匀速圆周运动知识点

合集下载

匀速圆周运动

匀速圆周运动

匀速圆周运动当一质点或物体绕某一固定点做圆周运动,且平均角速度恒定时,我们称之为匀速圆周运动。

这种运动形式常见于多种物理现象中,如行星绕太阳运动、卫星绕地球运动等。

1. 性质1.1 运动方向恒定:质点在做匀速圆周运动时,偏向心力与速度方向垂直,使得质点沿圆周运动。

因此,质点在对运动方向有影响的外力作用下,运动方向仍旧呈现恒定的状态。

1.2 角速度恒定:匀速圆周运动中,角速度ω始终为常数,其大小由圆周运动的半径r、线速度v以及ω的定义式ω=v/r共同决定。

当半径和线速度均恒定时,角速度也随之恒定。

1.3 周期是固定的:由于角速度ω为恒定值,周期T也将是不变的。

周期可以被定义为质点在做一圆周运动中所需的时间,或者是一个圆周运动完成的次数。

2. 公式2.1 匀速圆周运动的周期公式:T=2πr/v其中,T代表圆周运动的周期,r代表圆周的半径,v代表线速度。

2.2 线速度与半径之间的关系:v=rω其中,v代表线速度,r代表半径,ω代表角速度。

2.3 运动的加速度公式:a=v²/r其中,a代表质点在圆周运动中的加速度,v代表线速度,r代表半径。

3. 应用匀速圆周运动在现实中的应用非常广泛。

在天体物理学中,行星绕太阳运动和卫星绕地球运动都属于匀速圆周运动,并被广泛应用于天体运动的研究。

此外,在众多机械设备中,旋转部件的运动也往往是匀速圆周运动,例如发动机的曲轴运动、水泵的叶轮运动等。

4. 总结匀速圆周运动是一种常见的运动形式,其关键特征是角速度、周期和运动方向的稳定性。

通过理解匀速圆周运动的性质和公式,我们可以更好地应用它们于实际场景,加深对物理学基础知识的理解。

物理匀速圆周运动公式知识介绍

物理匀速圆周运动公式知识介绍

物理匀速圆周运动公式知识介绍物理匀速圆周运动公式知识介绍物理学(physics)是研究物质最一般的运动规律和物质基本结构的.学科。

作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。

以下是店铺整理的物理匀速圆周运动公式知识介绍,仅供参考,大家一起来看看吧。

物理匀速圆周运动公式知识介绍11、线速度V=s/t=2πr/T2、角速度&omega =Φ/t=2π/T=2πf3、向心加速度a=V2/r=ω2r=(2π/T)2r4、向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合5、周期与频率:T=1/f6、角速度与线速度的关系:V=ωr7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)8、主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

物理匀速圆周运动公式知识介绍2物理公式大放送:向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心。

匀速圆周运动1、线速度V=s/t=2πr/T2、角速度ω=Φ/t=2π/T=2πf =V/r3、向心加速度a=V2/r=ω2r=(2π/T)2r4、向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合5、周期与频率:T=1/f6、角速度与线速度的关系:V=ωr7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)8、主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

匀速圆周运动知识点总结

匀速圆周运动知识点总结

匀速圆周运动(1)匀速圆周运动定义:任意相等时间内通过的弧长都相等的圆周运动—理想化模型。

(2)特征物理量:为了描述匀速圆周运动的快慢引入的物理量1. 线速度(矢量):描述质点做圆周运动的快慢:(1)(比值法定义)单位—m/s(2)方向:圆周轨迹的切线方向2. 角速度(矢量):描述质点绕圆周运动的快慢(1)(比值法定义)单位—rad/s(2)方向:右手螺旋定则3. 周期T(s):做圆周运动的物体运动一周所用的时间叫周期。

4. 频率:作圆周运动的物体单位时间内,沿圆周绕圆心转动的圈数转速n(r/s或r/min):当单位时间取秒时,转速n与频率f在数值上相等关系:T=1/n4.关系:判断:根据,v与R成正比(F)(3)匀速圆周运动的条件引入:物体做曲线运动的条件:切向力改变速度大小,法向力改变速度方向。

1.条件:(1)初速度;(2)2. 说明:(1)向心力:效果力——只改变速度方向,不改变速度大小,由实际受的性质力提供。

变力——方向始终指向圆心(2)向心力产生的加速度叫做向心加速度,方向指向圆心;向心加速度描述速度方向变化的快慢(四)圆周运动的应用:(1)火车转弯:火车弯道处外轨略高于内轨,火车所受的力和力的合力提供向心力。

(2)汽车过拱桥:汽车在受到的力和力的合力提供向心力。

(3)物体做离心运动的原因是:。

(五)、竖直面内圆周运动的临界问题(1)轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:. 小球能通过最高点的临界条件:,(为支持力). 当时,有(为支持力)杆当时,有()当时,有(为拉力)(2)没有物体支持的小球(轻绳模型),在竖直平面作圆周运动通过最高点的临界条件:绳子和轨道对小球刚好没有力的作用试对右图的两种情境下球在最高点时进行受力分析,得出v临界=v>v临界时,球能过最高点,绳对球产生力、轨道对球产生力v<v临界时,球不能过最高点(实际上球还未滑到最高点就脱离了轨道).例1、小球在半径为的光滑半球内做水平面内的匀速圆周运动,试分析图中(小球与半球球心连线跟竖直方向的夹角)与线速度,周期的关系。

匀速圆周运动知识点解析

匀速圆周运动知识点解析

匀速圆周运动知识点解析1.匀速圆周运动的定义(1)轨迹是圆周的运动叫圆周运动。

(2)质点沿圆周运动,如果在相同时间里通过的弧长相等,这种运动叫匀速圆周运动。

(3)匀速圆周运动是最简单的圆周运动形式,也是最基本的曲线运动之一。

(4)匀速圆周运动是一种理想化的运动形式。

许多物体的运动接近这种运动,具有一定的实际意义。

一般圆周运动,也可以取一段较短的时间(或弧长)看成是匀速圆周运动。

2.周期(1)物体做匀速圆周运动时,运动一周所用的时间。

(2)周期用符号T表示,单位是秒。

(3)周期是反映重复性运动的运动快慢的物理量。

它从另一个角度描述了物体的运动。

3.线速度(1)物体做匀速圆周运动时,通过的弧长s跟通过这段弧长所用时间t的比值,叫运动物体线速度大小。

线速度的方向为圆周上某点的切线方向。

(2)线速度的计算公式:(3)线速度的意义:线速度实质上还是物体某一时刻的瞬时速度,虽然是用弧长和时间的比定义了速度大小,但当时间t趋于零时,弧长和为区别角速度而取名为线速度。

