热力学与统计物理期末试题(杭师大)
热力学与统计物理期末试题(杭师大)
一、填空(每小题1分,共20分)1.热力学和统计物理学的任务相同,但研究的方法是不同的。
热力学是热运动的 理论,统计物理学是热运动的 理论。
2.热力学第二定律揭示了自然界中与热现象有关的实际过程都是 。
3.定域系统和满足经典极限条件的玻色(费米)系统都遵从 玻耳兹曼 分布。
4.能量均分定理:对于处在温度为T 的平衡状态的经典系统,粒子能量中每一个平方项平均值等于 。
5.不满足12232>>)(hm kT N V π条件的气体称为 简并 气体,如果系统是由费米子构成,需要用 费米—狄拉克 分布处理。
6.光子是属于 玻色子 粒子,达到平衡后遵从 玻色—爱因斯坦 分布。
7.对粒子运动状态的描述可分为 经典 描述和 量子 描述, 经典 描述认为粒子运动遵从经典力学运动规律,粒子在任一时刻的力学运动状态由粒子的 广义坐标 和与之共轭的 广义动量 在该时刻的数值确定。
在不考虑外场的情况下,粒子的能量是其 广义坐标 和 广义动量 的函数。
量子 描述认为粒子的运动遵从量子力学的运动规律,从原则上说微观粒子是遵从 量子力学 运动规律的。
8.统计物理学从宏观物质系统是由大量微观粒子组成这一事实出发,认为物质的宏观特性是 大量微观粒子 行为的集体表现,宏观物理量是 微观物理量 的统计平均值。
9.电子是费米子粒子,强简并的费米子粒子构成的系统遵从费米分布,费米子系统的巨配分函数定义为l l l a e ωβε∏--+=Ξ]1[,其对数为∑--+la l l e )1ln(βεω10.在经典描述中,三维自由粒子的能量为)(21222z y x p p p m++=ε(其中x x m p v =,y y m p v =,z z m p v =),在量子描述中三维自由粒子的能量为)(21222z y x p p p m ++=ε(其中x x n L p π2=,y y n L p π2=,z z n Lp π2=,)或),2,1,,(2222222L h ±±=++=z y x z y x n n n Ln n n m πε。
(完整word版)热力学与统计物理期末复习题
热力学统计物理1、请给出熵、焓、自由能和吉布斯函数的定义和物理意义解:熵的定义:S B−S A=∫dQT ⟹B A dS=dQT沿可逆过程的热温比的积分,只取决于始、末状态,而与过程无关,与保守力作功类似。
因而可认为存在一个态函数,定义为熵。
焓的定义:H=U+pV焓的变化是系统在等压可逆过程中所吸收的热量的度量。
自由能的定义:F=U−TS自由能的减小是在等温过程中从系统所获得的最大功。
吉布斯函数的定义:G =F+pV= U – TS + pV在等温等压过程中,系统的吉布斯函数永不增加。
也就是说,在等温等压条件下,系统中发生的不可逆过程总是朝着吉布斯函数减少的方向进行的。
2、请给出热力学第零、第一、第二、第三定律的完整表述解:热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
热力学第二定律:克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化。
热力学第三定律:能氏定理:凝聚系的熵在等温过程中的改变随热力学温度趋于零,即limT→0(∆S)T=0绝对零度不能达到原理:不肯能通过有限的步骤使一个物体冷却到热力学温度的零度。
通常认为,能氏定理和绝对零度不能达到原理是热力学第三定律的两种表述。
3、请给出定压热容与定容热容的定义,并推导出理想气体的定压热容与定容热容关系式:C p−C V=nR解:定容热容: C V=(ðUðT )V表示在体积不变的条件下内能随温度的变化率;定压热容:C p=(ðUðT )p−p(ðVðT)P=(ðHðT)P表示在压强不变的情况下的熵增;对于理想气体,定容热容C V的偏导数可以写为导数,即C V=dUdT(1)定压热容C p的偏导数可以写为导数,即C P=dHdT(2)理想气体的熵为 H=U+pV=U+nRT(3)由(1)(2)(3)式可得理想气体的定压热容与定容热容关系式:C p−C