力学功能功能原理例倔强系数为K的轻弹簧一端固
动量和能量一章习题解答
习题3—8 一个人从10.0m深的井中提水,起始桶中装有10.0kg的水,由 于水桶漏水,每升高1.00m要漏去0.20kg的水。求水桶被匀速地从井中 提到井口人所作的功。 解:依题意,桶中水的质量随桶到井底的距离x的变化关系为 因此,水桶被匀速地从井中提到井口人所作的功为
解:∵ ,
45˚ B Y X O A B A 图2-22
∴ (N•s)
[注意:本题已给出坐 标系,用矢量列式进行 计算更方便]
习题3—7 高空作业时系安全带是必要的。假如一质量为51.0kg的人在 操作时不慎从高空跌落下来,由于有安全带的保护,最终使他被悬挂起 来。已知此时人离原处的距离为2.0m,安全带弹性缓冲作用时间为 0.50s,求安全带对人的平均冲力。
(C) A2方向。 (D) A3方向。 解:小球与平板组成的系统在水平方向动量守恒,小球与平板碰撞
后小球仍旧保持原来的水平速度;在竖直方向,由于是完全弹性碰撞而 且小球与平板的质量相等,因而碰撞后两者交换速度,即碰后小球竖直 方向的速度为零。综合上述分析可知,碰撞后小球以原水平速度v向右 运动。所以应该选择答案(C).
习题3―19图
习题3—19 质量为m的平板A(体 积不计),用竖立的弹簧支持而处 在水平位置,如图。从平台上投 掷一个质量为m的球B,球的初速 为v,沿水平方向。球由于重力作 用而下落,与平板发生完全弹性 碰撞,且假定平板是光滑的。则 球与平板碰撞后的运动方向应为 [ ] (A) A0方向。 (B) A1方向。
(2) 由引力势能公式,可得卫星的势能为 (3) 卫星的机械能为
大学物理选择填空训练及解答
牛顿力学一、选择题1.(本题3分)0586一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a =,则一秒钟后质点的速度: [ ](A )等于零; (B )等于s m /2;(C )等于s m /2 ; (D )不能确定。
2.(本题3分)0587如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动,设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是:[ ](A )匀加速运动; (B )匀减速运动;(C )变加速运动; (D )变减速运动;(E )匀速直线运动;3.本题3分)0519 对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A )切向加速度必不为零;(B )法向加速度必不为零(拐点处除外);(C )由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零;(D )若物体作匀速率运动,其总加速度必为零。
(E)若物体的加速度a 为恒矢量,它一定作匀变速率运动。
[ ]4.(本题3 分)0518 以下五种运动形式中,a 保持不变的运动是:(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动;(E )圆锥摆运动。
[ ]5.(本题3分)0001 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有: (A)v v v v ==, ; (B )v v v v = ,≠; (C )v v v v ≠,≠; (D )v v v v ≠,= 。
[ ] 6.(本题3分)0604某物体的运动规律为t kv dt dv 2/-=,式中的K 为大于零的常数,当t = 0时,初速为0v,则速度v 与时间t 的函数关系是:(A )0221v kt v += ; (B )0221v kt v +-= ; (C )02121v kt v += ; (D )02121v kt v +-= 。
2021年大学物理习题精选-答案——第2章 质点动力学
质点动力学习题答案欧阳光明(2021.03.07)2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-1.图2-1X 方向: 0=x F t v x 0=① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v由①、②式消去t ,得2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为常数.求物体升高到最高点时所用时间及上升的最大高度.