4.角速度转过这些角度所用时间t的比值,叫物体做匀速圆周运动的角速度。

(2)角速度计算公式:(3)角速度单位为:弧度/秒(rad/s)。

(4)角速度是矢量,方向为右手螺旋法则的大拇指的指向。

(5)角速度是描述转动快慢的物理量。

在描述转动效果时,它比用线速度描述更具有代表性。

5.向心加速度(1)匀速圆周运动的加速度方向匀速圆周运动的速度大小不变,速度的方向时刻在变,由于速度方向的变化,质点一定具有加速度,该加速度反映速度方向变化的快慢,该加速度的方向沿着半径指向圆心。

设质点沿半径是r的圆周做匀速圆周运动,在某时刻它处于A点,速度是vA,经过很短时间Δt后,运动到B点,速度为vB。

根据矢量合成的三角形法则可知,矢量vA与Δv之和等于vB,所以Δv是质点在A点时的加速度。

如图4-20。

时Δv便垂直于vA。

而vA是圆的切线,故Δv是指向圆心的。

即A点加速度指向圆心,所以匀速圆周运动的加速度又叫向心加速度。

匀速圆周运动

匀速圆周运动
月球说:“你可别这么说!你要一年 时间才绕一个圈子,我28天就走一圈,到 底谁运动得慢。”
⑴ 周期:做匀速圆周运动的物体,沿着圆周 运动一周所用的时间。
用 T 表示 国际单位:秒(s)
?钟表的秒针、分针和时针的周期各是多大?
⑵ 线速度:
大小:经过的圆弧长度s
A、B
与所用时间t 的比值。
用符号v表示,v = s / t
用符号ω表示,ω = Φ / t
国际单位:弧度/秒(rad/s)
注:角度Φ 的单位用弧度来表示,
180°= π(弧度)= 3.14(弧度)
A、B
ФA
ФB


若质点绕圆周转动一周:
转过的角度:2π 所用时间: T
则: ω = 2π / T
方向:与圆平面垂直(可用“右手螺旋法则”
判断)
ω
特点:① 大小、方向都不变!(匀角速度圆周 运动)
3.如图,O1、O2两轮靠摩擦传动,传动时两轮间不打滑,两轮的 半径分别为R1和R2,则两轮边缘上的A、B两点的线速度大小之 比为vA:vB﹦__________,角速度大小之比为ωA:ωB﹦_________。
A
R1
R2Leabharlann O1O2B② 同一转动物体上各点的角速度相等 (与轴的位置无关)。 ? 同一转动物体上各点还有哪些物理量是相 等的?
角速度与线速度的关系: v = ωr
⑷ 转速:单位时间内转过的圈数,用n表示
国际单位:转/ 秒(r/s)
常用单位:转/ 分(r/min)
与周期的关系: T = 1/n
与线速度的关系: v = 2πR n
匀速圆周运动
西南位育
生活中常见的一些圆周运动:

匀速圆周运动规律

匀速圆周运动规律

匀速圆周运动规律一、匀速圆周运动的基本概念1. 定义- 物体沿着圆周运动,并且线速度大小处处相等的运动叫做匀速圆周运动。

需要注意的是,这里的“匀速”指的是速率不变,而速度方向是时刻改变的,所以匀速圆周运动是变速运动。

2. 相关物理量- 线速度(v)- 定义:线速度是矢量,它是描述质点沿圆周运动快慢的物理量。

大小等于质点通过的弧长Δ s与所用时间Δ t的比值,即v = (Δ s)/(Δ t)。

- 方向:在圆周上某点的线速度方向为该点的切线方向。

- 角速度(ω)- 定义:角速度也是矢量,它描述的是物体绕圆心转动的快慢。

大小等于连接物体和圆心的半径转过的角度Δθ(用弧度制表示)与所用时间Δ t的比值,即ω=(Δθ)/(Δ t)。

- 单位:弧度/秒(rad/s)。

- 周期(T)- 定义:做匀速圆周运动的物体,运动一周所用的时间叫做周期。

- 关系:T=(2π r)/(v)(r为圆周运动的半径),同时T = (2π)/(ω)。

- 频率(f)- 定义:单位时间内完成圆周运动的圈数。

- 关系:f=(1)/(T),单位是赫兹(Hz)。

- 转速(n)- 定义:转速是指做匀速圆周运动的物体单位时间内转过的圈数。

在数值上n = f(当n的单位为转/秒时)。

- 线速度与角速度的关系:v = rω(r为圆周运动的半径)。

二、匀速圆周运动的向心力1. 向心力的概念- 向心力是按效果命名的力,它的作用是产生向心加速度,改变物体的速度方向,使物体做圆周运动。

- 向心力的方向始终指向圆心。

2. 向心力的大小- 根据牛顿第二定律F = ma,结合向心加速度a=frac{v^2}{r}=rω^2,可得向心力的大小F = mfrac{v^2}{r}=mrω^2(m为做圆周运动物体的质量,r为圆周运动的半径)。

3. 向心力的来源- 向心力可以由一个力提供,也可以由几个力的合力提供,还可以由某个力的分力提供。

例如,在圆锥摆中,小球做匀速圆周运动的向心力是由重力和绳子拉力的合力提供的;在汽车过拱形桥顶端时,向心力是由重力和桥面对汽车的支持力的合力提供的。

匀速圆周运动知识点复习

匀速圆周运动知识点复习

匀速圆周运动知识点复习(一) 匀速圆周运动定义:任意相等时间内通过的弧长都相等的圆周运动—理想化模型。

(二) 特征物理量:为了描述匀速圆周运动的快慢引入的物理量1. 线速度(矢量):(1)t s v /=(比值法定义)单位—m/s(2) 方向:圆周轨迹的切线方向2. 角速度(矢量):(1)t /ϕω=(比值法定义)单位—rad/s(2) 方向:右手螺旋定则3. 周期T(s)转速n(r/s 或r/min):当单位时间取秒时,转速n 与频率f 在数值上相等关系:T=1/n4.关系:Rv n T t ====ππϕω22 ωππR Rn TR t s v ====22 判断:根据ωR v =,v 与R 成正比(F ) (三) 匀速圆周运动的条件引入:物体做曲线运动的条件:切向力改变速度大小,法向力改变速度方向。

