定时器-计数器

合集下载

定时器计数器的定时实验

定时器计数器的定时实验

定时器和计数器是数字逻辑电路中常见的功能模块,用于时间测量和事件计数。

以下是一个可能的定时器计数器的定时实验设计方案:
实验名称:定时器计数器的定时实验
实验目的:
1. 了解定时器和计数器在数字电路中的应用;
2. 学习定时器的工作原理和使用方法;
3. 掌握计数器的功能及其在事件计数中的应用。

实验内容:
1. 定时器实验:
-设计一个简单的定时器电路,利用集成电路或开发板上的定时器模块,实现不同时间间隔的脉冲输出。

-调节定时器参数,观察输出信号的频率和占空比的变化。

2. 计数器实验:
-将定时器的输出信号连接到计数器输入端,通过计数器实现对脉冲数量的计数。

-设置计数器的初始值和计数方式,观察计数器的计数过程及计数结果。

实验器材与设备:
1. 集成电路或开发板上的定时器和计数器模块
2. 连接线、电源等实验器材
3. 示波器或数码多用表等测试仪器
4. 相关的实验软件和工具
实验注意事项:
1. 理解定时器和计数器的工作原理,正确连接和设置实验电路。

2. 注意电路连接的准确性,确保信号传输正常。

3. 在实验过程中注意观察输出信号波形和计数结果,及时调整参数以获取所需实验数据。

预期结果:
通过该实验,学生可以深入了解定时器和计数器在数字电路中的应用,掌握定时器的工作原理和调节方法,以及理解计数器在事件计数中的作用。

学生将能够实际操作定时器计数器模块,设计并搭建相应的实验电路,观察实验结果并进行数据分析。

这样的定时器计数器的定时实验设计旨在帮助学生加深对数字逻辑电路中定时和计数功能的理解,培养其实验操作能力和问题解决能力。

单片机定时器 计数器

单片机定时器 计数器

单片机定时器计数器单片机定时器/计数器在单片机的世界里,定时器/计数器就像是一个精准的小管家,默默地为系统的各种操作提供着精确的时间控制和计数服务。

无论是在简单的电子时钟、还是复杂的通信系统中,都能看到它们忙碌的身影。

那什么是单片机的定时器/计数器呢?简单来说,定时器就是能够按照设定的时间间隔产生中断或者触发事件的模块;而计数器则是用于对外部脉冲或者内部事件进行计数的功能单元。

我们先来看看定时器的工作原理。

想象一下,单片机内部有一个像小闹钟一样的东西,我们可以给它设定一个时间值,比如说 1 毫秒。

当单片机开始工作后,这个小闹钟就会以一个固定的频率开始倒计时,当倒计时结束,也就是 1 毫秒到了,它就会发出一个信号,告诉单片机“时间到啦”!这个信号可以用来触发各种操作,比如更新显示、读取传感器数据等等。

定时器的核心在于它的时钟源。

就好比小闹钟的动力来源,时钟源决定了定时器倒计时的速度。

常见的时钟源有单片机的内部时钟和外部时钟。

内部时钟一般比较稳定,但精度可能会受到一些限制;而外部时钟则可以提供更高的精度,但需要额外的电路支持。

再来说说计数器。

计数器就像是一个勤劳的小会计,不停地数着外面进来的“豆子”。

这些“豆子”可以是外部的脉冲信号,也可以是单片机内部产生的事件。

比如,我们可以用计数器来统计电机旋转的圈数,或者计算按键被按下的次数。

计数器的工作方式也有多种。

可以是向上计数,就是从 0 开始,不断增加,直到达到设定的最大值;也可以是向下计数,从设定的最大值开始,逐渐减少到 0。

还有一种更灵活的方式是双向计数,根据需要在向上和向下之间切换。

那么,定时器/计数器在实际应用中有哪些用处呢?比如说,在一个智能温度控制系统中,我们可以用定时器每隔一段时间读取一次温度传感器的数据,然后根据温度的变化来控制加热或者制冷设备的工作。

而计数器则可以用来统计设备运行的次数,以便进行维护和保养。

在电子时钟的设计中,定时器更是发挥了关键作用。

51单片机定时-计数器结构和计数器工作原理

51单片机定时-计数器结构和计数器工作原理
使用中断方式时对IE寄存器赋值开发中断
使TR0或TR1置位,启动定时/计数器
晶体振荡器的振荡信号从XTAL2端输入到片内的时钟发生器上,时钟发
生器是一个二分频触发器电路,它将振荡器的信号频率除以2,向CPU提供
了两相时钟信号P1和P2。时钟信号的周期称为机器状态时间S,它是振荡
周期的2倍。在每个时钟周期(即机器状态时间S)的前半周期,相位1(即
P1信号)有效,在每个时钟周期的后半周期,相位2(即P2信号)有效。
提供
用途:定时器和计数器
核心:加1计数器
原理:每来一个脉冲则加1计数器加1,当加到全1时再来一个脉冲使加
1计数器归零,同时加1计数器的溢出使TCON寄存器中的TF0(或TF1)
置1,向CPU发出中断请求
脉冲来
补充:
计数器工作原理:
用作计数器时,对T0或T1引脚的外部脉冲计数,如果前一个机器周期
采样值为1,后一个机器周期采样值为0,则说明有一个脉冲,计数器加
1。
在每个机器周期的S5P2期间采样引脚输入电平。新的计数初值于下一个
机器周期的S3P1期间装入计数器。
此种方式需要两个机器周期来检测一个1->0负跳变信号,因此最高的计
数频率为时钟频率的1/24。
S5P2:
S5P2指的是第5个时钟周期的相位2。
工作原理:13位计数器,使用TL0的低5位和TH0的高8位组成,TL0
的低5位溢出时向TH0进位。TH0溢出时发出中断请求。
方式1
计算公式:
最大计数:65536个机器周期
工作原理:16位计数器,TL0作为低8位,TH0作为高8位
方式2:自动重装初值的8位计数方式
计算公式:p.s.晶振频率必须选择12的整数倍,因为定时器的频率是晶振

