各类型供热暖系统图大全

合集下载

8采暖系统及其分类

8采暖系统及其分类
采用共用立管的分户独立系统形式,它有两 部分组成:
(一)建筑物内共用采暖系统 ❖ 1、建筑物热入口:P160图8-12。 ❖ 户内采暖系统为单管跨越式定流量系统时,
一、自然循环热水采暖系统
❖ 自然循环系统依靠水的密度差进行循环 ❖ 机械循环系统依靠水泵压力进行循环
膨胀 水箱
散热 器
排气阀




除污器
自然循环系统工作原理及其作用压力
❖ 1、工作原理:水在锅炉内加热后,密度 减小;在散热器内被冷却后,密度增加。 整个系统因供回水密度差的不同而维持 循环流动。
膨胀 水箱
散热 器
排气阀




除污器
按供、回水方式分类
i=0.5%~ 1%
8
2
❖ 单管系统热水经立管或 水平供水管顺序流过多 组散热器,并顺序地在 各散热器中冷却。
4
5
1
3
❖ 双管系统热水经供水立
6
管或水平供水管平行地
分配给多组散热器,冷 i=0.5%~ 1%
7
i=0.5%~ 1%
却后的回水自每个散热 器直接沿回水立管或水
❖ 为使系统顺利排除空气和在系统停止运行或抢修时能通过回水干管顺 利地排水,回水干管应有向锅炉方向的向下坡度。
1-锅炉 2-供水立管 3-供水干管 4-供水立管 5-散热器 6-回水立管 7-回水干管 8-循环泵 9-膨胀水箱 10-集气罐
❖ 双管上供下回系统中除水泵造成的机械循环压头外,同时还 存在着自然压头(供、回水温度不同);故易造成上层房间 温度偏高,下层房间温度偏低,楼层越高,这种垂直失调的 现象越严重,故双管系统不宜在4层以上的建筑物中采用。

供暖系统.ppt

供暖系统.ppt

▪ ★重力循环热水供暖系统管道布置的特点 为:
▪ 供水干管有向膨胀水箱方向上升的坡向 (即供水干管低头走) ,其坡度为0.5%~ 1%(排除空气);
▪ 散热器支管坡度为1%,坡向为供水支管低 头走,回水支管低头走;
▪ 回水干管有向锅炉方向下降的坡向(即回 水干管低头走) ,其坡度为0.5%~1%;
▪ (一)自然循环(重力循环)热水供暖系统 其示意图如下图所示。
▪ 循环动力:靠供、回水的密度差进行循环。 ▪ 系统组成:
锅炉、输热管道、膨胀水箱、散热设备。 ▪ ★工作原理及作用压力
下图为重力循环热水供暖系统工作原理图。
ቤተ መጻሕፍቲ ባይዱ
膨胀水箱
h1
供水管路 ρg
散热器
h
热水锅炉 A
P左
P右
A
h0
回水管路 ρh
▪ 特点:立管中的水在散热器旁分成两部分, 一部分直接进入该层散热器,而另一部分 则通过跨越管与该层散热器的回水混合后 再流向下层散热器。逐层被冷却,最后流 回锅炉。
▪ 可以在跨越管或散热器支管上安装阀门。 系统调试时用来调节热水流量,以缓和 “上热下冷”的弊端。该阀门建议采用钥 匙阀,以免调试后用户任意开启,影响系 统平衡。
▪ 循环动力:靠水泵产生的循环作用压力。
▪ 优点:管径小、升温快、作用半径大、起 动容易,应用更广泛。
▪ 系统组成:锅炉、输热管道、水泵、膨胀 水箱、集气罐(自动排气阀)、散热设备。
▪ 与自然循环系统相比,机械循环热水供暖 系统多了水泵和排气设备。另外,膨胀水 箱的连接位置不同。
▪ 机械循环热水供暖系统的主要型式分为:垂直式 系统和水平式系统两大类。
▪ 配管方式:
▪ 1)供、回水干管都敷设在底层散热器之下。 (不供暖的地下室或地沟中)