1. 条件:(1)初速度0v ;(2)R n m R T m v m R v m mR F F v F 22222244,ππωω⋅=⋅⋅=⋅====⊥向合合 2. 说明:(1)向心力:效果力——只改变速度方向,不改变速度大小,由实际受的性质力提供。

变力——方向始终指向圆心(2)向心力产生的加速度叫做向心加速度,方向指向圆心;向心加速度描述速度方向变化的快慢R n R T v R v R a a v a 22222244,ππωω⋅=⋅⋅=⋅====⊥向合合 (四) 匀速圆周运动的性质:变速、变加速曲线运动(五) 匀速圆周运动问题的解题步骤1. 选取研究对象,确定轨道平面和圆心位置2. 受力分析,正交分解列方程3. 求解。

(六) 典型问题:1. 皮带传动与地球2. 自行车问题3. 周期运动4. 气体分子速率的测定5. 向心力实验6. 车辆转弯和火车转弯问题1: 火车转弯问题(1)如图所示是轨道与火车的示意图:工字型铁轨固定在水泥基础上,火车的两轮都有轮缘,突出的轮缘一般起定位作用;(2)若是平直轨道转弯,只能依靠外轨道对火车外轮缘的侧压力提供向心力,该侧压力的反作用力作用在铁轨上,长此以往会对铁轨造成极大的破坏作用,甚至会引起轨道变形,导致翻车事故;(3)实际铁轨采用什么方法减小火车在转弯处对轨道的破坏作用呢?分析:如图所示,实际铁轨在转弯处造得外轨高于内轨,即将外轨垫高,则轨道平面与水平面有一倾角α,火车转弯时,铁轨对火车的支持力N 的方向不再是竖直的,而是斜向轨道内侧,与重力的合力指向圆心,提供火车转往的向心力,满足Rm v m g 20tan =θ,(R 是转弯处轨道半径) 所以θtan 0gR v =(4)讨论:当0v v =时,θtan mg 恰好提供所需向心力,轮缘对内外轨道均无压力;当0v v >时,θtan mg 不足以提供所需向心力,需要外轨道对外轮轮缘施加一个侧压力,补充不足的向心力,此时火车轮缘对外轨道由侧压力;当0v v <时,θtan mg 大于所需向心力,需要内轨道对内轮轮缘施加一个侧压力,此时火车轮缘对内轨道由侧压力;由以上分析可知,为何在火车转弯处设有限速标志。

匀速圆周运动

匀速圆周运动

匀速圆周运动一、基础知识:(一)、匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。

(二)、线速度:物体做匀速圆周运动时,通过的弧长S 与时间t 的比值就是线速度的大小。

用符号v 表示: tS v =1、线速度是物体做匀速圆周运动的瞬时速度。

2、线速度是矢量,既有大小也有方向.线速度的方向在圆周各点的切线方向上.3、匀速圆周运动的线速度不是恒定的,方向是时刻变化的 (三)、角速度:圆周半径转过的角度ϕ与所用时间t 的比值。

用ω表示:公式:tϕω=单位:s rad /匀速圆周运动的快慢也可以用角速度来描述。

物体在圆周上运动得越快,连接运动物体和圆心的半径在同样的时间内转过的角度就越大。

对某一确定的匀速圆周运动而言,角速度ω是恒定。

(四)、周期和频率匀速圆周运动是一种周期性的运动.周期(T ):做匀速圆周运动的物体运动一周所用的时间,单位是s 。

频率(f ):物体ls 由完成匀速圆周运动的圈数,单位是赫兹,记作“Hz ”.周期和频率互为倒数.频率也是描述匀速圆周运动快慢的物理量,频率低运动慢,频率高运动快。

Tf 1=转速n :做匀速圆周运动的物体单位时间内转过的圈数叫转速。

单位是r/s 、r/min 。

(五)、线速度、角速度、周期间的关系 1、定性关系三个物理量都是描述匀速圆周运动的快慢,匀速圆周运动得越快,线速度越大、角速度越大、周期越小. 2、定量关系设想物体沿半径为r 的圆周做匀速圆周运动,则在一个周期内转过的弧长为π2r ,转过的角度为π2,因此有 T r v π2=,Tπω2= 比较可知:v =ωr =2πnr =2πfr 结论:由v =r ω知,当v 一定时,ω与r 成反比;当ω一定时,v 与r 成正比;当r 一定时,v 与ω成正比。

