ACM算法总结

合集下载

Acm竞赛常用算法与数据结构

Acm竞赛常用算法与数据结构

• 每次用堆取出x进行计算,O(mnlogmn)。
28
哈希表(Hash)
• 理论上查找速度最快的数据结构之一 • 缺点: 需要大量的内存 需要构造Key
29
Hash表的实现
• 数组 • 冲突解决法 • 开散列法 • 闭散列法 C++ sgi stl 实现
30
Hash Key的选取
• 数值: • 方法一:直接取余数(一般选取质数M最为除 数) • 方法二:平方取中法,即计算关键值的平方, 2 r 的表 再取中间r位形成一个大小为
7
常见题型
•Dynamic Programming(动 态规划) •Greedy(贪心) •Complete Search(穷举) •Flood Fill (种子填充)
8
常见题型
• Shortest Path (最短路径) • Recursive Search Techniques (回溯) • Minimum Spanning Tree (最小 生成树) • Knapsack(背包)
22
Parity(ceoi99)
• 从整个01序列肯定是无法入手的,因为它 的长度高达109。 • 从范围比较小的n入手。也就是说我们需要 对信息进行一些特殊的处理。 • a b even/odd,那么将元素b指向a-1, 边的权值是even/odd。 • 下面我们由样例来说明一下这个处理方法。
23
11
12
枚举法
• 又叫穷举法,它利用了计算机计算 速度快且准确的特点,是最为朴素 和有效的一种算法。
• 不是办法的办法
• 但有时却是最好的办法
13
Pizza Anyone? (ZOJ 1219)
• 题目大意: 你需要为你和你的朋友们订一个皮萨。 每个朋友都会告诉你他们想和不想放进皮萨 里的东西。 你是否能订一个皮萨,让他满足每个人 至少一个条件。 假设一共有16种东西可以放进皮萨。

ACM算法模板(吉林大学)

ACM算法模板(吉林大学)

目录目录 (1)Graph 图论 (3)|DAG的深度优先搜索标记 (3)|无向图找桥 (3)|无向图连通度(割) (3)|最大团问题DP+DFS (3)|欧拉路径O(E) (3)|D IJKSTRA数组实现O(N^2) (3)|D IJKSTRA O(E* LOG E) (4)|B ELLMAN F ORD单源最短路O(VE) (4)|SPFA(S HORTEST P ATH F ASTER A LGORITHM) (4)|第K短路(D IJKSTRA) (5)|第K短路(A*) (5)|P RIM求MST (6)|次小生成树O(V^2) (6)|最小生成森林问题(K颗树)O(MLOGM) (6)|有向图最小树形图 (6)|M INIMAL S TEINER T REE (6)|T ARJAN强连通分量 (7)|弦图判断 (7)|弦图的PERFECT ELIMINATION点排列 (7)|稳定婚姻问题O(N^2) (7)|拓扑排序 (8)|无向图连通分支(DFS/BFS邻接阵) (8)|有向图强连通分支(DFS/BFS邻接阵)O(N^2) (8)|有向图最小点基(邻接阵)O(N^2) (9)|F LOYD求最小环 (9)|2-SAT问题 (9)Network 网络流 (11)|二分图匹配(匈牙利算法DFS实现) (11)|二分图匹配(匈牙利算法BFS实现) (11)|二分图匹配(H OPCROFT-C ARP的算法) (11)|二分图最佳匹配(KUHN MUNKRAS算法O(M*M*N))..11 |无向图最小割O(N^3) (12)|有上下界的最小(最大)流 (12)|D INIC最大流O(V^2*E) (12)|HLPP最大流O(V^3) (13)|最小费用流O(V*E* F).......................................13|最小费用流O(V^2* F). (14)|最佳边割集 (15)|最佳点割集 (15)|最小边割集 (15)|最小点割集(点连通度) (16)|最小路径覆盖O(N^3) (16)|最小点集覆盖 (16)Structure 数据结构 (17)|求某天是星期几 (17)|左偏树合并复杂度O(LOG N) (17)|树状数组 (17)|二维树状数组 (17)|T RIE树(K叉) (17)|T RIE树(左儿子又兄弟) (18)|后缀数组O(N* LOG N) (18)|后缀数组O(N) (18)|RMQ离线算法O(N*LOG N)+O(1) (19)|RMQ(R ANGE M INIMUM/M AXIMUM Q UERY)-ST算法(O(NLOGN +Q)) (19)|RMQ离线算法O(N*LOG N)+O(1)求解LCA (19)|LCA离线算法O(E)+O(1) (20)|带权值的并查集 (20)|快速排序 (20)|2台机器工作调度 (20)|比较高效的大数 (20)|普通的大数运算 (21)|最长公共递增子序列O(N^2) (22)|0-1分数规划 (22)|最长有序子序列(递增/递减/非递增/非递减) (22)|最长公共子序列 (23)|最少找硬币问题(贪心策略-深搜实现) (23)|棋盘分割 (23)|汉诺塔 (23)|STL中的PRIORITY_QUEUE (24)|堆栈 (24)|区间最大频率 (24)|取第K个元素 (25)|归并排序求逆序数 (25)|逆序数推排列数 (25)|二分查找 (25)|二分查找(大于等于V的第一个值) (25)|所有数位相加 (25)Number 数论 (26)|递推求欧拉函数PHI(I) (26)|单独求欧拉函数PHI(X) (26)|GCD最大公约数 (26)|快速GCD (26)|扩展GCD (26)|模线性方程 A * X = B (% N) (26)|模线性方程组 (26)|筛素数[1..N] (26)|高效求小范围素数[1..N] (26)|随机素数测试(伪素数原理) (26)|组合数学相关 (26)|P OLYA计数 (27)|组合数C(N, R) (27)|最大1矩阵 (27)|约瑟夫环问题(数学方法) (27)|约瑟夫环问题(数组模拟) (27)|取石子游戏1 (27)|集合划分问题 (27)|大数平方根(字符串数组表示) (28)|大数取模的二进制方法 (28)|线性方程组A[][]X[]=B[] (28)|追赶法解周期性方程 (28)|阶乘最后非零位,复杂度O(NLOGN) (29)递归方法求解排列组合问题 (30)|类循环排列 (30)|全排列 (30)|不重复排列 (30)|全组合 (31)|不重复组合 (31)|应用 (31)模式串匹配问题总结 (32)|字符串H ASH (32)|KMP匹配算法O(M+N) (32)|K ARP-R ABIN字符串匹配 (32)|基于K ARP-R ABIN的字符块匹配 (32)|函数名: STRSTR (32)|BM算法的改进的算法S UNDAY A LGORITHM (32)|最短公共祖先(两个长字符串) (33)|最短公共祖先(多个短字符串)...............................33Geometry 计算几何.. (34)|G RAHAM求凸包O(N* LOG N) (34)|判断线段相交 (34)|求多边形重心 (34)|三角形几个重要的点 (34)|平面最近点对O(N* LOG N) (34)|L IUCTIC的计算几何库 (35)|求平面上两点之间的距离 (35)|(P1-P0)*(P2-P0)的叉积 (35)|确定两条线段是否相交 (35)|判断点P是否在线段L上 (35)|判断两个点是否相等 (35)|线段相交判断函数 (35)|判断点Q是否在多边形内 (35)|计算多边形的面积 (35)|解二次方程A X^2+B X+C=0 (36)|计算直线的一般式A X+B Y+C=0 (36)|点到直线距离 (36)|直线与圆的交点,已知直线与圆相交 (36)|点是否在射线的正向 (36)|射线与圆的第一个交点 (36)|求点P1关于直线LN的对称点P2 (36)|两直线夹角(弧度) (36)ACM/ICPC竞赛之STL (37)ACM/ICPC竞赛之STL简介 (37)ACM/ICPC竞赛之STL--PAIR (37)ACM/ICPC竞赛之STL--VECTOR (37)ACM/ICPC竞赛之STL--ITERATOR简介 (38)ACM/ICPC竞赛之STL--STRING (38)ACM/ICPC竞赛之STL--STACK/QUEUE (38)ACM/ICPC竞赛之STL--MAP (40)ACM/ICPC竞赛之STL--ALGORITHM (40)STL IN ACM (41)头文件 (42)线段树 (43)求矩形并的面积(线段树+离散化+扫描线) (43)求矩形并的周长(线段树+离散化+扫描线) (44)Graph 图论/*==================================================*\| DAG的深度优先搜索标记| INIT: edge[][]邻接矩阵; pre[], post[], tag全置0;| CALL: dfstag(i, n); pre/post:开始/结束时间\*==================================================*/int edge[V][V], pre[V], post[V], tag;void dfstag(int cur, int n){ // vertex: 0 ~ n-1pre[cur] = ++tag;for (int i=0; i<n; ++i) if (edge[cur][i]) {if (0 == pre[i]) {printf("Tree Edge!\n");dfstag(i,n);} else {if (0 == post[i]) printf("Back Edge!\n");else if (pre[i] > pre[cur])printf("Down Edge!\n");else printf("Cross Edge!\n");}}post[cur] = ++tag;}/*==================================================*\| 无向图找桥| INIT: edge[][]邻接矩阵;vis[],pre[],anc[],bridge 置0;| CALL: dfs(0, -1, 1, n);\*==================================================*/int bridge, edge[V][V], anc[V], pre[V], vis[V];void dfs(int cur, int father, int dep, int n){ // vertex: 0 ~ n-1if (bridge) return;vis[cur] = 1; pre[cur] = anc[cur] = dep;for (int i=0; i<n; ++i) if (edge[cur][i]) {if (i != father && 1 == vis[i]) {if (pre[i] < anc[cur])anc[cur] = pre[i];//back edge}if (0 == vis[i]) { //tree edgedfs(i,cur,dep+1,n);if (bridge) return;if (anc[i] < anc[cur]) anc[cur] = anc[i];if (anc[i] > pre[cur]) { bridge = 1; return; } }}vis[cur] = 2;}/*==================================================*\| 无向图连通度(割)| INIT: edge[][]邻接矩阵;vis[],pre[],anc[],deg[]置为0;| CALL: dfs(0, -1, 1, n);| k=deg[0], deg[i]+1(i=1…n-1)为删除该节点后得到的连通图个数| 注意:0作为根比较特殊!\*==================================================*/int edge[V][V], anc[V], pre[V], vis[V], deg[V];void dfs(int cur, int father, int dep, int n){// vertex: 0 ~ n-1int cnt = 0;vis[cur] = 1; pre[cur] = anc[cur] = dep;for (int i=0; i<n; ++i) if (edge[cur][i]) {if (i != father && 1 == vis[i]) {if (pre[i] < anc[cur])anc[cur] = pre[i];//back edge}if (0 == vis[i]) { //tree edgedfs(i,cur,dep+1,n);++cnt; // 分支个数if (anc[i] < anc[cur]) anc[cur] = anc[i];if ((cur==0 && cnt>1) ||(cnt!=0 && anc[i]>=pre[cur]))++deg[cur];// link degree of a vertex }}vis[cur] = 2;} /*==================================================*\| 最大团问题 DP + DFS| INIT: g[][]邻接矩阵;| CALL: res = clique(n);\*==================================================*/int g[V][V], dp[V], stk[V][V], mx;int dfs(int n, int ns, int dep){if (0 == ns) {if (dep > mx) mx = dep;return 1;}int i, j, k, p, cnt;for (i = 0; i < ns; i++) {k = stk[dep][i]; cnt = 0;if (dep + n - k <= mx) return 0;if (dep + dp[k] <= mx) return 0;for (j = i + 1; j < ns; j++) {p=stk[dep][j];if (g[k][p]) stk[dep + 1][cnt++] = p;}dfs(n, cnt, dep + 1);}return 1;}int clique(int n){int i, j, ns;for (mx = 0, i = n - 1; i >= 0; i--) {// vertex: 0 ~ n-1for (ns = 0, j = i + 1; j < n; j++)if (g[i][j]) stk[1][ ns++ ] = j;dfs(n, ns, 1); dp[i] = mx;}return mx;}/*==================================================*\| 欧拉路径O(E)| INIT: adj[][]置为图的邻接表; cnt[a]为a点的邻接点个数;| CALL: elpath(0); 注意:不要有自向边\*==================================================*/int adj[V][V], idx[V][V], cnt[V], stk[V], top;int path(int v){for (int w ; cnt[v] > 0; v = w) {stk[ top++ ] = v;w = adj[v][ --cnt[v] ];adj[w][ idx[w][v] ] = adj[w][ --cnt[w] ];// 处理的是无向图—-边是双向的,删除v->w后,还要处理删除w->v}return v;}void elpath (int b, int n){ // begin from b int i, j;for (i = 0; i < n; ++i) // vertex: 0 ~ n-1 for (j = 0; j < cnt[i]; ++j)idx[i][ adj[i][j] ] = j;printf("%d", b);for (top = 0; path(b) == b && top != 0; ) {b = stk[ --top ];printf("-%d", b);}printf("\n");}/*==================================================*\| Dijkstra数组实现O(N^2)| Dijkstra --- 数组实现(在此基础上可直接改为STL的Queue实现)| lowcost[] --- beg到其他点的最近距离| path[] -- beg为根展开的树,记录父亲结点\*==================================================*/#define INF 0x03F3F3F3Fconst int N;int path[N], vis[N];void Dijkstra(int cost[][N], int lowcost[N], int n, int beg){ int i, j, min;memset(vis, 0, sizeof(vis));vis[beg] = 1;for (i=0; i<n; i++){lowcost[i] = cost[beg][i]; path[i] = beg;}lowcost[beg] = 0;path[beg] = -1; // 树根的标记int pre = beg;for (i=1; i<n; i++){min = INF;dist[v] = dist[u] + c;for (j=0; j<n; j++)// 下面的加法可能导致溢出,INF 不能取太大if (vis[j]==0 &&lowcost[pre]+cost[pre][j]<lowcost[j]){lowcost[j] =lowcost[pre] + cost[pre][j]; path[j] = pre; } for (j=0; j<n; j++) if (vis[j] == 0 && lowcost[j] < min){ min = lowcost[j]; pre = j; } vis[pre] = 1; } } /*==================================================*\ | Dijkstra O(E * log E) | INIT: 调用init(nv, ne)读入边并初始化; | CALL: dijkstra(n, src); dist[i]为src 到i 的最短距离 \*==================================================*/ #define typec int // type of cost const typec inf = 0x3f3f3f3f; // max of cost typec cost[E], dist[V]; int e, pnt[E], nxt[E], head[V], prev[V], vis[V]; struct qnode { int v; typec c; qnode (int vv = 0, typec cc = 0) : v(vv), c(cc) {} bool operator < (const qnode& r) const { return c>r.c; } }; void dijkstra(int n, const int src){ qnode mv; int i, j, k, pre; priority_queue<qnode> que; vis[src] = 1; dist[src] = 0; que.push(qnode(src, 0)); for (pre = src, i=1; i<n; i++) { for (j = head[pre]; j != -1; j = nxt[j]) { k = pnt[j]; if (vis[k] == 0 && dist[pre] + cost[j] < dist[k]){ dist[k] =dist[pre] + cost[j]; que.push(qnode(pnt[j], dist[k])); prev[k] = pre; } } while (!que.empty() && vis[que.top().v] == 1) que.pop(); if (que.empty()) break ; mv = que.top(); que.pop(); vis[pre = mv.v] = 1; } } inline void addedge(int u, int v, typec c){ pnt[e] = v; cost[e] = c; nxt[e] = head[u]; head[u] = e++; } void init(int nv, int ne){ int i, u, v; typec c; e = 0;memset(head, -1, sizeof (head));memset(vis, 0, sizeof (vis));memset(prev, -1, sizeof (prev));for (i = 0; i < nv; i++) dist[i] = inf;for (i = 0; i < ne; ++i) {scanf("%d%d%d", &u, &v, &c);// %d: type of cost addedge(u, v, c); // vertex: 0 ~ n-1, 单向边 }}/*==================================================*\| BellmanFord 单源最短路O(VE)| 能在一般情况下,包括存在负权边的情况下,解决单源最短路径问题| INIT: edge[E][3]为边表| CALL: bellman(src);有负环返回0;dist[i]为src 到i 的最短距| 可以解决差分约束系统: 需要首先构造约束图,构造不等式时>=表示求最小值, 作为最长路,<=表示求最大值, 作为最短路 (v-u <= c:a[u][v] = c )\*==================================================*/#define typec int // type of costconst typec inf=0x3f3f3f3f; // max of costint n, m, pre[V], edge[E][3];typec dist[V];int relax (int u, int v, typec c){if (dist[v] > dist[u] + c) {pre[v] = u; return 1; } return 0; } int bellman (int src){ int i, j;for (i=0; i<n; ++i) { dist[i] = inf; pre[i] = -1; } dist[src] = 0; bool flag; for (i=1; i<n; ++i){ flag = false; // 优化 for (j=0; j<m; ++j) { if( 1 == relax(edge[j][0], edge[j][1], edge[j][2]) ) flag = true; } if( !flag ) break; } for (j=0; j<m; ++j) { if (1 == relax(edge[j][0], edge[j][1], edge[j][2])) return 0; // 有负圈 } return 1; } /*==================================================*\ | SPFA(Shortest Path Faster Algorithm) Bellman-Ford 算法的一种队列实现,减少了不必要的冗余计算。