第九讲 定时器&计数器

第九讲 定时器&计数器



计数寄存器

单片机内部有两个16位的定时/计数器T0和T1。 每个定时/计数器占用两个特殊功能寄存器:
T0由TH0和TL0两个8位计数器组成,字节地址分别是
8CH和8AH。
T1由TH1和TL1两个8位计数器组成,字节地址分别是 8DH和8BH。 用于存放定时或计数的初值。当计数器工作时,其值 随计数脉冲做加1变化。
微机原理与接口技术
Microcontrollers
李光 王酉
教 授 PhD, DIC, MIET 博士 PhD, MIET
杭州 • 浙江大学 • 2009
第六章 定时器/计数器
§6-1 §6-2 §6-3
定时器/计数器概述 定时器/计数器 定时器/计数器的应用
§6-1
定时器/计数器概述
T0(P3.4)、T1(P3.5)的脉冲
每输入一个脉冲,计数器“+1 实际工作时,CPU在每个机器周期的S5P2采样外部输
入引脚T0(T1),若一个机器周期的采样值为高电平, 而下一个机器周期的采样值为低电平(即检测到一个下 降沿),则计数器“+1”,完成一次计数操作。
>TM
>TM
6-2-2 定时器/计数器工作原理
§6-2 定时器/计数器
6-2-1 6-2-2 6-2-3 6-2-4
组成结构 工作原理 控制寄存器 工作方式
6-2-1 定时器/计数器组成结构

MCS51单片机内有2个独立的16位的可编 程定时器/计数器T0和T1 定时器/计数器T0、T1由以下几部分组成
计数器TH0、TL0和TH1、TL1 特殊功能寄存器TMOD、TCON 时钟分频器 内部总线 输入引脚T0、T1

定时器和计数器指

定时器和计数器指


助记符格式: CP条件(计数脉冲输入端) R条件(计数器复位端) CNT N SV



操作数N为计数器TC号,取值范围为十进制数00~ 47 (CPM1A为000~127)。 操作数SV为计数器的设定值,由4位BCD码组成, 可以是变量(IR、MR、HR、OR、DM等),也可以 是常量(取值范围#0000~9999)。 CNT在程序中有两个输入条件,故在助记符格式 中专门列出。在这里CP为计数脉冲输入端,R为复 位端。
问:若定时时间为1800S又该如何?
练习:
1。当开关接通时,输出灯延时3S自动点亮; 2。当开关接通时输出灯亮,10S后灯自动 熄灭;

练习:一个开关控制3个灯:

1。当开关接通时, 3个灯依次延时5S
点亮;

2。当开关接通时3灯一起亮,依次延时2S 灯自动熄灭;

要求:两个灯交替闪烁,1号灯亮10S,熄灭5S;1号灯 亮时,2号灯灭;2号灯亮时1号灯灭;

例1:

LD TIM
0001 00 #0083 TIM00 0500

LD OUT END(01)

程序要求: 0001的接通时间大于定时器的定时时间

例2:

LD 0000 TIM 00 #0500 LD TIM00 OUT 0500 LD 0000 AND NOT TIM00 OUT 0501 END(01)


其中:操作数N为定时器TC号,取值范围为十进 制数00~47 (CPM1A为000~127) 。 操作数SV为定时器的设定值,由4位BCD码组 成,可以是变量(IR、MR、HR、OR、DM等), 也可以是常量(取值范围#0000~9999)。

定时计数器

定时计数器
) (8位)
T1端 TR1 GATE l
≥l
TF1
中断
C/T=1 &
控制
INT1端
2.工作方式1 ( M1M0=01 ,16位定时器/计数器) 由TH1和TL1构成16位加1计数器,其他特性与工作 方式0相同。
振荡器 ÷12 C/T=0 TL1 (8位) T1端 TR1 GATE INT1端 l ≥l TH1 (8位)
第6章
定时/计数器
P132
定时/计数器的结构及工作原理 定时/计数器的工作方式 定时/计数器方式和控制寄存器 定时/计数器的编程举例
6.1 概述
在测量控制系统中,常需要有实时时钟和计数器,以实现 定时(或延时)控制以及对外界事件进行计数。 一、常用的定时(或延时)方法: 软件延时:利用执行一个循环程序进行时间延迟。其特点是 定时时间精确,不需外加硬件电路,但占用CPU时间。因此软 件定时的时间不宜过长。 硬件定时:利用硬件电路实现定时。其特点是不占用CPU时 间,通过改变电路元器件参数来调节定时,但使用不够灵活方 便。对于时间较长的定时,常用硬件电路来实现。 可编程定时器/计数器(硬件+软件):通过专用的定时器/ 计数器芯片实现。其特点是通过对系统时钟脉冲进行计数实 现定时,定时时间可通过程序设定的方法改变,使用灵活方 便。也可实现对外部脉冲的计数功能。
TL0,#83H P1.0 TH0,#06H P1.1
;送方式字 ;送时间常数 ;送时间常数 ;送控制宇 ;送中断控制字
;等待中断
;重装时间常数 ;控制方波倒相 ;重装时间常数 ;控制方波倒相
RETI DONE2: MOV CPL RETI
【*例3】试用T1方式2编制程序,在P1.0引脚输出周 期为400S的脉冲方波,已知fosc=12MHZ。