解:⑴研究对象:m⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律:合力:f P F+=y 分量:dtdVm KV mg =-- 即dt mKV mg dV 1-=+mg Ke KV mg K V t m K1)(10-+=⇒-①0=V 时,物体达到了最高点,可有0t 为)1ln(ln 000mgKV K mmg KV mg K m t +=+=② ∵dtdyV =∴Vdt dy =021()1K t m mmg KV e mgt K K-+--⎡⎤=⎢⎥⎣⎦③ 0t t =时,max y y =,2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度. 解:链条在运动过程中,其部分的速度、加速度均相同,沿链条方向,受力为mxg l,根据牛顿定律,有 图2-4通过变量替换有 m dvxg mv l dx =0,0x v ==,积分00l vm xg mvdv l =⎰⎰由上式可得链条刚离开桌面时的速度为v gl =2-5 升降机内有两物体,质量分别为1m 和2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =12g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m 和2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有题2-5图联立,解得g a ='方向向下 (2)2m 对地加速度为22ga a a =-'=方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a+=' ∴g g g a a a 25422221=+=+'=a a '=arctanθo 6.2621arctan ==,左偏上. 2-6 一物体受合力为t F 2=(SI ),做直线运动,试问在第二个5秒内和第一个5秒内物体受冲量之比及动量增量之比各为多少? 解:设物体沿+x 方向运动,25250501===⎰⎰tdt Fdt I N·S (1I 沿i方向)7521051052===⎰⎰tdt Fdt I N·S (2I 沿i方向)∵⎩⎨⎧∆=∆=1122)()(p I p I∴3)()(12=∆∆p p2-7 一弹性球,质量为020.0=m kg ,速率5=v m/s ,与墙壁碰撞后跳回.设跳回时速率不变,碰撞前后的速度方向和墙的法线夹角都为60α︒=,⑴求碰撞过程中小球受到的冲量?=I ⑵设碰撞时间为05.0=∆t s ,求碰撞过程中小球受到的平均冲力?F = 解:i i i mv i I I x10.060cos 5020.02cos 2=⨯⨯⨯===⇒αN·S2-9 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F=(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量 将ba t =代入,得(3)由动量定理可求得子弹的质量2-10 木块B 静止置于水平台面上,小木块A 放在B 板的一端上,如图所示. 已知0.25A m =kg ,B m =0.75kg ,小木块A 与木块B 之间的摩擦因数1μ=0.5,木板B 与台面间的摩擦因数2μ=0.1. 现在给小木块A 一向右的水平初速度0v =40m/s ,问经过多长时间A 、B 恰好具有相同的速度?(设B 板足够长)它将受解:当小木块A 以初速度0v 向右开始运动时,到木板B 的摩擦阻力的作用,木板B 则在A 给予的摩擦力及台面给予的摩擦力的共同作用下向右运动. 如果将木板B 与小木块A 视为一个系统,A 、B 之间的摩擦力是内力,不改变系统的总动量,只有台面与木板B 之间的摩擦力才是系统所受的外力,改变系统的总动量. 设经过t ∆时间,A 、B 具有相同的速度,根据质点系的动量定理0()k A B A F t m m v m v -∆=+-再对小木块A 单独予以考虑,A 受到B 给予的摩擦阻力'K F ,应用质点的动量定理'0k A B F t m v m v -∆=- 以及'1k A F m g μ= 解得0012121(),A A B v v v m v t m m gμμμμμ-=-∆=+-图2-10代入数据得 2.5v =m/s t ∆=7.65s2-11一粒子弹水平地穿过并排静止放置在光滑水平面上的木块,如图2-11所示. 已知两木块的质量分别为1m 和2m ,子弹穿过两木块的时间各为1t ∆和2t ∆,设子弹在木块中所受的阻力为恒力F ,求子弹穿过后,两木块各以多大速度运动.解:子弹穿过第一木块时,两木块速度相同,均为1v ,初始两木块静止,由动量定理,于是有设子弹穿过第二木块后,第二木块速度变为2v ,对第二块木块,由动量定理有 解以上方程可得2-12一端均匀的软链铅直地挂着,链的下端刚好触到桌面. 如果把链的上端放开,证明在链下落的任一时刻,作用于桌面上的压力三倍于已落到桌面上那部分链条的重量.解:设开始下落时0t =,在任意时刻t 落到桌面上的链长为x ,链未接触桌面的部分下落速度为v ,在dt 时间内又有质量dm dx ρ=(ρ为链的线密度)的链落到桌面上而静止. 