acm算法浅谈图论模型的建立与应用

acm算法浅谈图论模型的建立与应用

1 2
3 4
例题1 Place the Robots(ZOJ)
小结
比较前面的两个模型:模型一过于简单,没有给问 题的求解带来任何便利;模型二则充分抓住了问题的内 在联系,巧妙地建立了二部图模型。为什么会产生这种 截然不同的结果呢?其一是由于对问题分析的角度不同: 模型一以空地为点,模型二以空地为边;其二是由于对 原型中要素的选取有差异:模型一对要素的选取不充分, 模型二则保留了原型中“棋盘”这个重要的性质。由此 可见,对要素的选取,是图论建模中至关重要的一步。
构图
S
例题3 贪婪之岛(ZOJ)
1 P1
2
P2
3
T
4 P3
5
每张卡片i用顶点i表示,另外加三个顶点P1,P2,P3,表 示三种能力,还有源点S,汇点T。
构图
S
例题3 贪婪之岛(ZOJ)
P1
B,0
P2
P3
1
2
3
T
4
5
从源点分别向P1,P2,P3引一条弧,容量分别为A,B,C, 费用为0。
构图
S
例题3 贪婪之岛(ZOJ)
下面我们来轻松一下,欣赏一下几个经 典的广告词
优秀广告词:早点下斑 不再逗留 默默无蚊 衣衣不舍 百衣百顺 鸡不可失
那么请问你们对于这种改动成语的广告有什 么看法呢?
我还搜集了一些很经典的广告
借问酒家何处有,牧童遥指杏花村。 (山西杏花村酒) 三十功名创传奇,八千里路驰江铃。 (江铃摩托) 禁止抽烟,连皇冠牌也不例外。 车到山前必有路,有路必有丰田车。 (丰田车)
第三块内容: 下面说的一定是大家感兴趣的东西
这是一段网络语言:周末,读大学的GG(哥 哥)回来,给我带了很多好东西,都系 ‘偶’(我)非常‘稀饭’(喜欢)的。就‘酱 紫’(这样子),‘偶’(我)就答应GG陪他去 逛街吃KPM(肯德基、比萨饼、麦当劳)。