单片机定时器与计数器的区别

单片机定时器与计数器的区别

单片机定时器与计数器的区别在51单片机的学习过程中,我们经常会发现中断、计数器/定时器、串口是学习单片机的难点,两者的区别是什么呢?下面就跟着店铺一起来看看吧。

单片机计数器与定时器的区别计数器和定时器的本质是相同的,他们都是对单片机中产生的脉冲进行计数,只不过计数器是单片机外部触发的脉冲,定时器是单片机内部在晶振的触发下产生的脉冲。

当他们的脉冲间隔相同的时候,计数器和定时器就是一个概念。

在定时器和计数器中都有一个溢出的概念,那什么是溢出了。

呵呵,我们可以从一个生活小常识得到答案,当一个碗放在水龙头下接水的时候,过了一会儿,碗的水满了,就发生溢出。

同样的道理,假设水龙头的水是一滴滴的往碗里滴,那么总有一滴水是导致碗中的水溢出的。

在碗中溢出的水就浪费了,但是在单片机的定时计数器中溢出将导致一次中断,至于什么是中断我们下次再讲,这里只是初步的提下概念,中断就是能够打断系统正常运行,而去运行中断服务程序的过程,当服务程序运行完以后又自动回到被打断的地方继续运行。

在定时器计数器中,我们有个概念叫容量,就是最大计数量。

方式0是2的13次方,方式1是2的13次方,方式2是2的8次方,方式3是2的8次方。

把水滴比喻成脉冲,那么导致碗中水溢出的最后一滴水的就是定时计数器的溢出的最后一个脉冲。

在各种单片机书本中,在介绍定时计数器时都讲到一个计数初值,那什么是计数初值呢?在这里我们还是假设水滴碗。

假设第一百滴水能够使碗中的水溢出,我们就知道这个碗的容量是100。

问题1,我如何才能使碗接到10滴水就溢出呢?呵呵,我可以想象,如果拿一个空碗去接水,那么还是得要100滴水才能溢出,但是如果我们拿一个已经装有水的碗拿去接,那就不用100滴了。

到此我们可以算出,要使10滴水让碗中的水溢出,那么碗中就先要装90滴水。

在定时计数器中,这90滴水就是我们所谓的初始值。

问题2,在一个车间我们如何利用单片机对100件产品进行计件,并进行自动包装呢?我们可以利用计数器计数100,在中断中执行一个自动包装的动作就可以了。

第6讲 定时器与计数器

第6讲 定时器与计数器
≥1
TMOD T0引脚 0 M0 1 M1 C/T 0 机器周期 GATE M0 1 INT0引脚 M1 C/T GATE D7 D0
工作方式2结构
定时器T0工作方式2结构
溢出 申请 中断 申请 中断 TCON TF1 TR1 TF0 TR0 溢出 TH0 8位 T0引脚 1 TL0 8位 &
≥1
四、定时计数器控制寄存器
1、工作方式控制寄存器TMOD
C/T用于选择定时或计数方式,定时计数器4种工作方式 可通过TMOD中的M1、M0进行选择。
MCS-51单片机将门控位GATE、定时计数方式选择位C/T、
工作方式选择位M1、M0组合在工作方式控制寄存器TMOD 中,TMOD是特殊功能寄存器,字节地址为89H。TMOD共8位, 低4位用于T0的工作方式选择,高4位用于T1的工作方式选择。 各位定义如下:
每个计数脉冲使加1计数器加1。(f< fosc/24 ,)
4. 加1计数器
加1计数器由特殊功能寄存器TH0与TL0组成,工作前应
先将TH0与TL0置初值Count。然后由定时或计数脉冲使加1计
数器加1,当加1计数器加到FFFFH后再加1时,发生溢出回零,
硬件自动将中断标志TF0置1,并以此向CPU发中断请求。 溢出回零后硬件要完成以下几项工作: ① 将溢出标志TF0置1。 ② 以TF0=1为标志向CPU发中断请求信号。 ③ 若CPU响应,则在响应过程中由硬件将TF0清零。并转入中断 处理程序执行定时或计数任务。
工作方式
00; 01; M1M0 = 10; 11;
加1计数器位数
13位 16位
加1计数器
TH15~8,TL4~0 TH15~8,TL7~0
方式0 方式1 方式2 方式3

