高中物理3-4机械运动机械波部分知识点及习题
物理机械波知识点总结
物理机械波知识点总结物理机械波知识点总结高中物理选修3-4机械波重要知识点描述机械波的物理量——波长、波速和频率(周期)的关系⑴波长λ:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。
振动在一个周期内在介质中传播的距离等于波长。
⑵频率f:波的频率由波源决定,在任何介质中频率保持不变。
⑶波速v:单位时间内振动向外传播的距离。
波速的大小由介质决定。
波的干涉和衍射衍射:波绕过障碍物或小孔继续传播的现象。
产生显着衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。
干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。
产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。
稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。
判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。
二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。
干涉和衍射是波所特有的现象。
高中物理选修3-4重要知识点相对论的时空观经典物理学的时空观(牛顿物理学的绝对时空观):时间和空间是脱离物质而存在的,是绝对的,空间与时间之间没有任何联系。
相对论的时空观(爱因斯坦相对论的相对时空观):空间和时间都与物质的运动状态有关。
相对论的时空观更具有普遍性,但是经典物理学作为相对论的特例,在宏观低速运动时仍将发挥作用。
时间和空间的相对性(时长尺短)1.同时的相对性:指两个事件,在一个惯性系中观察是同时的,但在另外一个惯性系中观察却不再是同时的。
2.长度的相对性:指相对于观察者运动的物体,在其运动方向的长度,总是小于物体静止时的长度。
而在垂直于运动方向上,其长度保持不变。
高中物理机械振动和机械波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率..5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7.★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)8.波动问题多解性波的传播过程中时间上的周期性、空间上的周期性以及传播方向上的双向性是导致“波动问题多解性”的主要原因.若题目假设一定的条件,可使无限系列解转化为有限或惟一解9.波的衍射波在传播过程中偏离直线传播,绕过障碍物的现象.衍射现象总是存在的,只有明显与不明显的差异.波发生明显衍射现象的条件是:障碍物(或小孔)的尺寸比波的波长小或能够与波长差不多.10.波的叠加几列波相遇时,每列波能够保持各自的状态继续传播而不互相干扰,只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的矢量和.两列波相遇前、相遇过程中、相遇后,各自的运动状态不发生任何变化,这是波的独立性原理.11.波的干涉:频率相同的两列波叠加,某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象,叫波的干涉.产生干涉现象的条件:两列波的频率相同,振动情况稳定.[注意]①干涉时,振动加强区域或振动减弱区域的空间位置是不变的,加强区域中心质点的振幅等于两列波的振幅之和,减弱区域中心质点的振幅等于两列波的.振幅之差.②两列波在空间相遇发生干涉,两列波的波峰相遇点为加强点,波峰和波谷的相遇点是减弱的点,加强的点只是振幅大了,并非任一时刻的位移都大;减弱的点只是振幅小了,也并非任一时刻的位移都最小.如图若S1、S2为振动方向同步的相干波源,当PS1-PS2=nλ时,振动加强;当PS1-PS2=(2n+1)λ/2时,振动减弱。
高考精品系列之物理:专题13+机械振动和机械波(选修3-4)(解析版)
【2017年高考考点定位】近年来对机械振动的考查着重放在简谐运动的运动学特征和动力学特征和振动图象上;同时也通过简谐运动的规律考查力学的主干知识.对机械波的考查着重放在波的形成过程、传播规律、波长和波动图象及波的多解上;对波的叠加、干涉和衍射、多普勒效应也有涉及.实际上许多考题是振动与波的综合,考查振动图象与波动图象的联系和区别;同时也加强了对振动和波的联系实际的问题的考查。
【考点p k 】名师考点透析考点一、简谐运动【名师点睛】1. 概念:质点的位移和时间关系遵守正弦函数规律,即它的振动图像也就是位移时间图像是一条正弦曲线。
相关物理量:使质点回到平衡位置的力即为回复力,回复力的方向总是指向平衡位置,大小与偏离平衡位置的位移成正比即F kx =-,质点偏离平衡位置的最大位移即振幅A ,质点振动过程偏离平衡位置的位移满足sin(t )x A ωφ=+,φ代表质点振动的初相位,t ωφ+代表振动的相位。
2. 振动图像如下:从振动图像中可以找到质点振动的振幅A ,振动的周期T ,偏离平衡位置的位移sin(t )x A ωφ=+中的2Tπω=,从振动图像中可以看到质点在任一时刻所在的位置,当质点位置在时间轴以上,表示位移x 为正方向,那么回复力F kx =-即为负方向,加速度F a m=也是负方向,而且随位移增大,回复力增大加速度增大,但是速度逐渐减小,图像斜率表示速度大小和方向,平衡位置速度最大,偏离平衡位置位移最大时速度最小等于0,质点的运动方向根据图像斜率判断,斜率位置及运动方向为正方向,斜率为负极运动方向为负方向。
3. 单摆:单摆摆角小于10即可看做简谐运动,单摆周期2T =,即单摆摆动的周期与振幅无关,与摆球质量无关,摆长l 是指从摆球球心到悬点的距离,g 为当地重力加速度。
秒摆周期为2s 。
4. 受迫振动和共振:质点在周期性外力驱动下的振动为受迫振动,受迫振动的频率等于驱动力频率,与固有频率无关。
高中物理-【机械波与机械振动】知识点总结
103(4)简谐运动的两种模型 模型弹簧振子单摆示意图简谐 运动 条件①弹簧质量可忽略 ②无摩擦等阻力 ③在弹簧弹性限度内①摆线为不可伸缩的轻细线 ②无空气等的阻力 ②最大摆角小于10° 回复力弹簧的弹力提供F=kx 摆球重力沿切向的分力 F 回=-mg sin θ=-mg lx 平衡 位置弹簧处于原长处最低点周期与振幅无关T =2πL g L 为摆长,表示从悬点到摆球重心的距离。
简谐运动的特点受力 特征 回复力F =-kx ,F (或a )的大小与x 的大小成正比,方向相反运动 特征 靠近平衡位置时,a 、F 、x 都减小,v 增大;远离平衡位置时,a 、F 、x 都增大,v 减小能量 特征振幅越大,能量越大。
在运动过程中,系统的动能和势能相互转化,机械能守恒选修3-4 周期性特征质点的位移、回复力、加速度和速度随时间做周期性变化,变化周期就是简谐运动的周期T;动能和势能也随时间做周期性变化,其变化周期为T2对称性特征关于平衡位置O对称的两点,速度的大小、动能、势能相等,相对平衡位置的位移大小相等;由对称点到平衡位置O用时相等2.简谐运动的公式和图象(1)简谐运动的表达式①动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。
②运动学表达式:x=Asin(ωt+φ),其中A代表振幅,ω=2πf表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相。
(2)简谐运动的图象①从平衡位置开始计时,函数表达式为x=Asinωt,图象如图甲所示。
②从最大位移处开始计时,函数表达式为x=Acosωt,图象如图乙所示。
(3)根据简谐运动图象可获取的信息①振幅A、周期T(或频率f)和初相位φ(如图所示)。
②某时刻振动质点离开平衡位置的位移。
③某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度的大小和速度的方向,速度的方向也可根据下一时刻物体的位移的变化来确定。
