提供的旁路作用失效会损坏开关性能,电容和光耦之间的引线长度不应超过 1 cm。
图3和图4给出了TLP250的两种典型的应用电路。
在图4中,TR1和TR2的选取与用于IGBT驱动的栅极电阻有直接的关系,例如,电源电压为24V时,TR1和TR2的Icmax≥ 24/Rg。
图5给出了TLP250驱动IGBT时,1 200 V/200 A的IGBT上电流的实验波形(50 A/10 μ s)。
可以看出,由于TLP250不具备过流保护功能,当IGBT过流时,通过控制信号关断IGBT,IGBT中电流的下降很陡,且有一个反向的冲击。
介绍几种电机驱动芯片
介绍几种电机驱动芯片[作者:佚名转贴自:本站原创点击数:1493 更新时间:2005-4-22 文章录入:白桦]减小字体增大字体在自制机器人的时候,选择一个合适的驱动电路也是非常重要的,本文详细介绍了几种常用的机器人驱动芯片。
介绍几种机器人驱动芯片(注:本文已经投稿至《电子制作》)在自制机器人的时候,选择一个合适的驱动电路也是非常重要的。
最初,通常选用的驱动电路是由晶体管控制继电器来改变电机的转向和进退,这种方法目前仍然适用于大功率电机的驱动,但是对于中小功率的电机则极不经济,因为每个继电器要消耗20~100mA的电力。
当然,我们也可以使用组合三极管的方法,但是这种方法制作起来比较麻烦,电路比较复杂,因此,我在此向大家推荐的是采用集成电路的驱动方法:马达专用控制芯片LG9110芯片特点:低静态工作电流;宽电源电压范围:2.5V-12V ;每通道具有800mA 连续电流输出能力;较低的饱和压降;TTL/CMOS 输出电平兼容,可直接连CPU ;输出内置钳位二极管,适用于感性负载;控制和驱动集成于单片IC 之中;具备管脚高压保护功能;工作温度:0 ℃-80 ℃。
描述:LG9110 是为控制和驱动电机设计的两通道推挽式功率放大专用集成电路器件,将分立电路集成在单片IC 之中,使外围器件成本降低,整机可靠性提高。
该芯片有两个TTL/CMOS 兼容电平的输入,具有良好的抗干扰性;两个输出端能直接驱动电机的正反向运动,它具有较大的电流驱动能力,每通道能通过750 ~800mA 的持续电流,峰值电流能力可达1.5 ~2.0A ;同时它具有较低的输出饱和压降;内置的钳位二极管能释放感性负载的反向冲击电流,使它在驱动继电器、直流电机、步进电机或开关功率管的使用上安全可靠。
LG9110 被广泛应用于玩具汽车电机驱动、步进电机驱动和开关功率管等电路上。
管脚定义:1 A 路输出管脚、2和3 电源电压、4 B 路输出管脚、5和8 地线、6 A 路输入管脚、7 B 路输入管脚2、恒压恒流桥式1A驱动芯片L293图2是其内部逻辑框图图3是其与51单片机连接的电路原理图L293是著名的SGS公司的产品,内部包含4通道逻辑驱动电路。
led 驱动芯片刷新倍率
led 驱动芯片刷新倍率【原创版】目录1.LED 驱动芯片的概念与作用2.LED 驱动芯片的刷新倍率3.刷新倍率对 LED 屏幕的影响4.如何选择高刷新倍率的 LED 驱动芯片5.LED 驱动芯片的市场前景正文一、LED 驱动芯片的概念与作用LED 驱动芯片,又称为 LED 驱动器,是指用于驱动 LED 发光二极管工作的芯片。
它的主要作用是将电源供应的电能转换为 LED 发光所需的电能,同时对电流进行调节,以保证 LED 发光的稳定性和可靠性。
二、LED 驱动芯片的刷新倍率LED 驱动芯片的刷新倍率是指其在单位时间内对 LED 屏幕刷新的次数。
一般来说,刷新倍率越高,LED 屏幕显示的画面就越流畅,视觉体验越好。
三、刷新倍率对 LED 屏幕的影响刷新倍率对 LED 屏幕的影响主要体现在以下几个方面:1.流畅度:高刷新倍率能让 LED 屏幕显示的画面更加流畅,减少图像拖影和模糊,提升视觉体验。
2.色彩表现:高刷新倍率能提高 LED 屏幕的色彩表现力,使颜色更加真实、饱满。
3.节能:高刷新倍率意味着更高的电源需求,可能会增加功耗,但同时也可以提高 LED 屏幕的使用寿命。
四、如何选择高刷新倍率的 LED 驱动芯片在选择 LED 驱动芯片时,应关注以下几个方面:1.刷新倍率:选择高刷新倍率的芯片,以提高 LED 屏幕的显示效果。
2.输出电流:根据 LED 屏幕的尺寸和分辨率,选择合适的输出电流。
3.供电电压:与电源电压相匹配,确保 LED 驱动芯片能正常工作。
4.散热性能:高刷新倍率可能导致芯片温度升高,因此要关注芯片的散热性能。
5.稳定性和可靠性:选择具有良好稳定性和可靠性的 LED 驱动芯片,以保证 LED 屏幕的长期稳定运行。
五、LED 驱动芯片的市场前景随着 LED 技术的不断发展,LED 驱动芯片的市场需求将持续增长。
从长远来看,LED 驱动芯片将会迎来供需两旺的繁荣景象。
第1页共1页。
几款常用LED显示屏驱动芯片介绍及选择VK1624
⼏款常⽤LED显⽰屏驱动芯⽚介绍及选择VK1624型号:VK1624品牌:VINKA/永嘉微电/永嘉微封装形式:SOP24(M)/DIP24(P)年份:新年份概述VK1624 是 1/5~1/8 占空⽐的 LED 显⽰控制驱动电路。
由 11 根段输出、4 根栅输出、3 根段/栅输出,1 个显⽰存储器、控制电路组成了⼀个⾼可靠性的单⽚机外围 LED 驱动电路。
串⾏数据通过 3 线串⾏接⼝输⼊到 VK1624,采⽤ SOP24/DIP24 的封装形式。
功能特点★ CMOS ⼯艺★低功耗★多种显⽰模式:设置选择段和位的个数(11段x7位,12段x6位,13段x5位,14段x4位)★ 8 个层次的亮度调节电路★ 3 线串⾏接⼝★ 内置 RC 振荡★ 封装形式为 SOP24(M)/DIP24(P)内存映射的LED控制器及驱动器:VK1628 --- 通讯接⼝:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52 共阴驱动:10段7位/13段4位共阳驱动:7段10位按键:10x2 封装SOP28VK1629 --- 通讯接⼝:STB/CLK/DIN/DOUT 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:16段8位共阳驱动:8段16位按键:8x4 封装QFP44VK1629A --- 通讯接⼝:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:16段8位共阳驱动:8段16位按键:--- 封装SOP32 VK1629B --- 