定时器与计数器

定时器与计数器

第7章定时器/计数器MCS-51单片机内部有两个16位可编程的定时器/计数器,即定时器T0和定时器T1(8052提供3个,这第三个称定时器T2)。

它们既可用作定时器方式,又可用作计数器方式。

7 . 1定时器/计数器结构定时器/计数器的基本部件是两个8位的计数器(其中TH1,TL1是T1的计数器,TH0,TL0是T0的计数器)拼装而成。

在作定时器使用时,输入的时钟脉冲是由晶体振荡器的输出经12分频后得到的,所以定时器也可看作是对计算机机器周期的计数器(因为每个机器周期包含12个振荡周期,故每一个机器周期定时器加1,可以把输入的时钟脉冲看成机器周期信号)。

故其频率为晶振频率的1/12。

如果晶振频率为12MH Z,则定时器每接收一个输入脉冲的时间为1us。

当它用作对外部事件计数时,接相应的外部输入引脚T0(P3.4)或T1(P3.5)。

在这种情况下,当检测到输入引脚上的电平由高跳变到低时,计数器就加1(它在每个机器周期的S5P2时采样外部输入,当采样值在这个机器周期为高,在下一个机器周期为低时,则计数器加1)。

加1操作发生在检测到这种跳变后的一个机器周期中的S3P1,因此需要两个机器周期来识别一个从“1”到“0”的跳变,故最高计数频率为晶振频率的1/24。

这就要求输入信号的电平要在跳变后至少应在一个机器周期内保持不变,以保证在给定的电平再次变化前至少被采样一次。

定时器/计数器有四种工作方式,其工作方式的选择及控制都由两个特殊功能寄存器(TMOD和TCON)的内容来决定。

用指令改变TMOD或TCON的内容后,则在下一条指令的第一个机器周期的S1P1时起作用。

1、定时器的方式寄存器TMOD图7-1 TMOD寄存器各位定义特殊功能寄存器TMOD为定时器的方式控制寄存器,寄存器中每位的定义如图7-1所示。

高4位用于定时器1,低4位用于定时器0。

其中M1,M0用来确定所选的工作方式,如表7-1所示。

①M1 M0 定时器/计数器四种工作方式选择,见表7-1所示。

plc定时器与计数器

plc定时器与计数器
第27页/共43页
(2)计数值
计数值的范围为0~999,如下图所示,计数器值有两种存储格 式:
一种是BCD码格式,则该字的0~11位是计数值的BCD码,用
格式 15
87
0
0 0 0 10 0 1 0 0 1 1 1
C#127表示BCD码127;
未用
1
2
7
另一种是二进制格式,只占用计数器字的0~9位,。
机M2起 动;按下停止按钮,M2立即停止,延时10s后,
M1停机。 起动按钮:I0.1; 停止按钮:I0.2 电动机M1:Q0.0; 电动机M2: Q0.1
例4:定时器扩展,在S7-300中,单个定时器的最大计时范围 是9990s
或2H-46M-30s,如果超过这个范围,可以采用两个(或多个)
第42页/共43页
= 输出地址 //输出地址 为1状态
第32页/共43页
STL等效程序
3. S_CU(加计数器)块图指令
第33页/共43页
4. S_CD(减计数器)块图指令
第34页/共43页
5. 计数器的线圈指令 除了前面介绍的块图形式的计数器指令以外,S7-300系统
还为用 户准备了LAD环境下的线圈形式的计数器。这些指令有计数器
L(装入指令):把预置值装入累加器1 SP(为脉冲定时器指令):启动定时器 R:复位Tn0 L Tn0:把Tn0的十六进制时间当前值装入累加器1 T 时间字单元1:把累加器1的内容传送到时间字单元1 LC Tn0:把Tn0的BCD时间当前值装入累加器1 T 时间字单元2:把累加器1的内容传送到时间字单元2 A Tn0:检查Tn0的信号状态 = 输出地址: Tn0的定时器位为1时,输出地址有输出。
圈表示 的形式,指令格式、示例及时序波形图见下图所示。各输入端及输

定时器和计数器

定时器和计数器

定时/计数器的工作方式
2、方式1 方式1的计数位数是16位,由TL0作为低8位,TH0
作为高8位,组成了16位加1计数器 。
计数个数与计数初值的关系为:X=216-N
定时/计数器的工作方式
3、方式2 方式2为自动重装初值的8位计数方式。
计数个数与计数初值的关系为:X=28-N 工作方式2特别适合于用作较精确的脉冲信号发生器。
定时/计数器的控制
51单片机定时/计数器的工作由两个特殊功能寄存 器控制。TMOD用于设置其工作方式;TCON用于控 制其启动和中断申请。
1、工作方式寄存器TMOD
工作方式寄存器TMOD用于设置定时/计数器的工 作方式,低四位用于T0,高四位用于T1。其格式如下 :
GATE是门控位, GATE=0时,用于控制定时器的启动是否受 外部中断源信号的影响。只要用软件使TCON中的TR0或TR1 为1,就可以启动定时/计数器工作;GATA=1时,要用软件 使TR0或TR1为1,同时外部中断引脚INT0/1也为高电平时, 才能启动定时/计数器工作。即此时定时器的启动条件,加上 了INT0/1引脚为高电平这一条件。
门控位GATE具有特殊的作用。当GATE=0时,经反相 后使或门输出为1,此时仅由TR0控制与门的开启,与门输出 1时,控制开关接通,计数开始;当GATE=1时,由外中断引 脚信号控制或门的输出,此时控制与门的开启由外中断引脚 信号和TR0共同控制。当TR0=1时,外中断引脚信号引脚的 高电平启动计数,外中断引脚信号引脚的低电平停止计数。 这种方式常用来测量外中断引脚上正脉冲的宽度。
可见,由溢出时计数器的值减去计数初值才是加 1计数器的计数值。
51单片机定时器结构
定时/计数器的实质是加1计数器(16位),由高8位和低8 位两个寄存器THx和TLx组成。TMOD是定时/计数器的工作方 式寄存器,确定工作方式和功能;TCON是控制寄存器,控制