物理机械波知识点总结
物理机械波知识点总结导读:高中物理选修3-4机械波重要知识点描述机械波的物理量——波长、波速和频率(周期)的关系⑴波长λ:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。
振动在一个周期内在介质中传播的距离等于波长。
⑵频率f:波的频率由波源决定,在任何介质中频率保持不变。
⑶波速v:单位时间内振动向外传播的距离。
波速的大小由介质决定。
波的干涉和衍射衍射:波绕过障碍物或小孔继续传播的现象。
产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。
干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。
产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。
稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。
判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。
二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。
干涉和衍射是波所特有的现象。
高中物理选修3-4重要知识点相对论的时空观经典物理学的时空观(牛顿物理学的绝对时空观):时间和空间是脱离物质而存在的,是绝对的,空间与时间之间没有任何联系。
相对论的时空观(爱因斯坦相对论的相对时空观):空间和时间都与物质的运动状态有关。
相对论的时空观更具有普遍性,但是经典物理学作为相对论的特例,在宏观低速运动时仍将发挥作用。
时间和空间的相对性(时长尺短)1.同时的相对性:指两个事件,在一个惯性系中观察是同时的,但在另外一个惯性系中观察却不再是同时的。
2.长度的相对性:指相对于观察者运动的物体,在其运动方向的长度,总是小于物体静止时的长度。
而在垂直于运动方向上,其长度保持不变。
高中物理机械振动和机械波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)8.波动问题多解性波的传播过程中时间上的周期性、空间上的周期性以及传播方向上的双向性是导致“波动问题多解性”的主要原因.若题目假设一定的条件,可使无限系列解转化为有限或惟一解9.波的衍射波在传播过程中偏离直线传播,绕过障碍物的现象.衍射现象总是存在的,只有明显与不明显的差异.波发生明显衍射现象的条件是:障碍物(或小孔)的尺寸比波的波长小或能够与波长差不多.10.波的叠加几列波相遇时,每列波能够保持各自的.状态继续传播而不互相干扰,只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的矢量和.两列波相遇前、相遇过程中、相遇后,各自的运动状态不发生任何变化,这是波的独立性原理.11.波的干涉:频率相同的两列波叠加,某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象,叫波的干涉.产生干涉现象的条件:两列波的频率相同,振动情况稳定.[注意]①干涉时,振动加强区域或振动减弱区域的空间位置是不变的,加强区域中心质点的振幅等于两列波的振幅之和,减弱区域中心质点的振幅等于两列波的振幅之差.②两列波在空间相遇发生干涉,两列波的波峰相遇点为加强点,波峰和波谷的相遇点是减弱的点,加强的点只是振幅大了,并非任一时刻的位移都大;减弱的点只是振幅小了,也并非任一时刻的位移都最小. 如图若S1、S2为振动方向同步的相干波源,当PS1-PS2=nλ时,振动加强;当PS1-PS2=(2n+1)λ/2时,振动减弱。
人教版(新课标)高中物理选修3-4——机械波
例4 一列横波在x轴上传播,t1=0和t2=0.005s时刻 的波形分别如图中实线和虚线所示。
(1)求这列波的波速; (2)若波速为6000m/s,求波的传播方向。
1.图(a)为一列简谐横波在t=0.10s时刻的波形图, P是平衡位置在x=1.0m处的质点,Q是平衡位置在 x=4.0m处的质点;图(b)为质点Q的振动图象,下 列说法正确的是 。
3、机械波的传播特征:
(1)机械波传播的是振动的形式和能量。 质点只在各自的平衡位置附近振动,并不随波迁移。
(2)机械波在传播过程中,介质中各质点的振动周期和频 率都与波源的振动周期和频率相同 (3)由波源向远处的各质点都依次重复波源的振动
前带后,后跟前,振动形式向后传波由一种介质进入另一种介质 频率不变,波长和波速均改变
4波长、波速和频率的关系
1)、波长λ 由波速和频率共同决定 2)、波速v 波速只与介质有关 与频率无关
它是振动状态在介质中的传播速度;波在同种 均匀 介质中匀速传 3)、频率f 只与波源有关
三者之间的关系:v=λf=λ/T=ΔX/Δt
二、波动图象
1、物理意义:表示了一列波在某一时刻沿着波的传播方 向上介质中各质点离开平衡位置的位移情况,是某一时刻 在波的传播方向各质点运动情况的“定格”。
表示一个波长
6、机械波的干涉和衍射 1)干涉 产生条件:频率相同的相干波源
振动加强点始终加强 2)衍射 产生明显衍射的条件:障碍物(或孔缝)的 尺寸跟波长相 差不多或比波长更小
7、声波 声波是纵波;频率小于20HZ为次声波;频率大
于20000HZ的超声波;多普勒效应观察者与波源 靠近时接受频率变大
(完整版)机械振动和机械波测试题
高二物理选修3-4《机械振动、机械波》试题班级: 姓名: 成绩:一、选择题1.关于机械振动和机械波下列叙述正确的是:( ) A .有机械振动必有机械波 B .有机械波必有机械振动C .在波的传播中,振动质点并不随波的传播发生迁移D .在波的传播中,如振源停止振动,波的传播并不会立即停止 2.关于单摆下面说法正确的是( )A .摆球运动的回复力总是由摆线的拉力和重力的合力提供的B .摆球运动过程中经过同一点的速度是不变的C .摆球运动过程中加速度方向始终指向平衡位置D .摆球经过平衡位置时加速度不为零3.两个质量相同的弹簧振子,甲的固有频率是3f .乙的固有频率是4f ,若它们均在频率为5f 的驱动力作用下做受迫振动.则( )A 、振子甲的振幅较大,振动频率为3fB 、振子乙的振幅较大.振动频率为4fC 、振子甲的振幅较大,振动频率为5fD 、振子乙的振幅较大.振动频率为5f 4.如图所示,水平方向上有一弹簧振子, O 点是其平衡位置,振子在a 和b 之间做简谐运动,关于振子下列说法正确的是( ) A .在a 点时加速度最大,速度最大 B .在O 点时速度最大,位移最大 C .在b 点时位移最大,回复力最大 D .在b 点时回复力最大,速度最大5.一质点在水平方向上做简谐运动。
如图,是该质点在s 40-内的振动图象,下列叙述中正确的是( ) A .再过1s ,该质点的位移为正的最大值 B .再过2s ,该质点的瞬时速度为零 C .再过3s ,该质点的加速度方向竖直向上 D .再过4s ,该质点加速度最大 6.一质点做简谐运动时,其振动图象如图。
由图可知,在t 1和t 2时刻,质点运动的( ) A .位移相同 B .回复力大小相同C .速度相同D .加速度相同7.一质点做简谐运动,其离开平衡位置的位移x 与时间t 的关系如图所示,由图可知( )A .质点振动的频率为4HzB .质点振动的振幅为2cmC .在t=3s 时刻,质点的速率最大D .在t=4s 时刻,质点所受的合力为零8.如图所示,为一列沿x 轴正方向传播的机械波在某一时刻的图像,由图可知,这列波的振幅A 、波长λ和x=l 米处质点的速度方向分别为:( )4cm x /s t /x t 1t2t 00x 0-cm x /st /02-13524A.A=O.4 m λ=1m 向上B.A=1 m λ=0.4m 向下C.A=O.4 m λ=2m 向下D.A=2 m λ=3m 向上9.一列波沿直线传播,在某一时刻的波形图如图所示,质点A的位置与坐标原点相距0.5 m,此时质点A沿y轴正方向运动,再经过0.02s将第一次达到最大位移,由此可见:()A.这列波波长是2 mB.这列波频率是50 HzC.这列波波速是25 m/sD.这列波的传播方向是沿x轴的负方向10.如图所示,为一在水平方向传播的简谐波,已知此时质点F向下运动,则以下说法正确的是()A.波向右传播B.质点H与F的运动方向相同C.质点C比B先回到平衡位置D.此时质点C的加速度为011.图甲为一列简谐横波在某一时刻的波形图,图乙为质点P以此时刻为计时起点的振动图象。