根据动量定理,桌面给予dm 的冲量等于dm 的动量增量,即 所以2dxF vv dtρρ== 由自由落体的速度22v gx =得这是t 时刻桌面给予链的冲力. 根据牛顿第三定律,链对桌面的冲力'F F =,'F 方向向下,t 时刻桌面受的总压力等于冲力'F 和t 时刻已落到桌面上的那部分链的重力之和,所以图2-11所以3Nxgρ= 即链条作用于桌面上的压力3倍于落在桌面上那部分链条的重量. 2-13一质量为50kg 的人站在质量为100kg 的停在静水中的小船上,船长为5m ,问当人从船头走到船尾时,船头移动的距离. 解:以人和船为系统,整个系统水平方向上动量守恒 设人的质量为m ,船的质量为M ,应用动量守恒得 其中v ,V 分别为人和小船相对于静水的速度, 可得m -MV =v 人相对于船的速度为'M mM+=-=v v V v 设人在t 时间内走完船长l ,则有在这段时间内,人相对于地面走了0tx vdt =⎰所以Mlx M m=+船头移动的距离为'53ml x l x M m =-==+2-14质量为M 的木块静止在光滑的水平桌面上,质量为m ,速度0v 的子弹水平地射入木块,并陷在木块内与木块一起运动.求: (1)子弹相对木块静止后,木块的速度和动量; (2)子弹相对木块静止后,子弹的动量;(3) 在这个过程中,子弹施于木块的冲量.解:子弹相对木块静止后,其共同速度设为u ,子弹和木块组成系统动量守恒(1)0()mv m M u =+ 所以0mv u m M=+(2)子弹的动量20m m v P mu m M==+(3)针对木块,由动量守恒知,子弹施于木块的冲量为2-15质量均为M 的两辆小车沿着一直线停在光滑的地面上,质量为m的人自一辆车跳入另一辆车,接着又以相同的速率跳回来. 试求两辆车的速率之比.解:质量为m 的人,以相对于地面的速度v 从车A 跳到车B ,此时车A 得到速度1u ,由于车是在光滑的地面上,沿水平方向不受外力,因此,由动量守恒得人到达车B 时,共同得速度为2u ,由动量守恒得人再由车B 以相对于地面的速度v 跳回到车A ,则车B 的速度为'2u ,而车A 与人的共同速度为'1u ,如图所示,由动量守恒得联立方程解得:'22m u v M ='12mu v M m=+ 所以车B 和车A 得速率之比为2-16体重为P 的人拿着重为p 的物体跳远,起跳仰角为ϕ,初速度为0v . 到达最高点时,该人将手中的物体以水平向后的相对速度u抛出,问跳远成绩因此增加多少?解:人和物体组成系统在最高点抛出物体前后沿水平方向动量守恒,注意到对地面这个惯性参考系从最高点到落地,人做平抛运动所需时间0sin v t gϕ= 跳远距离增加为2-17铁路上有一平板车,其质量为M ,设平板车可无摩擦地在水平轨道上运动. 现有N 个人从平板车的后端跳下,每个人的质量均为m ,相对平板车的速度均为u . 问在下述两种情况下,平板车的末速度是多少?(1)N 个人同时跳离;(2)一个人、一个人的跳离. 所得结果是否相同.解:取平板车和N 个人为研究对象,由于在水平方向上无外力作用,故系统在该方向上动量守恒. 取平板车运动方向为坐标轴正方向,设最初平板车静止,则有()0Mv Nm v u +-= 所以N 个人同时跑步跳车时,车速为(2)若一个人、一个人地跳车,情况就不同了. 第一个跳车时,由动量守恒定律可得第二个人跳车时,有以此类推,第N 个人跳车时,有所以1111()2NN n muv mu M m M m M Nm M nm ==++⋅⋅⋅=++++∑因为1112M m M m M Nm>>⋅⋅⋅>+++ 故N v v >2-18质量为kg 10的物体作直线运动,受力与坐标关系如图2-18所示。
高中物理重点经典力学问题----弹簧问题方法归类总结
高中物理重点经典力学问题----弹簧问题方法归类总结高考要求:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(kx22-kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.(1996全国)如图所示,倔强系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,倔强系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
力学功和能功能原理例1倔强系数为K的轻弹簧一端固定另一端与桌面.ppt
k x k L 2F F (3) k
所求L同时满足(1)、(3)式,故其范围为:
F L 3F
k
k
(2)式解为:x1
L,
x2
L
2F k
力学 功和能 动能定理
例1、一链条总长为l ,质量为m ,放在桌面上靠边 处,并使其一端下垂的长度为a ,设链条与桌面间 的滑动摩擦系数为 u,链条由静止开始运动,求(1) 到链条离开桌边的过程中 摩擦力对链条作了多少功?