定时器计数器工作原理

定时器计数器工作原理

定时器计数器工作原理
定时器计数器是一种用于计算时间间隔的电子设备。

它通过内部的晶振、分频器和计数器等组件实现精确的计时功能。

工作原理如下:
1. 晶振:定时器计数器内部搭载了一个晶振,晶振的频率非常稳定,一般为固定的几十千赫兹。

2. 分频器:晶振的频率可能非常高,但计数器需要较低的频率进行计数,所以需要一个分频器将晶振的频率降低,得到一个更低的频率作为计数器的输入。

3. 计数器:分频器将得到的较低频率信号送入计数器,计数器会根据信号的脉冲个数来进行计数。

4. 触发器:计数器会将计数结果保存在一个触发器中,可以通过读取这个触发器来获取时间间隔的计数值。

5. 重置:当计数器达到设定的计数值后,会自动重置为初始状态,重新开始计数。

通过以上几个步骤的组合,定时器计数器可以实现精确的时间间隔计算。

可以根据不同的需求设置不同的晶振频率、分频器的分频倍数和触发器的位数,以实现不同精度的计数功能。

定时器计数器广泛应用于各种电子设备中,如计时器、时钟、
定时开关等。

它们都依赖于定时器计数器的准确计时功能,来实现精确的时间控制。

定时器计数器应用

定时器计数器应用
选择
选择合适的定时器计数器需要考虑其精度、分辨率、稳定性、功耗等参数,以及应用场景和预算等因素。
02
定时器计数器的应用场 景
工业控制
自动化生产线控制
通过定时器计数器,可以精确控 制生产线上各环节的时间间隔和 数量,实现自动化生产。
设备维护与故障检

定时器计数器可以用于监测设备 的运行状态,及时发现潜在的故 障并进行维护,确保设备稳定运 行。
嵌入式系统
适用于特定应用场景的嵌入式系统,如工业控制、智能家居等。
FPGA/ASIC
对于高性能和定制化需求,可以选择FPGA或ASIC平台。
软件编程语言与工具
Python
适用于某些微控制器和嵌入式系统,如 Raspberry Pi。
IDE(集成开发环境)
如Arduino IDE、Eclipse等。
定时器计数器的中断处理
中断触发条件
根据应用需求设置中断触发条件,如定时时间到达、计数达到预定值等。
中断处理程序
编写中断处理程序,以在中断触发时执行相应的操作,如更新显示、执行特定 动作等。
04
定时器计数器的常见问 题与解决方案
定时不准确
1. 使用高精度时钟源
详细描述
定时不准确可能是由于硬件或软 件误差、外部干扰、温度变化等 因素导致的。为了解决这个问题, 可以采取以下措施
01
动画与特效
通过定时器计数器,可以精确控制游戏 中的动画和特效的播放时间和节奏。
02
03
网络同步
在多人在线游戏中,定时器计数器可 以用于实现不同玩家之间的同步操作 和时间管理。
03
定时器计数器的编程实 现
硬件平台选择
微控制器

定时器计数器工作原理

定时器计数器工作原理

定时器计数器工作原理
定时器计数器工作原理是利用双色LED分别显示计数值的方法,实时记录时间。

定时器计数器通常由一个时钟信号源和一个计数寄存器组成。

首先,时钟信号源提供完整的周期性时钟信号,如晶振或外部脉冲源。

该信号被传输到计数寄存器中,开始计数。

计数寄存器是一个二进制寄存器,能够计数时钟信号的脉冲次数。

当计时器启动时,计数寄存器开始从初始值开始计数,然后每接收到一个时钟信号,计数值就会加一。

计数器通过一个高速时钟信号和一个除频器来控制计数频率。

除频器可以通过设置不同的分频比来改变计数频率,从而实现不同的计时精度。

双色LED用来显示计时值。

例如,一个红色LED用于表示小时位,一个绿色LED用于表示分钟位。

当计数器的值递增到下一个单位时,相应的LED会亮起,显示出当前的计数值。

通过以上步骤循环执行,定时器计数器可以实时记录时间,并在LED上显示出来。

这种设计简单、可靠,广泛应用于计时器、时钟等各种设备中。

单片机定时器-计数器实验总结

单片机定时器-计数器实验总结

单片机定时器-计数器实验总结单片机定时器/计数器实验总结篇一:单片机实验之定时器计数器应用实验一一、实验目的1、掌握定时器/计数器定时功能的使用方法。

2、掌握定时器/计数器的中断、查询使用方法。

3、掌握Prteus软件与Keil软件的使用方法。

4、掌握单片机系统的硬件和软件设计方法。

二、设计要求1、用Prteus软件画出电路原理图,单片机的定时器/计数器以查询方式工作,在P1.0口线上产生周期为200μS的连续方波,在P1.0口线上接示波器观察波形。