通讯接⼝:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:112 共阴驱动:14段8位共阳驱动:8段14位按键:8x2 封装SOP32VK1629C --- 通讯接⼝:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:120 共阴驱动:15段8位共阳驱动:8段15位按键:8x1 封装SOP32VK1629D --- 通讯接⼝:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:96 共阴驱动:12段8位共阳驱动:8段12位按键:8x4 封装SOP32 VK1640 --- 通讯接⼝: CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:8段16位共阳驱动:16段8位按键:--- 封装SOP28VK1640B LED驅動IC 8×12段位 8段12位共阴 12段8位共阳封装SSOP24VK1650 --- 通讯接⼝: SCL/SDA 电源电压:5V(3.0~5.5V) 驱动点阵:8x16共阴驱动:8段4位共阳驱动:4段8位按键:7x4 封装SOP16/DIP16VK1651--- VK1651 LED驅動IC 7×4段位 7段4位共阴 7段4位共阳 7×1按键封装SOP16/DIP16VK1668 ---通讯接⼝:STB/CLK/DIO 电源电压:5V(4.5~5.5V) 驱动点阵:70/52共阴驱动:10段7位/13段4位共阳驱动:7段10位按键:10x2 封装SOP24VK6932 --- 通讯接⼝:STB/CLK/DIN 电源电压:5V(4.5~5.5V) 驱动点阵:128共阴驱动:8段16位17.5/140mA 共阳驱动:16段8位按键:--- 封装SOP32VK16K33 --- 通讯接⼝:SCL/SDA 电源电压:5V(4.5V~5.5V) 驱动点阵:128/96/64 共阴驱动:16段8位/12段8位/8段8位共阳驱动:8段16位/8段12位/8段8位按键:13x3 10x3 8x3 封装SOP20/SOP24/SOP28VK1616 ---是 1/5~1/8 占空⽐的 LED 显⽰控制驱动电路,具有 7 根段输出、4 根栅输出,是⼀个由显⽰存储器、控制电路组成的⾼可靠性的 LED 驱动电路。
非隔离降压型led 恒流驱动芯片
非隔离降压型led 恒流驱动芯片非隔离降压型LED恒流驱动芯片是一种用于LED照明产品的关键元件,其主要功能是将输入电压降压并保持LED的电流恒定,以确保LED的亮度和寿命稳定。
在LED照明产品中,LED恒流驱动芯片的选择对产品的性能、效率和稳定性都有着重要影响。
首先,非隔离降压型LED恒流驱动芯片是指在LED驱动电路中不使用隔离变压器的降压型恒流驱动芯片。
相比于隔离型驱动芯片,非隔离型驱动芯片通常具有更高的转换效率和更小的体积,能够更好地满足LED照明产品对于高效、小型化的要求。
在选择非隔离降压型LED恒流驱动芯片时,需要考虑以下几个关键因素:1. 驱动电流范围:LED的亮度和寿命都与电流密切相关,因此恒流驱动芯片的电流范围需要与LED的额定电流匹配,以确保LED的工作在最佳状态。
2. 输入电压范围:LED照明产品通常需要适应不同的输入电压,因此恒流驱动芯片的输入电压范围需要能够覆盖产品的使用环境。
3. 调光性能:一些LED照明产品需要实现调光功能,因此恒流驱动芯片的调光性能也是需要考虑的因素。
4. 效率和稳定性:高效率和稳定性是LED照明产品的重要指标,恒流驱动芯片的转换效率和稳定性会直接影响产品的性能和寿命。
5. 保护功能:恒流驱动芯片通常需要具备过流保护、过温保护和短路保护等功能,以确保LED照明产品在异常情况下能够安全可靠地工作。
除了以上的基本因素外,还可以根据LED照明产品的具体要求选择具有特定功能的恒流驱动芯片,例如功率因数校正、电磁兼容性等。
在实际应用中,可以根据LED照明产品的功率、输入电压和其他要求,选择适合的非隔离降压型LED恒流驱动芯片,并根据厂家的设计指南和应用笔记进行设计和调试,以确保LED照明产品具有稳定的性能和良好的使用体验。
驱动1700VIGBT的几种高性能IC选型设计
驱动1700VIGBT的几种高性能IC选型设计驱动1700 V IGBT的几种高性能IC选型设计1 引言电力电子变换技术的发展,使得各种各样的电力电子器件得到了迅速的发展。
20世纪80年代,为了给高电压应用环境提供一种高输入阻抗的器件,有人提出了绝缘栅双极晶体管(IGBT)[1]。
在IGBT中,用一个MOS门极区来控制宽基区的高电压双极型晶体管的电流传输,这就产生了一种具有功率MOSFET的高输入阻抗与双极型器件优越通态特性相结合的非常诱人的器件,它具有控制功率小、开关速度快和电流处理能力大、饱和压降低等性能。
在中小功率、低噪音和高性能的电源、逆变器、不间断电源(UPS)和交流电机调速装置的设计中,是目前最为常用的一种器件。
2 关于IGBT的驱动特性分析为了提高系统的可靠性,功率器件的驱动电路也在不断的发展,相继出现了许多的专用驱动集成电路。
IGBT的触发和关断要求给栅极和发射极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。
当选择这些驱动电路时,必须基于以下的参数来进行:器件的关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。
图1为一典型的IGBT驱动电路原理示意图。
因为IGBT栅极-发射极阻抗大,故此可使用MOSFET驱动技术进行开通,不过由于IGBT的输入电容较MOSFET为大,IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更强。
对IGBT驱动电路的一般要求[2,3]:1)栅极驱动电压:IGBT开通时,正向栅极电压的值应该足够令IGBT产生完全饱和,并使通态损耗减至最小,同时也应限制短路电流和它所带来的功率应力。
在任何情况下,开通时的栅极驱动电压,应该在15~20 V之间。
当栅极电压为零时,IGBT处于断态。
但是,为了保证IGBT在集电极-发射极电压上出现d v/d t噪声时仍保持关断,必须在栅极上施加一个反向关断偏压,采用反向偏压还减少了关断损耗。
反向偏压应该在-5~-15V之间。
电机驱动芯片的分类
电机驱动芯片的分类嘿,朋友们!今天咱来聊聊电机驱动芯片那些事儿。