(六)、匀速圆周运动的向心力①是按力的作用效果来命名的力,它不是具有确定性质的某种力,相反,任何性质的力都可以作为向心力。

匀速圆周运动的特点和计算

匀速圆周运动的特点和计算

匀速圆周运动的特点和计算匀速圆周运动是指物体在圆周路径上以恒定速度运动的现象。

它具有以下特点:1.速度大小恒定:在匀速圆周运动中,物体沿圆周路径的速度大小保持不变。

2.速度方向变化:虽然速度大小不变,但物体在圆周路径上运动时,速度方向不断变化,始终指向圆心。

3.向心加速度:匀速圆周运动中,物体受到一个指向圆心的向心加速度,其大小为a=v²/r,其中v为速度大小,r为圆周半径。

4.向心力:向心加速度是由向心力引起的,其大小为F=m*a,其中m为物体的质量。

5.周期性:匀速圆周运动的物体每隔一定时间会回到起点,这个时间称为周期,用T表示。

6.角速度:匀速圆周运动的物体在单位时间内转过的角度称为角速度,用ω表示。

其大小为ω=2π/T。

匀速圆周运动的计算公式如下:1.线速度v与角速度ω、半径r的关系:v=ω*r。

2.向心加速度a与速度v、半径r的关系:a=v²/r。

3.向心力F与质量m、向心加速度a的关系:F=m*a。

4.周期T与角速度ω的关系:T=2π/ω。

5.角速度ω与频率f的关系:ω=2π*f,其中频率f是单位时间内圆周运动的次数。

以上是匀速圆周运动的特点和计算方法的详细介绍,希望能对您有所帮助。

习题及方法:一辆自行车以6m/s的速度在圆形路径上匀速运动,圆形路径的半径为6m,求自行车的向心加速度和向心力。

根据向心加速度公式a=v²/r,将速度v=6m/s和半径r=6m代入,得到向心加速度a=6²/6=6m/s²。

根据向心力公式F=m a,需要知道自行车的质量m,假设自行车质量为m=10kg,将向心加速度a=6m/s²和质量m=10kg代入,得到向心力F=106=60N。

一个物体在半径为5m的圆形路径上做匀速圆周运动,角速度为ω=4π/s,求物体的线速度和周期。

根据线速度公式v=ωr,将角速度ω=4π/s和半径r=5m代入,得到线速度v=4π5=20πm/s。

匀速圆周运动知识归纳

匀速圆周运动知识归纳

匀速圆周运动知识归纳圆周运动是高中物体中一种常见的运动,也是高中物理的一个重要知识点.以下就这部分内容需要重点掌握的知识进行归纳.一.知识整理1.匀速圆周运动的定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动.2.描述匀速圆周运动的物理量(1)线速度:v s t=(s 是物体在时间t 内通过的圆弧长),方向沿圆弧上该点处的切线方向,它是描述物体做匀速圆周运动快慢的物理量.(2)角速度:ωθθ=t(是物体在时间t 内绕圆心转过的角度),单位是弧度每秒,符号是rad/s ,它是描述物体做匀速圆周运动快慢的物理量.(3)周期T 和频率f :做匀速圆周运动的物体运动一周所用的时间叫周期,周期的倒数叫频率.转速是指做匀速圆周运动的物体每秒转过的圈数,用n 表示,单位是转每秒,符号是r/s .它们都是描述物体做匀速圆周运动快慢的物理量.(4)线速度、角速度、周期和频率以及转速间的关系:①v r r Trf rn ====ωπππ222②ωπππ===222T f n ③T f n ==11.(5)向心加速度:描述线速度方向变化快慢的物理量.大小:a v r r r Tf r n r n =====22222222444ωπππ方向:总是沿着半径指向圆心,所以方向时刻在变化,是一个变的加速度.(6)向心力大小:F ma mv r m r rm Tf rm n rm n n ======22222222444ωπππ方向:总是沿着半径指向圆心,所以时刻在变化,向心力是一个变力.3.匀速圆周运动的特点:线速度大小恒定,角速度、周期和频率及转速都是恒定不变的,向心力和向心加速度的大小也都是恒定不变的,但线速度、向心力和向心加速度的方向都时刻在变化.所以匀速圆周运动是一种变加速曲线运动.4.物体做匀速圆周运动的条件:合外力的大小不变,方向始终与速度方向垂直且指向圆心.即合外力提供向心力,且时刻等于向心力时,物体就做匀速圆周运动.做圆周运动的物体,若实际提供的向心力小于它所需的向心力时,物体将逐渐远离圆心,做离心运动.做圆周运动的物体,若实际提供的向心力大于它所需的向心力时,物体将逐渐向圆心运动,做逐渐靠近圆心的运动.5.向心力的来源:在匀速圆周运动中,向心力是由物体受到的合外力来提供,且与合外力相等.在非匀速圆周运动中,向心力是由物体受到的合外力在指向圆心方向的分力来提供,且与合外力的这个分力相等,而这个分力只改变物体的速度方向;合外力在切线方向上的另一个分力改变了物体的速度大小.二.典型例题赏析例:如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则()A.球A 的线速度必定大于球B 的线速度B.球A 的角速度必定小于球B 的角速度C.球A 的运动周期必定小于球B 的运动周期D.球A 对筒壁的压力必定大于球B 对筒壁的压力解析:对A 、B 球进行受力分析可知,A 、B 两球受力一样,它们均受重力mg 和支持力N ,则重力和支持力的合力提供向心力,受力图如图3所示.则可知筒壁对小球的弹力N mg =sin θ,而重力和弹力的合力F mgctg =θ,由牛顿第二定律可得:mgctg mr m v r m r T θωπ===22224.则可得:ωθθπθθ====gctg r v grctg T r gctg N mg ,,,2sin 由于A 球运动的半径大于B 球运动的半径,由ωθ=gctg r 可知球A 的角速度必定小于球B 的角速度;由v grctg =θ可知球A 的线速度必定大于球B 的线速度;由T r gctg =2πθ可知球A 的运动周期必定大于球B 的运动周期;由N mg =sin θ可知球A 对筒壁的压力一定等于球B 对筒壁的压力.故正确的答案为A 、B .。

高一物理《圆周运动》知识点总结

高一物理《圆周运动》知识点总结

高一物理《圆周运动》知识点总结一、线速度1.定义:物体做圆周运动,在一段很短的时间Δt 内,通过的弧长为Δs ,则Δs 与Δt 的比值叫作线速度的大小,公式:v =Δs Δt. 2.意义:描述做圆周运动的物体运动的快慢.3.方向:物体做圆周运动时该点的切线方向.4.匀速圆周运动(1)定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)性质:匀速圆周运动的线速度方向是在时刻变化的,所以它是一种变速运动,这里的“匀速”是指速率不变.二、角速度1.定义:连接物体与圆心的半径转过的角Δθ与所用时间Δt 之比叫作角速度,公式:ω=ΔθΔt. 2.意义:描述做圆周运动的物体绕圆心转动的快慢.3.单位:弧度每秒,符号是rad/s ,在运算中角速度的单位可以写为s -1.4.匀速圆周运动是角速度不变的圆周运动.三、周期1.周期T :做匀速圆周运动的物体,运动一周所用的时间.单位:秒(s).2.转速n :物体转动的圈数与所用时间之比.单位:转每秒(r/s)或转每分(r/min).3.周期和转速的关系:T =1n(n 的单位为r/s 时). 四、线速度与角速度的关系1.在圆周运动中,线速度的大小等于角速度的大小与半径的乘积.2.公式:v =ωr .五、向心力的大小向心力的大小可以表示为F n =mω2r 或F n =m v 2r . 六、匀速圆周运动的加速度大小1.向心加速度公式a n =v 2r或a n =ω2r . 2.向心加速度的公式既适用于匀速圆周运动,也适用于非匀速圆周运动.七、变速圆周运动和一般曲线运动的受力特点1.变速圆周运动的合力:变速圆周运动的合力产生两个方向的效果,如图所示.(1)跟圆周相切的分力F t:改变线速度的大小.(2)指向圆心的分力F n:改变线速度的方向.2.一般的曲线运动的处理方法(1)一般的曲线运动:运动轨迹既不是直线也不是圆周的曲线运动.(2)处理方法:可以把曲线分割为许多很短的小段,质点在每小段的运动都可以看作圆周运动的一部分,分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理.。