2、用Prteus软件画出电路原理图,单片机的定时器/计数器以中断方式工作,在P1.1口线上产生周期为240μS的连续方波,在P1.1口线上接示波器观察波形。

三、电路原理图六、实验总结通过这次实验,对定时器/计数器的查询工作方式有了比较深刻的理解,并能熟练运用。

掌握定时器/计数器的中断、查询使用方法。

对于思考题能够运用三种不同思路进行编程。

七、思考题1、在P1.0口线上产生周期为500微秒,占空比为2:5的连续矩形波。

答:程序见程序清单。

四、实验程序流程框图和程序清单1、以查询方式工作,在P1.0 RG 0000H START: LJMP MAIN RG 0100H MAIN: MV IE, #00H MV TMD, #02H MV TH0, #9CH MV TL0, #9CH SETB TR0 LP: JNB TF0, LP CLR TF0 CPL P1.0 AJMP LP END2、以中断方式工作,在P1.1 RG 0000H START: LJMP MAIN RG 000BH LJMP TTC0 RG 0100H MAIN: MV TMD, #02H MV TH0, #88H MV TL0, #88H SETB EA SETB ET0 SETB TR0 HERE: LJMP HERE RG 0200H TTC0: CPL P1.1 RETI END3、在P1.0口线上产生周期为500微秒,占空比为2:5的连续矩形波 RG 0000H START: LJMP MAIN RG 0100H MAIN: MV IE, #00H MV TMD, #20H MV TH1, #38H MV TL1, #38H MV TH0, #0F6H MV TL0, #14H LP1: SETB TR1 LP2: JNB TF1, LP2 CLR TF1 CLR TR1 CPL P1.0 SETB TR0 LP3: JNB TF0, LP3 MV TH0, #0F6H MV TL0, #14H CLR TF0 CLR TR0 CPL P1.0 LJMP LP1 END RG 0000H START: LJMP MAIN RG 0100H MAIN: MV IE, #00H MV TMD, #20H MV TH1, #38H MV TL1, #38H MV TH0, #0F0H MV TL0, #0CH SETB TR0 LP1: SETB TR1 LP2: JNB TF1, LP2 CLR TF1 CLR TR1 CPL P1.0 SETB TR0 LP3: JNB TF0, LP3 CLR TF0 MV TH0, #0F0H MV TL0, #0CH CPL P1.0 LJMP LP1 END RG 0000H START: LJMP MAIN RG 0100H MAIN: MV IE, #00H MV TMD, #00H LP1: MV TH1, #0F9H MV TL1, #18H SETB TR1 LP2: JNB TF1, LP2 CLR TF1 CPL P1.0 MV TH1, #0F6H MV TL1, #14H LP3: JNB TF1, LP3 CLR TF1 CPL P1.0 LJMP LP1 END五、实验结果(波形图)篇二:单片机实验-定时器计数器应用实验一定时器/计数器应用实验一一、实验目的和要求1、掌握定时器/计数器定时功能的使用方法。