你说这电机驱动芯片啊,就像是电机的小助手,让电机能乖乖听话,好好干活。
那它们都有哪些种类呢?别急,听我慢慢道来。
有一种叫直流电机驱动芯片,这就好比是个直性子的朋友,做事干脆利落,专门负责驱动直流电机。
直流电机在很多地方都能派上用场,比如那些小玩具车啦,小风扇啦,有了直流电机驱动芯片,它们就能欢快地跑起来、转起来。
还有交流电机驱动芯片呢,它就像是个经验丰富的老大哥,对付交流电机可有一套。
像家里的空调、冰箱啥的,里面的交流电机可都得靠它来指挥。
再说说步进电机驱动芯片吧,这可有意思了,就像个特别精细的指挥家。
它能让步进电机一步一步精准地走,那精度,啧啧,可高了!很多需要精确控制的设备都离不开它呢,比如打印机、数控机床啥的。
你想想看,要是没有这些电机驱动芯片,那电机不就像没头苍蝇一样乱转啦?那咱们的生活得少多少便利呀!就好比人没有了大脑指挥,那还不得乱套了呀!而且啊,不同的电机驱动芯片还有不同的特点和优势呢。
有的功率大,能驱动大型电机;有的体积小,不占地方;有的效率高,省电又环保。
这就跟人一样,每个人都有自己的优点和特长,在不同的岗位上发光发热。
咱再打个比方,直流电机驱动芯片就像是短跑选手,速度快;交流电机驱动芯片像是长跑运动员,耐力强;步进电机驱动芯片呢,就像个体操运动员,动作精准。
它们各自在自己的领域里发挥着重要的作用。
那咱在选择电机驱动芯片的时候可得注意了,要根据自己的需求来选呀。
要是选错了,那不就好比让短跑选手去跑长跑,累得够呛还跑不好。
总之呢,电机驱动芯片的世界可丰富多彩了,它们为我们的生活带来了这么多的便利和惊喜。
咱可得好好了解了解它们,让它们更好地为我们服务呀!这电机驱动芯片的分类,你们都搞清楚了吧?是不是挺有意思的呀!。
llc同步整流驱动芯片
llc同步整流驱动芯片随着电源设计技术的不断发展,LLC同步整流驱动芯片逐渐成为电源管理系统的重要组成部分。
本文将介绍LLC同步整流驱动芯片的概述、工作原理、优点、应用领域以及如何选择合适的LLC同步整流驱动芯片。
一、LLC同步整流驱动芯片的概述LLC同步整流驱动芯片是一种电源管理芯片,主要用于控制和调节开关电源的输出电压。
它采用LLC(Lindsay-Cook-Lo)谐振变换器拓扑结构,具有较高的转换效率和较小的体积。
LLC同步整流驱动芯片内部集成了功率开关、控制器、电压检测、电流检测等功能,可以实现对电源系统的精确控制。
二、LLC同步整流驱动芯片的工作原理LLC同步整流驱动芯片的工作原理主要分为以下几个部分:1.开关控制:通过控制器输出脉冲信号,驱动功率开关进行开关操作。
2.谐振变换:通过LC谐振网络实现电压、电流的变换。
3.电压、电流检测:对输出电压、电流进行实时检测,通过控制器调整脉冲宽度,实现恒压、恒流等控制模式。
4.保护功能:当检测到异常情况时,如过压、过流、短路等,控制器会发出保护信号,关闭功率开关,以保护整个电源系统。
三、LLC同步整流驱动芯片的优点1.高转换效率:LLC谐振变换器具有较高的转换效率,可以有效降低能耗。
2.恒压、恒流模式:LLC同步整流驱动芯片可以实现恒压、恒流输出,满足不同负载需求。
3.紧凑型设计:LLC谐振变换器具有较小的体积,便于集成和安装。
4.可靠性高:LLC同步整流驱动芯片具有丰富的保护功能,可有效提高电源系统的可靠性。
四、LLC同步整流驱动芯片的应用领域LLC同步整流驱动芯片广泛应用于各种电子产品和工业设备中,如通信设备、服务器、电动汽车、太阳能发电系统等。
五、如何选择合适的LLC同步整流驱动芯片在选择LLC同步整流驱动芯片时,需要考虑以下几个方面:1.转换效率:选择高转换效率的LLC同步整流驱动芯片,可以降低能耗。
2.输出电压和电流:根据实际应用需求,选择合适的输出电压和电流参数的LLC同步整流驱动芯片。
数码管驱动芯片有哪些
数码管驱动芯片有哪些数码管是一种显示设备,它是由多个发光二极管组成的。
为了驱动数码管的显示,需要使用特定的驱动芯片。
下面是一些常见的数码管驱动芯片:1. TM1637:TM1637是一种常用的4位数码管驱动芯片,适用于控制共阳或共阴数码管。
它具有简单的接口和丰富的功能,可以轻松实现数字、字母、符号的显示和控制。
2. TM1650:TM1650是一种集成了键盘扫描和数码管驱动功能的芯片。
它可以同时驱动4位数码管,并且具有内置的键盘扫描功能,可直接与开关矩阵连接,实现灵活的控制。
3. MAX7219:MAX7219是一种广泛使用的8位数码管驱动器,具有独特的串行接口。
它可以同时驱动8位共阳或共阴数码管,并且可以级联多个芯片,实现更多数码管的显示。
4. HT1621:HT1621是一种针对液晶数码管设计的驱动芯片,可以同时驱动4位数码管,同时支持多种显示模式和字符设置。
它具有低功耗特性和简单易用的接口。
5. CD4543:CD4543是一种BCD-7段数码管驱动芯片,适用于显示0-9数字和部分字母。
它具有直接BCD码输入和简单的复位功能。
6. CD4511:CD4511是一种BCD-7段数码管驱动芯片,适用于显示0-9数字和部分字母。
它具有多种输入模式和BCD码转换功能。
7. HT1622:HT1622是一种驱动静态和多功能数码管显示的专用控制器,兼容于HT1621。
它具有低功耗和扫描速度快的特点。
8. MBI5168:MBI5168是一种高亮度LED数码管驱动芯片,适用于控制共阳数码管。
它具有高驱动电流能力和优秀的亮度调节范围。
除了这些常见的数码管驱动芯片外,还有许多其他型号和品牌的芯片可供选择。
根据不同的应用场景和需求,选择合适的数码管驱动芯片非常重要。
几种用于IGBT驱动的集成芯片