高中物理3-4机械运动机械波部分知识点习题
机械运动与机械波Ⅰ.基础巩固一、机械振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动.振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件. 产生振动的条件:①振动物体受到回复力作用;②阻尼足够小;2、回复力:振动物体所受到的总是指向平衡位置的合外力.①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零.3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。
“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)二、简谐振动及其描述物理量1、振动描述的物理量(1)位移:由平衡位置指向振动质点所在位置的有向线段.①是矢量,其最大值等于振幅;②始点是平衡位置,所以跟回复力方向永远相反;③位移随时间的变化图线就是振动图象.(2)振幅:离开平衡位置的最大距离.①是标量; ②表示振动的强弱;(3)周期和频率:完成一次全变化所用的时间为周期T ,每秒钟完成全变化的次数为频率f . ①二者都表示振动的快慢;②二者互为倒数;T=1/f ;③当T 和f 由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关.2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动.①受力特征:回复力F=—KX 。
②运动特征:加速度a=一kx /m ,方向与位移方向相反,总指向平衡位置。
高中物理选修3-4机械波知识点
高中物理选修3-4机械波知识点机械波是物理选修3-4课本的内容,高中生要学习哪些知识点?下面是店铺给大家带来的高中物理选修3-4机械波知识点,希望对你有帮助。
高中物理选修3-4机械波知识点1、机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。
2、横波和纵波:质点的振动方向与波的传播方向垂直的叫横波。
质点的振动方向与波的传播方向在同一直线上的叫纵波。
气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波,声波的频率从20到2万赫兹。
3、机械波的特点:⑴每一质点都以它的平衡位置为中心做简振振动;后一质点的振动总是落后于带动它的前一质点的振动。
⑵波只是传播运动形式(振动)和振动能量,介质并不随波迁移。
4、横波的图象:用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。
简谐波的图象是正弦曲线,也叫正弦波。
简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。
波形曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图象则表示介质中“某个质点”在“各个时刻”的位移。
高中物理选修3-4重要知识点①简谐振动物体的周期和频率是由振动系统本身的条件决定的。
②单摆周期公式中的l是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。
单摆周期公式中的g,由单摆所在的空间位置决定,还由单摆系统的运动状态决定。
所以g也叫等效重力加速度。
由此可知,地球表面不同位置、不同高度,不同星球表面g值都不相同,因此应求出单摆所在地的等效g¢值代入公式,即g不一定等于9.8m/s2。
单摆系统运动状态不同g值也不相同。
例如单摆在向上加速发射的航天飞机内,设加速度为a,此时摆球处于超重状态,沿圆弧切线的回复力变大,摆球质量不变,则重力加速度等效值g¢=g+a。
再比如在轨道上运行的航天飞机内的单摆、摆球完全失重,回复力为零,则重力加速度等效值g¢=0,周期无穷大,即单摆不摆动了。
最新高中物理选修3-4机械振动-机械波-光学知识点(好全)
机械振动一、基本概念1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力F :使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个性质力沿振动方向的合力或是某一个性质力沿振动方向的分力。
(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力)3.平衡位置:回复力为零的位置(物体原来静止的位置)。
物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。
4.位移x :相对平衡位置的位移。
它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。
5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
(1)动力学表达式为:F = -kxF=-kx 是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
(2)运动学表达式:x =A sin(ωt +φ)(3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。
(4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置的(或沿振动方向的)加速度mkx a -=.由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。
故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。
(5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向不一定。
(6)简谐运动的对称性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。
高中物理选修34知识点机械振动与机械波解析
机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确明白得简谐运动图象的物理含义,明白简谐运动的图象是一条正弦或余弦曲线。
二、知识点说明1.弹簧振子(简谐振子):(1)平稳位置:小球偏离原先静止的位置;(2)弹簧振子:小球在平稳位置周围的往复运动,是一种机械运动,如此的系统叫做弹簧振子。
(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。
2.弹簧振子的位移—时刻图像弹簧振子的s—t图像是一条正弦曲线,如下图。
3.简谐运动及其图像。
(1)简谐运动:若是质点的位移与时刻的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,如此的振动叫做简谐运动。
(2)应用:心电图仪、地震仪中绘制地震曲线装置等。
三、典型例题例1:简谐运动属于以下哪一种运动( )A.匀速运动 B.匀变速运动C.非匀变速运动 D.机械振动解析:以弹簧振子为例,振子是在平稳位置周围做往复运动,而且平稳位置处合力为零,加速度为零,速度最大.从平稳位置向最大位移处运动的进程中,由F=-kx可知,振子的受力是转变的,因此加速度也是转变的。
故A、B错,C正确。
简谐运动是最简单的、最大体的机械振动,D正确。
答案:CD简谐运动的描述一、学习目标1.明白简谐运动的振幅、周期和频率的含义。