单片机中的定时器和计数器

单片机中的定时器和计数器

单片机中的定时器和计数器单片机作为一种嵌入式系统的核心部件,在各个领域都发挥着重要的作用。

其中,定时器和计数器作为单片机中常用的功能模块,被广泛应用于各种实际场景中。

本文将介绍单片机中的定时器和计数器的原理、使用方法以及在实际应用中的一些典型案例。

一、定时器的原理和使用方法定时器是单片机中常见的一个功能模块,它可以用来产生一定时间间隔的中断信号,以实现对时间的计量和控制。

定时器一般由一个计数器和一组控制寄存器组成。

具体来说,定时器根据计数器的累加值来判断时间是否到达设定的阈值,并在时间到达时产生中断信号。

在单片机中,定时器的使用方法如下:1. 设置定时器的工作模式:包括工作在定时模式还是计数模式,以及选择时钟源等。

2. 设置定时器的阈值:即需要计时的时间间隔。

3. 启动定时器:通过控制寄存器来启动定时器的运行。

4. 等待定时器中断:当定时器计数器的累加值达到设定的阈值时,会产生中断信号,可以通过中断服务函数来进行相应的处理。

二、计数器的原理和使用方法计数器是单片机中另一个常见的功能模块,它主要用于记录一个事件的发生次数。

计数器一般由一个计数寄存器和一组控制寄存器组成。

计数器可以通过外部信号的输入来触发计数,并且可以根据需要进行计数器的清零、暂停和启动操作。

在单片机中,计数器的使用方法如下:1. 设置计数器的工作模式:包括工作在计数上升沿触发模式还是计数下降沿触发模式,以及选择计数方向等。

2. 设置计数器的初始值:即计数器开始计数的初始值。

3. 启动计数器:通过控制寄存器来启动计数器的运行。

4. 根据需要进行清零、暂停和启动操作:可以通过控制寄存器来实现计数器的清零、暂停和启动操作。

三、定时器和计数器的应用案例1. 蜂鸣器定时器控制:通过定时器模块产生一定频率的方波信号,控制蜂鸣器的鸣叫时间和静默时间,实现声音的产生和控制。

2. LED呼吸灯控制:通过定时器模块和计数器模块配合使用,控制LED的亮度实现呼吸灯效果。

定时器计数器(TC)简介以及例子说明

定时器计数器(TC)简介以及例子说明

定时器/计数器(T/C)简介一、定时器/计数器有关的特殊功能寄存器1. 计数数寄存器TH和TL计数器寄存器是16位的,计数寄存器由TH高8位和TL低8 位构成。

在特殊功能寄存器(SFR)中,对应T/C0为TH0和TL0,对应T/C1为TH1和TL1。

定时器/计数器的初始值通过TH1/TH0和TL1/TL0设置。

2. 定时器/计数器控制寄存器TCONTR0,TR1:T/C0,1启动控制位。

1——启动计数0——停止计数TCON复位后清“0”,T/C需受到软件控制才能启动计数,当计数寄存器计满时,产生向高位的进位TF,即溢出中断请求标志。

3. T/C的方式控制寄存器TMODT/C1 T/C0 C/T :计数器或定时器选择位。

1——为计数器0——为定时器GATE:门控信号1——T/C的启动受到双重控制,即要求TR0/TR1和INT0/INT1同时为高。

M1和M0:工作方式选择位。

(四种工作方式)4.定时器/计数器2(T/C2)控制寄存器TF2:T/C2益出标志——必须由软件清除EXF2:T/C2外部标志。

当EXEN2=1,且T2EX引脚上出现负跳变而引起捕获或重装载时置位,EXF2要靠软件来清除。

RCLK:接收时钟标志1——用定时器2 溢出脉冲作为串行口的接收时钟0——用定时器1的溢出脉冲做接收时钟。

TCLK:发送时钟标志。

1——用定时器2 溢出脉冲作为串行口的发送时钟0——用定时器1的溢出脉冲作发送时钟EXEN2:T/C2外部允许标志。

1——若定时器2未用作串行口的波特率发生器,T2EX端的负跳变引起T/C2的捕获或重装载。

0——T2EX端的外部信号不起作用。

TR2:T/C2运行控制位1——T/C2启动0——T/C2停止C/T2:计数器或定时器选择位1——计数器0——定时器CP/RL:捕获/重载标志。

1——若EXEN2=1,且T2EX端的信号负跳变时,发生捕获操作。

0——若定时器2溢出,或在EXEN2=1条件下T2EX端信号负跳变,都会造成自动重装载操作。

定时器计数器工作原理

定时器计数器工作原理

定时器计数器工作原理定时器计数器是嵌入式系统中常用的一种计时设备,它可以在特定的时间间隔内进行计数,并在达到设定值时触发相应的事件。

本文将介绍定时器计数器的工作原理及其在嵌入式系统中的应用。

定时器计数器通常由一个计数器和一组控制寄存器组成。

计数器用于存储计数数值,而控制寄存器则用于配置定时器的工作模式、计数间隔等参数。

在工作过程中,定时器计数器会根据设定的时钟频率不断递增计数值,当计数值达到设定的目标值时,定时器会产生一个中断请求或者触发一个输出信号,从而完成定时器的计时功能。

定时器计数器的工作原理可以分为两种基本模式,定时模式和计数模式。

在定时模式下,定时器会根据设定的时间间隔进行计数,并在计数完成后触发相应的事件;而在计数模式下,定时器会根据外部事件的触发进行计数,直到达到设定的计数值后触发相应的事件。

这两种模式可以根据具体的应用需求进行灵活选择,以满足不同的计时需求。

在嵌入式系统中,定时器计数器被广泛应用于定时中断、PWM输出、脉冲捕获等场景。

通过定时中断,系统可以在固定的时间间隔内进行任务调度和处理,实现实时性要求;而通过PWM输出,系统可以控制各种电机、灯光等设备的工作状态;此外,定时器计数器还可以用于脉冲捕获,实现对外部脉冲信号的精确计数和测量。

在实际应用中,定时器计数器的精度、稳定性和灵活性是非常重要的。

为了提高定时器计数器的精度,可以采用外部晶振或者时钟模块作为时钟源,以确保定时器计数的准确性;同时,合理选择定时器的工作模式和计数间隔,可以充分发挥定时器的灵活性和多功能性;此外,合理设计定时器中断服务程序,可以有效提高系统的实时性和稳定性。