V=nR4、分别给出体涨系数α,压强系数β和等温压缩系数κT的定义,并证明三者之间的关系:α=κTβp解:体涨系数:α=1V (ðVðT)P,α 给出在压强不变的条件下,温度升高1 K所引起的物体的体积的相对变化;压强系数:β=1p (ðp ðT )v ,β 给出在体积不变的条件下,温度升高1 K 所引起的物体的体积的相对变化;等温压缩系数:κT =−1V (ðV ðp )T ,κT 给出在温度不变的条件下,增加单位压强所引起的物体的体积的相对变化;由于p 、V 、T 三个变量之间存在函数关系f (p ,T ,V )=0,其偏导数存在以下关系:(ðV ðp )T (ðp ðT )v (ðT ðV )P =−1 因此α, β, κT 满足α=κT βp5、分别给出内能,焓,自由能,吉布斯函数四个热力学基本方程及其对应的麦克斯韦关系式解:内能的热力学基本方程:dU =TdS −pdV对应的麦克斯韦关系式:(ðT ðV )S =−(ðp ðS )V 焓的热力学基本方程:dH =TdS +Vdp对应的麦克斯韦关系式:(ðT ðp )s =(ðV ðS )p 自由能的热力学基本方程:dF =−SdT +Vdp对应的麦克斯韦关系式:(ðS ðV )T =(ðp ðT )V 吉布斯函数的热力学基本方程:dG =−SdT −pdV对应的麦克斯韦关系式: (ðS ðp )T =−(ðV ðT )p 6、选择T ,V 为独立变量,证明:C V =T (ðS ðT )V ,(ðU ðV )T = T (ðp ðT )V −p 证明:选择T ,V 为独立变量,内能U 的全微分为dU =(ðU ðT )V dT +(ðU ðV )T dV (1) 又已知内能的热力学基本方程 dU =TdS −pdV (2)以T ,V 为自变量时,熵S 的全微分为dS =(ðS ðT )V dT +(ðS ðV )T dV (3) 将(3)式代入(2)式可得dU =T (ðS ðT )V dT +[T (ðS ðV )T −P]dV (4) 将(4)式与(1)式比较可得C V =(ðU ðT )V =T (ðS ðT )V (5) (ðU ðV )T = T (ðp ðT )V −p (6) 7、简述节流过程制冷,气体绝热膨胀制冷,磁致冷却法的原理和优缺点解:节流过程制冷:原理:让被压缩的气体通过一绝热管,管子的中间放置一多孔塞或颈缩管。
(完整版)热力学与统计物理_试题及答案
6! 1 4!1!1!
30;
6!
C
1 3! 3!
20
所有分布总的微观态数为: A B C 6 30 20 56
pA A / 6 / 56 0.107; 各分布对应的概率为: pB B / 30 / 56 0.536;
pC C / 20 / 56 0.357;
;
处于激发态的粒子数为: N2
N Z1
e2
N
e0 e0 e0
;
温度为 T 时处于激发态的粒子数与处于基态的粒子数之为:
N2 N1
e0 e0
0
e kT 0
e kT
极端高温时:ε0《kT, N2 1 , 即处于激发态的粒子数与处于基 N1
态的粒子数基本相同;
极端低温时:ε0》kT, N2 0 , 即粒子几乎全部处于基态。 N1
5.
l
l
给出内能变化的两个原因,其中( ldal )
l
项描述传热,( aldl )项描述做功。
l
6.对粒子数守恒的玻色系统,温度下降会使粒子的化学势( 升高 ); 如果温度足够低,则会发生( 玻色——爱因斯坦凝聚 )。这时系统的 能量 U0=(0),压强 p0=(0),熵 S0=(0)。
7.已知粒子遵从经典玻尔兹曼分布,其能量表达式为
4.对弱简并的非相对论费米气体,求:
(1)粒子数分布的零级近似 f0 与一级修正项Δf1;
(2)证明:与零级近似相比,粒子数的相对修正量和内能的相对修正量 均正比于 e 。
解:费米气体分布函数为:
f
1 e
1
(1)
f
e
1
1 e
e (1 e ) e
e2 2
热力学与统计物理期末复习..
E
期末复习
12
9、简述能量均分定理;用能均分定理求自由电子的内能 和定容热容量;结果与实验结果有何差异?量子统计的 结果如何解释这些差异? 10、简述能量均分定理;用能均分定理求辐射场内能U 和定容热容量CV的结果与实验有何差异?量子统计的结 果如何解释这些差异?