2.明白振动物体的固有周期和固有频率,并正确明白得与振幅无关。
二、知识点说明1.描述简谐振动的物理量,如下图:(1)振幅:振动物体离开平稳位置的最大距离,。
(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,以后又回到O,如此一个完整的振动进程称为一次全振动。
(3)周期:做简谐运动的物体完成一次全振动所需要的时刻,符号T表示,单位是秒(s)。
(4)频率:单位时刻内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。
(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。
物理选修3-4机械波重点考点难点
机械波一、波的形成和传播[考点1 机械波的形成和传播]1、如图所示为沿水平方向的介质中的部分质点,每相邻两质点的距离相等,其中O 为波源.设波源的振动周期为T,自波源通过平衡位置竖直向下振动时开始计时,经过T/4,质点1开始振动,则下列关于各质点的振动和介质中的波的说法中错误的是〔 B 〕A .介质中所有质点的起振方向都是竖直向下的,且图中质点9起振最晚B .图中所画出的质点起振时间都是相同的,起振的位置和起振的方向是不同的C .图中质点8的振动完全重复质点7的振动,只是质点8振动时,通过平衡位置或最大位移的时间总比质点7通过相同位置时落后T/4D .只要图中所有质点都已振动了,质点1与质点9的振动步调就完全一致,但如果质点1发生的是第100次振动,则质点9发生的就是第98次振动2、如图是某绳波形成过程的示意图,1、2、3、4……为绳上的一系列等间距的质点,绳处于水平方向.质点1在外力作用下沿竖直方向做简谐运动,带动2、3、4……各个质点依次上下振动,把振动从绳的左端传到右端.t =0时质点1开始竖直向上运动,经过四分之一周期,质点5开始运动.下列判断正确的是〔C 〕A .质点6开始振动时的运动方向向下B .2T t =时质点6的加速度方向向上 C .43T t =时质点10的运动方向向上 D .T t =时质点16开始运动[考点2 振动和波动的区别和联系]3、关于振动和波动的关系,下列说法正确的是〔 A 〕A 、振动是波的成因,波是振动的传播B 、振动是多个质点呈现的运动现象,波是许多质点联合起来呈现的运动现象C 、波的传播速度就是质点的振动速度D 、波源停止振动时,波立即停止传播4、关于质点的振动和波的传播,下列说法正确的是〔 C 〕A 、介质中的质点随波的传播而迁移B 、质点振动的方向总是垂直于波的传播方向C 、波不但传递能量,还能传递信息D 、一切波的传播均需要介质左 右1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 2 0 9二、波的图像[考点1 波图像的理解]5、如图所示是一列简谐横波某时刻t0的波形图,试根据波形图回答下列问题:〔1〕该时刻加速度最大的质点有哪些?〔2〕速度最大的质点有哪些?〔3〕振动方向相同的质点有哪些?这些点的分布有什么规律?〔4〕如果这列波沿x轴负方向传播,质点3受到合外力的方向如何?6、在均匀介质中有一个振源S,它以50H Z的频率上下振动,该振动以40m/s的速度沿弹性绳向左、右两边传播.开始时刻S的速度方向向下,试画出在t=0.03s时刻的波形.7.[13年高考]如图,t=0时刻,波源在坐标原点从平衡位置沿y轴正方向开始振动,S 振动周期为0.4s,在同一均匀介质中形成沿x轴正、负两方向传播的简谐横波.下图中能够正确表示t=0.6时波形的图是[ C ][考点2 振动图和波形图的综合应用]8.[12年高考]一列简谐波沿x轴传播,t=0时刻的波形如图甲所示,此时质点P正沿y轴负方向运动,其振动图像如图乙所示,则该波的传播方向和波速分别是[ A ]A.沿x轴负方向,60m/s B.沿x轴正方向,60m/sC.沿x轴负方向,30 m/s D.沿x轴正方向,30m/s9、如图所示为一列简谐横波在t = 0时刻的波形图,已知这列波沿x轴正方向传播,波速为20 m / s,P是离原点为2 m的一个质点,则t = 0.17 s时刻,质点P的运动情况是[ A ]A.速度和加速度都沿-y方向B.速度沿+y方向,加速度沿-y方向C.速度和加速度均在增大D.速度正在减小,加速度正在增大10、一列简谐横波沿x轴正向传播,传到M点时波形如图所示,再经0.6s,N点开始振动,则该波的振幅A和频率f [ D ]A.A=1m f=5HZ B.A=0.5m f=5HZC.A=1m f=2.5 HZ D.A=0.5m f=2.5 HZ11、一列波沿直线传播,在某一时刻的波形图如图所示,质点A的位置与坐标原点相距0.5 m,此时质点A沿y轴正方向运动,再经过0.02 s将第一次达到最大位移,由此无法判断[ B]A.这列波波长是2 mB.这列波频率是50 HzC.这列波波速是25 m/sD.这列波的传播方向是沿x轴的负方向12.一简谐横波在x 轴上传播,波源振动周期T =0.1 s,在某一时刻的波形如图所示,且此时a 点向下运动.则[ B ]A.波速为20 m/s,波沿x 轴正向传播B.波速为20 m/s,波沿x 轴负向传播C.波速为10 m/s,波沿x 轴负向传播D.波速为10 m/s,波沿x 轴正向传播三、波的多解问题[考点1 波的传播方向不确定性引起多解问题]13、[10年高考]一列简谐横波在t =0时刻的波形如图中的实线所示,t =0.02s 时刻的波形如图中虚线所示.若该波的周期T 大于0.02s,则该波的传播速度可能是[ ] A .2m/s B .3m/s C .4m/s D .5m/s14、横波如图所示,t 1时刻波形为图中实线所示;t 2时刻波形如图中虚线所示.已知Δt=t 2-t 1=0.5s,且3T <t 2-t 1<4T,问:〔1〕如果波向右传播,波速多大? 〔2〕如果波向左传播,波速多大?〔1〕如果波向右传播,则t 时间内传播了〔n+1/4〕T,即t=13/4T,T=4/13t 波长λ=4m 波速v=λ/T=26m/s〔2〕如果波向左传播,则t 时间内传播了〔n+3/4〕T,即t=15/4T,T=4/15t 波速v=λ/T=30m/s15、<10分>一列横波在x 轴方向传播,t 1=0时刻的波形图如图实线所示,t 2=0.5s 时刻的波形图如图虚线所示,已知波的周期大于0.5s,求这列波的波速.解:由Δt =0.5s <T,即ΔX <λ<1>如果波是向左传播的,从图可以看出虚线所示的波形相当于实线所示的波形向左移动了2m<1/4的波长>,则波速的大小V 1=ΔX /Δt=2/0.5<m/s>=4m/s<2> 如果波是向右传播的,从图可以看出虚线所示的波形相当于实线所示的波形向右移动了6m<3/4的波长>,则波速的大小V 2=ΔX /Δt=6/0.5<m/s>=12m/s[考点2 波的周期性形成多解问题]16、一列简谐横波沿直线传播,该直线上的a 、b 两点相距4.42 m.图中实、虚两条曲线分别表示平衡位置在a 、b 两点处质点的振动曲线.从图示可知[ C ]A .此列波的频率可能是10HzOy /cmx /cm481216 t =0t =0.02s2-2x/mx/mB .此列波的波长一定是0.1mC .此列波的传播速度可能是34 m/sD .a 点一定比b 点距波源近17.一列简谐横波沿直线由a 向b 传播,相距10.5 m 的a 、b 两处的质点振动图象如图中a 、b 所示,则 [ D ] A .该波的振幅可能是20 cmB .该波的波长可能是8.4 mC .该波的波速可能是10.5 m/sD .该波由a 传播到b 可能历时7 s18.如图所示是一列横波上A 、B 两质点的振动图象,该波由A 传向B,两质点沿波的传播方向上的距离Δx=4.0m,波长大于3.0m,求这列波的波速. [解析]由振动图象可知,质点振动周期T=0.4s取t=0时刻分析,质点A 经平衡位置向上振动,质点B 处于波谷,设波长为λ则14x n λλ∆=+〔n=0、1、2、3……〕 所以该波波长为416m4141x n n λ∆==++ 因为有λ>3.0m 的条件,所以取n =0,1当n =0时,116m λ=,波速1140m /s v Tλ==当n =1时,13.2m λ=,波速228.0m /s v Tλ==19、如图所示为一列简谐横波在t=0时刻的图象.