总的来说,定时器计数器作为嵌入式系统中常用的计时设备,具有重要的应用价值。

通过深入理解定时器计数器的工作原理,合理配置定时器的参数,可以更好地发挥定时器的功能,满足系统对于定时和计时的需求,提高系统的稳定性和实时性。

同时,不断优化定时器计数器的设计和应用,可以为嵌入式系统的性能提升和功能拓展提供有力支持。

电路中的计数器与定时器数字电路中的常用元件

电路中的计数器与定时器数字电路中的常用元件

电路中的计数器与定时器数字电路中的常用元件在数字电路中,计数器与定时器是常用的元件,主要起到计数和计时的作用,广泛应用于各种电子设备中。

本文将对计数器与定时器的原理、分类、应用以及在数字电路中的设计等方面进行介绍和探讨。

一、计数器计数器是一种数字电路元件,主要用于计数,常用于各种计数器件,如时钟、计时器、频率计和计数器等。

在数字电路中,计数器是一种二进制计数器,其功能是将二进制数字逐次加1,利用这种自然的计数方式可以实现直观的计数功能。

计数器的原理计数器是由触发器和组合逻辑门构成的,触发器用于存储计数器的状态,组合逻辑门用于控制触发器的状态,根据不同的控制方式可以实现不同类型的计数器。

计数器的分类常见的计数器有以下几种:1. 同步计数器:同步计数器是由同步触发器和组合逻辑门构成的,每次计数都是同步进行的,在时钟的作用下实现计数。

同步计数器适用于需要精确计数的场合。

2. 异步计数器:异步计数器是由异步触发器和组合逻辑门构成的,计数不是同步进行的,其计数速度比同步计数器快。

异步计数器适用于计数速度较快的场合。

3. 可编程计数器:可编程计数器可以通过编程实现不同的计数值,具有较高的灵活性和可编程性。

计数器的应用计数器广泛应用于各种电子设备中,其中一些应用包括:1. 时钟:时钟是一种常见的计时器,可以通过计数器实现对时间的计算和显示。

2. 计时器:计时器通常用于精确定时和计时,如计时器、秒表、定时器等。

3. 频率计:频率计可以通过计数器实现对波形频率的计算和显示。

二、定时器定时器是一种数字电路元件,主要用于计时,广泛应用于各种电子设备中。

定时器的原理定时器同样由触发器和组合逻辑门构成,其中触发器用于存储状态,组合逻辑门可以控制触发器的状态,实现不同类型的定时器。

定时器的分类常见的定时器有以下几种:1. 单稳态定时器:单稳态定时器是由触发器和组合逻辑门构成的,在触发脉冲的作用下,输出一次脉冲并保持一段时间,常用于需要延时一段时间后输出脉冲的场合。

定时器计数器工作原理

定时器计数器工作原理

定时器计数器工作原理
定时器计数器是一种常用的计时和计数设备,它在许多电子设备中都有着重要的作用。

它可以用于测量时间间隔、控制操作的时序和频率等。

本文将介绍定时器计数器的工作原理,包括其基本原理、工作方式和应用场景。

定时器计数器的基本原理是利用内部的时钟信号来进行计数和计时。

它通常由一个计数器和一个时钟组成。

时钟产生固定频率的脉冲信号,计数器接收这些脉冲信号并进行计数。

当计数器达到设定的计数值时,就会触发一个事件,比如产生一个脉冲信号或者改变输出状态。

定时器计数器有两种工作方式,一种是定时器模式,另一种是计数器模式。

在定时器模式下,计数器会根据时钟信号进行计数,当计数器的值达到设定的计时值时,就会触发一个事件。

在计数器模式下,计数器会根据外部信号进行计数,当计数器的值达到设定的计数值时,也会触发一个事件。

定时器计数器在许多电子设备中都有着广泛的应用。

比如在微控制器中,定时器计数器可以用于生成精确的时序信号,比如PWM
信号、脉冲信号等。

在工业控制系统中,定时器计数器可以用于测量时间间隔、控制执行时间等。

在通信设备中,定时器计数器可以用于生成时隙信号、同步信号等。

总的来说,定时器计数器是一种非常重要的计时和计数设备,它在许多电子设备中都有着重要的应用。

它的工作原理是利用内部的时钟信号进行计数和计时,有着定时器模式和计数器模式两种工作方式。

它在微控制器、工业控制系统、通信设备等领域都有着广泛的应用。

希望本文对定时器计数器的工作原理有所帮助,谢谢阅读。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定时器 / 计数器
一、实验目的
⒈学会8253芯片和微机接口的原理和方法。

⒉. 掌握8253定时器/计数器的工作方式和编程原理。

二、实验内容
利用8253进行二次分频,控制LED灯亮10秒,灭10秒。

三、实验程序清单(在H8253.ASM的基础上修改)
CODE SEGMENT ;H8253.ASM
ASSUME CS: CODE
ORG 1290H
START: JMP TCONT
TCONTRO EQU 0043H
TCON0 EQU 0040H
TCON1 EQU 0041H
TCONT: MOV DX,TCONTRO
MOV AL,36H ;0号通道控制字需要修改
OUT DX,AL
MOV DX,TCON0 ;计数初值要按计算出的值来写
MOV AL,00H
OUT DX,AL
MOV AL,04H
OUT DX,AL
MOV DX,TCONTRO
MOV AL,36H ;1号通道控制字需要修改
OUT DX,AL
MOV DX,TCON1
MOV AL,00H ;计数初值要按计算出的值来写
OUT DX,AL
MOV AL,02H
OUT DX,AL
JMP $
CODE ENDS
END START
四、实验步骤
⒈8253的GATE0、GATE1接+5V,OUT0接CLK1,CLK1接LED灯(L1)。

8253的CLK0插孔接分频器74LS393(左下方)的T2插孔,分频器的频
率源为8.0MHZ,T→8.0MHZ。

⒉运行实验程序
在系统提示符“P.”状态下,联机运行程序
3. 观察实验现象,修改程序中的计数初始值,观察结果。

相关文档
最新文档