几种用于IGBT驱动的集成芯片2. 1 TLP250( TOSHIBA公司生产)在一般较低性能的三相电压源逆变器中 , 各种与电流相关的性能控制 , 通过检测直流母线上流入逆变桥的直流电流即可 , 如变频器中的自动转矩补偿 . 转差率补偿等 . 同时 , 这一检测结果也可以用来完成对逆变单元中 IGBT实现过流保护等功能 . 因此在这种逆变器中 , 对 IGBT驱动电路的要求相对比较简单 , 成本也比较低 . 这种类型的驱动芯片主要有东芝公司生产的 TLP250, 夏普公司生产的 PC923等等 . 这里主要针对 TLP250做一介绍 .TLP250包含一个 GaAlAs光发射二极管和一个集成光探测器 , 8脚双列封装结构 . 适合于 IGBT或电力MOSFET栅极驱动电路 . 图 2为 TLP250的内部结构简图 , 表1给出了其工作时的真值表 .TLP250的典型特征如下:1)输入阈值电流(IF): 5 mA(最大) ;2)电源电流(ICC): 11 mA(最大) ;3)电源电压(VCC): 10~ 35 V;4)输出电流(IO):± 0.5 A(最小) ;5)开关时光(tPLH /tPHL):0.5 μ s(最大) ;6)隔离电压:2500 Vpms(最小).表2给出了TLP250的开关特征,表3给出了TLP250的推举工作前提.注:使用 TLP250时应在管脚 8和 5间连接一个 0.1 μ F的陶瓷电容来稳定高增益线性放大器的工作 , 提供的旁路作用掉效会损坏开关性能 , 电容和光耦之间的引线长度不应超过 1 cm.图 3和图 4给出了 TLP250的两种典型的应用电路 .在图 4中 , TR1和 TR2的选取与用于 IGBT驱动的栅极电阻有直接的关系 , 例如 , 电源电压为24V时 ,TR1和 TR2的Icmax≥ 24/Rg.图 5给出了 TLP250驱动 IGBT时 ,1 200 V/200 A的 IGBT上电流的试验波形(50 A/10 μ s) . 可以看出 , 因为TLP250不具备过流呵护功效 ,当 IGBT过流时, 经由过程掌握旌旗灯号关断 IGBT, IGBT中电流的下降很陡 , 且有一个反向的冲击 . 这将会产生很大的 di/dt和开关损耗 , 而且对控制电路的过流保护功能要求很高 .TLP250使用特点:1) TLP250输出电流较小 , 对较大功率 IGBT实施驱动时 , 需要外加功率放大电路 .2)由于流过 IGBT的电流是通过其它电路检测来完成的 , 而且仅仅检测流过 IGBT的电流 , 这就有可能对于 IGBT的使用效率产生一定的影响 , 比如 IGBT在安全工作区时 , 有时出现的提前保护等 .3)要求控制电路和检测电路对于电流信号的响应要快 , 一般由过电流发生到 IGBT可靠关断应在 10 μ s以内完成 .4)当过电流发生时 , TLP250得到控制器发出的关断信号 , 对 IGBT的栅极施加一负电压 , 使 IGBT硬关断 . 这种主电路的 dv/dt比正常开关状态下大了许多 , 造成了施加于 IGBT两端的电压升高很多 , 有时就可能造成IGBT的击穿 .2.2 EXB8..Series( FUJI ELECTRIC公司临盆)跟着有些电气装备对三相逆变器输出机能请求的进步及逆变器本身的原因,在现有的很多逆变器中,把逆变单元 IGBT的驱动与呵护和主电路电流的检测分别由不同的电路来完成 . 这种驱动方式既提高了逆变器的性能 , 又提高了 IGBT的工作效率 , 使 IGBT更好地在安全工作区工作 . 这类芯片有富士公司的 EXB8..Series. 夏普公司的 PC929等 . 在这里 , 我们主要针对 EXB8..Series做一介绍 .EXB8..Series集成芯片是一种专用于 IGBT的集驱动 . 保护等功能于一体的复合集成电路 . 广泛用于逆变器和电机驱动用变频器 . 伺服电机驱动 . UPS. 感应加热和电焊设备等工业领域 . 具有以下的特点: 1)不同的系列(标准系列可用于达到 10 kHz开关频率工作的 IGBT, 高速系列可用于达到 40 kHz开关频率工作的 IGBT) .2)内置的光耦可隔离高达 2 500 V/min的电压 .3)单电源的供电电压使其应用起来更为方便 .4)内置的过流保护功能使得 IGBT能够更加安然地工作 .5)具有过流检测输出信号 .6)单列直插式封装使得其具有高密度的安装方式 .常用的 EXB8..Series 主要有:标准系列的 EXB850和EXB851, 高速系列的 EXB840和 EXB841. 其主要应用场合如表 4所示 .注: 1)标准系列:驱动电路中的信号延迟≤ 4 μ s 2)高速系列:驱动电路中的信号延迟≤ 1.5 μ s图 6给出了 EXB8..Series的功能方框图 .表 5给出了 EXB8..Series的电气特性 .表6给出了EXB8..Series工作时的推举工作前提 .表 6 EXB8..Series工作时的推举工作条件图 7给出了 EXB8..Series的典范运用电路 .EXB8..Series运用不合的型号 ,可以达到驱动电流高达 400 A,电压高达1200 V的各类型号的IGBT.因为驱动电路的旌旗灯号延迟时光分为两种:尺度型(EXB850.EXB851)≤ 4μs,高速型( EXB840. EXB841)≤1 μ s, 所以标准型的 IC实用于频率高达 10 kHz的开关操作 , 而高速型的 IC适用于频率高达 40 kHz的开关操作 .在应用电路的设计中, 应留意以下几个方面的问题:—— IGBT栅射极驱动电路接线必须小于 1 m;—— IGBT栅射极驱动电路接线应为双绞线 ;——如想在IGB集电极产生大的电压尖脉冲,那么增长 IGBT栅极串联电阻( Rg)即可 ;——应用电路中的电容 C1和 C2取值相同 , 对于EXB850和 EXB840来说 , 取值为33 μ F, 对于 EXB851和 EXB841来说 , 取值为47 μ F. 该电容用来吸收由电源接线阻抗而引起的供电电压变化 . 它不是电源滤波器电容 .EXB8..Series的使用特点:1) EXB8..Series的驱动芯片是通过检测 IGBT在导通过程中的饱和压降 Uce来实施对 IGBT的过电流保护的 . 对于 IGBT的过电流处理完全由驱动芯片自身完成 , 对于电机驱动用的三相逆变器实现无跳闸控制有较大的帮助 .2) EXB8..Series的驱动芯片对 IGBT过电流保护的处理采用了软关断方式 , 因此主电路的 dv/dt比硬关断时小了许多 , 这对 IGBT的使用较为有利 , 是值得重视的一个优点 .3) EXB8..Series驱动芯片内集成了功率放大电路 ,这在一定程度上提高了驱动电路的抗干扰能力 .4) EXB8..Series的驱动芯片最大只能驱动 1 200V /300 A的 IGBT, 并且它本身并不提倡外加功率放大电路 , 另外 , 从图 7中可以看出 , 该类芯片为单电源供电 , IGBT的关断负电压信号是由芯片内部产生的- 5 V 信号 , 容易受到外部的干扰 . 因此对于 300 A以上的IGBT或者 IGBT并联时 , 就需要考虑别的驱动芯片 , 比如三菱公司的 M57962L等 .图 8给出了 EXB841驱动 IGBT时 , 过电流情况下的实验波形 . 