供热工程全套ppt课件

供热工程全套ppt课件

下几部分进行计算。
Q'
Q1'.j
Q' 1.x
Q2'
Q3'
围护结构的基 本耗热量
围护结构的附 加耗热量
冷风渗透耗热量 冷风侵入耗热量
第二节 围护结构基本耗热量
供暖控制对象:室内温度(干球温度) 空调控制对象:温度、相对适度、风速、洁净度
围护结构的基本耗热量,计算公式:
式中
q ' aK F (tn
修正系数
2 1 / 或 (2 3 ) / 21
0.09~0.19 0.20~0.39 0.40~0.69 0.70~0.99
0.86 0.93 0.96 0.98
两向非匀质围护结构传热系数K值,再用下式确
定:
1
1
K
R0 Rn R p j Rw
W/ m2·℃
划分地带法
非保温地面的传热系数和热阻
1—楼梯间及竖井热压分 布线
2—各层外窗热压分布线
理论热压
Pr (hz h )( w n')g
热压作用原理图
曲线1—楼梯间及竖井热压分布线; 曲线2—各层外窗热压分布线
式中 Kt ——理论热压,Pa
冬季建筑物的内、外温度不同,由于空气的密度差, 室外空气在底层一些楼层的门窗缝隙进入,通过建筑 物内部楼梯间等竖直贯通通道上升,然后在顶层一些 楼层的门窗缝隙排出。这种引起空气流动的压力称为 热压。
二、供暖室外计算温度 t w
围护结构的热惰性原理
不保证天数的原则 三、温差修正系数
计算与大气不直接接触的外围护结构的基本耗热量
q ' K F (tn th )a
a
tn th
tn

太阳能、地能热泵采暖供热系统原理图

太阳能、地能热泵采暖供热系统原理图

太阳能、地能热泵采暖供热系统原理图太阳能、地能热泵采暖供热系统原理图采暖供热原理:如图一所示,热泵主要由制冷压缩机、冷凝器、膨胀阀、蒸发器等组成制冷回路,在制冷回路内充注制冷剂。

制冷压缩机通入三相交流电高速旋转,将低温低压制冷剂气体吸入压缩机,经压缩后变成高压高温气体,该高温高压气体经冷凝器被冷却水冷却,变成中压中温制冷剂液体,制冷剂液体经过膨胀阀节流减压后送入蒸发器,由于蒸发器连接在压缩机的吸气口上,压缩机不停的吸入蒸发器的制冷剂气体,使得进入蒸发器的大量制冷剂压力减低,制冷剂进一步大量蒸发。

由于蒸发器另一侧与地下水中水泵连接,所以当地下水大量流过蒸发器时,被蒸发的制冷剂带走大量的地下水中的热量(因为制冷剂蒸发过程,也就是制冷剂吸热的过程)。

地下水中含有大量的地球浅层土壤低温热量,这些低温热量通过地下水媒介被蒸发器中蒸发的制冷剂吸收提取变成制冷剂热量,被源源不断地吸入制冷压缩机。

经压缩机压缩之后,又变成为80-90℃ 的高温气体,这个高温气体在被冷凝器冷却的过程中,将大量的高温热量传给了冷凝器另一侧的采暖系统,80-90℃ 高温制冷剂气体被冷却的过程,也可以看作是将这些高温热量传递给冷却系统的过程,或者说是对采暖系统的加热过程,维持采暖系统水温在50-60℃, 通过风机盘管或暖气片负荷向空调房间供热。

综上所述,热泵机组是将电能通入压缩机,压缩机将电能变为高速旋转的机械能,机械能又通过压缩机将机械能变成为热能,压缩机输出的总热能=压缩机电功率+压缩机向地下水吸收的热能,而向井水中吸取的热能远远大于压缩机的电功率。

一般从井水中提取的热能是压缩机电功率产生热能的 4-5倍,所以热泵机组的能效比=输出热能(kw)/输入电功率 (kw)≈4.5左右。

而电锅炉的能效比=输出热能(kw)/输入功率(kw)≈0.9~0.98左右,从上面的对比可以看出热泵机组是节能环保设备,与电锅炉相比也同样是电采暖设备,只不过热泵比电锅炉更节省运行费用,理应得到电力部门大力推广的设备,最终受益的首先是电力部门,然后是用户,对环保、对电力部门、对全社会都是有很大好处的事。