A
B
k
T
m1
m2
F
u=0
解:设弹簧伸长为x1时,A, B系统 所受合外力为零,即:
F kx1 0, x1 F / k 设T对m2所作的功为WT 2,F对m2所作的功为WF, 木块所受合外力为零时的速度为V,弹簧在此
过程中所作的功为Wk,
对m1, m2系统,由动能定理
WF
Wk
1 2 (m1
2
2
由式(1)、(2)可解出物体B的动量大小为
Mu Mm
2g(H h) (M m)[M (M m)tg 2w]
方向:沿x轴方向
例、两个质量分别为m1 和 m2的木块A和B,用一个质量忽 略不计、倔强系数为K的弹簧联接起来,放置在光滑水平面 上,使A紧靠墙壁,如图所示,用力推木块B使弹簧压缩 x, 然后释放。已知m1=m,m2=3m ,求(1)释放后,A,B两 木块速度相等时的瞬时速度的大小;(2)释放后,弹簧的
m2 )V
2
(1)
对m2
: WF
WT 2
1 2
m2V
2
(1)
力学功和能功能原理例倔强系数为K的轻弹簧一端固
x
o
A
A
y
w
w
H
H
B
h
B
h
解:建立坐标如图,并设物体A对B的速度为V, 物体B对地的速度为u, 水平方向动量守恒 Mu m(u V cos w) 0 (1) 机械能守恒
mg(H h) 1 Mu2 1 m[V 2 sin2 w (u V cos w)2 ] (2)
又T1 T1',T2 T2' (5) 以上各式联立求解,得:
a 2g /7
注:试比较下面旳问题,绳与滑轮间无摩擦,有相对滑动旳情况
一根细绳跨过一定滑轮,一端挂一质量为M旳物体,另一端被 人用手拉着,人旳质量为M/2,若人相对绳以加速度a0向上爬,
则人相对于地面旳加速度(以竖直向上为正)是
mv0l mvl J
ml(v0 v) / J
其中J为木板对oo'的转动惯量, J 1 ML2 3
10103 0.36 (500 1 1 0.602
200)
9rad
/
s
3
或由角动量定理(对木板)
M 外 • dt I 'l J
I 'l / J 3 0.36 9rad / s
1 1 0.602 3
力学 功和能 功能原理
例1、倔强系数为K旳轻弹簧,一端固定,另一 端与桌面上旳质量为m旳小球B相连接。推动小 球,将弹簧压缩一段距离L后放开。假定小球所 受滑动摩擦力大小为 F且恒定不变,滑动摩擦系 数与静摩擦系数可视为相等,试求:L必须满足 什么条件才干使小球放开后就开始运动,而且一
旦停止下来就一直保持静止状态。
例、如图示,滑轮质量为M/4,均匀分布在轮缘,滑 轮上绳旳一端系一木块B, mB=M/2,设质量为M旳人从 静止开始沿绳旳另一端相对绳匀速向上爬,求B上升
一个系统的角动量守恒
第四章习题一,判断题1,一个系统的角动量守恒,其动量不一定守恒。
(∠)2,一个系统的动量守恒,其角动量不一定守恒。
(∠)3,质点的动量改变量相同时,则质点所受的平均冲力相同。
(×)4,质点的动量改变量相同时,则质点所受的作用力的冲量相同。
(∠)5,内力对质点系的动量改变不起作用,但对质点系的角动量改变产生影响。
(×)6,内力不影响质点组的动量和动量矩。
(∠)7,物体作匀速圆周运动,当物体运动一周时,则作用在匀速圆周运动物体上的合力的冲量为零。
(∠)8,作匀速圆周运动的质点,其速率和质量都不会改变,则该质点的动量守恒。
(×)9,质点的角动量为零时,则动量必为零。
(×)10,质点所受合外力不为零,其外力矩必不为零。
(×)二,填空题1,如图,小球的质量为m,被不可伸长的轻绳连着,绳的另一端固定在A点,小球由B点从静止开始下落到铅直位置C时,小球对A点的角动量大小为(m gll2),其方向(向里),该时刻小球的动量大小为(m gl2),动量的方向(向左)。
2,汽车制动时所受地面的制动力为车重的0.2倍,若车速为9.8 m .s-1时开始制动,则经(5s )时间车停下来。
3, 两个质量相同的小球发生正碰,第一个小球碰撞前静止,第二个小球在碰撞前的速度为0v,碰撞后两个小球不在分开,它们的共同速度为(021v)。
如图,两个小球在碰撞前后对原点的角动量(均为零 )4, 如图为一单摆,作用在小球上的绳的拉力和重力对o 点的力矩大小分别为( 0 )和 (θsin mgl ),当小球达到铅直位置时,其速度为v ,相对o 点的位失为r,则小球对o 点的角动量是(v m r⨯)。
5,地球绕太阳运行时,地球对太阳的角动量( 守恒 ),但地球的动量(不守恒)。
三, 计算题1, 一个密度均匀的工件毛坯,有两个圆柱体衔接而成,各部尺寸见图示,求这个工件毛坯的质心。
解,要点:l 1034/d l d 2/l 4/d 2/l l d x 2222c -=ρπ+ρπ⋅ρπ+⋅ρπ-=在衔接处左3/10ι。
大学物理练习册习题及答案3