此时质点P 的运动方向沿y 轴负方向,且当t=0.55s 时质点P 恰好第3次到达y 轴正方向最大位移处.问:〔1〕该简谐横波的波速v 的大小和方向如何? 〔2〕从t=0至t=1.2s,质点Q 运动的路程L 是多少?〔3〕当t=1.2s 时,质点Q 相对于平衡位置的位移s 的大小是多少? 〔1〕此波沿x 轴负向传播在t1=0到t2=0.55s 这段时间里,质点P 恰好第3次到达y 正方向最大位移处则有 <2+错误!>T=0.55s 解得 T =0.2sOy /cm5-50.20.4/s0.20.4t /sOy /cm5-5质点 质点y /cmx /m0 0.2 P-Q0.42.5由图象可得简谐波的波长为λ=0.4m则波速 v= 错误! =2m/s〔2〕在t1=0至t3=1.2s这段时间,质点Q恰经过了6个周期,即质点Q回到始点,由于振幅A=5cm 所以质点Q运动的路程为 L=4A×6=4×5×6cm=120cm〔3〕质点Q经过6个周期后恰好回到始点,则相对于平衡位置的位移为s=2.5cm20.图所示为一列简谐波在t1=0时刻的图象.此时波中质点M的运动方向沿y轴负方向,且t2=0.55 s时质点M恰好第3次到达y轴正方向最大位移处.试求:<1>此波沿什么方向传播?<2>波速是多大?<3>从t1=0至t3=1.2 s,质点N运动的路程和t3时刻相对于平衡位置的位移分别是多少?解析:<1>此波沿x轴负方向传播.<2>在t1=0到t2=0.55 s这段时间时,质点M恰好第3次到达沿y轴正方向的最大位移处,则有:<2+错误!>T=0.55 s,得T=0.2 s.由图象得简谐波的波长为λ=0.4 m,则波速v=错误!=2 m/s.<3>在t1=0至t3=1.2 s这段时间,波中质点N经过了6个周期,即质点N回到始点,所以走过的路程为s=6×5×4 cm=120 cm.相对于平衡位置的位移为2.5 cm.。
高中物理选修3-4机械振动练习题典型题带答案
高中物理机械振动练习题一.选择题(共25小题)1.如图所示,PQ为一竖直弹簧振子振动路径上的两点,振子经过P点时的加速度大小为6m/s2,方向指向Q点;当振子经过Q点时,加速度的大小为8m/s2,方向指向P点。
若PQ之间的距离为14cm,已知振子的质量为1kg,则以下说法正确的是()A.振子经过P点时所受的合力比经过Q点时所受的合力大B.该弹簧振子的平衡位置在P点正下方7cm处C.振子经过P点时的速度比经过Q点时的速度大D.该弹簧振子的振幅一定为8cm2.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m的小球,若升降机在匀速运行过程中突然停止,并以此时为零时刻,在后面一段时间内传感器显示弹簧弹力F随时间t变化的图象如图乙所示,g为重力加速度,忽略一切阻力,则()A.升降机停止前在向上运动B.0~t1和时间内小球处于失重状态,t1~t2时间内小球处于超重状态C.t2~t3的时间内弹簧弹性势能变化量等于重力势能变化量D.t3~t4时间内小球向下运动,加速度减小3.如图所示图线Ⅰ、图线Ⅱ为两单摆分别做受迫振动的共振曲线,下列判断正确的是()A.若摆长为1m的单摆在地球上做受迫振动,则其共振曲线为图线ⅠB.若图线Ⅱ是单摆在地球上做受迫振动的共振曲线,则该单摆摆长约为0.5mC.若两单摆分别在月球上和地球上做受迫振动,则图线Ⅰ一定是在月球上的单摆的共振曲线D.若两单摆是在地球上同一地点做受迫振动,则两单摆摆长之比h1:h2=25:44.如图所示,水平弹簧振子以坐标原点O为水平位置,沿x轴在M、N之间做简谐运动,其运动方程为x=5sin(2πt+)cm,则()A.t=0.5s时,振子的位移最小B.t=1.5s时,振子的加速度最小C.t=2.25s时,振子的速度沿x轴负方向D.t=0到t=1.5s的时间内,振子通过的路程为15cm5.甲、乙两位同学分别使用图中左图所示的同一套装置,观察单摆做简谐运动时的振动图象,已知两人实验时所用的摆长相同,落在同一木板上的细砂分别形成的曲线如图N1、N2所示。
高中物理3-4机械运动机械波部分知识点及习题
机械运动与机械波Ⅰ.基础巩固一、机械振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动.振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件. 产生振动的条件:①振动物体受到回复力作用;②阻尼足够小;2、回复力:振动物体所受到的总是指向平衡位置的合外力.①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零.3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。
“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)二、简谐振动及其描述物理量1、振动描述的物理量(1)位移:由平衡位置指向振动质点所在位置的有向线段.①是矢量,其最大值等于振幅;②始点是平衡位置,所以跟回复力方向永远相反;③位移随时间的变化图线就是振动图象.(2)振幅:离开平衡位置的最大距离.①是标量; ②表示振动的强弱;(3)周期和频率:完成一次全变化所用的时间为周期T ,每秒钟完成全变化的次数为频率f .①二者都表示振动的快慢;②二者互为倒数;T=1/f ;③当T 和f 由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关.2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动.①受力特征:回复力F=—KX 。
②运动特征:加速度a=一kx /m ,方向与位移方向相反,总指向平衡位置。
高考物理力学知识点之机械振动与机械波技巧及练习题附答案解析
高考物理力学知识点之机械振动与机械波技巧及练习题附答案解析一、选择题1.如图所示为一列沿x 轴负方向传播的简谐横波,实线为0t =时刻的波形图,虚线为0.6s t =时的波形图,波的周期0.6s T >,则:( )A .波的周期为2.4sB .波的速度为10 m/s 3C .在0.5 s =t 时,Q 点到达平衡位置D .在0.5 s =t 时,Q 点到达波峰位置 2.做简谐运动的物体,下列说法正确的是 A .当它每次经过同一位置时,位移可能不同 B .当它每次经过同一位置时,速度可能不同 C .在一次全振动中通过的路程不一定为振幅的四倍 D .在四分之一周期内通过的路程一定为一倍的振幅 3.如图所示,一单摆在做简谐运动,下列说法正确的是A .单摆的幅度越大,振动周期越大B .摆球质量越大,振动周期越大C .若将摆线变短,振动周期将变大D .若将单摆拿到月球上去,振动周期将变大4.如图所示,弹簧振子以O 点为平衡位置,在M 、N 两点之间做简谐运动.下列判断正确的是( )A .振子从O 向N 运动的过程中位移不断减小B .振子从O 向N 运动的过程中回复力不断减小C .振子经过O 时动能最大D .振子经过O 时加速度最大5.图甲所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图象,由图可知下列说法中正确的是A .在t =0.2s 时,弹簧振子运动到O 位置B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 的时间内,弹簧振子的动能持续地减小D .在t =0.2s 与t =0.6s 两个时刻,弹簧振子的加速度相同6.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2Tt ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于mkx m M+ 7.一列简谐横波沿x 轴传播,某时刻的波形如图所示,质点a 、b 均处于平衡位置,质点a 正向上运动.则下列说法正确的是A .波沿x 轴负方向传播B .该时刻质点b 正向上运动C .该时刻质点a 、b 的速度相同D .质点a 、b 的振动周期相同8.关于下列四幅图的说法中,正确的是( )A.图甲中C摆开始振动后,A、B、D三个摆中B摆的振幅最大B.图乙为两列水波产生的干涉图样,这两列水波的频率可以不同C.图丙是波的衍射现象,左图的衍射更明显D.图丁是声波的多普勒效应,该现象说明,当观察者与声源相互靠近时,他听到的声音频率变低了9.图甲为一列简谐横波在某一时刻的波形图.a、b两质点的横坐标分别为x=2m和x=6m,图乙为质点b从该时刻开始计时的振动图象.下列说法正确的是()A.该波沿+x方向传播,波速为1m/sB.质点a经4s振动的路程为4mC.此时刻质点a的速度沿-y方向D.质点a在t =2 s时速度最大10.如图是观察水面波衍射的实验装置,AC 和 BD 是两块挡板,AB 是一个孔,O 是波源。