第六章-圆周运动章末复习-知识点和题型总结-2023年高一物理期末高效复习专题

第六章-圆周运动章末复习-知识点和题型总结-2023年高一物理期末高效复习专题

第六章:圆周运动章末复习知识点一:匀速圆周运动及其描述一、匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二、匀速圆周运动的线速度、角速度和周期1.线速度(1)定义式:v=Δs Δt.如果Δt取的足够小,v就为瞬时线速度.此时Δs的方向就与半径垂直,即沿该点的切线方向.(2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.(3)物理意义:描述质点沿圆周运动的快慢.2.角速度:半径转过的角度Δφ与所用时间Δt的比值,即ω=ΔφΔt(如图所示).国际单位是弧度每秒,符号是rad/s.3.转速与周期(1)转速n:做圆周运动的物体单位时间内转过的圈数,常用符号n表示.(2)周期T:做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示.(3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T=1n .4.匀速圆周运动的特点(1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度三、描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v=2πr T.2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v=ωr.知识点二、同轴转动和皮带传动1.同轴转动(1)角速度(周期)的关系:ωA=ωB,T A=T B.(2)线速度的关系:vAvB=rR.2.皮带(齿轮)传动(1)线速度的关系:v A=v B(2)角速度(周期)的关系:ωAωB=rR、TATB=Rr.知识点三、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=m v2 r.3.方向:总是沿半径指向圆心,方向时刻改变.4.效果力向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.二:向心力的来源物体做圆周运动时,向心力由物体所受力中沿半径方向的力提供.几种常见的实例如下:实例向心力示意图用细线拴住的小球在竖直面内转动至最高点时绳子的拉力和重力的合力提供向心力,F向=F+G用细线拴住小球在光滑水平面内做匀速圆周运动线的拉力提供向心力,F向=F T物体随转盘做匀速圆周运动,且相对转盘静止转盘对物体的静摩擦力提供向心力,F向=F f小球在细线作用下,在水平面内做圆周运动重力和细线的拉力的合力提供向心力,F向=F合知识点四:向心加速度的方向及意义1.物理意义描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢.2.方向总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻改变.3.圆周运动的性质不论向心加速度a n的大小是否变化,a n的方向是时刻改变的,所以圆周运动的向心加速度时刻发生改变,圆周运动一定是非匀变速曲线运动.“匀速圆周运动中”的“匀速”应理解为“匀速率”.4.变速圆周运动的向心加速度做变速圆周运动的物体,加速度一般情况下不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度表示速度方向变化的快慢,切向加速度表示速度大小变化的快慢.所以变速圆周运动中,向心加速度的方向也总是指向圆心.二:向心加速度的公式和应用1.公式a n =v2r=ω2r=4π2T2r=4π2n2r=4π2f2r=ωv.2.向心加速度的大小与半径的关系(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.(2)当角速度一定时,向心加速度与运动半径成正比.(3)当线速度一定时,向心加速度与运动半径成反比.(4)a n与r的关系图象:如图5­5­2所示.由a n­r图象可以看出:a n与r成正比还是反比,要看ω恒定还是v恒定.图5­5­2知识点五:生活在的圆周运动一:火车转弯问题1.轨道分析火车在转弯过程中,运动轨迹是一圆弧,由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平面指向圆心.图5­7­32.向心力分析如图5­7­3所示,火车速度合适时,火车受重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mg tan θ.3.规定速度分析若火车转弯时只受重力和支持力作用,不受轨道压力,则mg tan θ=m v 2 0R,可得v0=gR tan θ(R为弯道半径,θ为轨道所在平面与水平面的夹角,v0为转弯处的规定速度).4.轨道压力分析(1)当火车行驶速度v等于规定速度v0时,所需向心力仅由重力和弹力的合力提供,此时火车对内外轨道无挤压作用.(2)当火车行驶速度v与规定速度v0不相等时,火车所需向心力不再仅由重力和弹力的合力提供,此时内外轨道对火车轮缘有挤压作用,具体情况如下:①当火车行驶速度v>v0时,外轨道对轮缘有侧压力.②当火车行驶速度v<v0时,内轨道对轮缘有侧压力.二:拱形桥汽车过凸形桥(最高点)汽车过凹形桥(最低点) 受力分析牛顿第二定律求向心力 F n =mg -F N =m v 2rF n =F N -mg =m v 2r牛顿第三定律求压力F 压=F N =mg -m v 2rF 压=F N =mg +m v 2r讨论v 增大,F 压减小;当v 增大到rg 时,F 压=0v 增大,F 压增大 超、失重汽车对桥面压力小于自身重力,汽车处于失重状态汽车对桥面压力大于自身重力,汽车处于超重状态知识点六:离心运动1.离心运动的实质离心现象的本质是物体惯性的表现.做圆周运动的物体,由于惯性,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切向方向拉回到圆周上来.2.离心运动的条件做圆周运动的物体,提供向心力的外力突然消失或者合外力不能提供足够大的向心力.3.离心运动、近心运动的判断如图5­7­8所示,物体做圆周运动是离心运动还是近心运动,由实际提供的向心力F n 与所需向心力⎝ ⎛⎭⎪⎫m v 2r 或mr ω2的大小关系决定.图5­7­8(1)若F n =mr ω2(或m v 2r)即“提供”满足“需要”,物体做圆周运动.(2)若F n>mrω2(或m v2r)即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F n<mrω2(或m v2r)即“提供”不足,物体做离心运动.由以上关系进一步分析可知:原来做圆周运动的物体,若速率不变,所受向心力减少(或向心力不变,速率变大)物体将做离心运动;若速度大小不变,所受向心力增大(或向心力不变,速率减小)物体将做近心运动.知识点七.竖直平面的圆周运动1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。