ACM常用算法模板

ACM常用算法模板

专用模板目录:一、图论1.最大团2.拓扑排序3.最短路和次短路4.SAP模板5.已知各点度,问能否组成一个简单图6.KRUSKAL7. Prim算法求最小生成树8. Dijkstra9 . Bellman-ford10. SPFA11. Kosaraju 模板12. tarjan 模板二、数学1. 剩余定理2. N!中质因子P的个数3.拓展欧几里得4.三角形的各中心到顶点的距离和5.三角形外接圆半径周长6.归并排序求逆序数7. 求N!的位数8.欧拉函数9. Miller-Rabin,大整数分解,求欧拉函数10. 第一类斯特林数11.计算表达式12.约瑟夫问题13.高斯消元法14. Baby-step,giant-step n是素数.n任意15. a^b%c=a ^(b%eular(c)+eular(c)) % c16.判断第二类斯特林数的奇偶性17.求组合数C(n,r)18.进制转换19.Ronberg算法计算积分20.行列式计算21. 返回x 的二进制表示中从低到高的第i位22.高精度运算 +-*/23.超级素数筛选三、数据结构1.树状数组2.线段树求区间的最大、小值3.线段树求区间和4.单调队列5.KMP模板6. 划分树,求区间第k小数7.最大堆,最小堆模板8. RMQ模板求区间最大、最小值9.快速排序,归并排序求逆序数.10.拓展KMP四、计算几何1.凸包面积2.Pick公式求三角形内部有多少点3.多边形边上内部各多少点以及面积pick4.平面最远点对5.判断矩形是否在矩形内6.判断点是否在多边形内7.判断4个点(三维)是否共面8.凸包周长9.等周定理变形一直两端点和周长求最大面积10.平面最近点对11.单位圆最多覆盖多少点(包括边上)12.多边形费马点求点到多边形各个点的最短距离13.矩形并周长14.zoj 2500 求两球体积并一、图论1.最大团#include<iostream>#include<algorithm>using namespace std;int n,m;int cn;//当前顶点数int best;//当前最大顶点数int vis[50];//当前解int bestn[50];//最优解int map[50][50];//临界表void dfs(int i){if(i>n){for(int j=1;j<=n;j++) bestn[j]=vis[j];best=cn;return ;}int ok=1;for(int j=1;j<i;j++){if(vis[j]==1&&map[i][j]==0){ok=0;break;}}if(ok){//进入左子树vis[i]=1;cn++;dfs(i+1);cn--;}if(cn+n-i>best){//进入右子树vis[i]=0;dfs(i+1);}}int main(){while(scanf("%d%d",&n,&m)==2){memset(vis,0,sizeof(vis));memset(map,0,sizeof(map));while(m--){int p,q;scanf("%d%d",&p,&q);map[p][q]=map[q][p]=1;//无向图}cn=0;best=0;dfs(1);printf("%d\n",best);}return 0;}2.拓扑排序#include<iostream>#include<cstring>using namespace std;int map[105][105],in[105],vis[105],ans[105],n;int flag;void dfs(int step){if(flag) return ;if(step==n+1) {flag=1; printf("%d",ans[1]);for(int i=2;i<=n;i++) printf(" %d",ans[i]);printf("\n");return ;}for(int i=1;i<=n;i++){if(vis[i]==0&&in[i]==0){vis[i]=1;for(int j=1;j<=n;j++){if(map[i][j]>0){map[i][j]=-map[i][j];in[j]--;}}ans[step]=i;dfs(step+1);vis[i]=0;for(int j=1;j<=n;j++){if(map[i][j]<0){map[i][j]=-map[i][j];in[j]++;}}}}}int main(){while(scanf("%d",&n)==1){flag=0;memset(map,0,sizeof(map));memset(vis,0,sizeof(vis));memset(in,0,sizeof(in));for(int i=1;i<=n;i++){int t;while(scanf("%d",&t),t){map[i][t]=1;in[t]++;}}dfs(1);}return 0;}3.最短路和次短路#include<iostream>#include<cstdio>#include<vector>#include<cstring>using namespace std;class Node{public:int e,w;//表示终点和边权};const int inf=(1<<25);int main(){int ci;cin>>ci;while(ci--){vector<Node> G[1005];//用邻接表存边int n,m;cin>>n>>m;for(int i=1;i<=m;i++){Node q;int u;cin>>u>>q.e>>q.w;G[u].push_back(q);}int s,f;//起点和终点cin>>s>>f;//dijkstra 求最短路和次短路int flag[1005][2];int dis[1005][2],cnt[1005][2];//0表示最短路,1表示次短路memset(flag,0,sizeof(flag));for(int i=1;i<=n;i++) dis[i][0]=dis[i][1]=inf;dis[s][0]=0;cnt[s][0]=1;//初始化for(int c=0;c<2*n;c++) //找最短路和次短路,故要进行2*n次循环也可以改成while(1){int temp=inf,u=-1,k;//找s-S'集合中的最短路径,u记录点的序号,k记录是最短路或者是次短路for(int j=1;j<=n;j++){if(flag[j][0]==0&&temp>dis[j][0]) temp=dis[j][0],u=j,k=0;else if(flag[j][1]==0&&temp>dis[j][1]) temp=dis[j][1],u=j,k=1;}if(temp==inf) break;//S'集合为空或者不联通,算法结束//更新路径flag[u][k]=1;for(int l=0;l<G[u].size();l++){int d=dis[u][k]+G[u][l].w,j=G[u][l].e;//important//4种情况if(d<dis[j][0]){dis[j][1]=dis[j][0];cnt[j][1]=cnt[j][0];dis[j][0]=d;cnt[j][0]=cnt[u][k];}else if(d==dis[j][0]){cnt[j][0]+=cnt[u][k];}else if(d<dis[j][1]){dis[j][1]=d;cnt[j][1]=cnt[u][k];}else if(d==dis[j][1]){cnt[j][1]+=cnt[u][k];}}}int num=cnt[f][0];//最短路int cc=cnt[f][1];//次短路}return 0;}4.SAP模板#include<iostream>#include<cstdio>#include<cstring>using namespace std;const int inf=(1<<31)-1;const int point_num=300;int cap[point_num][point_num],dist[point_num],gap[point_num];//初始化见main里面int s0,t0,n;//源,汇和点数int find_path(int p,int limit=0x3f3f3f3f){if(p==t0) return limit;for(int i=0;i<n;i++)if(dist[p]==dist[i]+1 && cap[p][i]>0){int t=find_path(i,min(cap[p][i],limit));if(t<0) return t;if(t>0){cap[p][i]-=t;cap[i][p]+=t;return t;}}int label=n;for(int i=0;i<n;i++) if(cap[p][i]>0) label=min(label,dist[i]+1);if(--gap[dist[p]]==0 || dist[s0]>=n ) return -1;++gap[dist[p]=label];return 0;}int sap(){//初始化s,ts0=0,t0=n-1;int t=0,maxflow=0;gap[0]=n;while((t=find_path(s0))>=0) maxflow+=t;return maxflow;}int main(){int ci;while(cin>>ci>>n){//初始化memset(cap,0,sizeof(cap));memset(dist,0,sizeof(dist));memset(gap,0,sizeof(gap));//初始化capwhile(ci--){int x,y,c;cin>>x>>y>>c;x--;y--;cap[x][y]+=c;//因题而异}int ans=sap();cout<<ans<<endl;}return 0;}5.已知各点度,问能否组成一个简单图#include<iostream>#include<cstdio>#include<algorithm>using namespace std;const int inf=(1<<30);int d[1100];bool cmp(int x,int y){return x>y;}int main(){int ci;scanf("%d",&ci);while(ci--){int n,flag=1,cnt=0;scanf("%d",&n); for(int i=0;i<n;i++){scanf("%d",&d[i]);if(d[i]>n-1||d[i]<=0) flag=0; cnt+=d[i];}if(flag==0||cnt%2){printf("no\n");continue;}sort(d,d+n,cmp);for(int l=n;l>0;l--){for(int i=1;i<l&&d[0];i++){d[0]--,d[i]--;if(d[i]<0){flag=0;break;}}if(d[0]) flag=0;if(flag==0) break;d[0]=-inf;sort(d,d+l,cmp);}if(flag) printf("yes\n");else printf("no\n");}return 0;}6.KRUSKAL#include<iostream>#include<algorithm>using namespace std;int u[15005],v[15005],w[15005],fath[15005],r[15005];int ans1[15005],ans2[15005];bool cmp(int i,int j){return w[i]<w[j];}int find(int x){return fath[x]==x?x:fath[x]=find(fath[x]);}int main(){int n,m;cin>>n>>m;for(int i=1;i<=n;i++) fath[i]=i;for(int i=1;i<=m;i++) r[i]=i;for(int i=1;i<=m;i++){cin>>u[i]>>v[i]>>w[i];}sort(r+1,r+m+1,cmp);int maxn=0,ans=0,k=0;for(int i=1;i<=m;i++){int e=r[i];int x=find(u[e]),y=find(v[e]);if(x!=y){ans+=w[e];fath[x]=y;if(w[e]>maxn) maxn=w[e];ans1[k]=u[e];ans2[k++]=v[e];}}return 0;}7.prime求最小生成树语法:prim(Graph G,int vcount,int father[]);参数:G:图,用邻接矩阵表示vcount:表示图的顶点个数father[]:用来记录每个节点的父节点返回值:null注意:常数max_vertexes 为图最大节点数常数infinity为无穷大源程序:#define infinity 1000000#define max_vertexes 5typedef int Graph[max_vertexes][max_vertexes];void prim(Graph G,int vcount,int father[]){int i,j,k;intlowcost[max_vertexes],closeset[max_vertexes],used[max_vertexes]; for (i=0;i<vcount;i++){lowcost[i]=G[0][i];closeset[i]=0;used[i]=0;father[i]=-1;}used[0]=1;for (i=1;i<vcount;i++){j=0;while (used[j]) j++;for (k=0;k<vcount;k++)if ((!used[k])&&(lowcost[k]<lowcost[j])) j=k;father[j]=closeset[j];used[j]=1;for (k=0;k<vcount;k++)if (!used[k]&&(G[j][k]<lowcost[k])){ lowcost[k]=G[j][k];closeset[k]=j; }}}8.Dijkstra语法:result=Dijkstra(Graph G,int n,int s,int t, int path[]); 参数:G:图,用邻接矩阵表示n:图的顶点个数s:开始节点t:目标节点path[]:用于返回由开始节点到目标节点的路径返回值:最短路径长度注意:输入的图的权必须非负顶点标号从0 开始用如下方法打印路径:i=t;while (i!=s){printf("%d<--",i+1);i=path[i];}printf("%d\n",s+1);源程序:int Dijkstra(Graph G,int n,int s,int t, int path[]){int i,j,w,minc,d[max_vertexes],mark[max_vertexes];for (i=0;i<n;i++) mark[i]=0;for (i=0;i<n;i++){ d[i]=G[s][i];path[i]=s; }mark[s]=1;path[s]=0;d[s]=0;for (i=1;i<n;i++){minc=infinity;w=0;for (j=0;j<n;j++)if ((mark[j]==0)&&(minc>=d[j])) {minc=d[j];w=j;}mark[w]=1;for (j=0;j<n;j++)if((mark[j]==0)&&(G[w][j]!=infinity)&&(d[j]>d[w]+G[w][j])){ d[j]=d[w]+G[w][j];path[j]=w; }}return d[t];}9.Bellman-ford语法:result=Bellman_ford(Graph G,int n,int s,int t,int path[],int success);参数:G:图,用邻接矩阵表示n:图的顶点个数s:开始节点t:目标节点path[]:用于返回由开始节点到目标节点的路径success:函数是否执行成功返回值:最短路径长度注意:输入的图的权可以为负,如果存在一个从源点可达的权为负的回路则success=0顶点标号从0 开始用如下方法打印路径:i=t;while (i!=s){printf("%d<--",i+1);i=path[i];}printf("%d\n",s+1);源程序:int Bellman_ford(Graph G,int n,int s,int t,int path[],int success){int i,j,k,d[max_vertexes];for (i=0;i<n;i++) {d[i]=infinity;path[i]=0;}d[s]=0;for (k=1;k<n;k++)for (i=0;i<n;i++)for (j=0;j<n;j++)if (d[j]>d[i]+G[i][j]){d[j]=d[i]+G[i][j];path[j]=i;}success=0;for (i=0;i<n;i++)for (j=0;j<n;j++)if (d[j]>d[i]+G[i][j]) return 0;success=1;return d[t];}10. SPFA#include<iostream>#include<cstdio>#include<cstring>#include<vector>using namespace std;const __int64 maxn=1001000;const __int64 inf=1000100000;struct edge//邻接表{__int64 t,w;//s->t=w;__int64 next;//数组模拟指针};__int64 p[maxn],pf[maxn];//邻接表头节点edge G[maxn],Gf[maxn];//邻接表__int64 V,E;//点数[1-n] 边数__int64 dis[maxn];__int64 que[maxn],fro,rear;//模拟队列__int64 vis[maxn];__int64 inque[maxn];//入队次数bool spfa(__int64 s0){fro=rear=0;for(__int64 i=1;i<=V;i++) dis[i]=inf;dis[s0]=0;memset(vis,0,sizeof(vis));memset(inque,0,sizeof(inque));que[rear++]=s0;vis[s0]=1;inque[s0]++;while(fro!=rear){__int64 u=que[fro];fro++;if(fro==maxn) fro=0;vis[u]=0;for(__int64 i=p[u];i!=-1;i=G[i].next){__int64 s=u,t=G[i].t,w=G[i].w;if(dis[t]>dis[s]+w){dis[t]=dis[s]+w;if(vis[t]==0){que[rear++]=t,vis[t]=1;inque[t]++;if(inque[t]>V) return false;if(rear==maxn) rear=0;}}}}return true;}int main(){__int64 ci;scanf("%I64d",&ci);while(ci--){scanf("%I64d%I64d",&V,&E);memset(p,-1,sizeof(p));memset(pf,-1,sizeof(pf)); for(__int64 i=0;i<E;i++){__int64 u,v,w;scanf("%I64d%I64d%I64d",&u,&v,&w);G[i].t=v;G[i].w=w;G[i].next=p[u];p[u]=i;Gf[i].t=u;Gf[i].w=w;Gf[i].next=pf[v];pf[v]=i;}__int64 ans=0;spfa(1);//求第一个点到其他点的最短距离和for(__int64 i=1;i<=V;i++) ans+=dis[i];//反方向再来一次spfa 求其他点到第一个点的最短距离和 for(__int64 i=1;i<=V;i++) p[i]=pf[i];for(__int64 i=0;i<E;i++) G[i]=Gf[i];spfa(1);for(__int64 i=1;i<=V;i++) ans+=dis[i];printf("%I64d\n",ans);}return 0;}11.Kosaraju模板#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int maxn=100000;struct edge{int t,w;//u->t=w;int next;};int V,E;//点数(从1开始),边数int p[maxn],pf[maxn];//邻接表原图,逆图edge G[maxn],Gf[maxn];//邻接表原图,逆图int l,lf;void init(){memset(p,-1,sizeof(p));memset(pf,-1,sizeof(pf));l=lf=0;}void addedge(int u,int t,int w,int l){G[l].w=w;G[l].t=t;G[l].next=p[u];p[u]=l;}void addedgef(int u,int t,int w,int lf){Gf[l].w=w;Gf[l].t=t;Gf[l].next=pf[u];pf[u]=l;}///Kosaraju算法,返回为强连通分量个数bool flag[maxn]; //访问标志数组int belg[maxn]; //存储强连通分量,其中belg[i]表示顶点i属于第belg[i]个强连通分量int numb[maxn]; //结束时间(出栈顺序)标记,其中numb[i]表示离开时间为i的顶点//用于第一次深搜,求得numb[1..n]的值void VisitOne(int cur, int &sig){flag[cur] = true;for (int i=p[cur];i!=-1;i=G[i].next){if (!flag[G[i].t]){VisitOne(G[i].t,sig);}}numb[++sig] = cur;}//用于第二次深搜,求得belg[1..n]的值void VisitTwo(int cur, int sig){flag[cur] = true;belg[cur] = sig;for (int i=pf[cur];i!=-1;i=Gf[i].next){if (!flag[Gf[i].t]){VisitTwo(Gf[i].t,sig);}}//Kosaraju算法,返回为强连通分量个数int Kosaraju_StronglyConnectedComponent(){int i, sig;//第一次深搜memset(flag,0,sizeof(flag));for ( sig=0,i=1; i<=V; ++i ){if ( false==flag[i] ){VisitOne(i,sig);}}//第二次深搜memset(flag,0,sizeof(flag));for ( sig=0,i=V; i>0; --i ){if ( false==flag[numb[i]] ){VisitTwo(numb[i],++sig);}}return sig;}int main(){while(scanf("%d",&V)==1){init();for(int i=1;i<=V;i++){int u=i,t,w=1;while(scanf("%d",&t)==1&&t){E++;addedge(u,t,w,l++);addedgef(t,u,w,lf++);}}int ans=Kosaraju_StronglyConnectedComponent(); printf("%d\n",ans);}return 0;12.tarjan模板//自己模板#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int maxn=100000;int V,E;//点数(1) 边数struct edge//邻接表{int t,w;//u->t=w;int next;};int p[maxn];//表头节点edge G[maxn];int l;void init(){memset(p,-1,sizeof(p));l=0;}//添加边void addedge(int u,int t,int w,int l)//u->t=w;{G[l].w=w;G[l].t=t;G[l].next=p[u];p[u]=l;}//tarjan算法求有向图强联通分量int dfn[maxn],lowc[maxn];//dfn[u]节点u搜索的次序编号,lowc[u]u或者u的子树能够追溯到的栈中的最早的节点int belg[maxn];//第i个节点属于belg[i]个强连通分量int stck[maxn],stop;//stck栈int instck[maxn];//第i个节点是否在栈中int scnt;//强联通分量int index;void dfs(int i){dfn[i]=lowc[i]=++index;instck[i]=1;//节点i入栈stck[++stop]=i;for(int j=p[i];j!=-1;j=G[j].next){int t=G[j].t;//更新lowc数组if(!dfn[t])//t没有遍历过{dfs(t);if(lowc[i]>lowc[t]) lowc[i]=lowc[t];}//t是i的祖先节点else if(instck[t]&&lowc[i]>dfn[t]) lowc[i]=dfn[t];}//是强连通分量的根节点if(dfn[i]==lowc[i]){scnt++;int t;do{t=stck[stop--];instck[t]=0;belg[t]=scnt;}while(t!=i);}}int tarjan(){stop=scnt=index=0;memset(dfn,0,sizeof(dfn));memset(instck,0,sizeof(instck));for(int i=1;i<=V;i++){if(!dfn[i]) dfs(i);}return scnt;}int main(){while(scanf("%d",&V)==1){init();for(int i=1;i<=V;i++){int x;while(scanf("%d",&x)==1&&x){E++;addedge(i,x,1,l++);}}int ans=tarjan();printf("%d\n",ans);}return 0;}//吉大模板邻接表版#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int maxn=100000;int V,E;//点数(1) 边数struct edge//邻接表{int t,w;//u->t=w;int next;};int p[maxn];//表头节点edge G[maxn];int l;void init(){memset(p,-1,sizeof(p));l=0;}//添加边void addedge(int u,int t,int w,int l)//u->t=w;{G[l].w=w;G[l].t=t;G[l].next=p[u];p[u]=l;}//tarjan算法求有向图强联通分量int dfn[maxn],lowc[maxn];//dfn[u]节点u搜索的次序编号,lowc[u]u或者u的子树能够追溯到的栈中的最早的节点int stck[maxn],stop;//stck栈int pre[maxn];//int scnt;//强联通分量int cnt;//void dfs(int v)//1-V{int t,minc=lowc[v]=pre[v]=cnt++;stck[stop++]=v;for(int i=p[v];i!=-1;i=G[i].next){int pv=G[i].t;if(pre[pv]==-1) dfs(pv);if(lowc[pv]<minc) minc=lowc[pv]; }if(minc<lowc[v]){lowc[v]=minc;return ;}do{dfn[t=stck[--stop]]=scnt;lowc[t]=V;}while(t!=v);++scnt;}int tarjan(){stop=cnt=scnt=0;memset(pre,-1,sizeof(pre));for(int i=1;i<=V;i++){if(pre[i]==-1) dfs(i);}return scnt;}int main(){while(scanf("%d",&V)==1){init();for(int i=1;i<=V;i++){int x;while(scanf("%d",&x)==1&&x){E++;addedge(i,x,1,l++);}}int ans=tarjan();printf("%d\n",ans);}return 0;}二、数学1.剩余定理int mod(int c[],int b[],int n){int all_multy=1,sum=0;int i,j,x[5];for(i=0;i<n;i++)all_multy*=c[i];for(i=0;i<n;i++)x[i]=all_multy/c[i];for(i=0;i<n;i++){j=1;while((x[i]*j)%c[i]!=1)j++;x[i]*=j;}for(i=0;i<n;i++)sum+=(b[i]*x[i]);return sum%all_multy;}2.N!中质因子P的个数//对于任意质数p,n!中有(n/p+n/p^2+n/p^3+...)个质因子p。

ACM算法 浅谈特殊穷举思想的应用

ACM算法 浅谈特殊穷举思想的应用


先来比较一下例一的两种算法

算法 搜索
时空复杂度 高,指数级
评价 未充分利用题目条件 巧妙选择了穷举对象
穷举思想 低,常数级
穷举或许具有很大的盲目性, 穷举或许具有很大的盲目性, 但我们自身是灵活 灵活的 但我们自身是灵活的!






有时候,问题离高效算法只有一步之遥.
问 题
参数K
高 效 算 法






这个问题可以用贪心来解决.
19 10
从下向上处理,遇到可 以分成一组的就分出来.
9
20 5
7 x=17
8
对于这个算法的正确性 证明请见我的论文.