p p V ( ) 0 T T
若pα > pβ ,则有δ V α >0。 这时不可逆过程导致压强大的相将膨胀,压强 小的相将被压缩,即压强差异将导致物质流动。
第三章 期末复习 单元系的相变
7
若热平衡已满足,但相平衡未能满足,熵增 加原理要求
n (
T
SC 2 Nk ln T Nk ln V 2 Nk[1 ln( h
2 0
)]
3 V 3 5 2m k SQ Nk ln T Nk ln Nk[ ln( 2 )] 2 N 2 3 h
试讨论这两个熵的性质。(P212~213)
期末复习 3
3、简述熵判据;写出单元两相系的热学平衡条件、力学 平衡条件和相变平衡条件。如果在一个孤立系统内部引入 内能、体积和摩尔数的虚变动 δ Uα 、 δVα 和 δnα 所引起 的熵变为
期末复习
期末复习
1
一 期末考试题型
1 判断题(每小题2分,共20分)
2 填空题(每空2分,共20分)
3 简述题(每小题8分,共16分) 4 计算与证明题(5个小题,共44分)
完整版热力学统计物理试题
简述题1.写出系统处在平衡态的自由能判据。
一个处在温度和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。
即F0 。
2.写出系统处在平衡态的吉布斯函数判据。
一个处在温度和压强不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。
即G0 。
3.写出系统处在平衡态的熵判据。
一个处在内能和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。
即S 04.熵的统计讲解。
由波耳兹曼关系S k g ln可知,系统熵的大小反响出系统在该宏观状态下所拥有的可能的微观状态的多少。
而可能的微观状态的多少,反响出在该宏观平衡态下系统的凌乱度的大小。
故,熵是系统内部凌乱度的量度。
5.为什么在常温或低温下原子内部的电子对热容量没有贡献不考虑能级的精巧结构时,原子内的电子激发态与基态的能量差为1~10 eV ,相应的特点4 5温度为 10 ~ 10 K。
在常温或低温下,电子经过热运动获得这样大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。
6.为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略由于双原子分子的振动特点温度 3 kT << k θv,振子经过θ ~10K,在常温或低温下v热运动获得能量 h k θv从而跃迁到激发态的概率极小,因此对热容量的贡献可以忽略。
7.能量均分定理。
对于处在平衡态的经典系统,当系统的温度为T 时,粒子能量的表达式中的每一个独立平方项的平均值为12k T 。
8等概率原理。
对于处在平衡态的孤立系统,系统的各种可能的微观状态出现的概率是相等的。
9.概率密度 ( q, p,t ) 的物理意义、代表点密度 D ( q, p,t ) 的物理意义及两者的关系。
(q, p,t ) : 在 t 时辰,系统的微观运动状态代表点出现在相点(q, p) 邻域,单位相空间体积内的概率。
热力学统计物理期末复习试题.doc
一. 填空题1.设一多元复相系冇个0相,每相有个乞组元,组元Z 间不起化学反应。
此系统平衡时必同时满足 条件.T a= T fi=•- - 、P 、p"=..・=p®、(i = i,2,・・・k)2. 热力学第三定律的两种表述分别叫做:能特斯定律和绝对零度不能达到定律。
3. 假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。
则系统可能的微观态数为:10。
4. 均匀系的平衡条件是丁 5 月.P = U .平衡稳定性条件是_ 5 > ° R (黔)「°_ 3 £ _ 3 »5玻色分布表为八八"-丨;衣米分布表为心+1 ;玻耳兹曼分布表为6热力学系统的四个状态量S 、V 、P 、T 所满足的麦克斯韦关系为(fH = (fH (IH =(料 (fH =- (IH (誇),=-(鬥。