匀速圆周运动知识点

匀速圆周运动知识点

匀速圆周运动知识点总结:匀速圆周运动知识点一、基本概念:1.匀速圆周运动的定义:质点沿圆周运动,如果在相等的时间内通过的弧长相等,就称质点作匀速圆周运动。

2.匀速圆周运动的条件:a。

有一定的初速度b。

受到一个大小不变方向始终垂直于速度的力的作用(即向心力)3.匀速圆周运动的特点:速度大小不变,方向时刻改变。

4.描述匀速圆周运动的物理量:a。

线速度:大小不变,方向时刻改变,单位是m/s,是矢量。

b。

角速度:恒定不变,是矢量,单位是rad/s。

c。

周期:标量,单位是s。

d。

转速:①单位时间物体转过的圈数②标量,符号为n③单位:r/s或r/mine。

频率:①质点在单位时间内完成圆周运动的周数②标量,符号为f③单位:Hz5.注意:a。

匀速圆周运动是非匀变速曲线运动。

b。

“匀速”应理解为“匀速率”,不能理解为“匀速度”。

c。

合力不为零,不能称作平衡状态。

二、向心力:1.向心力的定义:做匀速圆周运动的物体所受到的合力指向圆心,叫向心力。

2.向心力的特点:指向圆心,大小不变,方向时刻改变,是变力。

3.向心力的作用:只改变速度大小,不改变方向。

4.注意:a。

向心力是一种效果力,它可以由重力、弹力、摩擦力等单独提供,也可以由它们的合力提供。

b。

“向心力”只是说明做圆周运动的物体需要一个指向圆心方向的力,而并非物体又受到一个“新的性质”的力。

即在受力分析时,向心力不能单独作为一种力。

c。

变速圆周运动的向心力不等于合力,合力也不一定指向圆心。

三、向心加速度:1.向心加速度的定义:由向心力产生的加速度。

2.向心加速度的特点:指向圆心,大小不变,方向时刻改变,是矢量。

3.提供的向心力:通过受力分析求出来的,沿半径方向指向圆心的力,匀速圆周运动中需提供。

4.需要的向心力:根据物体实际运动时的质量m、半径r、线速度v(或角速度w)求出的向心力F提=mrw2=mrv2/r。

四、离心现象:1.做圆周运动物体的运动特点:由于本身的惯性,做圆周运动的物体总有沿圆周切线飞出的倾向。

(完整版)圆周运动讲义

(完整版)圆周运动讲义

圆周运动讲义【知识点】1.匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧的长度相等,这种运动叫做匀速圆周运动。

匀速圆周运动是一种变加速曲线运动,虽然匀速圆周运动的速度大小不变,但它的速度的方向时刻在发生变化,所以匀速圆周运动不是匀速圆周运动,而是匀速率圆周运动。

2.线速度v①物理意义:描述物体做圆周运动快慢的物理量;②定义:质点沿圆周运动通过的弧长s 和所以时间t 的比值叫做线速度 ③大小:v =s/t ,单位:m/s④矢量,它的方向是质点在圆周上某点沿圆周上的切线方向。

实际上就是该点的瞬时速度。

3.角速度①物理意义:描述质点转过的圆心角的快慢②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间t 的比值,就是质点运动的角速度。

③大小:=/t ,单位:rad/s④匀速圆周运动是角速度不变的圆周运动。

4.周期T 、频率f 和转速n①周期T :在匀速圆周运动中,物体沿圆周转过一周所用的时间叫做匀速圆周运动的周期。

在国际单位制中,单位是秒(s )。

匀速圆周运动是一种周期性的运动。

②频率f :每秒钟完成圆周运动的转数。

在国际单位制中,单位是赫兹(Hz )。

③转速n:单位时间内做匀速圆周运动的物体转过的转数。

在国际单位制中,单位是转/秒(n/s). 匀速圆周运动的T 、f 和n 均不变。

5.描述匀速圆周运动的物理量之间的关系①线速度和角速度间的关系: ②线速度和周期的关系: ③角速度和周期的关系: ④周期和频率之间的关系: 6。

描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是根据力的作用效果命名的,不是一种特殊的性质力。

向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。

做匀速圆周运动的物体向心力是所受外力的合力做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。

(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:22224T r m r m r v m F πω=== 其中r 为圆运动半径。

匀速圆周运动

匀速圆周运动

二、向心加速度
1.向心加速度:在向心力作用下物体产生的加速度叫 做向心加速度. 2.向心加速度的方向:总是沿半径指向圆心,每时每 刻在不断地变化.
3.向心加速度大小:
a = rω
2 或
v a= r
2
一、离心运动
1.离心运动:做匀速圆周运动的物体,在所受 的合力突然消失或者不足以提供圆周运动所需 的向心力的情况下,物体所做的逐渐远离圆心 的运动叫做离心运动 离心运动. 离心运动
(1)离心运动是物体逐渐远离圆心的一种物理现 象. (2)离心现象的本质是物体惯性的表现
(3)离心的条件:做匀速圆周运动的物体合外力消 失或不足以提供所需的向心力.
典型例题 1、 例1一根长 的细绳,一端拴一质 量 的小球,使其在竖直平面内绕绳的另一 端做圆周运动,求: (1)小球通过最高点时的最小速度? (2)若小球以速度 通过周围最高点 时,绳对小球的拉力多大?若此时绳突然断了,小球 将如何运动.
公式表示为:
s v= t
2.转动快慢的描述——角速度ω
在匀速圆周运动中,物体与圆心的连线转过的角度 ω 跟所用的时间t之比叫做匀速圆周运动的角速度.
公式表示为:
ω=
ϕ
t
A
ϕ
B
3.匀和角速度的关系:
s ϕ 因为: v = s =ϕ ⋅ r ω = t t
所以:
v =ω ⋅ r
圆周运动
知识体系
圆 周 运 动
一、匀速圆周运动
1.定义:. . 2.匀速圆周运动是一种变加速曲线运动 (1)匀速圆周运动不是匀速运动 (2)匀速圆周运动不是匀变速运动.
1.运动快慢的描述——线速度 v .运动快慢的描述 线速度
在匀速圆周运动中,物体通过的弧长s跟所用时间t 之比叫做匀速圆周运动的线速度.