我们找到了问题★的解法,于是我们就可以通过 部分穷举,用二分法穷举x的值,然后构造解法.
通过贪心算法得到答案 通过高效算法得到答案
让 我 们 用 人 脑 分 析
一个简单的例子: A: B is human. B: A is evil. A: B is evil. A是恶魔
A的话有矛盾
B是神!
计算机怎样完成这种推理?
应 题目特点:





人数少
于是得到了完全穷举的算法: 情况数:35*2=486 对每句话进行判断 时间复杂度:O(35*2*s)=O(s)
问题的参数 草莓的分割方案 (无法穷举) 重要参数K X的值 的值 重要参数
可行
部分穷举,作为参变量 使用二分法穷举
问题:相应的最大最小问题无法解决.



ACM_算法模板集史上最完整收藏版223页全免费版(1)

ACM_算法模板集史上最完整收藏版223页全免费版(1)

免费模板~~~ACM Standard Code LibraryHuang WeiSoftware EngineeringComputer and Software CollegeHangzhou Dianzi UniversityOctober,2008ACM算法模板集Contents一.常用函数与STL二.重要公式与定理1.Fibonacci Number2.Lucas Number3.Catalan Number4.Stirling Number(Second Kind)5.Bell Number6.Stirling's Approximation7.Sum of Reciprocal Approximation8.Young Tableau9.整数划分10.错排公式11.三角形内切圆半径公式12.三角形外接圆半径公式13.圆內接四边形面积公式14.基础数论公式三.大数模板,字符读入四.数论算法1.Greatest Common Divisor最大公约数2.Prime素数判断3.Sieve Prime素数筛法4.Module Inverse模逆元5.Extended Euclid扩展欧几里德算法6.Modular Linear Equation模线性方程(同余方程)7.Chinese Remainder Theorem中国余数定理(互素与非互素)8.Euler Function欧拉函数9.Farey总数9.Farey序列构造ler_Rabbin素数测试,Pollard_rho因式分解五.图论算法1.最小生成树(Kruscal算法)2.最小生成树(Prim算法)3.单源最短路径(Bellman-ford算法)4.单源最短路径(Dijkstra算法)5.全源最短路径(Folyd算法)6.拓扑排序7.网络预流和最大流8.网络最小费用最大流9.网络最大流(高度标号预流推进)10.最大团11.最大匹配(Hungary,HopcroftKarp算法)12.带权二分图最优匹配(KM算法)13.强连通分量(Kosaraju算法)14.强连通分量(Gabow算法)15.无向图割边割点和双连通分量16.最小树形图O(N^3)17.最小树形图O(VE)六.几何算法1.几何模板2.球面上两点最短距离3.三点求圆心坐标4.三角形几个重要的点七.专题讨论1.树状数组2.字典树3.后缀树4.线段树5.并查集6.二叉堆7.逆序数(归并排序)8.树状DP9.欧拉路10.八数码11.高斯消元法12.字符串匹配(KMP算法)13.全排列,全组合14.二维线段树15.稳定婚姻匹配16.后缀数组17.左偏树18.标准RMQ-ST19.度限制最小生成树20.最优比率生成树(0/1分数规划)21.最小花费置换22.区间K大数23.LCA-RMQ-ST24.LCA–Tarjan25.指数型母函数26.指数型母函数(大数据)27.AC自动机(字典树+KMP)28.FFT(大数乘法)29.二分图网络最大流最小割30.混合图欧拉回路31.无源汇上下界网络流32.二分图最小点权覆盖33.带约束的轨道计数(Burnside引理)34.三分法求函数波峰35.单词计数,DFA自动机,Trie图(完全AC自动机)36.字符串和数值hash37.滚动队列,前向星表示法38.最小点基,最小权点基39.LCSubsequence O(N^2/logN)40.伸展树41.Treap42.0/1分数规划K约束43.表达式求值44.乘除法博弈,Wythoff博弈45.状态压缩的积木型DP46.解一般线性方程组(消元法)47.块状链表48.Factor Oracle第一章常用函数和STL一.常用函数#include<stdio.h>int getchar(void);//读取一个字符,一般用来去掉无用字符char*gets(char*str);//读取一行字符串#include<stdlib.h>void*malloc(size_t size);//动态内存分配,开辟大小为size的空间void qsort(void*buf,size_t num,size_t size,int(*compare)(const void*,const void*));//快速排序Sample:int compare_ints(const void*a,const void*b){int*arg1=(int*)a;int*arg2=(int*)b;if(*arg1<*arg2)return-1;else if(*arg1==*arg2)return0;else return1;}int array[]={-2,99,0,-743,2,3,4};int array_size=7;qsort(array,array_size,sizeof(int),compare_ints);#include<math.h>//求反正弦,arg∈[-1,1],返回值∈[-pi/2,+pi/2]double asin(double arg);//求正弦,arg为弧度,弧度=角度*Pi/180.0,返回值∈[-1,1]double sin(double arg);//求e的arg次方double exp(double arg);//求num的对数,基数为edouble log(double num);//求num的根double sqrt(double num);//求base的exp次方double pow(double base,double exp);#include<string.h>//初始化内存,常用来初始化数组void*memset(void*buffer,int ch,size_t count);memset(the_array,0,sizeof(the_array));//printf是它的变形,常用来将数据格式化为字符串int sprintf(char*buffer,const char*format,...);sprintf(s,"%d%d",123,4567);//s="1234567"//scanf是它的变形,常用来从字符串中提取数据int sscanf(const char*buffer,const char*format,...);Sample:char result[100]="24hello",str[100];int num;sprintf(result,"%d%s",num,str);//num=24;str="hello";//字符串比较,返回值<0代表str1<str2,=0代表str1=str2,>0代表str1>str2 int strcmp(const char*str1,const char*str2);二.常用STL[标准container概要]vector<T>大小可变的向量,类似数组的用法,容易实现删除list<T>双向链表queue<T>队列,empty(),front(),pop(),push()stack<T>栈,empty(),top(),pop(),push()priority_queue<T>优先队列,empty(),top(),pop(),push()set<T>集合map<key,val>关联数组,常用来作hash映射[标准algorithm摘录]for_each()对每一个元素都唤起(调用)一个函数find()查找第一个能与引数匹配的元素replace()用新的值替换元素,O(N)copy()复制(拷贝)元素,O(N)remove()移除元素reverse()倒置元素sort()排序,O(N log(N))partial_sort()部分排序binary_search()二分查找merge()合并有序的序列,O(N)[C++String摘录]copy()从别的字符串拷贝empty()判断字符串是否为空erase()从字符串移除元素find()查找元素insert()插入元素length()字符串长度replace()替换元素substr()取子字符串swap()交换字符串第二章重要公式与定理1.Fibonacci Number0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610…Formula:011211i i i n n F F F F F F −−===+⎡⎤⎥==⎥⎠⎦2.Lucas Number1,3,4,7,11,18,29,47,76,123...Formula:n nn L =+⎝⎠⎝⎠3.Catalan Number1,2,5,14,42,132,429,1430,4862,16796,58786,208012…Formula:110(2,)1*n n n i n ii C n n Cat n Cat Cat Cat −−−==+=∑Application:1)将n +2边形沿弦切割成n 个三角形的不同切割数Sample:n =2;n =3;2)n +1个数相乘,给每两个元素加上括号的不同方法数Sample:n =2;(1(23)),((12)3)n =3;(1(2(34))),(1((23)4)),((12)(34)),((1(23))4),(((12)3)4)3)n 个节点的不同形状的二叉树数(严《数据结构》P .155)4)从n *n 方格的左上角移动到右下角不升路径数Sample:n =2;n =3;4.Stirling Number(Second Kind)S(n,m)表示含n 个元素的集合划分为m 个集合的情况数或者是n 个有标号的球放到m 个无标号的盒子中,要求无一为空,其不同的方案数Formula:,1,11,0 (0 || ) (1)n m n m n m m n m S S m S n m −−−=<⎧⎨+×>≥⎩,01(1)(,)()!m i n n m i S C m i m i m ==−××−∑Special Cases:,0,11,2,3,1,01211(3323)6(,2)1n n n n n n n n n n n S S S S S C n S −−===−=−×+==5.Bell Numbern 个元素集合所有的划分数Formula:,0nn n ii B S ==∑6.Stirling's Approximation!nn n e ⎞=⎟⎠7.Sum of Reciprocal ApproximationEulerGamma =0.57721566490153286060651209;11ln() ()n i n EulerGamma n i==+→∞∑8.Young TableauYoung Tableau(杨式图表)是一个矩阵,它满足条件:如果格子[i,j]没有元素,则[i+1,j]也一定没有元素如果格子[i,j]有元素a[i,j],则[i+1,j]要么没有元素,要么a[i+1,j]>a[i,j]Y[n]代表n 个数所组成的杨式图表的个数Formula:121212(1) (2)n n n Y Y Y Y n Y n −−===+−×>Sample:n =3;9.整数划分将整数n 分成k 份,且每份不能为空,任意两种分法不能相同1)不考虑顺序for (int p=1;p<=n ;p++)for (int i=p;i<=n ;i++)for (int j=k;j>=1;j--)dp[i][j]+=dp[i-p][j-1];cout<<dp[n][k]<<endl;2)考虑顺序dp[i][j]=dp[i-k][j-1];(k=1..i)3)若分解出来的每个数均有一个上限mdp[i][j]=dp[i-k][j-1];(k=1..m)10.错排公式121201(1)()n n n D D D n D D −−===−×+11.三角形内切圆半径公式22a b cp s sr a b c++===++12.三角形外接圆半径公式4abcR s=13.圆內接四边形面积公式2a b c dp s +++==14.基础数论公式1)模取幂%((((%)*)%))%n a b a b a b b=…2)n 的约数的个数若n 满足1212m n n n m n p p p =+++…,则n 的约数的个数为12(1)(1)(1)m n n n +++…第三章大数模板typedef int hugeint;//应不大于,以防乘法时溢出const int Base=1000;const int Capacity=1000;struct xnum{int Len;int Data[Capacity];xnum():Len(0){}xnum(const xnum&V):Len(V.Len){memcpy(Data,V.Data,Len*sizeof*Data);}xnum(int V):Len(0){for(;V>0;V/=Base)Data[Len++]=V%Base;}xnum(char S[]);xnum&operator=(const xnum&V){Len=V.Len;memcpy(Data,V.Data,Len*sizeof*Data);return*this;}int&operator[](int Index){return Data[Index];}int operator[](int Index)const{return Data[Index];}void print(){printf("%d",Len==0?0:Data[Len-1]);for(int i=Len-2;i>=0;i--)for(int j=Base/10;j>0;j/=10)printf("%d",Data[i]/j%10);}};xnum::xnum(char S[]){int I,J;Data[Len=0]=0;J=1;for(I=strlen(S)-1;I>=0;I--){Data[Len]+=(S[I]-'0')*J;J*=10;if(J>=Base)J=1,Data[++Len]=0;}if(Data[Len]>0)Len++;}int compare(const xnum&A,const xnum&B){int I;if(A.Len!=B.Len)return A.Len>B.Len?1:-1;for(I=A.Len-1;I>=0&&A[I]==B[I];I--);if(I<0)return0;return A[I]>B[I]?1:-1;}xnum operator+(const xnum&A,const xnum&B){xnum R;int I;int Carry=0;for(I=0;I<A.Len||I<B.Len||Carry>0;I++) {if(I<A.Len)Carry+=A[I];if(I<B.Len)Carry+=B[I];R[I]=Carry%Base;Carry/=Base;}R.Len=I;return R;}xnum operator-(const xnum&A,const xnum&B){xnum R;int Carry=0;R.Len=A.Len;int I;for(I=0;I<R.Len;I++){R[I]=A[I]-Carry;if(I<B.Len)R[I]-=B[I];if(R[I]<0)Carry=1,R[I]+=Base;else Carry=0;}while(R.Len>0&&R[R.Len-1]==0)R.Len--;return R;}xnum operator*(const xnum&A,const int B){int I;if(B==0)return0;xnum R;hugeint Carry=0;for(I=0;I<A.Len||Carry>0;I++){if(I<A.Len)Carry+=hugeint(A[I])*B;R[I]=Carry%Base;Carry/=Base;}R.Len=I;return R;}xnum operator*(const xnum&A,const xnum&B){int I;if(B.Len==0)return0;xnum R;for(I=0;I<A.Len;I++){hugeint Carry=0;for(int J=0;J<B.Len||Carry>0;J++){if(J<B.Len)Carry+=hugeint(A[I])*B[J];if(I+J<R.Len)Carry+=R[I+J];if(I+J>=R.Len)R[R.Len++]=Carry%Base;else R[I+J]=Carry%Base;Carry/=Base;}}return R;}xnum operator/(const xnum&A,const int B){xnum R;int I;hugeint C=0;for(I=A.Len-1;I>=0;I--){C=C*Base+A[I];R[I]=C/B;C%=B;}R.Len=A.Len;while(R.Len>0&&R[R.Len-1]==0)R.Len--;return R;}//divxnum operator/(const xnum&A,const xnum&B){int I;xnum R,Carry=0;int Left,Right,Mid;for(I=A.Len-1;I>=0;I--){Carry=Carry*Base+A[I];Left=0;Right=Base-1;while(Left<Right){Mid=(Left+Right+1)/2;if(compare(B*Mid,Carry)<=0)Left=Mid;else Right=Mid-1;}R[I]=Left;Carry=Carry-B*Left;}R.Len=A.Len;while(R.Len>0&&R[R.Len-1]==0)R.Len--;return R;}//modxnum operator%(const xnum&A,const xnum&B){int I;xnum R,Carry=0;int Left,Right,Mid;for(I=A.Len-1;I>=0;I--){Carry=Carry*Base+A[I];Left=0;Right=Base-1;while(Left<Right){Mid=(Left+Right+1)/2;if(compare(B*Mid,Carry)<=0)Left=Mid;else Right=Mid-1;}R[I]=Left;Carry=Carry-B*Left;}R.Len=A.Len;while(R.Len>0&&R[R.Len-1]==0)R.Len--;return Carry;}istream&operator>>(istream&In,xnum&V){char Ch;for(V=0;In>>Ch;){V=V*10+(Ch-'0');if(cin.peek()<='')break;}return In;}ostream&operator<<(ostream&Out,const xnum&V){int I;Out<<(V.Len==0?0:V[V.Len-1]);for(I=V.Len-2;I>=0;I--)for(int J=Base/10;J>0;J/=10)Out<<V[I]/J%10;return Out;}xnum gcd(xnum a,xnum b){if(compare(b,0)==0)return a;else return gcd(b,a%b);}int div(char*A,int B){int I;int C=0;int Alen=strlen(A);for(I=0;I<Alen;I++){C=C*Base+A[I]-'0';C%=B;}return C;}xnum C(int n,int m){int i;xnum sum=1;for(i=n;i>=n-m+1;i--)sum=sum*i;for(i=1;i<=m;i++)sum=sum/i;return sum;}#define MAXN9999#define DLEN4class BigNum{private:int a[1000];//可以控制大数的位数int len;//大数长度public:BigNum(){len=1;memset(a,0,sizeof(a));} BigNum(const int);BigNum(const char*);BigNum(const BigNum&);BigNum&operator=(const BigNum&);BigNum operator+(const BigNum&)const;BigNum operator-(const BigNum&)const;BigNum operator*(const BigNum&)const;BigNum operator/(const int&)const;BigNum operator^(const int&)const;int operator%(const int&)const;bool operator>(const BigNum&T)const;void print();};BigNum::BigNum(const int b){int c,d=b;len=0;memset(a,0,sizeof(a));while(d>MAXN){c=d-(d/(MAXN+1))*(MAXN+1);d=d/(MAXN+1);a[len++]=c;}a[len++]=d;}BigNum::BigNum(const char*s){int t,k,index,l,i;memset(a,0,sizeof(a));l=strlen(s);len=l/DLEN;if(l%DLEN)len++;index=0;for(i=l-1;i>=0;i-=DLEN){t=0;k=i-DLEN+1;if(k<0)k=0;for(int j=k;j<=i;j++)t=t*10+s[j]-'0';a[index++]=t;}}BigNum::BigNum(const BigNum&T):len(T.len){ int i;memset(a,0,sizeof(a));for(i=0;i<len;i++)a[i]=T.a[i];}BigNum&BigNum::operator=(const BigNum&n){ len=n.len;memset(a,0,sizeof(a));int i;for(i=0;i<len;i++)a[i]=n.a[i];return*this;}BigNum BigNum::operator+(const BigNum&T)const{ BigNum t(*this);int i,big;//位数big=T.len>len?T.len:len;for(i=0;i<big;i++){t.a[i]+=T.a[i];if(t.a[i]>MAXN){t.a[i+1]++;t.a[i]-=MAXN+1;}}if(t.a[big]!=0)t.len=big+1;else t.len=big;return t;}BigNum BigNum::operator-(const BigNum&T)const{ int i,j,big;bool flag;BigNum t1,t2;if(*this>T){t1=*this;t2=T;flag=0;}else{t1=T;t2=*this;flag=1;}big=t1.len;for(i=0;i<big;i++){if(t1.a[i]<t2.a[i]){j=i+1;while(t1.a[j]==0)j++;t1.a[j--]--;while(j>i)t1.a[j--]+=MAXN;t1.a[i]+=MAXN+1-t2.a[i];}else t1.a[i]-=t2.a[i];}t1.len=big;while(t1.a[len-1]==0&&t1.len>1){t1.len--;big--;}if(flag)t1.a[big-1]=0-t1.a[big-1];return t1;}BigNum BigNum::operator*(const BigNum&T)const{BigNum ret;int i,j,up;int temp,temp1;for(i=0;i<len;i++){up=0;for(j=0;j<T.len;j++){temp=a[i]*T.a[j]+ret.a[i+j]+up;if(temp>MAXN){temp1=temp-temp/(MAXN+1)*(MAXN+1);up=temp/(MAXN+1);ret.a[i+j]=temp1;}else{up=0;ret.a[i+j]=temp;}}if(up!=0)ret.a[i+j]=up;}ret.len=i+j;while(ret.a[ret.len-1]==0&&ret.len>1)ret.len--;return ret;}BigNum BigNum::operator/(const int&b)const{BigNum ret;int i,down=0;for(i=len-1;i>=0;i--){ret.a[i]=(a[i]+down*(MAXN+1))/b;down=a[i]+down*(MAXN+1)-ret.a[i]*b;}ret.len=len;while(ret.a[ret.len-1]==0&&ret.len>1)ret.len--;return ret;}int BigNum::operator%(const int&b)const{int i,d=0;for(i=len-1;i>=0;i--){d=((d*(MAXN+1))%b+a[i])%b;}return d;}BigNum BigNum::operator^(const int&n)const{BigNum t,ret(1);if(n<0)exit(-1);if(n==0)return1;if(n==1)return*this;int m=n;while(m>1){t=*this;int i;for(i=1;i<<1<=m;i<<=1){t=t*t;}m-=i;ret=ret*t;if(m==1)ret=ret*(*this);}return ret;}bool BigNum::operator>(const BigNum&T)const{ int ln;if(len>T.len)return true;else if(len==T.len){ln=len-1;while(a[ln]==T.a[ln]&&ln>=0)ln--;if(ln>=0&&a[ln]>T.a[ln])return true;else return false;}else return false;}void BigNum::print(){int i;cout<<a[len-1];for(i=len-2;i>=0;i--){cout.width(DLEN);cout.fill('0');cout<<a[i];}}//读取整数const int ok=1;int get_val(int&ret){ret=0;char ch;while((ch=getchar())>'9'||ch<'0');do{ret=ret*10+ch-'0';}while((ch=getchar())<='9'&&ch>='0');return ok;}//带负数int get_val(int&ret){ret=0;char ch;bool neg=false;while(((ch=getchar())>'9'||ch<'0')&&ch!='-');if(ch=='-'){neg=true;while((ch=getchar())>'9'||ch<'0');}do{ret=ret*10+ch-'0';}while((ch=getchar())<='9'&&ch>='0');ret=(neg?-ret:ret);return ok;}//读取整数,可判EOF和EOLconst int eof=-1;const int eol=-2;int get_val(int&ret){ret=0;char ch;while(((ch=getchar())>'9'||ch<'0')&&ch!=EOF);if(ch==EOF)return eof;do{ret=ret*10+ch-'0';}while((ch=getchar())<='9'&&ch>='0');if(ch=='\n')return eol;return ok;}//读取浮点数int get_val(double&ret){ret=0;double base=0.1;char ch;bool dot=false,neg=false;while(((ch=getchar())>'9'||ch<'0')&&ch!='.'&&ch!='-');if(ch=='-'){neg=true;while(((ch=getchar())>'9'||ch<'0')&&ch!='.'&&ch!='-');}do{if(ch=='.'){dot=true;continue;}if(dot){ret+=(ch-'0')*base;base*=0.1;}else ret=ret*10+(ch-'0');}while(((ch=getchar())<='9'&&ch>='0')||ch=='.');ret=(neg?-ret:ret);return ok;}typedef long long LL;//LL MultiMod(LL a,LL b,LL c){//if(b)//return(a*(b&1)%c+(MultiMod(a,b>>1,c)<<1))%c; //return0;//}LL MultiMod(LL a,LL b,LL c){LL ret=0,d=a;for(;b;b>>=1,d<<=1,d%=c)if((b&1))ret=(ret+d)%c;return ret;}//128-bits integer's power with mod in O(64*LogN)LL ModPower(LL base,LL exp,LL mod){LL ret=1;for(;exp;exp>>=1,base=MultiMod(base,base,mod)) if((exp&1))ret=MultiMod(ret,base,mod);return ret;}第四章数论算法1.Greatest Common Divisor最大公约数int GCD(int x,int y){int t;while(y>0){t=x%y;x=y;y=t;}return x;}2.Prime素数判断bool is_prime(int u){if(u==0||u==1)return false;if(u==2)return true;if(u%2==0)return false;for(int i=3;i<=sqrt(u);i+=2)if(u%i==0)return false;return true;}3.Sieve Prime素数筛法const int M=1000;//M:sizebool mark[M];//true:prime numbervoid sieve_prime(){memset(mark,true,sizeof(mark));mark[0]=mark[1]=false;for(int i=2;i<=sqrt(M);i++){if(mark[i]){for(int j=i*i;j<M;j+=i)mark[j]=false;}}}4.Module Inverse模逆元//ax≡1(mod n)int Inv(int a,int n){int d,x,y;d=extended_euclid(a,n,x,y);if(d==1)return(x%n+n)%n;else return-1;//no solution}5.Extended Euclid扩展欧几里德算法//如果GCD(a,b)=d,则存在x,y,使d=ax+by//extended_euclid(a,b)=ax+byint extended_euclid(int a,int b,int&x,int&y){int d;if(b==0){x=1;y=0;return a;}d=extended_euclid(b,a%b,y,x);y-=a/b*x;return d;}6.Modular Linear Equation模线性方程(同余方程) //如果GCD(a,b)不能整除c,则ax+by=c没有整数解//ax≡b(mod n)n>0//上式等价于二元一次方程ax–ny=bvoid modular_linear_equation(int a,int b,int n){int d,x,y,x0,gcd;//可以减少扩展欧几里德溢出的可能gcd=GCD(a,n);if(b%gcd!=0){cout<<"no solution"<<endl;return;}a/=gcd;b/=gcd;n/=gcd;d=extended_euclid(a,n,x,y);if(b%d==0){x0=(x*(b/d))%n;//x0:basic solutionint ans=n;//min x=(x0%(n/d)+(n/d))%(n/d)for(int i=0;i<d;i++){ans=(x0+i*(n/d))%n;cout<<ans<<endl;}}else cout<<"no solution"<<endl;}7.Chinese Remainder Theorem中国余数定理//x≡b[i](mod w[i]),i∈[1,len-1]//前提条件w[i]>0,且w[]中任意两个数互质int chinese_remainder(int b[],int w[],int len){int i,d,x,y,m,n,ret;ret=0;n=1;for(i=0;i<len;i++)n*=w[i];for(i=0;i<len;i++){m=n/w[i];d=extended_euclid(w[i],m,x,y);ret=(ret+y*m*b[i])%n;}return(n+ret%n)%n;}//m≡r[i](mod a[i])//a[i]可以不互素//-1表示无解/*Pku2891Strange Way to Express Integers假设C≡A1(mod B1),C≡A2(mod B2)。