地暖系统图

地暖系统图

一,两用式壁挂炉直接采暖系统系统说明:1,主设备1适用于CGG-1k-24/28 、CGG-2K-18/24。

2,图例中管路为钢管。

若选用PPR,由于其管壁较厚,因此需要比壁挂炉管路口径增加一级。

3,任何系统在与壁挂炉连接之前,都必须彻底冲洗,同时回水近壁挂炉侧安装过滤;做打压试验,避免跑冒滴漏。

4,直供系统末端可选散热器或者地板采暖。

由于内置水泵扬程流量有限,选用散热器,最大供暖面积一般不超过200㎡;选用地板采暖,最大面积一般不超过130㎡。

超过上述面积,须增加混水罐、二次侧循环泵、外置膨胀罐等附件。

5,由于CGG要求供回水温度较高,直供系统末端选用地板采暖建议加装混水中心2,以降低出水温度并提高回水温度,避免冷凝水腐蚀设备。

混水中心可选择卡莱菲等品牌。

6,如果系统末端每个支路都加装了电动温控阀,则在分集水器前必须安装旁通阀(起跳压力250mbar)。

7,两用式壁挂炉生活热水流量有限(CGB-1K-28KW最大为14.4 L/m)。

如果生活热水流量要求较大(例如有浴缸或者同时多点取水),建议使用蓄热水箱。

生活热水管路请加装保温。

二,CGG-1K带水箱,直接采暖系统系统说明:1,主设备1适用于CGG-1k-24/282,图例中管路材质为钢管。

若选用PPR,由于其管壁较厚,因此需要比壁挂炉管路口径增加一级。

3,任何系统在与壁挂炉连接之前,都必须彻底冲洗,同时回水近壁挂炉侧安装过滤;做打压试验,避免跑冒滴漏。

4,直供系统末端可选散热器或者地板采暖。

由于内置水泵扬程流量有限,选用散热器,最大供暖面积一般不超过200㎡;选用地板采暖,最大面积一般不超过130㎡。

超过上述面积,须增加混水罐、二次侧循环泵、外置膨胀罐等附件。

5,由于CGG要求供回水温度较高,直供系统末端选用地板采暖建议加装混水中心2,以降低出水温度并提高回水温度,避免冷凝水腐蚀设备。

6,如果系统末端每个支路都加装了电动温控阀,则在分集水器前必须安装起跳压力为250mbar的旁通阀。

供热流程及换热站设备.ppt

供热流程及换热站设备.ppt
当气温较高时,可以停止一台板式 换热器的高温水,但是低温水仍需投 入运行。否则将影响低温水循环流量, 造成低温水循环恶化,使部分用户供 热质量下降。
四、低温水供水温度的调整
自动机组供水温度调整是设定二次水的 供水温度,由温控阀自动控制供水温度。
无论是自动机组还是手动机组,在用温 控阀控制供水温度的同时,还要根据高温 水的供水压力和温控阀的开度进行适度的 手动调整,以达到设定的供水温度。
四、低温水供水温度的调整
温控阀开度一般应在20%~80%之间 为宜,不应全关或全开。否则将造成温控 阀因没有调整余地,使供水温度偏离设定 值。
应根据高温水供、回水压力,适当调整 供、回水门的开度,使高温水供、回水压 力在正常范围内。
四、低温水供水温度的调整
板式换热器高温水供水压力控制在高 温水来水供水压力与高温水回水压力差 的一半为宜。
四、低温水供水温度的调整
低温网供水温度的调整原 则是不调整低温水的压力和 流量,只调整高温水的流量 及压力。
低温网标准供回水温度曲线图
70 60
低温网温度(℃)
50 40 30 20
10
0 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30
。2020年11月8日星期日2020/11/82020/11/82020/11/8
15、会当凌绝顶,一览众山小。2020年11月2020/11/82020/11/82020/11/811/8/2020
16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/11/82020/11/8November 8, 2020

第七章 集中供热系统

第七章 集中供热系统

第一节
热水供热系统
一、闭式热水供热系统
适用场合:热水网
路与热用户的压力状况 不适应时才采用 。
第七章 集中供热系统
( 二 ) 通风系统 热用户与热水网 路的连接 如图(e)所示。 由于通风系统 中加热空气的设 备能承受较高压 力,并对热媒参 数无严格限制, 因此通风用热设 备 (空气加热器等) 与热网的连接, 通常都采用最简 单的连接形式, 即直接连接。
一、民用热力站
服务对象是民用用热单位,属于热水供热热力站。 热水网路是采用直接连接。上水进人水—水换热器4加热后,沿供水管输送到各用户热水供应系统 中。当热网供水温度高于供暖用户设计的供水温度时,热力站内设置混合水泵9,抽出供暖系统的网 路回水,与热网的供水混合,再送向各用户。 热力站应设置必要的检测、自控和计量装置。
第一节
热水供热系统
二、开式热水供热系统
为了便于调节水温,网路供水管的压力应高于上水管的压力。在上水管上要安装止回阀,以防 止网路水流人上水管路。如上水压力高于热网供水管压力时,在上水管上安装减压阀。
适用场合:热水供应用户的用水量很大,建筑物中 (如浴室、洗衣房等)来自供暖 通风用户系统的回水量不足与供水管中的热水混合时,则可采用这种连接方式。
3、热水采暖用户采用蒸汽喷射器与管网的直接连接 连接方式的组成如图。 工作原理:来自管网的蒸汽经喷射器喷嘴喷出,将用户回水吸人并进行充分混合和热量交
换及能量交换后,热水靠自身压力在用户内循环流动。 为防止用户循环水倒灌,喷射器人口侧设有止回阀。
适用场合:有蒸汽热源并且蒸汽压力足够,而用户又要求使用热水采暖的场合。
第一节
热水供热系统
一、闭式热水供热系统
第七章 集中供热系统