-------------- ? ---------------- ? ---------------- ? ----------------- °u = - N ° 5 Z .7. 玻耳兹曼系统粒子配分函数用乙表示,内能统计表达式为 ____________ 广义力统计表达式为丫 = . .v a in z , S = Nk(\n Z.- /3C in Z)一卩°『,爛的统计表达式为 ______________________ ,自由能的统计表达式为 F = -NkT In Z 1 ___ o8. _______________________________________________________ 单元开系的内能、自由能、熔和吉布斯函数所满足的全微分是: __________________________________ , —, _________ , _____ o 9. 均匀开系的克劳修斯方程纟fl 包含如下四个微分方程:dU=TdS-pdV+/Ldn 薊=亦+划?+妙 dG=-SdT+Vdp+/jdn dF=-SdT-pdV+pdn, _________________ 9 ______________________ 9 ______________________10. 等温等容条件下系统屮发牛的自发过程,总是朝着自市能减小方向进行,当自市能减小到极小值 时,系统达到平衡态;处在等温等压条件下的系统中发生的自发过程,总是朝着吉布斯函数减小的方 向进行,当吉布斯函数减小到极小值时,系统达到平衡态。
热力学统计物理期末考试卷
热力学统计物理期末考试卷The pony was revised in January 2021热力学与统计物理1. 下列关于状态函数的定义正确的是( )。
A .系统的吉布斯函数是:pV TS U G +-=B .系统的自由能是:TS U F +=C .系统的焓是:pV U H -=D .系统的熵函数是:TQ S = 2. 以T 、p 为独立变量,特征函数为( )。
A.内能;B.焓;C.自由能;D.吉布斯函数。
3. 下列说法中正确的是( )。
A .不可能把热量从高温物体传给低温物体而不引起其他变化;B .功不可能全部转化为热而不引起其他变化;C .不可能制造一部机器,在循环过程中把一重物升高而同时使一热库冷却;D .可以从一热源吸收热量使它全部变成有用的功而不产生其他影响。
4. 要使一般气体满足经典极限条件,下面措施可行的是( )。
A.减小气体分子数密度;B.降低温度;C.选用分子质量小的气体分子;D.减小分子之间的距离。
5. 下列说法中正确的是( )。
A .由费米子组成的费米系统,粒子分布不受泡利不相容原理约束;B .由玻色子组成的玻色系统,粒子分布遵从泡利不相容原理;C .系统宏观物理量是相应微观量的统计平均值;D .系统各个可能的微观运动状态出现的概率是不相等的。
6. 正则分布是具有确定的( )的系统的分布函数。
A .内能、体积、温度;B .体积、粒子数、温度;C .内能、体积、粒子数;D .以上都不对。
二、填空题(共20分,每空2分)1. 对于理想气体,在温度不变时,内能随体积的变化关系为=⎪⎭⎫ ⎝⎛∂∂TV U 。
2. 在S 、V 不变的情形下,稳定平衡态的U 。
3. 在可逆准静态绝热过程中,孤立系统的熵变ΔS = 。
4. 连续相变的特点是 。
5. 在等温等压条件下,单相化学反应0=∑ii i A ν达到化学平衡的条件为 。
6. 在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满足关系 。
热力学与统计物理期末题库
热力学与统计物理期末习题一、简答题1.什么是孤立系?什么是热力学平衡态?2.请写出熵增加原理?并写出熵增加原理的数学表达式?3.说明在S ,V 不变的情形下,平衡态的U 最小。
4.试解释关系式 ∑∑+=l l l l l l da d a dU εε 的物理意义?5.什么是玻色-爱因斯坦凝聚,理想玻色气体出现凝聚体的条件是什么?6.什么是热力学系统的强度量?什么是广延量?7.什么是热动平衡的熵判据?什么是等概率原理?请写出单元复相系的平衡条件。
8.写出吉布斯相律,并判断盐的水溶液的最大自由度数。
9.写出玻耳兹曼关系,并说明熵的统计意义。
10.请分别写出正则分布的量子表达式和经典表达式?11.简述卡诺定理及其推论。
12.什么是特性函数?若自由能F为特性函数,其自然变量是什么?13.说明一般情况下,不考虑电子对气体热容量贡献的原因。
14.写出热力学第二定律的数学表述,并简述其物理意义。
15.试讨论分布与微观状态之间的关系?16.请写出麦克斯韦关系。
17.什么是统计系综?18.利用能量均分定理,写出N个CO分子理想气体的内能与热容量(不考虑振动),并简要说明在常温范围,振动自由度对热容量贡献接近于零的原因。
19.简述经典统计理论在理想气体中遇到的困难。
20.理想玻色气体出现凝聚体的条件是什么?凝聚体有哪些性质?21.试给出热力学第一定律的语言描述和数学描述。
22.试给出热力学第二定律的语言描述和数学描述。
二、填空题1.均匀系统中与系统的质量或物质的量成正比的热力学量,称为 。
2.在等温等容过程中,系统的自由能永不 。
(填增加、减少或不变)3.体在节流过程前后,气体的 不变;理想气体经一节流过程,其焦汤系数=⎪⎪⎭⎫ ⎝⎛∂∂Hp T 。