高中物理知识点归类总结-匀速圆周运动

高中物理知识点归类总结-匀速圆周运动

匀速圆周运动线速度: V=t s==ωR=2f R 角速度:ω=f T tππθ22==向心加速度: a =2 f2 R=v ⨯ω向心力: F= ma = m 2 R= mm42πn2 R追及(相遇)相距最近的问题:同向转动:ωAtA=ωBtB+n2π;反向转动:ωAtA+ωBtB=2π 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心. (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3)氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。

5.平抛运动:匀速直线运动和初速度为零的匀加速直线运动的合运动(1)运动特点:a 、只受重力;b 、初速度与重力垂直.尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。

在任意相等时间内速度变化相等。

(2)平抛运动的处理方法:平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

水平方向和竖直方向的两个分运动既具有独立性又具有等时性. (3)平抛运动的规律:证明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水平总位移的中点。

证:平抛运动示意如图设初速度为V0,某时刻运动到A 点,位置坐标为(x,y ),所用时间为t.此时速度与水平方向的夹角为β,速度的反向延长线与水平轴的交点为'x ,位移与水平方向夹角为α.以物体的出发点为原点,沿水平和竖直方向建立坐标。

依平抛规律有: 速度: Vx= V0 Vy=gt22yx v v v +='0xy v gt v v tan x x y-===β ①位移: Sx= Vot2y gt 21s =22y x s s s +=002gt 21t gt tan 21v v x y ===α ②由①②得: βαtan 21tan = 即)(21'x x y x y -= ③ 所以:xx 21'=④④式说明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水总位移的中点。

物体的匀速圆周运动

物体的匀速圆周运动

物体的匀速圆周运动物体的匀速圆周运动是指物体在一个平面内沿着一个圆形轨迹做匀速运动的现象。

在这种运动中,物体的速度大小保持不变,但方向在不断改变。

这是一种非常常见的运动形式,如行人在公园的环形跑道上慢慢地行走,地球绕太阳的公转等都属于匀速圆周运动。

一、匀速圆周运动的基本概念匀速圆周运动的基本概念包括圆周运动的周期、频率和角速度。

1.周期:匀速圆周运动中,物体完成一次完整运动所需要的时间称为周期,用T表示。

周期与物体的速度和圆周的半径有关,速度越快或者半径越大,周期越短。

2.频率:匀速圆周运动中,物体完成一次完整运动所需要的次数称为频率,用f表示。

频率与周期的倒数相等,即f=1/T。

3.角速度:匀速圆周运动中,物体单位时间内角位移的大小称为角速度,用ω表示。

角速度与频率的关系为ω=2πf,其中π表示圆周率。

二、匀速圆周运动的运动规律匀速圆周运动的运动规律可以通过物体的加速度和受力分析得到。

1.加速度:匀速圆周运动中,物体的速度大小保持不变,但由于方向不断改变,因此物体存在一个向心加速度。

向心加速度的大小为a=v^2/r,其中v表示物体的速度,r表示圆周的半径。

2.受力:匀速圆周运动的物体存在向心加速度,根据牛顿第二定律,物体所受的向心力与向心加速度成正比,即F=ma。

向心力由万有引力、弹力或其他形式的作用力提供。

三、匀速圆周运动的运动特点匀速圆周运动具有以下几个特点:1.速度大小保持不变:在匀速圆周运动中,物体的速度大小保持不变,只有速度的方向在不断改变。

2.加速度的存在:匀速圆周运动中,物体存在向心加速度,该加速度指向圆心。

3.圆周运动与角度的关系:物体在圆周运动中所经历的位移与其所绕角度大小成正比,即s=rθ,其中s表示位移,r表示圆周的半径,θ表示角度。

4.离心力:匀速圆周运动中,物体存在一个离心力,与向心力大小相等,但方向相反。

离心力的大小为F=mv^2/r。

四、匀速圆周运动的应用匀速圆周运动在现实生活和科学研究中有广泛的应用。

匀速圆周运动知识点总结

匀速圆周运动知识点总结

匀速圆周运动知识点总结一、引言匀速圆周运动是物理学中一个重要的概念,在日常生活和科学研究中都有广泛应用。

本文将对匀速圆周运动的基本知识点进行总结,希望能为读者提供清晰的了解和认识。

二、匀速圆周运动的定义匀速圆周运动是指物体在一个固定半径的圆轨道上运动,且速度大小保持恒定,方向不断改变的运动。

这种运动常见于风力发电机的叶轮、地球围绕太阳的公转等。

三、匀速圆周运动的特点1. 周期性:匀速圆周运动的物体会按照一定的周期性循环运动,即在一个周期内,物体完成一次完整的运动,回到起始点。

2. 曲线轨道:匀速圆周运动的轨迹是一个半径固定的圆,通过物体的运动轨迹可以画出一个完整的圆。

3. 速度大小不变:与匀速直线运动不同,匀速圆周运动的速度大小是恒定的,不会随着时间的推移而改变。

4. 加速度方向变化:匀速圆周运动的物体虽然速度大小不变,但加速度方向会不断变化,因为物体在沿圆周运动的过程中会不断改变运动方向。

5. 向心力:匀速圆周运动中,物体在圆周上所受的力称为向心力,经常用F_c表示。

向心力的大小与物体质量和圆周半径有关。

四、匀速圆周运动的公式1. 周期(T):匀速圆周运动的周期是指物体完成一次完整运动所需的时间。

周期与圆周半径(r)和速度(v)之间的关系为T =2πr/v。

2. 周速度(v):匀速圆周运动的周速度是指物体在圆周上运动时,单位时间内所经过的弧长。

周速度与圆周半径(r)和周期(T)之间的关系为v = 2πr/T。

3. 角速度(ω):匀速圆周运动的角速度是指物体在圆周上偏转的角度随时间的变化率。

角速度与线速度(v)和圆周半径(r)之间的关系为v = ωr。

4. 向心加速度(a_c):向心加速度是指物体在圆周运动时向心力所产生的加速度。

向心加速度与角速度(ω)和圆周半径(r)之间的关系为a_c = ω^2r。

五、匀速圆周运动的应用1. 旋转机械:匀速圆周运动的应用最广泛的领域之一是旋转机械,如风力发电机的叶轮、汽车的轮胎、风扇的叶片等,这些设备都依靠匀速圆周运动来实现其功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总结:匀速圆周运动知识点
一.基本概念:
1.匀速圆周运动
(1)定义:质点沿圆周运动,如果在相等的时间内通过的弧长相等,就称质点作匀速圆周运动(2)条件:
a.有一定的初速度
b.受到一个大小不变方向始终跟速度垂直的力的作用(即向心力)
(3)特点:速度大小不变,方向时刻改变
(4)描述匀速圆周运动的物理量:
a.线速度:大小不变,方向时刻改变,单位是m/s, 是矢量。

b.角速度: 恒定不变,是矢量,(方向可由右手螺旋定则确定,高中不要求掌握)单位rad/s
c.周期:标量,单位:s
d.转速:①单位时间物体转过的圈数
②标量,符号:n
③单位:r/s或r/min
e.频率:①质点在单位时间完成圆周运动的周数
②标量,符号:f
③单位:Hz
(5)注意:
a.匀速圆周运动是非匀变速曲线运动
b.“匀速”应理解为“匀速率”不能理解为“匀速度”
c.合力不为零,不能称作平衡状态
2.向心力:
(1)定义:做匀速圆周运动的物体所受到的合力指向圆心,叫向心力。