ACM 筛素数总结

ACM 筛素数总结

【总结】关于求素数的说【两种筛法】(学习小结,请无视)素数大家都很熟了,不多说了,这里只想说一下求素数。

当然先是唯一素因子分解定理:合数a仅能以一种方式,写成如下的乘积形式:a=p1e1p2e2…prer其中pi为素数,p1<p2<…<pr,且ei为正整数对于一个整数n,当其在小于sqrt(n)范围里有一个约数,那么必然在大于sqrt(n)的范围里有对应的另一个Eratosthenes(埃拉托斯特尼筛法)都是到sqrt(n)的范围。

①。

试除法判素数对于大于1的正整数a,如果a具有小于或等于sqrt(a)的素因子,则a为合数,否则a为素数。

因此,可用区间[2,sqrt(a)]内的数去试除a,只要有一个数能整除a ,则a为合数,否则a为素数。

这种判断素复杂度O(sqrt(n)).IsPrime(a)for(i=2;i*i<=a;i++)if(a%i==0)return a为合数return a为素数②。

Sieve Of Eratosthenes(埃拉托斯特尼筛法)可以筛出2~n 范围里的所有素数。

1)将所有候选数2~n放入筛中;2)找出筛中最小数P,P一定为素数。

3)宣布P为素数,并将P的所有倍数从筛中筛去;4)重复2)至3)直到筛空.其实,当P>sqrt(n)时筛中剩下的数就已经都是素数了。

//用数组prime[MAXN]记录是否为素数;//prime[i]为0表示i为素数,否则为合数int prime[MAXN]={0};for(i=2;i*i<=n;i++){if(prime[i]==0){for(j=i+i;j<=n;j+=i)prime[j]=1;}}③。