可以看出, 正如前面介绍过的, 由于EXB8..Series芯片内部具备过流保护功能 , 当 IGBT过流时 , 采用了软关断方式关断 IGBT, 所以 IGBT中电流是一个较缓的斜坡下降 , 这样一来 , IGBT关断时的 di/dt明显减少 , 这在一定程度上减小了对控制电路的过流保护性能的要求 .2. 3 M579..Series( MITSUBISHI公司生产)M579..Series是日本三菱公司为 IGBT驱动提供的一种 IC系列 , 表 7给出了这种系列的几种芯片的基本应用特性(其中有*者为芯片内部含有 Booster电路) .在 M579..Series中 , 以 M57962L为例做出一般的解释 . 随着逆变器功率的增大和结构的复杂 , 驱动信号的抗干扰能力显得尤为重要 , 比较有效的办法就是提高驱动信号关断 IGBT时的负电压 , M57962L的负电源是外加的(这点和 EXB8..Series不同) , 所以实现起来比较方便 . 它的功能框图和图 6所示的 EXB8..Series功能框图极为类似 , 在此不再赘述 . 图 9给出了 M57962L在驱动大功率 IGBT模块时的典型电路图 . 在这种电路中 , NPN 和 PNP构成的电压提升电路选用快速晶体管(tf≤ 200 ns) , 并且要有足够的电流增益以承载需要的电流 .在使用 M57962L驱动大功率 IGBT模块时 , 应注意以下三个方面的问题:1)驱动芯片的最大输出电流峰值受栅极电阻Rg的最小值限制 , 例如 , 对于 M57962L来说 , Rg的允许值在 5 Ω 左右 , 这个值对于大功率的 IGBT来说高了一些 , 且当 Rg较高时 , 会引起 IGBT的开关上升时间 td(on). 下降时间 td(off)以及开关损耗的增大 , 在较高开关频率( 5 kHz以上)应用时 , 这些附加损耗是不可接受的 .2)即便是这些附加损耗和较慢的开关时间可以被接受 , 驱动电路的功耗也必须考虑 , 当开关频率高到一定程度时(高于 14 kHz) , 会引起驱动芯片过热 .3)驱动电路缓慢的关断会使大功率 IGBT模块的开关效率降低 , 这是因为大功率 IGBT模块的栅极寄生电容相对比较大 , 而驱动电路的输出阻抗不够低 . 还有 , 驱动电路缓慢的关断还会使大功率 IGBT模块需要较大的吸收电容 .以上这三种限制可能会产生严重的后果 , 但通过附加的 Booster电路都可以加以克服 , 如图 9所示 .从图 10( a)可以看出 , 在 IGBT过流信号输出以后 , 门极电压会以一个缓慢的斜率下降 . 图 10( b)及图10( c)给出了 IGBT短路时的软关断过程(集电极-发射极之间的电压 uCE和集电极电流 iC的软关断波形)0 引言跟着电力电子技巧朝着大功率.高频化.模块化成长,绝缘栅双极品体管(IGBT)已广泛运用于开关电源.变频器.电机掌握以及请求快速.低损耗的范畴中.IGBT是复合全控型电压驱动式电力电子器件,兼有MOSFET和GTR的长处:输入阻抗高,驱动功率小,通态压降小,工作频率高和动态响应快.今朝,市场上500~3000V,800~l800A的IGBT,因其耐高压.功率大的特征,已成为大功率开关电源等电力电子装配的首选功率器件.1 驱动呵护电路的原则因为是电压掌握型器件,是以只要掌握ICBT的栅极电压就可以使其开通或关断,并且开通时保持比较低的通态压降.研讨标明,IGBT的安然工作区和开关特征随驱动电路的转变而变更.是以,为了包管IGBT靠得住工作,驱动呵护电路至关重要.IGBT驱动呵护电路的原则如下.(1)动态驱动才能强,能为栅极供给具有峻峭前后沿的驱动脉冲;(2)开通时能供给适合的正向栅极电压(12~15V),关断时可以供给足够的反向关断栅极电压(一5V);(3)尽可能少的输入输出延迟时光,以进步工作效力;(4)足够高的输入输出电气隔离特征,使旌旗灯号电路与栅极驱动电路绝缘;(5)消失短路.过流的情形下,具有敏锐的呵护才能.今朝,在现实运用中,广泛运用驱动与呵护功效合为一体的IGBT专用的驱动模块.2 集成驱动模块为懂得决IGBT的靠得住驱动问题,世界上各厂家丌发出了浩瀚的IGBT集成驱动模块.如日本富士公司的EXB系列,三菱电机公司的M57系列,三社电机公司的GH系列,美国国际整流器公司的TR系列,Unitrode公司的UC37系列以及国产的HL系列.以下是几种典范的集成驱动模块.2.1 EXB841模块的剖析EX841高速驱动模块为15脚单列直插式构造,采取高隔离电压光耦合器作为旌旗灯号隔离,内部构造图如图l所示,其工作频率可达40 kHz,可以驱动400 M600 V以内及300 A/l200 V的IGBT管,其隔离电压可达2500AC/min,工作电源为自力电源20±1V,内部含有一5V稳压电路,为ICBT的栅极供给+15V的驱动电压,关断时供给一5V的偏置电压,使其靠得住关断.当脚15和脚14有10 mA电流畅过时,脚3输出高电平而使IGBT在1μs内导通;而当脚15和脚14无电流畅过时,脚3输出低电平使IGBT关断;若ICBT导通时因推却短路电流而退出饱和,Vce敏捷上升,脚6悬空,脚3电位在短路后约3.5μs后才开端软降.EXB841典范运用图如图2所示,电容C1.C2用于接收高频噪音.当脚3输出脉冲的同时,经由过程快速二极管D1检测IGBT的C—E间的电压.当Vce>7V时,过流呵护电流掌握运算放大器,使其输出软关断旌旗灯号,在10μs内将脚3输出电平降为O.因EXB841无过流自锁功效,所以外加过流呵护电路,一旦产生过流,可经由过程外接光耦TLP521将过流呵护旌旗灯号输出,经由必定延时,以防止误动作和包管进行软关断,然后由触发器锁定,实现呵护.缺点:EXB84l过流呵护阀值过高,Vce>7V时动作,此时已弘远于饱和压降;消失呵护肓区;在实现止常关断时仅能供给一5V偏压,在开关频率较高.负载过大时,关断就显得不成靠;无过流呵护自锁功效,在短路呵护时其栅压的软关断进程被输入的关断旌旗灯号所打断.2.2 M57962L模块的剖析M57962AL是一种14脚单列直捕式构造的厚膜驱动模块,其内部构造图如图3所示.它由光耦合器.接口电路.检测电路.准时复位电路以及门关断电路构成,驱动功率大,町以驱动600A/600V及400A/l200V等系列IGBT模块.M5796AL具有高速的输入输出隔离,绝缘电压也可达到AC 2500V/min;输入电平与TTL电平兼容,适于单片机掌握;内部有准时逻辑短路呵护电路,同时具有延时呵护特征;采取双电源供电方法,相对于EXB84l来说,固然多运用一个电源.但IGBT可以更靠得住地通断.典范运用图如图4所示.