4.一级相变的特点是 。
5.在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满足关系 。
6.玻尔兹曼分布的热力学系统的内能U 的统计表达式是 。
热力学·统计物理期末考试卷
热力学与统计物理1. 下列关于状态函数的定义正确的是( )。
A .系统的吉布斯函数是:pV TS U G +-=B .系统的自由能是:TS U F +=C .系统的焓是:pV U H -=D .系统的熵函数是:TQS = 2. 以T 、p 为独立变量,特征函数为( )。
A .内能;B .焓;C .自由能;D .吉布斯函数。
3. 下列说法中正确的是( )。
A .不可能把热量从高温物体传给低温物体而不引起其他变化;B .功不可能全部转化为热而不引起其他变化;C .不可能制造一部机器,在循环过程中把一重物升高而同时使一热库冷却;D .可以从一热源吸收热量使它全部变成有用的功而不产生其他影响。
4. 要使一般气体满足经典极限条件,下面措施可行的是( )。
A .减小气体分子数密度; B .降低温度;C .选用分子质量小的气体分子;D .减小分子之间的距离。
5. 下列说法中正确的是( )。
A .由费米子组成的费米系统,粒子分布不受泡利不相容原理约束;B .由玻色子组成的玻色系统,粒子分布遵从泡利不相容原理;C .系统宏观物理量是相应微观量的统计平均值;D .系统各个可能的微观运动状态出现的概率是不相等的。
6. 正则分布是具有确定的( )的系统的分布函数。
A .内能、体积、温度; B .体积、粒子数、温度; C .内能、体积、粒子数; D .以上都不对。
二、填空题(共20分,每空2分)1. 对于理想气体,在温度不变时,内能随体积的变化关系为=⎪⎭⎫⎝⎛∂∂TV U 。
2. 在S 、V 不变的情形下,稳定平衡态的U 。
3. 在可逆准静态绝热过程中,孤立系统的熵变ΔS = 。
4. 连续相变的特点是 。
5. 在等温等压条件下,单相化学反应0=∑ii iA ν达到化学平衡的条件为 。
6. 在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满 足关系 。
7. 玻色-爱因斯坦凝聚现象是指 。
热力学与统计物理试卷1、2+答案
热力学与统计物理试卷(甲)一、选择题:(每题3分,共15分)1、一个P、 V为参量的系统,T V不变时,下列说法证确的是()(1)系统处于平衡态时,熵最小;(2)系统处于平衡态时,内能最小;(3)系统处于平衡态时,自由能最大;(4)系统处于平衡态时,自由能最小;2、液体中有一气泡,如a表示液相,B表示气相,两相平衡时有()(1)、 T a≠ T B, P a≠ P B, μa≠μB;(2)、T a = T B, P a≠ P B, μa = μB;(3)、T a = T B, P a = P B, μa≠μB;(4)、T a = T B, P a = P B, μa= μB;3、一个单元系统,固、液两相共存时,()(1)因两相共存,所以不可能处于平衡态;(2)因两相共存,所以两相质量一定相等;(3)两相共存时,化学势高的相,物质的量将减少;(4)两相共存时,化学势高的相,物质的量将增加;4、初平衡态和终平衡态确定的热力学系统,,下列说法证确的是()(1)压强一定发生变化;(2)温度一定发生变化;(3)内能、熵、焓,自由能变化,但不确定;(4)内能、熵、焓、自由能变化都是确定的;5、两个完全不同的A、B物体,处于热平衡有:()(1)、 T A=T B , P A≠P B, V A≠V B ;(2)、 T A≠T B , P A=P B, V A=V B ;(3)、 T A=T B , P A=P B, V A=V B ;(4)、 T A≠T B , P A≠P B, V A=V B ;二、填空题:(每空3分,共30分)1、理想气体分别经等压、等容过程,温度都由T1升到T2,假设等压、等容热容是常数,则前后过程熵增的比值为()。
2、等温等容条件下的系统处在温度平衡`状态的必要和充分条件为(),由()可以确定平衡条件,由()可以确定平衡的稳定性条件。
3、写出玻尔兹曼分布表示式()、玻色分布表示式()、费米分布表示式()。
热力学与统计物理学期末试题
一、单选题(每题2分,共10分)
1、F和G是厄密算符,则()
A、FG必为厄密算符;
B、FG−GF必为厄密算符;
C、i(FG+GF)必为厄密算符;
D、i(FG−GF)必为厄密算符
2、氢原子能级的特点是()
A、相邻两能级间距随量子数的增大而增大.
B、能级的绝对值随量子数的增大而增大.
C、相邻两能级间距随量子数的增大而减小.
D、能级随量子数的增大而减小.