习题及参考答案第2章 质点动力学参考答案一 思考题2-1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g -(C )12122m m g m m ⎛⎫ ⎪+⎝⎭ (D )12124m m gm m ⎛⎫⎪+⎝⎭2-2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为μ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为μs ,滑动摩擦系数为μk ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mg μ≤ (B )(1)s F m M mg μ≤+(C )()s F m M mg μ≤+ (D )s m MF mgM μ+≤AmBBm A 思考题2-1图思考题2-3图 思考题2-4图m(a )(b )Bm mm 21m 21思考题2-7图2-5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1> m 2。
设有一水平恒力F ,第一次作用在A 上如图(a )所示,第二次作用在B 上如图(b )所示,问在这两次作用中A 与B 之间的作用力哪次大?2-6 图(a )中小球用轻弹簧o 1A 与o 2A 轻绳系住,图(b )中小球用轻绳o'1B 与o'2B 系住,今剪断o 2A 绳和o'2B 绳;试求在刚剪断的瞬时,A 球与B 球的加速度量值和方向。
大学物理习题(上)(完整版)答辩
1习 题 课(一)1-1 一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量),则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动1-2 某物体的运动规律为t k dt d 2v v -=,式中k 为常数。
当t = 0时,初速度为v 0,则速度v 与时间t 的函数关系是(A )0221v v +=kt (B )0221v v +-=kt (C )02121v v +=kt (D )02121v v +-=kt 1-3 在相对地面静止的坐标系内,A 、B 二船都以2m/s 的速率匀速行驶,A 船沿X 轴正向,B 船沿Y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系,那么在A 船上的坐标系中,B 船的速度为(以m/s 为单位) (A )j i 22+ (B )j i 22+- (C )j i 22-- (D )j i 22- 1-4 升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A 、M B 。
当升降机以加速度a 向下加速运动时(a < g ),物体A 对升降机地板的压力在数值上等于(A )g M A (B )g M M B A )(+(C )))((a g M M B A ++ (D )))((a g M M B A -+1-5 质量分别为m A 和m B 的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F 作用下匀速运动,如图所示。
如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为(A )a A = 0,a B = 0 (B )a A > 0,a B < 0(C )a A < 0,a B > 0 (D )a A < 0,a B = 0 1-6 有一水平飞行的飞机,速度为v 0,在飞机上以水平速度v 向前发射一颗炮弹,略去空气阻力并设发射过程不影响飞机的速度,则(1)以地球为参照系,炮弹的轨迹方程为 ; (2)以飞机为参照系,炮弹的轨迹方程为 。
高中物理经典问题---弹簧类问题全面总结解读
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
普物力学考研试题精选
普物力学考研试题精选1、质量为m 的小球在光滑水平面内沿半径为R 的固定圆环作圆周运动,已知小与圆环间的滑动摩擦系数为k μ,小球的初速度的大小为0v ,试求小球沿圆周运动三周回到原来位置时速度的大小。
2、如图所示的装置,光滑水平面与半径为R 的竖直光滑半圆环轨道连接,两滑块的质量均为m ,劲度系数为k 的弹簧,一端固定于O 点,另一端与A 接触。
初始时刻,B 静止于光滑半圆环的底部,今用外力推A ,使弹簧压缩x 后再释放,A 脱离弹簧岳与B 作完全弹性碰撞,碰后B 沿半圆环轨道上升,到C 点后脱离轨道,O C '与竖直线成060角,求弹簧被压缩的距离x 。