物理3-4知识点归纳
第十一章 机械振动一、机械振动:(一)简谐运动:1、简谐运动的特征:1)运动学特征:振动物体离开平衡位置的位移随时间按正弦规律变化在振动中位移常指是物体离开平衡位置的位移2)动力学特征:回复力的大小与振动物体离开平衡的位移成正比,方向与位移方向相反(指向平衡位置)kx F -=①回复力:使振动物体回到平衡位置的力叫做回复力。
②回复力是根据力的效果来命名的。
③回复力的方向总是指向平衡位置。
④回复力可以是物体所受的合外力,也可以是几个力的合力,也可以是一个力,或者某个力的分力。
⑤由回复力产生的加速度与位移成正比,方向与位移方向相反x m k a -=⑥证明一个物体是否是作简谐运动,只需要看它的回复力的特征2、简谐运动的运动学分析:1)简谐运动的运动过程分析:(1)常用模型:弹簧振子(其运动过程代表了简谐运动的过程)(2)运动过程:简谐运动的基本过程是两个加速度减小的加速运动过程和两个加速度增大的减速运动过程(3)简谐运动的对称性:做简谐运动的物体在经过关于平衡位置对称的两点时,两处的加速度、速度、回复力大小相等 (大小相等、相等)。
动能、势能相等(大小相等、相等)。
2)表征简谐运动的物理量:(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。
①振幅是标量。
②振幅是反映振动强弱的物理量。
(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。
②单位时间内完成全振动的次数叫做全振动的频率。
它们的关系是T=1/f 。
在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅3)简谐运动的表达式:)sin(ϕω+=t A x4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。
反映了振动质点在所有时刻的位移。
从图像中可得到的信息:①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小③加速度:方向→与位移方向相反;大小→与位移成正比3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。
(完整版)高中物理第11章高中物理选修3-4机械振动和机械波光学典型例题(含答案)【经典】
选修3-4 机械振动和机械波 电磁振荡与电磁波 光现象 相对论知识点1:简谐运动的特点(各物理量的变化及对称性)1.做简谐振动的物体,当它每次经过同一位置时,可能不同的物理量是( ). A .位移 B .速度 C .加速度 D .回复力 答案 B 2.两个相同的单摆静止于平衡位置,使摆球分别以水平初速度v 1、v 2(v 1>v 2)在竖直平面内做小角度摆动,它们的频率与振幅分别为f 1、f 2和A 1、A 2,则( ).答案 CA .f 1>f 2,A 1=A 2B .f 1<f 2,A 1=A 2C .f 1=f 2,A 1>A 2D .f 1=f 2,A 1<A 21.(单选)若单摆的摆长适当变大,摆球的质量由20 g 增加为40 g ,摆球离开平衡位置的最大角度不变,则单摆振动的( ).答案 BA .频率不变,振幅不变B .频率变小,振幅变大C .频率变小,振幅不变D .频率变大,振幅变大 3.(单选)如图所示,两根完全相同的弹簧和一根张紧的细线将甲、乙两物块束缚在光滑水平面上,已知甲的质量大于乙的质量.当细线突然断开后,两物块都开始做简谐运动,在运动过程中( ).答案 C A .甲的振幅大于乙的振幅 B .甲的振幅小于乙的振幅C .甲的最大速度小于乙的最大速度D .甲的最大速度大于乙的最大速度3.如图所示,弹簧振子在B 、C 间振动,O 为平衡位置,BO =OC =5 cm ,若振子从B 到C 的运动时间是1 s ,则下列说法正确的是( ).答案 D A .振子从B 经O 到C 完成一次全振动 B .振动周期是1 s ,振幅是10 cmC .经过两次全振动,振子通过的路程是20 cmD .从B 开始经过3 s ,振子通过的路程是30 cm2.如图所示,弹簧振子在振动过程中,振子从a 到b 历时0.2 s ,振子经a 、b 两点时速度相同,若它从b 再回到a 的最短时间为0.4 s ,则该振子的振动频率为( ).答案 B A .1 Hz B .1.25 Hz C .2 Hz D .2.5 Hz如图,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a 、b 两个小物块粘在一起组成的.物块在光滑水平面上左右振动,振幅为A 0,周期为T 0.当物块向右通过平衡位置时,a 、b 之间的粘胶脱开;以后小物块a 振动的振幅和周期分别为A 和T ,则A ________A 0(填“>”、“<”或“=”), T ________T 0(填“>”、“<”或“=”).答案 < <14.如图所示,质量为M 、倾角为α的斜面体(斜面光滑且足够长)放在粗糙的水平地面上,底部与地面的动摩擦因数为μ,斜面顶端与劲度系数为k 、自然长度为L 的轻质弹簧相连,弹簧的另一端连接着质量为m 的物块.压缩弹簧使其长度为34L 时将物块由静止开始释放,且物块在以后的运动中,斜面体始终处于静止状态.重力加速度为g .(1)求物块处于平衡位置时弹簧的长度;(2)选物块的平衡位置为坐标原点,沿斜面向下为正方向建立坐标轴,用x 表示物块相对于平衡位置的位移,证明物块做简谐运动; (3)求弹簧的最大伸长量;解析 (1)设物块在斜面上平衡时,弹簧伸长量为ΔL ,有mg sin α-k ΔL =0解得ΔL =mg sin αk ,此时弹簧的长度为L +mg sin αk ,(2)当物块的位移为x 时,弹簧伸长量为x +ΔL ,物块所受合力为F 合=mg sin α-k (x +ΔL ),联立以上各式可得F 合=-kx 可知物块做简谐运动。
备战高考物理选修34第十一章机械振动(含解析)
2019备战高考物理选修3-4第十一章-机械振动(含解析)一、单选题1.在飞机的发展史中有一个阶段,飞机上天后不久,飞机的机翼(翅膀)很快就抖动起来,而且越抖越厉害.后来经过人们的探索,利用在飞机机翼前缘处装置一个配重杆的方法,解决了这一问题.在飞机机翼前装置配重杆的目的主要是()A. 加大飞机的惯性B. 使机体更加平衡C. 使机翼更加牢固D. 改变机翼的固有频率2.一砝码和一轻弹簧构成弹簧振子,图1所示的装置可用于研究该弹簧振子的受迫振动.匀速转动把手时,曲杆给弹簧振子以驱动力,使振子做受迫振动.把手匀速转动的周期就是驱动力的周期,改变把手匀速转动的速度就可以改变驱动力的周期.若保持把手不动,给砝码一向下的初速度,砝码便做简谐运动,振动图线如图2所示.当把手以某一速度匀速转动,受迫振动达到稳定时,砝码的振动图线如图3所示.若用T0表示弹簧振子的固有周期,T表示驱动力的周期,Y表示受迫振动达到稳定后砝码振动的振幅,则()A. 由图线可知T0=4s,振幅为8cmB. 由图线可知T0=8s,振幅为2cmC. 当T在4s附近时,Y显著增大;当T比4s小得多或大得多时,Y很小D. 当T在8s附近时,Y显著增大;当T比8s小得多或大得多时,Y很小3.