当驱动旌旗灯号经由过程脚14和脚13时,经由高速光耦隔离,由M57962AL内置接口电路传输至功率放大极,在M57962AL的脚5产生+15V开栅和一10V关栅电压,驱动IGBT通断.当脚1检测到电压为7V时,模块认定电路短路,立刻经由过程光耦输出关断旌旗灯号,使脚5输出低电平,从而将IGBT的G—E两头置于负向偏置,靠得住关断.同时,输出误差旌旗灯号使故障输出端(脚8)为低电平,从而驱动外接的呵护电路工作.延时2~3s后,若检测到脚13为高电平,则M57962AL恢复工作.稳压管DZ1用于防止D1击穿而破坏M57962AL,Rg为限流电阻,DZ2和DZ3起限幅感化,以确保靠得住通断.比较:与EXB841比拟,M57962AL须要双电源(+15V,一1OV)供电,外周电路庞杂.而恰是因为M57962AL可输出一10V的偏压,使得IGBT靠得住地关断;别的,M57962AL具有过流呵护主动闭锁功效,并且软关断时光可外部调节,而EXB84l的软关断时光无法调节.所以M57962AL较EXB841更安然.靠得住.2.3 HL402模块的剖析HL402是17脚单列直插式构造,内置有静电屏障层的高速光耦合器实现旌旗灯号隔离,抗干扰才能强,响应速度快,隔离电压高.它具有对IGBT进行降栅压.软关断双重呵护功效,在软关断及降栅压的同时能输出报警旌旗灯号,实现封锁脉冲或分断主回路的呵护.它输出驱动电压幅值高,正向驱动电压可达15~17V,负向偏置电压可达10~12V,因而可用来直接驱动容量为400A/600V及300A/1200V以下的IGBT.HL402构造图如图5所示.图5中,VL1为带静电屏障的光耦合器,它用来实现与输入旌旗灯号的隔离.因为它具有静电屏障,因而明显进步了HL402抗共模干扰的才能.图5中U1为脉冲放大器,S1.S2实现驱动脉冲功率放大,U2为降栅压比较器,正常情形下因为脚9输入的IGBT集电极电压VCE不高于U2的基准电压VREF,U2不翻转,S3不导通,故从脚17和脚16输入的驱动脉冲旌旗灯号经S2整形后不被封锁.该驱动脉冲经S2.S2放大后供给应IGBT使其导通或关断,一旦IGBT退饱和,则脚9输入集电极电压给IGBT使其导通或关断,并且脚9输入的集电极电压采样旌旗灯号VCE高于U2的基准电压VREF,比较器U2翻转输出高电平,使S3导通,由稳压管DZ2将驱动器输出的栅极电压VGE下降到10V.此时,软关断准时器U3在降栅压比较器U2翻传达到设定的时光后,输出正电压使S4导通,将栅极电压软关断降到IGBT的栅射极门限电压,给IGBT供给一个负的驱动电压,包管IGBT靠得住关断.HL402典范运用图如图6所示.在现实电路中,C1.C2.C3.C4需尽可能地接近H1402的脚2.脚l.脚4装配.为了防止高频耦合及电磁干扰,由HL402输出到被驱动IGBT栅射极的引线须要采取双绞线或同轴电缆屏障线,其引线长度不超出1m.脚9和脚13接至IGBT集电极的引线必须离开走,不得与栅极和发射极引线绞合,以免引起交叉干扰.光耦合器L1可输入脉冲封锁旌旗灯号,当L1导通时,HLA02输出脉冲立刻被封锁至-10V.光耦合器L2供给软关断报警旌旗灯号,它在躯动器软关断的同时导通光耦合器L3,供给降栅压报警旌旗灯号.运用中,经由过程调剂电容器C5.C6.C7的值,可以将呵护波形中的降栅压延迟时光.降栅压时光.软关断斜率时光调剂至适合的值.在高频运用时,为了防止IGBT受到多次过电流冲击,可在光耦合器L2输出数次或1次报警旌旗灯号后,将输入脚16和脚17间的旌旗灯号封锁.小结:以上三者中,M57962AL和HL402都采取陶瓷基片黑色包装,EXB841采取覆铜板黄色包装,因为陶瓷基片的散热机能和频率特征比覆铜板好,HL402的负载才能和散热机能最好,加之合理的计划设计,在三者中的工作频率最高,呵护功效最全,而EXB841和M57962AL都没有降栅压呵护功效.别的,HL402和M57962AL供给负偏压的稳压管,放于外部,既有灵巧性又进步了靠得住性,而EXB841的稳压管在内部,经常因稳压管的破坏而掉效.是以,HL402凭借其优胜的机能可以填补别的两者的缺点.2.4 GH-039模块的剖析GH-039采取单列直插式12脚封装,功耗低.工作中发烧很小,可以高密度运用它采取单电源工作,内置高速光耦合器,带有软关断过流呵护电路,过流呵护除闭锁自身输出外,还给出供用户运用的同步输出端.它可以用来直接驱动300A/600V以下的IGBT模块.其内部构造图如图7所示,工作道理与EXB和M57系列模块相相似,这里不再赘述.而与EXB系列和M57系列的模块不合的是该模块已含有呵护后发送报警或动作旌旗灯号的光耦合器,所以运用中不须要像EXB和M57系列的模块外接光耦合器,因而加倍便利,其机能比EXB和M57系列的模块在呵护机能上加倍优胜;在靠得住性方面,因为GH-039是单电源供电,不克不及供给负偏压,从而导致ICBT不克不及靠得住地关断.与HL402比拟,CH-039呵护功效还不完美,它也同EXB841和M57962AL一样无降栅压呵护.是以,GH-039驱动模块也是出缺点的.GH-039典范接线图如图8所示.工作电源VCC为26V;为了保持电压稳固,滤波电容器应尽可能接近GH一039模块装配和运用,且其电容值不克不及小于10μF,并应选用高质量的电容;串入GH-039脚12与ICBT集电极之间的二极管D1,应选超快速恢复二极管,并且要包管其反向耐压不低于ICBT的集电极与栅极之间的额定电压;为防止所衔接的过流呵护端子光电隔离器的误动作,应在D1与GH一039的脚12之间串入100Ω的电阻;接于脚lO与脚12之间的D2选用超快速恢复二极管,其反向耐压可以低于IGBT的集射极间耐压.2.5 其他驱动器(1)IR系列驱动器 IR系列驱动器主如果为驱动桥臂电路而设计的,该芯片具有14脚,DIP封装.它具有过流呵护和欠压呵护功效,特殊是它具有自举浮动电源大大简化了驱动电源的设计,只用一路电源即可驱动多个功率器件.其缺点是本身不克不及产生负偏压,当用于驱动桥式电路时,因为米勒效应的感化,在开通与关断时刻,轻易在栅极上产生干扰,造成桥臂短路;别的IR系列驱动器采取了不隔离的驱动方法,在主电路的功率器件破坏时,高压可能直接串入驱动器件,致使驱动模块及前极电路破坏.(2)UC37系列驱动器该系列驱动器一般由UC3726和UC3727两片芯片配对运用,其工作频率较高,但在两芯片之间需增长脉冲变压器,给电路的运用和设计带来便利,是以该系列驱动器在我同并未得到推广.3 结语经由过程以上剖析比较,可得到如下结论.(1)以上6个系列的驱动器均能实现对IGBT的驱动与呵护;(2)EXB84l外周电路简略,仅需单电源供电,是最早进入我国市场的ICBT 驱动模块,技巧成熟,运用广泛;(3)EXB841与M57962AL在IGBT关断时代均能在栅极上施加负电压,进一步包管了IGBT的靠得住关断;(4)EXB841.M57962AL.GH一039和HL402都是自身带有对IGBT进行退饱和及过流呵护功效的ICBT驱动模块,且都是经由过程检测IGBT集射极间的电压来完成呵护功效的.但EXB841.M57962AL.GH一039在ICBT消失退饱和或过流时,仅可进行软关断的呵护.而HL402不单能进行软关断呵护,还可进行降栅压呵护.是以,HL402是四者中呵护功效最强,呵护功效设计最合理和呵护机能运用最便利的IGBT驱动器;(5)驱动雷同个数的IGBT功率开关时,IR系列所需工作电源起码,但不具有负偏压,轻易造成桥臂短路,实用于小功率驱动场合.。