线性筛法对于Sieve Of Eratosthenes,普通的筛法如果是一个合数,那么会被多次筛掉,比如6,当2作为素数时筛掉一线性筛法保证所有合数只被筛掉一次具体详见《ftfish利用积性函数的优化》,讲到了积性函数(对于正整数n的一个算术函数f(n),当中f(1)=1且称它为积性函数。

acm贪心算法经典题型归纳

acm贪心算法经典题型归纳

acm贪心算法经典题型归纳
贪心算法是一种在求解最优化问题时常用的算法思想,它通常
用于解决那些具有最优子结构性质的问题。

在ACM竞赛中,贪心算
法经典题型主要包括以下几类:
1. 区间调度问题,这类问题要求在一系列区间中选择尽量多的
不重叠区间。

经典问题包括最大不重叠区间数量、最小区间覆盖等。

2. 背包问题,在给定背包容量和一系列物品的重量、价值的情
况下,选择装入背包的物品,使得背包内物品的总价值最大。

贪心
算法通常用于解决部分背包问题或者分数背包问题。

3. 最小生成树,贪心算法经典的应用之一是求解最小生成树,
其中Prim算法和Kruskal算法就是典型的贪心算法。

4. 最短路径问题,在有向图或者无向图中,求解起点到终点的
最短路径。

Dijkstra算法和Bellman-Ford算法都可以使用贪心思
想进行优化。

5. 哈夫曼编码,贪心算法还可以用于构造哈夫曼树,实现数据
的最优编码。

以上仅是贪心算法在ACM竞赛中的一些经典题型,实际上贪心算法还可以应用于很多其他问题的求解中。

在解决这些问题时,需要注意贪心选择性质和最优子结构性质,合理选择贪心策略,并证明其正确性。

同时,也需要注意到贪心算法并不适用于所有问题,有时候需要结合动态规划等其他算法来求解。

希望这些信息对你有帮助。

ACM大赛必备_常用函数整理_ACM模板

ACM大赛必备_常用函数整理_ACM模板

目录一、数学问题 (4)1.精度计算——大数阶乘 (4)2.精度计算——乘法(大数乘小数) (4)3.精度计算——乘法(大数乘大数) (5)4.精度计算——加法 (6)5.精度计算——减法 (7)6.任意进制转换 (8)7.最大公约数、最小公倍数 (9)8.组合序列 (10)9.快速傅立叶变换(FFT) (10)10.Ronberg 算法计算积分 (12)11.行列式计算 (14)12.求排列组合数 (15)13.求某一天星期几 (15)14.卡特兰(Catalan) 数列原理 (16)15.杨辉三角 (16)16.全排列 (17)17.匈牙利算法----最大匹配问题 (18)18.最佳匹配KM 算法 (20)二、字符串处理 (22)1.字符串替换 (22)2.字符串查找 (23)3.字符串截取 (24)4.LCS-最大公共子串长度 (24)5.LCS-最大公共子串长度 (25)6.数字转换为字符 (26)三、计算几何 (27)1.叉乘法求任意多边形面积 (27)2.求三角形面积 (27)3.两矢量间角度 (28)4.两点距离(2D、3D) (28)5.射向法判断点是否在多边形内部 (29)6.判断点是否在线段上 (30)7.判断两线段是否相交 (31)8.判断线段与直线是否相交 (32)9.点到线段最短距离 (32)10.求两直线的交点 (33)11.判断一个封闭图形是凹集还是凸集 (34)12.Graham 扫描法寻找凸包 (35)13.求两条线段的交点 (36)四、数论 (37)1.x 的二进制长度 (37)2.返回x 的二进制表示中从低到高的第i 位 (38)3.模取幂运算 (38)4.求解模线性方程 (39)5.求解模线性方程组(中国余数定理) (39)6.筛法素数产生器 (40)7.判断一个数是否素数 (41)8.求距阵最大和 (42)8.求一个数每一位相加之和 (43)10.质因数分解 (43)11.高斯消元法解线性方程组 (44)五、图论 (45)1.Prim 算法求最小生成树................................................. 45 2.Dijkstra 算法求单源最短路径.. (46)3.Bellman-ford 算法求单源最短路径 (47)4.Floyd-Warshall 算法求每对节点间最短路径 (48)5.解欧拉图 (49)六、排序/查找 (50)1.快速排序 (50)2.希尔排序 (51)3.选择法排序 (52)4.二分查找 (52)七、数据结构 (53)1.顺序队列 (53)2.顺序栈 (56)3.链表 (59)4.链栈 (63)5.二叉树 (66)八、高精度运算专题 (68)1.专题函数说明 (68)2.高精度数比较 (69)3.高精度数加法 (69)4.高精度数减法 (70)5.高精度乘10 (71)6.高精度乘单精度 (71)7.高精度乘高精度 (72)8.高精度除单精度 (72)9.高精度除高精度 (73)九、标准模板库的使用 (74)1.计算求和 (74)2.求数组中的最大值 (76)3. sort 和qsort (76)十、其他 (78)1.运行时间计算 (78)一、数学问题1.精度计算——大数阶乘语法:int result=factorial(int n);参数:n:n 的阶乘返回值:阶乘结果的位数注意:本程序直接输出n!的结果,需要返回结果请保留long a[] 需要math.h源程序:int factorial(int n){long a[10000];int i,j,l,c,m=0,w;a[0]=1;for(i=1;i<=n;i++){c=0;for(j=0;j<=m;j++){a[j]=a[j]*i+c;c=a[j]/10000;a[j]=a[j]%10000;}if(c>0) {m++;a[m]=c;}}w=m*4+log10(a[m])+1;printf("\n%ld",a[m]);for(i=m-1;i>=0;i--) printf("%4.4ld",a[i]);return w;}我也可以做到..5 / 782.精度计算——乘法(大数乘小数)语法:mult(char c[],char t[],int m);参数:c[]:被乘数,用字符串表示,位数不限t[]:结果,用字符串表示m:乘数,限定10 以内返回值:null注意:需要string.h源程序:void mult(char c[],char t[],int m){int i,l,k,flag,add=0;char s[100];l=strlen(c);for (i=0;i<l;i++)s[l-i-1]=c[i]-'0';for (i=0;i<l;i++){k=s[i]*m+add;if (k>=10) {s[i]=k%10;add=k/10;flag=1;} else{s[i]=k;flag=0;add=0;}}if (flag) {l=i+1;s[i]=add;} else l=i;for (i=0;i<l;i++)t[l-1-i]=s[i]+'0'; t[l]='\0';}3.精度计算——乘法(大数乘大数)语法:mult(char a[],char b[],char s[]);参数:a[]:被乘数,用字符串表示,位数不限b[]:乘数,用字符串表示,位数不限t[]:结果,用字符串表示返回值:null注意:空间复杂度为o(n^2)需要string.h源程序:void mult(char a[],char b[],char s[]){我也可以做到..6 / 78int i,j,k=0,alen,blen,sum=0,res[65][65]={0},flag=0; char result[65];alen=strlen(a);blen=strlen(b);for (i=0;i<alen;i++)for (j=0;j<blen;j++) res[i][j]=(a[i]-'0')*(b[j]-'0');for (i=alen-1;i>=0;i--){for (j=blen-1;j>=0;j--) sum=sum+res[i+blen-j-1][j]; result[k]=sum%10;k=k+1;sum=sum/10;}for (i=blen-2;i>=0;i--){for (j=0;j<=i;j++) sum=sum+res[i-j][j];result[k]=sum%10;k=k+1;sum=sum/10;}if (sum!=0) {result[k]=sum;k=k+1;}for (i=0;i<k;i++) result[i]+='0';for (i=k-1;i>=0;i--) s[i]=result[k-1-i];s[k]='\0';while(1){if (strlen(s)!=strlen(a)&&s[0]=='0')strcpy(s,s+1);elsebreak;}}4.精度计算——加法语法:add(char a[],char b[],char s[]);参数:a[]:被加数,用字符串表示,位数不限b[]:加数,用字符串表示,位数不限s[]:结果,用字符串表示返回值:null注意:空间复杂度为o(n^2)我也可以做到..7 / 78需要string.h源程序:void add(char a[],char b[],char back[]){int i,j,k,up,x,y,z,l;char *c;if (strlen(a)>strlen(b)) l=strlen(a)+2; else l=strlen(b)+2; c=(char *) malloc(l*sizeof(char));i=strlen(a)-1;j=strlen(b)-1;k=0;up=0;while(i>=0||j>=0){if(i<0) x='0'; else x=a[i];if(j<0) y='0'; else y=b[j];z=x-'0'+y-'0';if(up) z+=1;if(z>9) {up=1;z%=10;} else up=0;c[k++]=z+'0';i--;j--;}if(up) c[k++]='1';i=0;c[k]='\0';for(k-=1;k>=0;k--)back[i++]=c[k];back[i]='\0';}5.精度计算——减法语法:sub(char s1[],char s2[],char t[]);参数:s1[]:被减数,用字符串表示,位数不限s2[]:减数,用字符串表示,位数不限t[]:结果,用字符串表示返回值:null注意:默认s1>=s2,程序未处理负数情况需要string.h源程序:void sub(char s1[],char s2[],char t[])我也可以做到..8 / 78{int i,l2,l1,k;l2=strlen(s2);l1=strlen(s1);t[l1]='\0';l1--;for (i=l2-1;i>=0;i--,l1--){if (s1[l1]-s2[i]>=0)t[l1]=s1[l1]-s2[i]+'0';else{t[l1]=10+s1[l1]-s2[i]+'0';s1[l1-1]=s1[l1-1]-1;}}k=l1;while(s1[k]<0) {s1[k]+=10;s1[k-1]-=1;k--;}while(l1>=0) {t[l1]=s1[l1];l1--;}loop:if (t[0]=='0') {l1=strlen(s1);for (i=0;i<l1-1;i++) t[i]=t[i+1];t[l1-1]='\0';goto loop;}if (strlen(t)==0) {t[0]='0';t[1]='\0';}}6.任意进制转换语法:conversion(char s1[],char s2[],char t[]);参数:s[]:转换前的数字s2[]:转换后的数字d1:原进制数d2:需要转换到的进制数返回值:null注意:高于9 的位数用大写'A'~'Z'表示,2~16 位进制通过验证源程序:void conversion(char s[],char s2[],long d1,long d2){我也可以做到..9 / 78long i,j,t,num;char c;num=0;for (i=0;s[i]!='\0';i++){if (s[i]<='9'&&s[i]>='0') t=s[i]-'0'; else t=s[i]-'A'+10;num=num*d1+t;}i=0;while(1){t=num%d2;if (t<=9) s2[i]=t+'0'; else s2[i]=t+'A'-10;num/=d2;if (num==0) break;i++;}for (j=0;j<i/2;j++){c=s2[j];s2[j]=s[i-j];s2[i-j]=c;}s2[i+1]='\0';}7.最大公约数、最小公倍数语法:resulet=hcf(int a,int b)、result=lcd(int a,int b)参数:a:int a,求最大公约数或最小公倍数b:int b,求最大公约数或最小公倍数返回值:返回最大公约数(hcf)或最小公倍数(lcd)注意:lcd 需要连同hcf 使用源程序:int hcf(int a,int b){int r=0;while(b!=0){r=a%b;a=b;b=r;}return(a);我也可以做到..10 / 78}lcd(int u,int v,int h){return(u*v/h);}8.组合序列语法:m_of_n(int m, int n1, int m1, int* a, int head)参数:m:组合数C 的上参数n1:组合数C 的下参数m1:组合数C 的上参数,递归之用*a:1~n 的整数序列数组head:头指针返回值:null注意:*a 需要自行产生初始调用时,m=m1、head=0调用例子:求C(m,n)序列:m_of_n(m,n,m,a,0);源程序:void m_of_n(int m, int n1, int m1, int* a, int head){int i,t;if(m1<0 || m1>n1) return;if(m1==n1){return;}m_of_n(m,n1-1,m1,a,head); // 递归调用t=a[head];a[head]=a[n1-1+head];a[n1-1+head]=t;m_of_n(m,n1-1,m1-1,a,head+1); // 再次递归调用t=a[head];a[head]=a[n1-1+head];a[n1-1+head]=t;}9.快速傅立叶变换(FFT)语法:kkfft(double pr[],double pi[],int n,int k,double fr[],double fi[],intl,int il);参数:我也可以做到..11 / 78pr[n]:输入的实部pi[n]:数入的虚部n,k:满足n=2^kfr[n]:输出的实部fi[n]:输出的虚部l:逻辑开关,0 FFT,1 ifFTil:逻辑开关,0 输出按实部/虚部;1 输出按模/幅角返回值:null注意:需要math.h源程序:void kkfft(pr,pi,n,k,fr,fi,l,il)int n,k,l,il;double pr[],pi[],fr[],fi[];{int it,m,is,i,j,nv,l0; double p,q,s,vr,vi,poddr,poddi;for (it=0; it<=n-1; it++){m=it; is=0;for (i=0; i<=k-1; i++){j=m/2; is=2*is+(m-2*j); m=j;}fr[it]=pr[is]; fi[it]=pi[is];}pr[0]=1.0; pi[0]=0.0;p=6.283185306/(1.0*n);pr[1]=cos(p); pi[1]=-sin(p);if (l!=0) pi[1]=-pi[1];for (i=2; i<=n-1; i++){p=pr[i-1]*pr[1];q=pi[i-1]*pi[1];s=(pr[i-1]+pi[i-1])*(pr[1]+pi[1]);pr[i]=p-q; pi[i]=s-p-q;}for (it=0; it<=n-2; it=it+2){vr=fr[it]; vi=fi[it];fr[it]=vr+fr[it+1]; fi[it]=vi+fi[it+1];fr[it+1]=vr-fr[it+1]; fi[it+1]=vi-fi[it+1]; }m=n/2; nv=2;for (l0=k-2; l0>=0; l0--){我也可以做到..12 / 78m=m/2; nv=2*nv;for (it=0; it<=(m-1)*nv; it=it+nv)for (j=0; j<=(nv/2)-1; j++){p=pr[m*j]*fr[it+j+nv/2];q=pi[m*j]*fi[it+j+nv/2];s=pr[m*j]+pi[m*j];s=s*(fr[it+j+nv/2]+fi[it+j+nv/2]); poddr=p-q; poddi=s-p-q;fr[it+j+nv/2]=fr[it+j]-poddr;fi[it+j+nv/2]=fi[it+j]-poddi;fr[it+j]=fr[it+j]+poddr;fi[it+j]=fi[it+j]+poddi;}}if (l!=0)for (i=0; i<=n-1; i++){fr[i]=fr[i]/(1.0*n);fi[i]=fi[i]/(1.0*n);}if (il!=0)for (i=0; i<=n-1; i++){pr[i]=sqrt(fr[i]*fr[i]+fi[i]*fi[i]);if (fabs(fr[i])<0.000001*fabs(fi[i])) {if ((fi[i]*fr[i])>0) pi[i]=90.0;else pi[i]=-90.0;}elsepi[i]=atan(fi[i]/fr[i])*360.0/6.283185306;}return;}10.Ronberg 算法计算积分语法:result=integral(double a,double b);参数:a:积分上限b:积分下限我也可以做到..13 / 78function f:积分函数返回值:f 在(a,b)之间的积分值注意:function f(x)需要自行修改,程序中用的是sina(x)/x 需要math.h默认精度要求是1e-5源程序:double f(double x){return sin(x)/x; //在这里插入被积函数}double integral(double a,double b){double h=b-a;double t1=(1+f(b))*h/2.0;int k=1;double r1,r2,s1,s2,c1,c2,t2;loop:double s=0.0;double x=a+h/2.0;while(x<b){s+=f(x);x+=h;}t2=(t1+h*s)/2.0;s2=t2+(t2-t1)/3.0;if(k==1){k++;h/=2.0;t1=t2;s1=s2;goto loop;}c2=s2+(s2-s1)/15.0;if(k==2){c1=c2;k++;h/=2.0;t1=t2;s1=s2;goto loop;}r2=c2+(c2-c1)/63.0;if(k==3){r1=r2; c1=c2;k++;h/=2.0;t1=t2;s1=s2;我也可以做到..14 / 78goto loop;}while(fabs(1-r1/r2)>1e-5){ r1=r2;c1=c2;k++;h/=2.0;t1=t2;s1=s2;goto loop;}return r2;}11.行列式计算语法:result=js(int s[][],int n)参数:s[][]:行列式存储数组n:行列式维数,递归用返回值:行列式值注意:函数中常数N 为行列式维度,需自行定义源程序:int js(s,n)int s[][N],n;{int z,j,k,r,total=0;int b[N][N];/*b[N][N]用于存放,在矩阵s[N][N]中元素s[0]的余子式*/if(n>2){for(z=0;z<n;z++){for(j=0;j<n-1;j++)for(k=0;k<n-1;k++)if(k>=z) b[j][k]=s[j+1][k+1]; elseb[j][k]=s[j+1][k];if(z%2==0) r=s[0][z]*js(b,n-1); /*递归调用*/else r=(-1)*s[0][z]*js(b,n-1);total=total+r;}}else if(n==2)total=s[0][0]*s[1][1]-s[0][1]*s[1][0];return total;我也可以做到..15 / 78}12.求排列组合数语法:result=P(long n,long m); / result=long C(long n,long m);参数:m:排列组合的上系数n:排列组合的下系数返回值:排列组合数注意:符合数学规则:m<=n源程序:long P(long n,long m){long p=1;while(m!=0){p*=n;n--;m--;}return p;}long C(long n,long m){long i,c=1;i=m;while(i!=0){c*=n;n--;i--;}while(m!=0){c/=m;m--;}return c;}13.求某一天星期几语法:result=weekday(int N,int M,int d)参数:N,M,d:年月日,例如:2003,11,4返回值:0:星期天,1 星期一……注意:需要math.h适用于1582 年10 月15 日之后, 因为罗马教皇格里高利十三世在这一天启用新历法.源程序:我也可以做到..16 / 78int weekday(int N,int M,int d){int m,n,c,y,w;m=(M-2)%12;if (M>=3) n=N;else n=N-1;c=n/100;y=n%100;w=(int)(d+floor(13*m/5)+y+floor(y/4)+floor(c/4)-2*c)%7;while(w<0) w+=7;return w;}14.卡特兰(Catalan) 数列原理令h(1)=1,catalan 数满足递归式:h(n)= h(1)*h(n-1) + h(2)*h(n-2) + ... + h(n-1)h(1) (其中n>=2)该递推关系的解为:h(n)=c(2n-2,n-1)/n (n=1,2,3,...)1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440,9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420,24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …1.括号化问题。