3、质量为M 表面光滑的半球放在光滑水平面上,在其上放一质量为m 的小滑块,让小滑块从半球的顶端无初速地滑下,在图示的θ角位置处开始脱离半球,(1)求θ角满足的关系式;(2)分别讨论当1m M 和1m M 时cos θ的值。
4、质量为m 的小圆环套在一长为L 质量为M 的匀质光滑细杆AB 上,杆可绕A 端的固定轴在光滑水平面上自由转动,开始时杆旋转的角速度为0ω,小环位于A 点,受到一微扰后,小环沿杆向外滑行,求小环脱离杆时的速度(方向用与杆的夹角θ表示)。
5、如图所示,A B m m m ==,薄圆盘质量为M ,半径为R ,物体与桌面间的摩擦系数为k μ,试求(1)物体A 下落的加速度为多少?(2)物体A 下落高度h 时的速度为多少?6、如图所示,轴承处光滑的定滑轮质量为M=2.00kg 半径为R=0.100m ,一根不可伸长的轻绳一固定在定滑轮上。
另一端有质量为5.00kg 的物体,已知定滑轮212I MR =,初角速度010.0rad S ω=,方向垂直于纸面向里。
试求:(1)定滑轮的角速度变化到0时,物体的高度,(2)物体回到原来位置时定滑轮的角速度的大小和方向。
7、水平面内有一静止的长为l 质量为m 的匀质细杆,可绕过杆的一端的铅直轴转动,今有一质量为2m ,速率为v 的子弹沿垂直于杆的方向射中细杆的中点,子弹穿出时的速度的大小为2v ,杆转动后杆上各点的单位长度受到的阻力正比于该点的速率,比例系数为k ,试求:(1)子弹穿出的瞬间,杆的初角速度为多少?(2)杆以角速度ω转动时的角速度为多少?(3)经历多长时间,杆的角速度变原来的一半?8、两根长均为L 的匀质细杆AB 、CD 固接成如图所示的T 形尺,过T 形尺CD 上任一点作垂直于T 形尺所在平面的转轴,求(1)T 形尺相对于该轴的转动惯量,(2)转轴位于何处转动惯量最大,最大转动惯量为多少?(3)设与最大转动惯量对应的轴为光滑水平轴,T 形尺绕该轴在竖直平面内在平衡位置附近作微小振动的周共有为多少,等值摆长为多少?9、长为l ,质量为m 的匀质细杆可绕过杆的端点并与杆垂直的光滑水平轴O 在竖直平面内转动,杆的另一端连接一质量为m 的小球,杆从水平位置由静止开始释放,当杆转至与竖直方向成θ角时,求距轴为34l 处的C 点的法向加速度。
大学物理期末考试
一.选择题(每题三分,共三十分)1.如图1.1所示,两滑块A 、B ,质量分别为m 1和m 2,与斜面间的摩擦系数分别为μ1和μ2,今将A 、B 粘合在一起,并使它们的底面共面,而构成一个大滑块,则该滑块与斜面间的摩擦系数为(A) (μ1+μ2)/2. (B) μ1μ2/ (μ1+μ2).(C)2μμ1.(D) (μ1m 1+μ2m 2)/(m 1+m 2).2.一特殊的弹簧,弹性力F=-kx 3,k 为倔强系数,x 为形变量.现将弹簧水平放置于光滑的水平面上,一端固定,一端与质量为m 的滑块相连而处于自然状态.今沿弹簧长度方向给滑块一个冲量,使其获得一速度v ,压缩弹簧,则弹簧被压缩的最大长度为(A)m/k v . (B)k/m v .(C) (2mv 2/k )1/4. (D) (4mv/k )1/4.3.一物体正在绕固定光滑轴自由转动,(A) 它受热膨胀或遇冷收缩时,角速度不变. (A) 它受热时角速度变小,它遇冷时角速度变大. (B) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变大,它遇冷时角速度变小. 4. 图1.2(a)为一绳长为l 、质量为m 的单摆.图9.2(b)为一长度为l 、质量为m 能绕水平轴O 自由转动的匀质细棒.现将单摆和细棒同时从与铅直线成θ角度的位置由静止释放,若运动到竖直位置时, 单摆、细棒的角速度分别用ω1、ω2表示,则(A) ω1=ω2/2. (B) ω1=ω2. (C)ω1=2ω2/3.(D) ω1=3/2ω2.5.如图1.3,滑轮、绳子质量忽略不计,忽略一切摩擦阻力,物体A 的质量m 1大于物体B 的质量m 2. 在A 、B 运动过程中弹簧秤的读数是 (A) (m 1+m 2 )g .(B) (m 1-m 2)g .(C)2m 1m 2g/(m 1+m 2).(D)4m 1m 2g/(m 1+m 2).6.一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为6.0kgm 2.如果将双臂收回则系统的转动惯量变为2.0kgm 2.此时系统的转动动能与原来的转动动能之比E k / E k0为(A) 2.(B)2. (C)3.图1.1(a)(b)图1.21.3(D) 3.7.有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J, 开始时转台以匀角速度ω0转动,此时有一质量为m的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为(A)Jω 0/(J+mR2) .