常用栅极驱动芯片
常用栅极驱动芯片常用栅极驱动芯片是一种用于驱动功率MOSFET(金属氧化物半导体场效应晶体管)的集成电路。
它们在各种应用中起着关键的作用,例如交流电源、电机驱动、电力电子等领域。
本文将介绍几种常见的栅极驱动芯片,并讨论它们的特点和应用。
1. IR2110IR2110是一种高性能MOSFET和IGBT驱动芯片。
它具有低功耗、高速驱动和可靠性高的特点。
IR2110的输出极性可调,并且具有低反馈电流特性,以提高系统的效率。
该芯片适用于高频应用,如电力电子和电机驱动。
2. IRS21844IRS21844是一种高电压、高速栅极驱动芯片。
它具有高达600V的驱动电压和2A的驱动能力,适用于高压应用。
IRS21844采用了高速低功耗的逻辑输入,能够实现快速的开关操作,适用于高频电源和电机控制系统。
3. TC4420TC4420是一种高性能MOSFET和IGBT驱动芯片。
它具有低功耗、高速驱动和高电流驱动能力。
TC4420的输入电压范围广,适用于各种逻辑电平驱动。
该芯片具有短路保护和过温保护功能,可以提高系统的可靠性。
TC4420广泛应用于电力电子、电机驱动和变频器等领域。
4. MAX4420MAX4420是一种高性能MOSFET和IGBT驱动芯片。
它具有低功耗、高速驱动和低电压逻辑输入的特点。
MAX4420的输出极性可调,适用于各种应用。
该芯片具有短路保护和过温保护功能,可以提高系统的可靠性。
MAX4420适用于低电压应用,如电池供电系统和便携式设备。
5. HIP4081AHIP4081A是一种高性能MOSFET和IGBT驱动芯片。
它具有低功耗、高速驱动和大电流驱动能力。
HIP4081A的输入电压范围广,适用于各种逻辑电平驱动。
该芯片具有过温保护和短路保护功能,可以提高系统的可靠性。
HIP4081A广泛应用于电力电子、电机驱动和电源管理等领域。
总结起来,常用栅极驱动芯片是一类关键的集成电路,用于驱动功率MOSFET和IGBT。
车身电子高边驱动芯片的仿真与选型
K技(交*Technical Communication软件-用车身电子高边驱动芯片的仿真与选型江凯敏,徐伟,陈文庆,朱光欢(广州汽车集团股份有限公司汽车工程研究院,广东 广州511434)摘要:简述意法半导体ST 的高边驱动芯片的仿真与选型原理,阐明ST 高边驱动芯片的仿真与应用,以及介绍 经过负载模型的仿真后进行可靠性分析的原理。
关键词:高边驱动;ST ;仿真与选型中图分类号:U463.6 文献标志码:A 文章编号:1003-8639( 2021 )04-0071-04Simulation and Selection of High Side Driver Chip for Automobile BodyJIANG Kai-min , XU Wei , CHEN Wen-qing , ZHU Guang-huan(Automotive Engineering Research Institute of Guangzhou Automobile Group Co., Ltd., Guangzhou 511434, China )Abstract : This paper briefly introduces the simulation and selection principle of ST high side driver chip , expounds the simulation and application of ST high side driver chip , and introduces the principle of reliability analysis after load model simulation.Key words : high side driver ; ST ; simulation and model selection江凯敏(1985-),男,车身电控工程师,主要从事车身电控系统的开发与设计工作。
半桥驱动芯片参数
半桥驱动芯片参数一、引言半桥驱动芯片是一种常用的电子元件,用于控制半桥电路的开关和驱动信号。
它在工业控制、电动汽车、电力电子等领域有着广泛的应用。
本文将对半桥驱动芯片的参数进行详细介绍和解析。
二、参数一:电源电压半桥驱动芯片的电源电压是指其工作所需的电源电压范围。
一般而言,电源电压的范围应能满足半桥电路的工作要求。
常见的电源电压范围为5V至30V。
在选择半桥驱动芯片时,需要根据具体的应用场景和需求确定合适的电源电压范围。
三、参数二:输出电流输出电流是指半桥驱动芯片能够输出的电流大小。
半桥电路中的负载电流会通过驱动芯片进行控制和调节,因此输出电流是衡量半桥驱动芯片性能的重要指标。
常见的输出电流范围为几十毫安至几安培。
在选择半桥驱动芯片时,需要根据负载电流大小确定合适的输出电流。
四、参数三:频率范围频率范围是指半桥驱动芯片能够正常工作的频率范围。
半桥电路中的开关频率会影响到整个系统的稳定性和效率。
常见的频率范围为几十千赫至几百千赫。
在选择半桥驱动芯片时,需要根据具体的应用需求和开关频率确定合适的频率范围。
五、参数四:电流保护功能电流保护功能是指半桥驱动芯片在工作过程中能够对电流进行保护的能力。
半桥电路中的电流过大或电流突变可能会损坏电子元件,因此电流保护功能是非常重要的。
常见的电流保护功能包括过流保护、短路保护等。
在选择半桥驱动芯片时,需要考虑到系统的安全性和可靠性,选择具备电流保护功能的芯片。
六、参数五:温度范围温度范围是指半桥驱动芯片能够正常工作的温度范围。