ACM算法设计-BFS(广度搜索)-DFS入门(深度搜索)详解

ACM算法设计-BFS(广度搜索)-DFS入门(深度搜索)详解
0 1
i i i i i i i
2
3
4
5
6
7
8
9

(8,6) (8,5) (7,5) (6,5) (6,4) (6,3) (5,3) (5,2) (5,1) (4,1) (3,1) (2,1) (1,1)
0 1 2 3 4 5
6
7 8 9
@
@
i
i
i
i i
27 break
迷宫问题-DFS

下方路不通,向右方前进一步
17 break
迷宫问题-DFS
• 向下方 、右方、左方均不能前进,上方是来路,则后退
0
0 1 2 3 4 5 i i i i i
1
2
3
4
5
6
7
8
9

(7,1) (6,1) (5,1) (4,1) (3,1) (2,1) (1,1)
6
7 8 9
i
@
18 break
迷宫问题-DFS
• 向右方、左方均不能前进,下方路不通,上方是来路,则后退
按层次的顺序来遍历搜索树
6
BFS框架
通常用队列(先进先出,FIFO)实现 初始化队列Q. Q={起点s}; 标记s为己访问; while (Q非空) { 取Q队首元素u; u出队; if (u == 目标状态) {…} 所有与u相邻且未被访问的点进入队列; 标记u为已访问; }
7
迷宫问题
• 寻找一条从入口到出口的通路
7 8 9
14 break
迷宫问题-DFS
• 向下方前进一步
0
0 1 2 3 4 5 i i i i
1
2

acm数论知识点总结

acm数论知识点总结

acm数论知识点总结1. 整除与余数整除是数论中最基本的概念之一。

如果一个整数a可以被另一个整数b整除,那么我们说b是a的一个因子,记作b|a。

如果a不能被b整除,记作b∣a。

另外,如果a除以b得到的商为q,余数为r,那么我们有a=bq+r,并且0≤r<|b|。

这里的余数r可以用来求解问题,比如判断一个数是奇数还是偶数;或者用来求解同余方程。

2. 最大公约数和最小公倍数两个整数a和b的最大公约数(Greatest Common Divisor,GCD)是能够整除a和b的最大的整数。

通常记作gcd(a, b)。

最小公倍数(Least Common Multiple,LCM)是能够被a和b整除的最小的整数。

通常记作lcm(a, b)。

最大公约数和最小公倍数可以用辗转相除法快速求解,而且它们有一些常见的性质,比如gcd(a, b)⋅lcm(a, b)=a⋅b。

3. 素数素数是指只能被1和自身整除的正整数。

素数在数论中是非常重要的,它们有许多特殊的性质。

比如任意一个整数都可以分解成若干个素数的乘积。

素数在ACM竞赛中常用于判断数字的性质,或者用于设计算法。

4. 同余同余是数论中一个重要的概念,如果两个整数a和b除以一个正整数m得到的余数相同,那么我们就说a同余b模m,记作a≡b(mod m)。

同余关系具有传递性和对称性,满足一些特殊的性质。

同余关系可以用来求解很多问题,比如求解同余方程、构造递归关系等。

5. 奇数和偶数奇数是最基本的整数,它们可以被2整除;偶数是能够被2整除的整数。

奇数和偶数在一些问题中有特殊的性质,比如奇数乘以奇数得到的是奇数,奇数加偶数得到的是奇数等。

6. 欧拉定理欧拉定理是数论中一个著名的定理,它为解决同余方程提供了一个重要的工具。

欧拉定理表明,如果正整数a和m互质(即gcd(a, m)=1),那么a的欧拉函数值为φ(m),则a^φ(m)≡1(mod m)。

欧拉定理在RSA密码算法中有重要应用。

acm大数分解质因数

acm大数分解质因数

acm大数分解质因数【原创实用版】目录1.ACM 大数分解质因数算法的背景和意义2.ACM 大数分解质因数的原理和方法3.ACM 大数分解质因数的应用领域4.ACM 大数分解质因数的优缺点分析5.我国在 ACM 大数分解质因数领域的发展现状和前景正文【1.ACM 大数分解质因数算法的背景和意义】ACM 大数分解质因数算法,是一种用于大数质因数分解的算法,它的出现解决了大数质因数分解的难题,具有重要的理论和实际意义。

随着计算机科学的发展,对于大数的处理和运算需求越来越迫切。

大数质因数分解是密码学、计算机科学等领域的重要基础,它在许多应用中都有着关键的作用。

然而,随着数的增大,质因数分解的难度也在增加,这就需要有一种有效的算法来解决这个问题。

【2.ACM 大数分解质因数的原理和方法】ACM 大数分解质因数算法的原理是基于数学的质因数分解理论,通过将大数不断地分解为较小的质因数,直到无法继续分解为止。

该算法采用了一种迭代的方法,通过反复的计算和优化,可以有效地提高质因数分解的效率。

具体来说,它首先通过试除法确定一个大范围的质因数,然后逐步缩小范围,直到找到所有的质因数。

【3.ACM 大数分解质因数的应用领域】ACM 大数分解质因数算法在多个领域都有着广泛的应用,包括密码学、计算机科学、数学研究等。

在密码学中,质因数分解是公钥密码系统的基础,如 RSA 密码系统就是基于大数质因数分解的困难性设计的。

在计算机科学中,大数质因数分解可以用于数据压缩、散列函数设计等领域。

在数学研究中,大数质因数分解是一种重要的数学方法,可以用于解决许多数学问题。

【4.ACM 大数分解质因数的优缺点分析】ACM 大数分解质因数算法在解决大数质因数分解问题上具有显著的优势,但是也存在一些缺点。

优点:算法的理论基础扎实,可以有效地解决大数质因数分解问题;算法具有较高的效率,可以通过迭代优化不断提高分解速度。

缺点:算法的实现较为复杂,需要较高的计算能力和编程技巧;算法的性能受到大数因子限制,对于超大数可能存在性能瓶颈。

ACM经典算法之字符串处理:字符串替换

ACM经典算法之字符串处理:字符串替换

ACM经典算法之字符串处理:字符串替换语法:replace(char str[],char key[],char swap[]);參数:str[]:在此源字符串进⾏替换操作key[]:被替换的字符串,不能为空串swap[]:替换的字符串,能够为空串,为空串表⽰在源字符中删除key[]返回值:null注意:默认str[]长度⼩于1000,如否,⼜⼀次设定设定tmp⼤⼩须要 string.h源程序:#include<stdio.h>#include<string.h>void replace(char str[],char key[],char swap[]){int l1,l2,l3;int i,j;int flag;char tmp[1000];l1=strlen(str);l2=strlen(key);l3=strlen(swap);for(i=0;i<=l1-l2;i++){flag=1;for(j=0;j<l2;j++)//注意是⼩写的l⽽不是数字1{if(str[i+j]!=key[j]){flag=0;break;}}if(flag){strcpy(tmp,str);strcpy(&tmp[i],swap);strcpy(&tmp[i+l3],&str[i+l2]);strcpy(str,tmp);i+=l3-1;l1=strlen(str);}}}int main(){char str[] ="I have a dream";char key[] ="have";char swap[]="Love";printf("原字符串是%s\n被替换的⼦串%s,替换为%s\n",str,key,swap);replace(str,key,swap);puts("替换后的字符串是:");puts(str);return 0;}。

ACM算法竞赛模板个人总结汇总

ACM算法竞赛模板个人总结汇总

数学 (4)最大公约数、最小公倍数 (4)最大公约数——欧几里得算法O(n) (4)Stein算法O( log(max(a,b)) ) (4)最小公倍数: (4)素数相关 (5)普通素数判断 (5)筛法求素数[1,N] (5)二次筛法求素数[L,R] (6)Miller-Rabbin素数测试方法 (7)算术基本定理的定义和性质: (8)同余方程[组] 乘法模逆元中国剩余定理 (9)扩展欧几里得,求一组解x,y,使得gcd(a,b) = d = a * x + b * y (9)扩展欧几里得,求所有解x,y,使得c = a * x + b * y (10)扩展欧几里得,求a关于n的逆元a^-1,使得a * a^-1 ≡ 1(mod n) (10)扩展欧几里得,求解x,满足同余方程组x ≡ Ri(mod Ai) (10)扩展欧几里得,求解x,满足高次同余方程A^x ≡ B(mod C) (11)中国剩余定理: (13)中国剩余定理最小非负数解的算法: (14)求解a*x + b*y = c的其中一组解,使得|x| + |y|尽可能小,若相等,则a|x| + b|y|尽可能小。

(15)整数快速幂 (16)矩阵快速幂 (16)整数分解 (18)试除法整数分解 (18)筛法整数分解 (18)PollardRho大整数分解 (19)欧拉函数 (22)直接欧拉函数 (22)递推快速求欧拉函数 (23)容斥原理 (23)母函数 (24)普通母函数 (24)指数型母函数 (25)其他相关 (27)九余数定理:一个数N各位数字的和,对9取余等于这个数对9取余 (27)给你一个奇数N,求1~N的奇数平方和: S = N*(N+1)*(N+2)/6 (27)约瑟夫问题:有N个人,编号为1~N,按顺时针围成一个圈,每数k个人,就将这个人从圈中消除,问:最终只留下一个人的编号。

(27)给你整数x和y的和以及x和y的积,是否能找到满足这两个式子的整数x和整数y。

ACM基础算法入门

ACM基础算法入门


辗转相除法


扩展欧几里得
双六 一个双六上面有向前向后无限延续的格子,每个格子都写有整数。其中0号格子 是起点,1号格子是终点。而骰子上只有 a , b , -a , -b 四个整数,所以根据 a 和 b 的值的不同,有可能无法到达终点。 格子如下: …… -4 -3 -2 -1 0 1 2 3 4 …… 掷出四个整数各多少次可以到达终点?输出任意一组解。 1<= a , b <=10^9

0 1 0 0 1
解题过程

本题是简单的搜索问题,采用深度优先 遍历可以解决,根据题目要求,假设从 任意一点值为'1'的出发,将这点的坐标 上下左右全部用'0'替换,1次DFS后与初 始动这个'1'连接的'1'全部被替换成'0', 因此,直到图中不再存在'1'为至,总共 进行的DFS的次数就是最后的结果咯!那 么,根据题目要求,有4个方向,时间复 杂度为O(4*n*m)。
例题:

水池数目 南阳理工学院校园里有一些小河和一些湖泊,现在,我们把它们通一看成水池, 假设有一张我们学校的某处的地图,这个地图上仅标识了此处是否是水池,现在, 你的任务来了,请用计算机算出该地图中共有几个水池。 输入m行每行输入n个数,表示此处有水还是没水 (1表示此处是水池,0表示此处是地面) 0<m<100 0<n<100 输入: 34 1000 0011 1110 输出: 2 输入: 55 1111 0010 0000 1110 0011 输出: 3
把各区间按照a从小到大顺序。如果区间1的起点不是s, 则无解,即[s,t]无法被完全覆盖(因为其他区间的起点更大, 不可能覆盖到s点),否则选择起点在s的最长区间。选择此 区间[ai,bi]后,新的起点应该被设置为bi,并且忽略所有区间在 bi之前的部分,就像预处理一样。虽然贪心策略比上面的题 复杂,但是仍然只需要一次扫描。如下图5所示。s为当前有 效起点(此前部分已被覆盖),则应该选择区间2。

ACM(五篇范例)

ACM(五篇范例)

ACM(五篇范例)第一篇:ACMDijkstra 模板/*************************************** * About:有向图的Dijkstra算法实现 * Author:Tanky Woo * Blog:t=0;if(flag == 0){printf(“Non”);}else{for(int i=min;i<=max;++i){if(mark[i]==1 && arr[i]==0)cnt++;}}if(cnt==1)printf(“Yesn”);elseprintf(“Non”);}} return 0;搜索算法模板BFS:1.#include2.#include3.#include4.#includeing namespace std;6.const int maxn=100;7.bool vst[maxn][maxn];// 访问标记8.int dir[4][2]={0,1,0,-1,1,0,-1,0};// 方向向量9.10.struct State // BFS 队列中的状态数据结构 11.{ 12.int x,y;// 坐标位置13.int Step_Counter;// 搜索步数统计器14.};15.16.State a[maxn];17.18.boolCheckState(State s)// 约束条件检验19.{ 20.if(!vst[s.x][s.y] &&...)// 满足条件 1: 21.return 1;22.else // 约束条件冲突 23.return 0;24.} 25.26.void bfs(State st)27.{ 28.queue q;// BFS 队列29.State now,next;// 定义 2 个状态,当前和下一个30.st.Step_Counter=0;// 计数器清零 31.q.push(st);// 入队32.vst[st.x][st.y]=1;// 访问标记33.while(!q.empty())34.{ 35.now=q.front();// 取队首元素进行扩展36.if(now==G)// 出现目标态,此时为Step_Counter 的最小值,可以退出即可37.{ 38.......// 做相关处理39.return;40.} 41.for(int i=0;i<4;i++)42.{ 43.next.x=now.x+dir[i][0];// 按照规则生成下一个状态44.next.y=now.y+dir[i][1];45.next.Step_Counter=now.Step_Coun ter+1;// 计数器加1 46.if(CheckState(next))// 如果状态满足约束条件则入队 47.{ 48.q.push(next);49.vst[next.x][next.y]=1;//访问标记 50.} 51.} 52.q.pop();// 队首元素出队53.} 54.return;55.} 56.57.int main()58.{ 59.......60.return 0;61.}代码:胜利大逃亡Ignatius被魔王抓走了,有一天魔王出差去了,这可是Ignatius逃亡的好机会.魔王住在一个城堡里,城堡是一个A*B*C的立方体,可以被表示成A个B*C的矩阵,刚开始Ignatius被关在(0,0,0)的位置,离开城堡的门在(A-1,B-1,C-1)的位置,现在知道魔王将在T分钟后回到城堡,Ignatius每分钟能从一个坐标走到相邻的六个坐标中的其中一个.现在给你城堡的地图,请你计算出Ignatius能否在魔王回来前离开城堡(只要走到出口就算离开城堡,如果走到出口的时候魔王刚好回来也算逃亡成功),如果可以请输出需要多少分钟才能离开,如果不能则输出-1.Input 输入数据的第一行是一个正整数K,表明测试数据的数量.每组测试数据的第一行是四个正整数A,B,C和T(1<=A,B,C<=50,1<=T<=1000),它们分别代表城堡的大小和魔王回来的时间.然后是A块输入数据(先是第0块,然后是第1块,第2块......),每块输入数据有B行,每行有C个正整数,代表迷宫的布局,其中0代表路,1代表墙.(如果对输入描述不清楚,可以参考Sample Input中的迷宫描述,它表示的就是上图中的迷宫) 特别注意:本题的测试数据非常大,请使用scanf输入,我不能保证使用cin能不超时.在本OJ上请使用Visual C++提交.Output 对于每组测试数据,如果Ignatius能够在魔王回来前离开城堡,那么请输出他最少需要多少分钟,否则输出-1.Sample Input 1 3 3 4 20 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0Sample Output 11代码:#include #include #include #include #includeusing namespace std;int tx[] = {0,1,-1,0,0,0,0};int ty[] = {0,0,0,1,-1,0,0};int tz[] = {0,0,0,0,0,1,-1};int arr[55][55][55];int known[55][55][55];// 访问标记int a,b,c,d;struct state{int x,y,z;// 所在的坐标int step_count;//统计搜索步数。

acm竞赛相关知识点总结

acm竞赛相关知识点总结

acm竞赛相关知识点总结一、算法设计算法设计是 ACM 竞赛中最为重要的一个环节。

合适的算法可以大大提高解题效率,而不合适的算法可能导致题目无法在规定时间内完成。

常见的算法设计包括贪心算法、分治算法、动态规划、搜索算法等。

在实际比赛中,常用的算法有:1. 贪心算法贪心算法是一种在每一步选择中都采取当前状态下的最优解,从而希望全局得到最优解的算法。

贪心算法的特点是简单、高效,但不能保证获得全局最优解。

2. 分治算法分治算法是将问题分解成若干个小规模的子问题,解决子问题后再将结果合并起来,得到原问题的解。

常见的分治算法包括归并排序、快速排序等。

3. 动态规划动态规划是一种将问题分解成若干个重叠子问题,通过存储中间结果避免重复计算,从而提高解题效率的算法。

动态规划常用于解决最优化问题,如最长递增子序列、最大子数组和等。

4. 搜索算法搜索算法分为深度优先搜索(DFS)和广度优先搜索(BFS)。

DFS 是一种将问题转化成树状结构进行搜索的算法,BFS 则是一种层次遍历的方法。

搜索算法通常用于解决图论问题、路径搜索等。

二、数据结构数据结构在 ACM 竞赛中也扮演着非常重要的角色。

合适的数据结构可以大大简化问题的解决过程,提高解题效率。

常见的数据结构包括数组、链表、栈、队列、树、图等。

在ACM 竞赛中,常用的数据结构有:1. 数组数组是存储相同类型数据的集合,可以通过下标快速访问元素。

在 ACM 竞赛中,数组常用于存储数据、处理统计信息等。

2. 栈栈是一种先进后出的数据结构,在 ACM 竞赛中常用于表达式求值、括号匹配等。

3. 队列队列是一种先进先出的数据结构,常用于 BFS 搜索、模拟等。

4. 树树是一种重要的数据结构,在 ACM 竞赛中常用于表示层次结构、存储排序信息等。

常见的树结构包括二叉树、堆、并查集等。

5. 图图是一种用于表示网络结构的数据结构,常用于解决最短路径、最小生成树等问题。

三、图论图论是 ACM 竞赛中的一个重要领域,涉及了大量的算法和数据结构。

16个ACM经典算法介绍

16个ACM经典算法介绍

16个ACM经典算法介绍一、排序算法:1.冒泡排序:基于比较的排序算法,通过不断交换相邻元素将最大元素逐渐向后移动。

2.插入排序:基于比较的排序算法,通过将元素逐个插入到已排好序的部分中,最终得到完全有序的序列。

3.归并排序:基于分治的排序算法,将待排序序列划分为一系列子序列,然后将子序列进行合并,最终得到完全有序的序列。

4.快速排序:基于分治的排序算法,通过选择一个基准元素将序列划分为两部分,然后递归地对两部分进行排序。

5.堆排序:基于堆的排序算法,通过构建最大堆或最小堆来实现排序。

二、查找算法:6.二分查找:基于有序序列的查找算法,通过将待查找值与序列中间元素进行比较,逐渐缩小查找范围。

7.哈希表:基于哈希函数的查找算法,通过将键值对存储在哈希表中,实现高效的查找。

三、图算法:8.深度优先(DFS):基于栈的算法,通过递归地访问顶点的邻接顶点,实现图的遍历。

9.广度优先(BFS):基于队列的算法,通过访问顶点的邻接顶点,实现图的遍历。

10. 最小生成树算法:用来求解无向图的最小生成树,常用的有Prim算法和Kruskal算法。

11. 最短路径算法:用来求解有向图或带权重的无向图的最短路径,常用的有Dijkstra算法和Floyd-Warshall算法。

四、动态规划算法:12.最长上升子序列(LIS):用来求解一个序列中最长严格递增子序列的长度。

13.背包问题:用来求解在给定容量下,能够装入尽量多的物品的问题。

五、字符串算法:14.KMP算法:用来在一个文本串S中查找一个模式串P的出现位置的算法,通过预处理模式串,利用已经匹配过的子串,跳过一定长度进行下一轮匹配。

15. Boyer-Moore算法:用来在一个文本串S中查找一个模式串P的出现位置的算法,通过从模式串末尾开始匹配,利用好后缀和坏字符规则,跳过一定长度进行下一轮匹配。

16.字符串匹配算法:用来在一个文本串S中查找多个模式串的出现位置的算法,常用的有AC自动机和后缀树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七.计算几何学.
(1)几何公式.
(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)
(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
(4)最小树形图(poj3164)
(5)次小生成树.
(6)无向图、有向图的最小环
三.数据结构.
(1)trie图的建立和应用. (poj2778)
(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法
(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
(1)背包问题. (poj1837,poj1276)
(2)型如下表的简单DP(可参考lrj的书 page149):
(4)凸包. (poj2187,poj1113)
中级:
一.基本算法:
(1)C++的标准模版库的应用. (poj3096,poj3007)
(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
(3)记忆化搜索(poj3373,poj1691)
五.动态规划
(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)四边形不等式理论.
(3)较难的状态DP(poj3133)
六.数学
(1)组合数学.
1.MoBius反演(poj2888,poj2154)
2.偏序关系理论.
(2)博奕论.
1.极大极小过程(poj3317,poj1085)
(2)数论.
1.素数与整除问题
2.进制位.
3.同余模运算.
(poj2635, poj3292,poj1845,poj2115)
(3)计算方法.
1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)
二.图算法:
(1)图的深度优先遍历和广度优先遍历.
(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).
4.递推关系和母函数.
(2)数学.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
(1)差分约束系统的建立和求解. (poj1201,poj2983)
(2)最小费用最大流(poj2516,poj2516,poj2195)
(3)双连通分量(poj2942)
(4)强连通分支及其缩点.(poj2186)
(5)图的割边和割点(poj3352)
4.迭代逼近(poj3301)
(4)随机化算法(poj3318,poj2454)
(5)杂题.
(poj1870,poj3296,poj3286,poj1095)
七.计算几线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).
三.数据结构.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)
(3)简单并查集的应用.
(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)
(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最优比率生成树. (poj2728)
2.概率问题. (poj3071,poj3440)
3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)
(3)计算方法.
1.0/1分数规划. (poj2976)
2.三分法求解单峰(单谷)的极值.
3.矩阵法(poj3150,poj3422,poj3070)
初期:
一.基本算法:
(1)枚举. (poj1753,poj2965)
(2)贪心(poj1328,poj2109,poj2586)
(3)递归和分治法.
(4)递推.
(5)构造法.(poj3295)
(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)
(4)RMQ. (poj3264,poj3368)
(5)并查集的高级应用. (poj1703,2492)
(6)KMP算法. (poj1961,poj2406)
四.搜索
(1)最优化剪枝和可行性剪枝
(2)搜索的技巧和优化 (poj3411,poj1724)
2.Nim问题.
七.计算几何学.
(1)半平面求交(poj3384,poj2540)
(2)可视图的建立(poj2966)
(3)点集最小圆覆盖.
(4)对踵点(poj2079)
八.综合题.
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)
Dp状态设计与方程总结
1.不完全状态记录
<1>青蛙过河问题
<2>利用区间dp
2.背包类问题
<1> 0-1背包,经典问题
<2>无限背包,经典问题
<3>判定性背包问题
<4>带附属关系的背包问题
<5> + -1背包问题
<6>双背包求最优值
3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)
六.数学
(1)组合数学:
1.加法原理和乘法原理.
2.排列组合.
3.递推关系.
(POJ3252,poj1850,poj1019,poj1942)
高级:
一.基本算法要求:
(1)代码快速写成,精简但不失风格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保证正确性和高效性. poj3434
二.图算法:
(1)度限制最小生成树和第K最短路. (poj1639)
(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)
(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)
六.数学
(1)组合数学:
1.容斥原理.
2.抽屉原理.
(RMQ+dfs)).(poj1330)
(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的
目的). (poj2823)
(4)左偏树(可合并堆).
(5)后缀树(非常有用的数据结构,也是赛区考题的热点).
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼树(poj3253)
(6)堆
(7)trie树(静态建树、动态建树) (poj2513)
四.简单搜索
(1)深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)
五.动态规划
(1)需要用数据结构优化的动态规划.
(poj2754,poj3378,poj3017)
(3)最小生成树算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓扑排序 (poj1094)
(5)二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)
(6)最大流的增广路算法(KM算法). (poj1459,poj3436)
(6)最小割模型、网络流规约(poj3308, )
三.数据结构.
(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)静态二叉检索树. (poj2482,poj2352)
(3)树状树组(poj1195,poj3321)
(poj3415,poj3294)
四.搜索
(1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
相关文档
最新文档