(B) Jω 0/[(J+m)R2].(C)Jω 0/(mR2) .(D) ω 0.8.有两个半径相同,质量相等的细圆环A和B,A环的质量分布均匀, B环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为J A和J B, 则(A)J A>J B.(B) J A<J B.(C)J A=J B.(D)不能确定J A、J B哪个大.9.速度为v的子弹,打穿一块木板后速度为零,设木板对子弹的阻力是恒定的.那末,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是(A)v/2.(B)v/4.(C)v/3.(D) v/2.10.质量为m的铁锤竖直落下,打在木桩上并停下,设打击时间为∆t,打击前铁锤速率为v,则在打击木桩的时间内,铁锤所受平均合外力的大小为(A)mv/∆t-mg.(B)mv/∆t.(C)mv/∆t+mg.(D) 2mv/∆t.二.填空题(每题三分,共三十分)1.一质点沿直线运动,其坐标x与时间t有如下关系:x=A e-βt cosω tA、β、ω皆为常数.(1)任意时刻t质点的加速度a=;(2)质点通过原点的时刻t=.2.如图1.4所示,质点P的质量为2kg,位置矢量为r,速度为v,它受到力F的作用.则三个矢量均在O xy平面内,且r=3.0m,v=4.0m/s,F=2N,则该质点对原点O的角动量L=;作用在质点上的力对原点的力矩M=.3.如图1.5所示,滑块A、重物B和滑轮C的质量分别为m A、m B和m C,滑轮的半径R,滑轮对轴的转动惯图1.4 图1.6量为J=m C R 2/2滑块A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计, 绳与滑轮之间无相对滑动,滑块A 的加速度a =.4.一架轰炸机在俯冲后沿一竖直面内的圆周轨道飞行,如图1.6所示,如果飞机的飞行速率为一恒值v =640km/h ,为使飞机在最低点的加速度不超过重力加速度的7倍(7g ),则此圆周轨道的最小半径R =,若驾驶员的质量为70kg ,在最小圆周轨道的最低点,他的视重(即人对坐椅的压力)N '=.5.一质点沿半径为R 的圆周运动, 在t =0时经过P 点, 此后它的速率v 按v =A+B t (A 、B 为正的已知常量)变化,则质点沿圆周运动一周再经过P 点时的切向加速度a t =, 法向加速度a n =.6.灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走, 如图1.7所示.则他的头顶在地上的影子M 点沿地面移动的速度v M =.7.如图1.8,一匀质细杆AB,长为l ,质量为m . A 端挂在一光滑的固定水平轴上, 细杆可以在竖直平面内自由摆动.杆从水平位置由静止释放开始下摆,当下摆θ时,杆的角速度为.8.一个作定轴转动的轮子,对轴的转动惯量J = 2.0kg · m 2,正以角速度ω0匀速转动,现对轮子加一恒定的力矩M =-7.0 m· N,经过时间t =8.0s 时轮子的角速度ω=-ω0,则ω0=.9. 如图1.9所示一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球 (可作质点看待),此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑轴(O 轴)转动,开始时杆与水平成60°角,处于静止状态.无初转速地释放后,杆球这一刚体系统绕O 轴转动,系统绕O 轴的转动惯量J =.释放后,当杆转到水平位置时,刚体受到的合外力矩M =; 角加速度β=. 10.一质点在二恒力的作用下,位移为∆r =3i +8j (SI),在此过程中,动能增量为24J,已知其中一恒力F 1=12i -3j (SI),则另一恒力所作的功为.三.计算题(每题十分,共四十分)1.如图1.10所示,倔强系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接. 推动小球,将弹簧压缩一段距离L 后放开. 假定小球所受的滑动摩擦力大小为F 且恒定不变, 滑动摩擦系数与静摩擦系数可视为相等. 试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.2.质量为M =0.03kg, 长为l =0.2m 的均匀细棒, 在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动. 细棒上套有两个可沿棒滑动的小物体,每个质量都为m =0.02kg. 开始时,两小物体分别被固定在棒中心的两侧且距中心各为r =0.05m,此系统以n 1=15rev/min 的转速转动. 