一绳长为L的单摆,在平衡位置正上方(L—L′)的P处有一个钉子,如图所示,这个摆的周期是()A. B. C. D.4.摆长为l的单摆做简谐运动,若从某时刻开始计时(即取t=0),当振动至t=时,摆球恰具有负向最大速度,则单摆的振动图象是下图中的()A. B. C.D.5.如图是某振子作简谐振动的图象,以下说法中正确的是()A. 因为振动图象可由实验直接得到,所以图象就是振子实际运动的轨迹B. 由图象可以直观地看出周期、振幅,还能知道速度、加速度、回复力及能量随时间的变化情况C. 振子在B位置的位移就是曲线BC的长度D. 振子运动到B点时的速度方向即为该点的切线方向6.关于简谐运动,下列说说法中正确的是()A. 位移减小时,加速度减小,速度增大B. 位移方向总跟加速度方向相反,跟速度方向相同C. 物体的运动方向指向平衡位置时,速度跟位移方向相同,背向平衡位置时,速度跟位移方相反D. 水平弹簧振子朝左运动时,加速度方向跟速度方向相同,朝右运动时,加速度向跟速度方向相反7.如图甲所示,一列简谐横波以1m/s的速度由A向B传播,质点A、B间的水平距离x=3m.若t=0时质点A刚从平衡位置开始向上振动,其振动图象如图乙所示,则B点的振动图象为图中的()A. B.C. D.8.关于简谐运动的周期,频率,振幅,下列说法中哪些是正确的()A. 振幅是矢量,方向从平衡位置指向最大位移处B. 周期和频率的乘积是一个常数C. 振幅增加,周期也必然增加,而频率减小D. 频率与振幅有关9.如图所示,一根水平细钢丝两边固定,它下面悬挂三个摆长为l A=1.00m,l B=0.50m,l C=0.25m 的单摆,三个摆球相同,现用周期变化的外力作用于细钢丝上,已知.( g为当地的重力加速度)。
高中物理《机械运动与机械波》练习题(附答案解析)
高中物理《机械运动与机械波》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.图为一列简谐横波在传播过程中,某个质点开始振动以后的振动图像,根据该图像不能..得出()A.简谐波的波长B.简谐波的振幅C.简谐波的周期 D.波源的起振方向2.下列说法正确的是()A.烟花点火后升空,是地面对烟花的反作用力作用的结果B.红外线应用在遥感技术中,是利用了它穿透本领强的特性C.持续鸣笛的汽车靠近观察者时,观察者接收的频率比声源频率高D.光纤利用光的全反射原理,光纤由内芯和外套组成,内芯的折射率比外套的小3.下列关于多普勒效应的说法正确的是()A.医院检查身体的“彩超”仪运用了多普勒效应B.大风中,远处人的说话声时强时弱C.由地球上接收到的遥远天体发出的光波发生“红移”现象(各条谱线的波长均变长),可以判断遥远天体正靠近地球D.静止的观察者听到某个单一频率声源发出的声音频率越来越高,说明声源正在远离观察者4.如图甲所示为以O点为平衡位置,在A、B两点间运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是()A.在t=0.2s时,弹簧振子的加速度为正向最大B.在t=0.1s与t=0.3s两个时刻,弹簧振子的速度相同C.从t=0到t=0.2s时间内,弹簧振子做加速度增大的减速运动D .在t =0.6s 时,弹簧振子有最小的位移5.一列沿x 轴正方向传播的简谐波,0=t 时刻的波形如图所示,0.2s t =时C 点开始振动,则( )A .0.3s t =时,波向前传播了3m ,质点B 将到达质点C 的位置 B .0.05s t =时,质点A 的速度方向向下 C .00.6s 内,质点B 的平均速度为2m /sD .若同时存在一列振幅为20cm 、频率为2.5Hz 的沿x 轴负方向传播的简谐波,则两列波相遇叠加的区域会出现干涉现象6.图(a )中医生正在用“彩超”技术给病人检查身体;图(b )是某地的公路上拍摄到的情景,在路面上均匀设置了41条减速带,从第1条至第41条减速带之间的间距为100m 。
(完整)高中物理3-4机械运动机械波部分知识点及习题,推荐文档
机械运动与机械波Ⅰ.基础巩固一、机械振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动.振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件. 产生振动的条件:①振动物体受到回复力作用;②阻尼足够小;2、回复力:振动物体所受到的总是指向平衡位置的合外力.①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零.3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。
“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)二、简谐振动及其描述物理量1、振动描述的物理量(1)位移:由平衡位置指向振动质点所在位置的有向线段.①是矢量,其最大值等于振幅;②始点是平衡位置,所以跟回复力方向永远相反;③位移随时间的变化图线就是振动图象.(2)振幅:离开平衡位置的最大距离.①是标量; ②表示振动的强弱;(3)周期和频率:完成一次全变化所用的时间为周期T ,每秒钟完成全变化的次数为频率f . ①二者都表示振动的快慢;②二者互为倒数;T=1/f ;③当T 和f 由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关.2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动.①受力特征:回复力F=—KX 。
②运动特征:加速度a=一kx /m ,方向与位移方向相反,总指向平衡位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械运动与机械波Ⅰ.基础巩固一、机械振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动.振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件. 产生振动的条件:①振动物体受到回复力作用;②阻尼足够小;2、回复力:振动物体所受到的总是指向平衡位置的合外力.①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零.3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。
“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)二、简谐振动及其描述物理量1、振动描述的物理量(1)位移:由平衡位置指向振动质点所在位置的有向线段.①是矢量,其最大值等于振幅;②始点是平衡位置,所以跟回复力方向永远相反;③位移随时间的变化图线就是振动图象.(2)振幅:离开平衡位置的最大距离.①是标量; ②表示振动的强弱;(3)周期和频率:完成一次全变化所用的时间为周期T ,每秒钟完成全变化的次数为频率f .①二者都表示振动的快慢;②二者互为倒数;T=1/f ;③当T 和f 由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关.2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动.①受力特征:回复力F=—KX 。
②运动特征:加速度a=一kx /m ,方向与位移方向相反,总指向平衡位置。
简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
说明:①判断一个振动是否为简谐运动的依据是看该振动中是否满足上述受力特征或运动特征。
②简谐运动中涉及的位移、速率、加速度的参考点,都是平衡位置.三.弹簧振子:1、一个可作为质点的小球与一根弹性很好且不计质量的弹簧相连组成一个弹簧振子.一般来讲,弹簧振子的回复力是弹力(水平的弹簧振子)或弹力和重力的合力(竖直的弹簧振子)提供的.弹簧振子与质点一样,是一个理想的物理模型.2、弹簧振子振动周期:T=2k m / ,只由振子质量和弹簧的劲度决定,与振幅无关,也与弹簧振动情况(如水平方向振动或竖直方向振动或在光滑的斜面上振动或在地球上或在月球上或在绕地球运转的人造卫星上)无关。