(2)特点:指向圆心,大小不变,方向时刻改变,是变力。

F向=F合
(3)作用:只改变速度大小,不改变方向
(4)注意:
a.是一种效果力,它可以由重力、弹力、摩擦力等单独提供,也可以由它们的合力提供。

b.“向心力”只是说明做圆周运动的物体需要一个指向圆心方向的力,而并非物体又受到一个
“新的性质”的力。

即在受力分析时,向心力不能单独作为一种力。

c.变速圆周运动的向心力不等于合力,合力也不一定指向圆心。

3.向心加速度
(1)定义:由向心力产生的加速度
(2)特点:指向圆心,大小不变,方向时刻改变,是矢量。

4.提供的向心力:
通过受力分析求出来的,沿半径方向指向圆心的力,匀速圆周运动中F需向=F合
5.需要的向心力:
根据物体实际运动时的质量m、半径r、线速度v(或角速度w)求出的向心力
F提=mrw2=mrv2/r
6.离心现象
(1)做圆周运动物体的运动特点:
做圆周运动的物体由于本身的惯性,总有沿圆周切线飞出的倾向。

(2)概念:
在所受合力突然消失或不足以提供圆周运动所需的向心力的情况下,就会做靛渐远离圆心的运动,这种现象称为离心现象。

(3)特别注意:
a. 物体做离心运动并不是受到了什么所谓的“离心力”作用(准确讲没离心力这个概念)
b. 产生离心运动的根本原因是由于物体的惯性。

c. 离心现象既有利又有害,要注意利用和防止。

二.基本公式
1.线速度: 2l r v t T π∆=
=∆n r ⋅⋅=π2 2.角速度:2t T θπω∆==∆n ⋅=π2
3.转速(n )频率(f )周期三者的关系:
n=f 11T f n
== 4.线速度与角速度、半径r 的关系:v=ωr
5.向心力:2
222n n v F ma m m r m r r T πω⎛⎫==== ⎪⎝⎭
6.向心加速度:2222n v a r r r T πω⎛⎫=== ⎪⎝⎭, 三.典型应用:
1.皮带传动问题:在皮带不打滑的情况下
(1)皮带传动的两个轮缘(即同一皮带)上各点的线速度相等,角速度与半径成反比,
r r 1221=ωω即大轮转的慢,小轮转的快
(2)绕同轴转动(即同一轮上)的物体上各个点的角速度相等,线速度与半径成正比。

r r v v 2121=即离轴越远转的越快。

2.汽车过桥问题:
(1)过平桥:支持力等于重力大小mg F =支
(2)过凸桥:最高点有失重现象。

a.F F mg 支向-=
b.最大速度: gr v =max
c.安全速度: gr v <
(3)过凹桥:最低点有超重现象。

mg F F -=支向
3.火车转弯类问题
(1)外轨高于内轨时:
a.理想速度:.
轮缘与内外轨均无侧压力,由重力与支持力的合力提供向心力时的速度,这时有:
θtan mg F =向 θtan 0gR v = b.当
θtan gR v <实,内轨对轮缘有侧压力。

c.当θtan gR v >实
,外轨对轮缘有侧压力。

(2)内外轨水平:
向心力的来源是外轨的水平弹力,所以外轨容易磨损
4.汽车转弯类问题
(1)水平路面上:
a.由静摩擦力提供向心力:f F 静向=
b.最大静摩擦力提供最大速度:
gR v μ=max C.安全速度:gR v μ≤安
(2)外高内低路面上(车与路面间没有侧向摩擦力):
a.重力与支持力合力提供向心力
θtan mg F =向 b.最大速度:
θtan max gR v = b.安全速度:θtan gR v ≤安
5.竖直平面内的圆周运动
(1)模型1:无支撑模型(如图)
注意:绳对小球只能产生沿绳收缩方向的拉力
a.临界条件即小球到达最高点的最小速度:
绳子或轨道对小球没有力的作用,由重力提供向心力:
v 临界=Rg
b,能过最高点的条件:v ≥Rg
当V >Rg 时,绳对球产生拉力,轨道对球产生压力.方向均指向圆心。

c.不能过最高点的条件:V<V临界(实际上球还没到最高点时就脱离了轨道)
(2)模型2:有支撑模型(如图)
注意:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.
a.当v=Rg时,由重力提供向心力,杆或轨道对小球无作用力即N=0
b. 小球到达最高点的最小速度为零即v=0,这时支持力等于重力大小即N=mg
c. 当0<v<Rg时,杆或轨道对小球有向外的作用力N(方向背离圆心),N随v增大而减
小,且mg>N>0
d.当v>Rg时,杆或轨道对小球有向内的作用力N(方向指向圆心),并N随v的增大而增
大。

6.离心运动与近心(向心)运动:
如图所示:
(1)当F供=F需即F提=mRw2时,物体做匀速圆周运动。

(2)当F供>F需即F提> mRw2时,物体做靠近圆心的向心运动,运动半径将逐渐减小
(3)当F供<F需即F提< mRw2时,物体做远离圆心的曲线运动,运动半径将逐渐增大。

(4)当提供的向心力突然消失即F供=0时,物体将沿圆的切线方向飞出
四.解决匀速圆周运动的基本方法
1.选择研究对象,根据转轴确定转动圆心,找到半径
2.受力分析,找到向心力。

3.根据向心力公式建立方和求解。

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参
考,感谢您的配合和支持)。

相关文档
最新文档