3、.一维自由粒子的运动用平面波描写,则其能量的简并度为()
A、1;
B、3
C、2;
D、4
4、下列波函数为定态波函数的是()
A、ψ2
B、ψ1和ψ2
C、ψ3
D、ψ3和ψ4
5、X射线康普顿散射证实了( )
A、电子具有波动性;
B、光具有波动性;
C、光具有粒子性;
D、电子具有粒
二、请给出两套实验方案测量原子的质量;并给出两个不同的实验现象,证实自由原子能级是量子化。
(每个实验方案2.5分,共10分)
三、请用一句话说明在以下每一个实验证实了什么样的量子化特性,(1)光电效应;(2)黑体辐射;(3)夫兰克-赫兹实验;(4)戴维孙-革末实验;(5)、斯特恩-盖拉赫实验;(6)康普顿散射实验。
(每问2分,共12分)
四、一自由原子的总轨道角动量量子数为L=2,总自旋量子数为S=3/2,求自旋轨道耦合项
L S 的可能取值。
(8分)。
热统期末考试题及答案
热统期末考试题及答案一、选择题(每题2分,共10分)1. 热力学第一定律的表达式是:A. ΔU = Q - WB. ΔU = Q + WC. ΔH = Q - WD. ΔH = Q + W答案:B2. 以下哪个选项是热力学第二定律的表述?A. 能量守恒定律B. 熵增原理C. 热能自发地由高温物体传递到低温物体D. 热能自发地由低温物体传递到高温物体答案:B3. 理想气体的内能只取决于:A. 体积B. 温度C. 压力D. 物质的量答案:B4. 根据热力学第三定律,绝对零度是:A. 无法达到的B. 可以无限接近的C. 可以实际达到的D. 与温度无关答案:A5. 熵是表示系统无序程度的物理量,其单位是:A. JB. J/KC. KD. J/mol答案:B二、填空题(每空2分,共20分)1. 热力学系统可以分为__________和__________。
答案:孤立系统;开放系统2. 根据卡诺定理,热机的效率与__________有关。
答案:热源温度3. 理想气体的压强由分子的__________和__________决定。
答案:碰撞频率;平均动能4. 热力学温度T与理想气体的体积V和压强P的关系是__________。
答案:T ∝ (PV)^(1/2)5. 热力学第二定律的克劳修斯表述是:不可能从单一热源__________能量,而不产生其他影响。
答案:提取三、简答题(每题10分,共20分)1. 简述热力学第一定律和第二定律的区别和联系。
答案:热力学第一定律是能量守恒定律在热力学过程中的体现,表明能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,或者从一个物体转移到另一个物体。
而热力学第二定律则描述了能量转换的方向性,即自发过程总是向着熵增的方向进行,表明了热能转换过程中的不可逆性。
2. 解释什么是熵,以及熵增原理的意义。
答案:熵是热力学中描述系统无序程度的物理量,通常用来衡量系统状态的不确定性。
《热力学与统计物理》课程考试试题
《热力学与统计物理》课程考试试题- 学年第学期班级时量: 100分钟,总分 100 分,考试形式:闭卷一、选择题 (每题2分共16分)1. 论证平衡状态函数温度存在的依据是: ( )A. 热力学第一定律B. 热力学第二定律C. 热力学第零定律D. 热力学第三定律2. 热力学中对传热的说法正确的是: ( )A. 传热可以用系统的状态参量表示B. 传热与过程无关C. 传热与过程有关D. 传热的定义与做功的定义相同3. 理想气体作为工作物质,要构成一个卡诺循环需要: ( )A. 一个准静态等温过程和一个准静态绝热过程B. 两个准静态等温过程和一个准静态绝热过程C. 一个准静态等温过程和两个准静态绝热过程D.两个准静态等温过程和两个准静态绝热过程4. 热力学第二定律可以判定: ( )A. 第一类永动机能够造出来B. 第一类永动机造不出来C. 人不可以不吃饭维持正常生命活动D. 不能造出效率为100%的热机5.费米分布: ( )A.是最概然分布,但不是平衡分布.B. 是平衡分布,但不是最概然分布.C.既是最概然分布,又是平衡分布.D. 不是最概然分布,也不是平衡分布.6. H2分子的平动,转动,振动自由度分别是: ( )A. 3, 2, 1B. 1, 2, 3C. 3, 1, 2D. 2, 1, 37.玻色子和费米子系统的正确说法是: ( )A. 玻色子系统可以在动量空间凝聚B. 费米子系统可以在动量空间凝聚C. 费米子系统基态能量可为零D. 玻色分布和费米分布不是最概然分布8.关于统计理论理论正确的说法: ( )A. 系综分布是指在粒子空间的分布B.等几率原理是统计物理的基本假设C. 系综是不是系统的集合D.正则系综和巨正则系综的差别在于它们的大小二、填空题 (每空1分共16分)1.三个热力学函数温度、内能和熵所满足的规律分别是__________、__________和__________.2. 热力学基本方程________给出的是--------两个状态的状态参量之间的关系.3.____和传热是改变系统____的两种形式.4.在T-P空间中,相图曲线上的三相点表示______,一条曲线表示_______.5.