3、可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是k m T π2=。
这个结论可以直接使用。
4、在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。
【例2】如图所示,在质量为M 的无下底的木箱顶部用一轻弹簧悬挂质量均为m (M ≥m )的D 、B 两物体.箱子放在水平地面上,平衡后剪断D 、B 间的连线,此后D 将做简谐运动.当D 运动到最高点时,木箱对地压力为( )A 、Mg ;B .(M -m )g ;C 、(M +m )g ;D 、(M +2m )g【解析】当剪断D 、B 间的连线后,物体D 与弹簧一起可当作弹簧振子,它们将作简谐运动,其平衡位置就是当弹力与D 的重力相平衡时的位置.初始运动时D 的速度为零,故剪断D 、B 连线瞬间D 相对以后的平衡位置的距离就是它的振幅,弹簧在没有剪断D 、B 连线时的伸长量为x 1=2 mg /k ,在振动过程中的平衡位置时的伸长量为x 2=mg /k ,故振子振动过程中的振幅为 A =x 2-x 1= mg /kD 物在运动过程中,能上升到的最大高度是离其平衡位移为A 的高度,由于D 振动过程中的平衡位置在弹簧自由长度以下mg /k 处,刚好弹簧的自由长度处就是物D 运动的最高点,说明了当D 运动到最高点时,D 对弹簧无作用力,故木箱对地的压力为木箱的重力Mg .四、振动过程中各物理量的变化情况说明:简谐运动的位移、回复力、加速度、速度都随时间做周期性变化(正弦或余弦函数),变化周期为T ,振子的动能、势能也做周期性变化,周期为 T /2。
①凡离开平衡位置的过程,v 、E k 均减小,x 、F 、a 、E P 均增大;凡向平衡位置移动时,v 、E k 均增大, x 、F 、a 、E P 均减小.②振子运动至平衡位置时,x 、F 、a 为零,E P 最小,v 、E k 最大;当在最大位移时,x 、F 、a 、E P 最大,v 、E k 最为零;③在平衡位置两侧的对称点上,x 、F 、a 、v 、E k 、E P 的大小均相同.【例3】如图所示,一弹簧振子在振动过程中,经a 、b 两点的速度相同,若它从a 到b 历时0.2s ,从b 再回到a 的最短时间为0.4s ,则该振子的振动频率为( )。
(A )1Hz ;(B )1.25Hz (C )2Hz ;(D ) 2.5Hz解析:振子经a 、b 两点速度相同,根据弹簧振子的运动特点,不难判断a 、b 两点对平衡位置(O 点)一定是对称的,振子由b 经O 到a 所用的时间也是0.2s ,由于“从b 再回到a的最短时间是0.4s,”说明振子运动到b后是第一次回到a点,且Ob不是振子的最大位移。
设图中的c、d为最大位移处,则振子从b→c→b历时0.2s,同理,振子从a→d→a,也历时0.2s,故该振子的周期T=0.8s,根据周期和频率互为倒数的关系,不难确定该振子的振动频率为1.25Hz。
综上所述,本题应选择(B)。
五、简谐运动图象1.物理意义:表示振动物体(或质点)的位移随时间变化的规律.2.坐标系:以横轴表示时间,纵轴表示位移,用平滑曲线连接各时刻对应的位移末端即得3.特点:简谐运动的图象是正弦(或余弦)曲线.4.应用:①可直观地读取振幅A、周期T以及各时刻的位移x;②判定各时刻的回复力、速度、加速度方向;③判定某段时间内位移、回复力、加速度、速度、动能、势能、等物理量的变化情况注意:①振动图象不是质点的运动轨迹.②计时点一旦确定,形状不变,仅随时间向后延伸。
③简谐运动图像的具体形状跟计时起点及正方向的规定有关。
六、单摆1、单摆:在细线的一端挂上一个小球,另一端固定在悬点上,如果线的伸缩和质量可以忽略,球的直径比线长短得多,这样的装置叫做单摆.这是一种理想化的模型,一般情况下细线(杆)下接一个小球的装置都可作为单摆.2、单摆振动可看做简谐运动的条件是:在同一竖直面内摆动,摆角θ<100.3、单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。
在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。
4、单摆的周期:当 l、g一定,则周期为定值 T=2πgl,与小球是否运动无关.与摆球质量m、振幅A都无关。
其中摆长l指悬点到小球重心的距离,重力加速度为单摆所在处的测量值。
要区分摆长和摆线长。
5、小球在光滑圆弧上的往复滚动,和单摆完全等同。
只要摆角足够小,这个振动就是简谐运动。
这时周期公式中的l应该是圆弧半径R和小球半径r的差。
6、秒摆:周期为2s的单摆.其摆长约为lm.【例4】如图为一单摆及其振动图象,回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回、a、E p)最大的时刻为.解析:由纵坐标的最大位移可直接读取振幅为3crn.横坐标可直接读取完成一个全振动即一个完整的正弦曲线所占据的时间.轴长度就是周期 T=2s,进而算出频率f=1/T=0.5Hz,算出摆长l=gT2/4π2=1m·从图中看出纵坐标有最大值的时刻为0.5 s末和1.5s末.【例5】若摆球从E指向G为正方向,α为最大摆角,则图象中O、A、B、C点分别对应单摆中的点.一周期内加速度为正且减小,并与速度同方向的时间范围是。
势能增加且速度为正的时间范围是.解析:图象中O点位移为零,O到A的过程位移为正.且增大.A处最大,历时1/4周期,显然摆球是从平衡位置E起振并向G方向运动的,所以O对应E,A对应G.A到B的过程分析方法相同,因而O、A、B、C对应E、G、E、F点.摆动中EF间加速度为正,且靠近平衡位置过程中加速度逐渐减小,所以是从F向E的运动过程,在图象中为C到D的过程,时间范围是1.5—2.0s间摆球远离平衡位置势能增加,即从E向两侧摆动,而速度为正,显然是从 E向G的过程.在图象中为从O到A,时间范围是0—0.5 s间.七、振动的能量1、对于给定的振动系统,振动的动能由振动的速度决定,振动的势能由振动的位移决定,振动的能量就是振动系统在某个状态下的动能和势能的总和.2、振动系统的机械能大小由振幅大小决定,同一系统振幅越大,机械能就越大.若无能量损失,简谐运动过程中机械能守恒,做等幅振动.3、阻尼振动与无阻尼振动(1)振幅逐渐减小的振动叫做阻尼振动.(2)振幅不变的振动为等幅振动,也叫做无阻尼振动.注意:等幅振动、阻尼振动是从振幅是否变化的角度来区分的,等幅振动不一定不受阻力作用.4.受迫振动(1)振动系统在周期性驱动力作用下的振动叫做受迫振动.(2)受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.5.共振(1)当驱动力的频率等于振动系统的固有频率时,物体的振幅最大的现象叫做共振. (2)条件:驱动力的频率等于振动系统的固有频率.(3)共振曲线.如图所示.【例6】行驶着的火车车轮,每接触到两根钢轨相接处的缝隙时,就受到一次撞击使车厢在支着它的弹簧上面振动起来.已知车厢的固有同期是0.58s,每根钢轨的长是12.6 m,当车厢上、下振动得最厉害时,火车的车速等于 m/s.解析:该题应用共振的条件来求解.火车行驶时,每当通过铁轨的接缝处就会受到一次冲击力,该力即为策动力.当策动周期T策和弹簧与车厢的国有周期相等时,即发生共振,即 T策=T固= 0.58 s ………① T策=t=L/v……②将①代入②解得v=L/0.58=21.7 m/s 答案:21.7m/s八、机械波1、定义:机械振动在介质中传播就形成机械波.2、产生条件:(1)有作机械振动的物体作为波源.(2)有能传播机械振动的介质.3、分类:①横波:质点的振动方向与波的传播方向垂直.凸起部分叫波峰,凹下部分叫波谷②纵波:质点的振动方向与波的传播方向在一直线上.质点分布密的叫密部,疏的部分叫疏部,液体和气体不能传播横波。
4.机械波的传播过程(1)机械波传播的是振动形式和能量.质点只在各自的平衡位置附近做振动,并不随波迁移.后一质点的振动总是落后于带动它的前一质点的振动。