供暖系统图解

供暖系统图解
对于经过一层散热器的循环环路
P 1 g (h0 h h 1 h h2 g h3 g )
tg
断面A-A左侧的水柱压力为:
th
P2 g (h0 h h1g h2 g h3 g )
该环路的自然压头为:
g
A A
i=0.003
h
P 1P 1P 2 gh 1 ( h g ) (8-1)
第二节
蒸汽供暖的特点:
蒸汽供暖系统
1、蒸汽供暖是以水蒸气为热媒,水蒸气在散热器中 进行相变(凝结)放出汽化潜热,由于汽化潜热 (2500 kJ / kg)比水的温降放热量(1.84Δt.kJ/kg) 要大得多。所以:
a、对于流入散热器的过热蒸汽或饱和蒸汽及流出 散热器的过冷凝水或饱和凝水,都可近似认为 其放热量等于汽化潜热。
定义:在垂直方向上分为若干组,每组 若干层(2~3层),每一组均为 双管系统,各组之间用单管相连 系统中的每一组双管系统,只对2~3层 房屋供暖,形成的自然压头仅在2~3层 中起作用,避免了纯双管系统造成的 严重的垂直失调现象; 纯垂直单管系统通过支管流量为立管 流量(单侧连接)或约一半立管流量 (双侧连接),而混合式系统通过 支管流量仅约为垂直单管系统的1/2~1/3, 因此支管管径较小,便于施工。
蒸汽供暖系统的分类
1、按蒸汽压力分: 高压蒸汽供暖系统(> 1.7x105 Pa) 低压蒸汽供暖系统(≤ 1.7x105 Pa) 真空蒸汽供暖系统(< 1.0x105 Pa) 2、按蒸汽干管布置的不同分: 上供下回式、下供下回式 3、按立管布置的特点分:单管式、双管式 4、按回水动力的不同分:重力回水、机械回水
图11-1 自然循环热水 供暖系统工作原理图
h0
h1

建筑采暖系统

建筑采暖系统
适用于热媒为高温水的多层建 筑,供水干管设在底部,可降 低防止高温水气化所需的膨胀 水箱的标高
散热器的传热系数远低于上供 下回式系统,在相同的立管供 水温度下,散热器的面积要比 上供下回式系统面积大
12
13
中供式的特点: 水平供水干管敷设在系统中部 下部系统呈上供下回式 上部系统可采用下供下回式 (双管)如图a,也可采用上供 下回式(单管)如图b 避免由于梁底标高过低,致 使供水干管挡住顶层窗户的不 合理布置 避免垂直失调现象
30
31
3)高层建筑热水供暖系统
高层建筑热水采暖系统几种常用的形式
分区式采暖系统-解决垂直失调和超压 同异程式系统-解决垂直失调 单、双管混合式系统-解决垂直失调
32
(1)分区式供暖系统
概念:
垂直方向分成两个或两 个以上的独立系统称为分 区式采暖系统
33
②单双管混合式供暖系统
组内双管连接 组间单管连接 优点: •克服双管的垂直失 调问题 •单管不能进行局部 调节的缺点。 •使散热器的立管和 支管管径减小。
2
(1)
2
(2)
(2)
单管水平跨越式
1—冷风阀;2—空气管
18
水平单管串联 水平单管跨越 水平单管跨越
19
单管水平串联式
单 管 水 平 串 联
特点:1)除主立管外,无立管穿过楼板,施工方便,经济美观
2)便于分层管理和调节 3)排气困难)
4)串太多散热器,易水平失调
20
单管水平跨越式
特点:1)每个环路串联散热器数量不受限制
图: 单、双管混合式系统
34
分户计量的机械循环热水采暖系统
对于新建住宅设置集中热水采暖系统时,应推行温度调 节和户用热量计量装置,实行供热计量收费。 适合热计量的采暖系统就具备以下条件:

暖通空调各种运行方式、场所采暖系统图

暖通空调各种运行方式、场所采暖系统图
MPPTP100-130/4,Q=92CFM,H=10.9m,4.0kW采暖系统图-1D159x6D159x6日 期签 字校 对更改文件号原 底 图 号借(通)用件登记项目负责人技术负责人共 页, 第 页图 号工程编号发送编号设 计校 核比 例日 期工程地址工程名称RHEEM公司上海代表处D159X6说明:1. 3xRAYPAK-H3-3001用于采暖。每个锅炉两级火焰,系统为 级。2.2010.10.18散 热 器本图只适应于建筑全部同时投入使用,且没有安装自动温度控制阀和/或3.采暖回水采暖回水采暖时系统循环温差按 配置。20 CD159X6D159X6采暖热水D159x6RAYPAK-H3-3001PPUPS80-120PN10PPRAYPAK-H3-3001PPUPS80-120PN10PPD159x6采暖热水PN1000-6 ?膨胀水箱软水器(选择件)冷水DN25Y-281群控器PPUPS80-120PN10PPRAYPAK-H3-3001D133x5TPPPPTD133x5PPTD133x5D159x690%%DC Max70%%DC 采暖热水6D133x5D133x5D133x5安全阀,DN50,开启压力0.4MPa安全阀,DN50,开启压力0.4MPaD133x5D133x5D133x5采暖热水70%%DC 90%%DC MaxD159x6D133x5TPPD133x5TPPPPTD133x5RAYPAK-H3-3001PPUPS80-120PN10PPY-281群控器DN25冷水软水器(选择件)膨胀水箱PN1000-6 ?采暖热水D159x6PPUPS80-120PN10PPRAYPAK-H3-3001PPUPS80-120PN10PPRAYPAK-H3-3001D159x6采暖热水D159X6D159X6采暖回水采暖回水2010.10.18D159X6公司上海代表处RHEE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各类型供热暖系统图大全1.区域供热系统
2.热电联产系统
3.地热水供暖系统
4.即热式生活热水系统
即热式特点:可保证用户随时随地均有热水供应,系统紧凑,无需储罐,需要较大的锅炉容量需要较大的热交换器。

5.半即热式生活热水系统
半即热式特点:需要较小的锅炉容量,需要较小的热交换器,储罐内易生长细菌,需要额外的地方安放储罐。

6.游泳池恒温保持系统
7.太阳能热水系统
8.供冷空调系统
冷凝器侧应用:1冷却塔水冷却凝结水2海水、河水或井水冷却凝结水3乙二醇冷却凝结水4短路冷冻机组系统5地下水冷/热源系统6热回收系统冷凝水侧热交换器可以起到以下作用:保护冷凝器免受污染、结垢和腐蚀;代替冷凝器承受冷却水侧压力;能够在季节许可时不运行冷冻机组;能够实现热回收;节省昂贵的添加剂。

10.海水、河水、或井水冷却凝结水
12.短路冷冻机组系统
13.地下水冷/热源系统
14.热回收系统
蒸发侧的应用:1压力接力系统2分离冷却循环水(无压力接力功能)3蓄冰系统4区域供冷系统5天花板供冷系统蒸发器侧热交换器可以起到以下作用:避免冷冻机组承受高压(压力接力系统);减少昂贵、低效添加剂的用量;分离冷却水系统,以保证局部系统清洁度很高(电子元件生产);减少泄漏所带来的损害。

15.压力接力系统
16.分离冷却循环水系统
17.蓄冰系统
蓄冰系统设计基本要素:设定空调要求;运行方案;全蓄冰系统;部分蓄冰系统;冷冻机组为主系统;蓄冰为主系统。

18.区域供冷系统
19.天花板供冷系统
20.空调系统其它应用方案
板式换热器在供冷空调系统中的优势:1.传热系数高,对数温差可作到0.5度。

2.体积小,重量轻,便于安装,可放置于设备层。

3.易于拆卸,方便清理内部污垢。

4.结构坚固,可承受较高工作压力,最高 3.0M P a。

5.换热效率高,降低运行成本。

6.固定投资低。

21.板式换热机组基本原理
12
流经用户散热片后的低温水(二次回水)经过滤器除污后,由循环泵加压进入换热器,吸收一次热媒放出的热量,达到供水设定温度后,再流向供热管网对用户进行供热;热源经一次热网(一次水)流经过滤器、调节阀、进入换热器放热后(二次水),由热媒回水管返回热源(二次回水)被加热后再次参与循环换热;补水泵根据系统运行情况适时对二次循环水系统进行定压补水。

12。

相关文档
最新文档