不同的应用场景和环境温度会对芯片的工作产生影响,因此温度范围是需要考虑的因素之一。
常见的温度范围为-40℃至+125℃。
在选择半桥驱动芯片时,需要根据具体的工作环境确定合适的温度范围。
七、参数六:引脚配置引脚配置是指半桥驱动芯片的引脚布局和功能分配。
不同的芯片具有不同的引脚配置,根据具体的应用需求选择适合的引脚配置非常重要。
常见的引脚配置包括电源引脚、控制引脚、输出引脚等。
半桥驱动芯片参数
半桥驱动芯片参数引言半桥驱动芯片是一种常用的电路芯片,用于驱动半桥电路,实现电力转换和控制。
本文将介绍半桥驱动芯片的几个重要参数,包括电源电压、输出电流和响应时间等。
一、电源电压电源电压是指半桥驱动芯片正常工作所需的电压范围。
一般情况下,半桥驱动芯片的电源电压范围为5V至20V。
超出这个范围,芯片可能无法正常工作,甚至损坏。
因此,在设计电路时,需要确保所选的半桥驱动芯片的电源电压范围符合实际需求。
二、输出电流输出电流是指半桥驱动芯片能够输出的最大电流。
半桥驱动芯片通常有两个输出端,分别用于驱动上半桥和下半桥。
输出电流的大小直接影响到半桥电路的输出功率。
一般来说,半桥驱动芯片的输出电流范围为几百毫安至几安培。
在设计电路时,需要根据实际负载的要求选择合适的输出电流。
三、响应时间响应时间是指半桥驱动芯片对输入信号变化的响应速度。
半桥驱动芯片通常需要在很短的时间内完成上半桥和下半桥的切换,以控制电流的流向。
因此,响应时间的快慢直接影响到半桥电路的工作效果。
一般来说,半桥驱动芯片的响应时间在几纳秒至几微秒之间。
在选择半桥驱动芯片时,需要根据实际需求考虑响应时间的要求。
四、过温保护过温保护是指半桥驱动芯片在温度超过一定阈值时自动保护的功能。
由于半桥电路在工作过程中可能会产生较大的热量,如果芯片无法及时散热,温度将会升高。
为了防止芯片因温度过高而损坏,半桥驱动芯片通常会具备过温保护功能。
当温度超过设定阈值时,芯片会自动停止工作或减小输出电流,以保护自身和其他电路。
五、输入电平输入电平是指半桥驱动芯片对输入信号的电平要求。
半桥驱动芯片一般有多个输入端,用于接收控制信号。
输入电平的要求包括高电平和低电平的电压范围、电平转换的阈值等。
在设计电路时,需要根据实际控制信号的特点选择合适的半桥驱动芯片,以确保输入信号能够被正确识别和处理。
六、电流保护电流保护是指半桥驱动芯片在输出电流异常时自动保护的功能。
由于半桥电路的负载可能存在短路、过流等情况,如果芯片无法及时保护,可能会导致芯片损坏或其他电路故障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电机驱动有单极性和双极性两种。
当只需要电机单方向驱动时,可采用单极性驱动,如下图(a)所示,此电路由于续流二极管工作时间较长,损耗大,所以改进后的半桥驱动如下图(b):
Figure 1.Illustration of the half bridge.
当需要电机正反两个方向旋转时,采用双极性驱动方式,如下:
Figure 2.Illustration of the H bridge.
功能逻辑如下:(1:合并,0:断开)
S1 S2 S3 S4 电机动作
1 0 0 1 正传
0 1 1 0 反转
0 0 0 0 自由
0 1 0 1 刹车
1 0 1 0 刹车
这又称为全桥驱动,上图中开关使用大功率MOS管替代,可以使用分立元件,也可以使用集成电路。
但是能用于PWM驱动的低电压大电流芯片产品并不多,在智能车比赛中使用最多的有:MC33886, VNH3SP30, BTS7960B, DT340I, IRF3205。
根据查阅的资料,使用单片MC33886时易发生发热、噪声等问题,对电源电压影响过大等问题,所以可以使用两片并联,如下所示:
该接法降低了MOS管的导通内阻,增大了驱动电流,可以起到增强驱动能力、减小芯片发热的作用,但是起始频率受限,电机噪声大且发热严重。
VNH3SP30是意法半导体公司生产的专用于电机驱动的大电流功率集成芯片。
芯片核心是一个双单片上桥臂驱动器(HSD)和2个下桥臂开关,HSD开关的设计采用ST的ViPowe 技术,允许在一个芯片内集成一个功率场效应MOS管和智能信号/保护电路。
下桥臂开关是采用ST专有的EHD(STripFET)工艺制造的纵向场效应MOS管。
3个模块叠装在一个表面组装MultiPowerSO- 30引脚框架电绝缘封装内,具体性能指标如下: ①最大电流30 A、电源电压高达40 V; ②功率MOS管导通电阻0.034 Ω; ③5 V兼容的逻辑电平控制信号输入;④内含欠压、过压保护电路;⑤芯片过热报警输出和自动关断。
与MC3886相比,它具有一个显著优点就是芯片不会发热,且保护功能强大,但是存在开关频率限10 kHz,电机噪声大且电机容易发热,但芯片较贵,很多场合性价比不高。
采用2个半桥智能功率驱动芯片BTS7960B组合成一个全桥驱动器,驱动直流电机转动。
BTS7960B是应用于电机驱动的大电流半桥集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边MOSFET和一个驱动IC。
P沟道高边开关省去了电荷泵的需求,因而减少了电磁干扰(EMI)。
集成的驱动IC具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和超温、过压、欠压、过流及短路保护功能。
BTS7960B的通态电阻典型值为16 mΩ,驱动电流可达43 A,调节SR引脚外接电阻的大小可以调节MOS
管导通和关断时间,具有防电磁干扰功能。
IS引脚是电流检测输出引脚。
INH引脚为使能引脚,IN引脚用于确定哪个MOSFET导通。
当IN=1 且INH=1时,高边MOSFET 导通,输出高电平;当IN=0且INH=1时,低边MOSFET导通,输出低电平。
通过对下桥臂开关管进行频率为25 kHz的脉宽调制(PWM)信号控制BTS7960B的开关动作,实现对电机的正反向PWM驱动、反接制动、能耗制动等控制状态。
这块芯片开头频率可以达到25 kHz,可以很好地解决前面提到的MC33886和VNH3SP30使电机噪声大和发热的问题,同时驱动能力有了明显的提高,响应速度快。
但是,电机变速时会使电源电压下降10%左右,控制器等其他电路容易产生掉电危险,从而使整个电路系统瘫痪。
在查看往年技术报告时也发现直接使用分立器件设计H桥,但是这会冒很大风险,有可能不稳定。
综上所述,应尽量采用VNH3SP30组合成全桥,也可以使用两片MC33886并联。