若两相不满足化学平衡条件,物质将由化学势-----的相转移到化学势-----的相.6. 最概然分布方法中的分布是指粒子数按-------能级的分布,系综理论中分布函数的分布是指系综中系统的代表点在___空间的分布.7.能量均分定理是由______统计得出的结论,其局限性来源于对系统的____描述.8.玻尔兹曼分布表达式为_______.三、名词解释(每题4分 共16分)1. 准静态过程;2. μ空间;3. 能量均分定理;4. 最概然速率.四、证明热力学关系式(12分)五、计算题(每题10分 共40分)1.实验发现,一气体的体积v 与压强p 的乘积及内能u 都是温度T 的函数,即pv = g(T), u = f(T)试根据热力学理论求出该气体的物态方程。
热力学·统计物理期末考试卷
热力学·统计物理期末考试卷(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除热力学与统计物理1. 下列关于状态函数的定义正确的是( )。
A .系统的吉布斯函数是:pV TS U G +-=B .系统的自由能是:TS U F +=C .系统的焓是:pV U H -=D .系统的熵函数是:TQ S =2. 以T 、p 为独立变量,特征函数为( )。
A .内能;B .焓;C .自由能;D .吉布斯函数。
3. 下列说法中正确的是( )。
A .不可能把热量从高温物体传给低温物体而不引起其他变化;B .功不可能全部转化为热而不引起其他变化;C .不可能制造一部机器,在循环过程中把一重物升高而同时使一热库冷却;D .可以从一热源吸收热量使它全部变成有用的功而不产生其他影响。
4. 要使一般气体满足经典极限条件,下面措施可行的是( )。
A .减小气体分子数密度;B .降低温度;C .选用分子质量小的气体分子;D .减小分子之间的距离。
5. 下列说法中正确的是( )。
A .由费米子组成的费米系统,粒子分布不受泡利不相容原理约束;B .由玻色子组成的玻色系统,粒子分布遵从泡利不相容原理;C .系统宏观物理量是相应微观量的统计平均值;D .系统各个可能的微观运动状态出现的概率是不相等的。
6. 正则分布是具有确定的( )的系统的分布函数。
A .内能、体积、温度;B .体积、粒子数、温度;C .内能、体积、粒子数;D .以上都不对。
二、填空题(共20分,每空2分)1. 对于理想气体,在温度不变时,内能随体积的变化关系为=⎪⎭⎫ ⎝⎛∂∂TV U 。
2. 在S 、V 不变的情形下,稳定平衡态的U 。
3. 在可逆准静态绝热过程中,孤立系统的熵变ΔS = 。
4. 连续相变的特点是 。
5. 在等温等压条件下,单相化学反应0=∑ii i A ν达到化学平衡的条件为 。
热力学与统计物理期末考试
.
(4)
以T, p 为状态参量,将上式再求对 p 的偏导数,有
Cp
p
T
T
2S pT
T
2S
T
p
T
2S T 2
. p
(5)
其中第二步交换了求偏导数的次序,第三步应用了麦氏关系(2.2.4).
由理想气体的物态方程
pV nRT
知,在 p 不变时V 是T 的线性函数,即
2V T 2
不变的情形下,稳定平衡态的U 最小.
(b)在S, p 不变的情形下,有
S 0,
đW pdV ,
根据式(1),在虚变动中必有
U pV 0,
或
H 0.
(3)
如果系统达到了 H 为极小的状态,它的焓不可能再减少,系统就不
可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在S, p
不变的情形下,稳定平衡态的 H 最小.
CV V
T
T
2S
V
T
2S
T
T
V
T
2S
T
2
V
,
(2)
其中第二步交换了偏导数的求导次序,第三步应用了麦氏关系
(2.2.3). 由理想气体的物态方程
pV nRT
知,在 V 不变时, p 是 T 的线性函数,即
2 p
T
2
V
0.
所以
CV V
T
0.
这意味着,理想气体的定容热容量只是温度 T 的函数. 在恒定温度下9
体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳
定的平衡状态,因此,在U, S 不变的情形下,稳定平衡态的V 最小.
(g)根据自由能的定义 F U TS 和式(1)知在虚变动中必有
福建师范大学22春“物理学”《热力学与统计物理》期末考试高频考点版(带答案)试卷号1
福建师范大学22春“物理学”《热力学与统计物理》期末考试高频考点版(带答案)一.综合考核(共50题)1.根据能量均分定理,一个双原子分子的平均能量为( )A.εkT/2B.ε7kT/2C.ε5kT/2D.ε3kT/2参考答案:B2.关于熵的描述有误的是( )A.熵是系统无序度的量度B.熵是态函数C.熵具有可加性D.熵与过程有关参考答案:D3.下列关于卡诺循环的说法正确的是____。
A.它由两个等温过程和两个绝热过程B.卡诺循环的热效率与工质的性质和热机的类型无关C.卡诺循环的热效率与两个热源的温度有关D.卡诺循环的热效率不一定小于1参考答案:D4.热力学与统计物理学的研究对象是____。
A.研究宏观电磁现象和客观物体的电磁性质B.研究宏观物体做低速机械运动的现象和规律C.研究固体的性质、它的微观结构及其各种内部运动D.由大量粒子(分子、原子、离子等等)所组成的系统的宏观性质5.平衡态统计物理的基本假设(等概率原理)是指对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率都是相等的。
( )A.正确B.错误参考答案:A6.三个全同经典粒子分布在某能级的四个不同状态a、b、c和d中,一个粒子处在状态a,一个粒子处在状态b,一个粒子处在状态c,则这一分布出现的概率是3/32。
( )A.正确B.错误参考答案:A7.全部基本事件之和,一定是必然事件。
( )A.正确B.错误参考答案:A8.理想气体的压强系数为( )A.VB.TC.PD.1/T参考答案:D9.2个玻色子排在3个量子态时一个粒子在量子态1,另一个在量子态2的概率是( )C.1/6D.1/3参考答案:C10.以下表述不正确的是( )A.系统处于稳定态时,能量最高B.孤立系在处于平衡时,熵具有最大值C.在T、p不变的条件下,封闭系统的自发过程朝自由焓减小的方向进行,系统平衡态的自由焓最小D.在T、V不变的条件下,封闭系统的自发过程朝自由能减小的方向进行,系统平衡态的自由能最小参考答案:A11.水的三相点可以有多个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空(每小题1分,共20分)
1.热力学和统计物理学的任务相同,但研究的方法是不同的。
热力学是热运动的 理论,统计物理学是热运动的 理论。
2.热力学第二定律揭示了自然界中与热现象有关的实际过程都是 。
3.定域系统和满足经典极限条件的玻色(费米)系统都遵从 玻耳兹曼 分布。
4.能量均分定理:对于处在温度为T 的平衡状态的经典系统,粒子能量中每一个平方项平均值等于 。
5.不满足12232>>)(h
m kT N V π条件的气体称为 简并 气体,如果系统是由费米子构成,需要用 费米—狄拉克 分布处理。
6.光子是属于 玻色子 粒子,达到平衡后遵从 玻色—爱因斯坦 分布。
7.对粒子运动状态的描述可分为 经典 描述和 量子 描述, 经典 描述认为粒子运动遵从经典力学运动规律,粒子在任一时刻的力学运动状态由粒子的 广义坐标 和与之共轭的 广义动量 在该时刻的数值确定。
在不考虑外场的情况下,粒子的能量是其 广义坐标 和 广义动量 的函数。
量子 描述认为粒子的运动遵从量子力学的运动规律,从原则上说微观粒子是遵从 量子力学 运动规律的。
8.统计物理学从宏观物质系统是由大量微观粒子组成这一事实出发,认为物质的宏观特性是 大量微观粒子 行为的集体表现,宏观物理量是 微观物理量 的统计平均值。
9.电子是费米子粒子,强简并的费米子粒子构成的系统遵从费米分布,费米子系统的巨配分函数定义为l l l a e ωβε∏--+=Ξ]1[,其对数为∑--+l
a l l e )1ln(βεω
10.在经典描述中,三维自由粒子的能量为)(21222z y x p p p m
++=ε(其中x x m p v =,y y m p v =,z z m p v =),在量子描述中三维自由粒子的能量为)(21222z y x p p p m ++=ε(其中x x n L p π2=,y y n L p π2=,z z n L
p π2=,)或),2,1,,(2222222L h ±±=++=z y x z y x n n n L
n n n m πε。
在经典描述中一维谐振子的能量为2222
12x m m p ω+,在量子描述中,一维谐振子的能量为L h ,2,1,0),21(=+n n ω 11. 玻耳兹曼分布的表达式为l a l l e a βεω--=,玻色分布的表达式为1-=+l a l
l e a βεω,费米分
布的表达式为1+=+l a l
l e a βεω
三、证明(共20分)
2 1.证明对于理想费米统计,玻耳兹曼关系式Ω=ln k S 成立(10分)
2.证明磁介质的麦氏关系H T T
m H S )()(0∂∂=∂∂μ (此式中的H 为磁场强度)(5分)
3.证明简单系统的麦氏关系 。
四、计算(每小题10分,共40分)
1.已知系统的吉布斯函数),(p T G G =,求系统的基本热力学函数内能、熵和物态方程。
2.推导玻色系统熵的统计表达式。
3.推导固体热容量的经典理论和爱因斯坦理论,并解释说明为什么在T →0时,固体的热容v C →0 (15分)
4.求双原子理想气体的内能。
(不计转动)
5.推导费米系统的最概然分布。
6.推导固体热容量的经典理论和爱因斯坦理论,并解释说明为什么在T →0时,固体的热容v C →0
7.用玻耳兹曼分布求理想气体的物态方程.
8.推导费米系统熵的统计表达式。
9.推导玻耳兹曼系统的最概然分布(即玻耳兹曼分布)
10.推导费米系统的最概然分布。
11.推导固体热容量的经典理论和爱因斯坦理论,并解释说明为什么在T →0时,固体的热容v C →0
12.用玻耳兹曼分布求双原子理想气体的内能。
(不计转动)。