若将小物体松开后,它们在滑动过程中受到的阻力正比于速度, 已知棒对中心的转动惯量为M l 2/12. 求(1) 当两小物体到达棒端时,系统的角速度是多少? (2) 当两小物体飞离棒端时, 棒的角速度是多少?1.102图1.7图1.8○ 2m ○ mO ·╮ 60° 图1.93.为求一半径R=50cm的飞轮对于通过其中心且与盘面垂直的固定轴的转动惯量,让飞轮轴水平放置,在飞轮边缘上绕以细绳,绳末端悬重物,重物下落带动飞轮转动.当悬挂一质量m1=8kg的重锤,且重锤从高2m处由静止落下时,测得下落时间t1=16s. 再用另一质量m2为4kg 的重锤做同样的测量, 测得下落时间t2=25s,假定摩擦力矩是一个常数,求飞轮的转动惯量.4.飞机降落时的着地速度大小v0=90km/h ,方向与地面平行,飞机与地面间的摩擦系数 =0.10,迎面空气阻力为C x v2,升力为C y v2 (v是飞机在跑道上的滑行速度,C x和C y均为常数),已知飞机的升阻比K=C y/C x=5,求从着地到停止这段时间所滑行的距离(设飞机刚着地时对地面无压力)一.选择题DC BD D C A C A B二.填空题1.A e -βt [(β2-ω 2)cos ω t +2βωsin ω t ] ; (2n+1)π/(2ω) (s) (n=1,2,3,…).2.12k kg·m 2/s; 3k N·m. 3. 2m B g/(2m A +2m B +m C ). 4. 461m, 5.49×103N5. B , (A 2/R )+4πB .6. v M =h 1v/(h 1-h 2)7.l g /sin 3θω=8. 14rad/s..9 3mL 2/4, mgL/2, 2g /(3L ) . 10. 12J三.计算题1.取点O 为坐标原点,向右为x 正向.t =0时,静止于x =-L 的小球开始运动的条件是kL >F由功能原理得小球运动到x 处静止的条件是-F (L+x )=kx 2/2-kL 2/2=k (x -L )(x +L )/2x =L -2F/k使小球继续保持静止的条件是k ⎜x ⎜= k ⎜ L -2F/k ⎜≤FF <kL ≤3F所以F/k <L ≤3F/k2. (1)角动量守恒(M l 2/12+2mr 2)ω1=(M l 2/12+2ml 2)ω2 ω2= (M l 2/12+2mr 2)ω1/(M l 2/12+2ml 2)=0.628rad/s(2)小物体飞离棒端时小物体对棒无冲力,故棒的角速度仍为ω2=0.628rad/s3. 飞轮受绳的张力T 产生的力矩和阻力矩M μ,重锤受绳的张力T 和重力mg .对飞轮和重锤分别用转动定律和牛顿定律列方程,有TR -M μ=J α=Ja/R mg -T=ma h=at 2/2得mgR -M μ=( J/R+mR )2h/t 2当重锤质量分别为m 1和m 2时, 重锤下落时间分别为t 1和t 2 ,于是有m 1gR -M μ=( J/R+m 1R )2h/t 12 m 2gR -M μ=( J/R+m 2R )2h/t 22相减得(m 1-m 2)gR=(2hJ/R )(1/t 12-1/t 22)+(2hR )( m 1/t 12-m 2/t 22) =2hJ (t 22-t 12)/(R t 12t 22)+2hR (m 1t 22-m 2t 12)/( t 12t 22)有J=[(m 1-m 2)gR 2 t 12t 22/[2h (t 22-t 12)]-R 2(m 1t 22-m 2t 12)/(t 22-t 12)=1.06×103kg·m 24. 飞机受力:重力、地面支持力N 、摩擦力f 、阻力与升力, 设飞机质量为m ,有方程:竖直向上N+C y v 2-mg =0水平向前-μN -C x v 2=m d v/d t= m (d v/d x )(d x/d t ) 所以有-μ( mg -C y v 2)-C x v 2=mv d v/d xd x=-mv d v/[μ mg +( C x -μC y ) v 2]x=()]{}⎰-+02d v yxv C C mg v mv μμ=()()mgv C C mg C C m y x y x μμμμ20ln 2-+-因飞机刚着地时对地面无压力,有mg=C y v 02,而K =C y /C x =5,故 C y = mg/v 02C x = mg/ (Kv 02)所以x={ Kv 02/[2g (1-K μ)]}ln[1/(K μ)]=221m。
弹簧的力和弹性势能
弹簧的力和弹性势能弹簧是我们日常生活中常见的物体,它具有一定的力学特性。
在工程和物理学中,弹簧的力和弹性势能是重要的概念。
本文将介绍弹簧的力学原理和弹性势能的概念,并探讨它们在现实世界中的应用。
一、弹簧的力学原理弹簧的力学原理源于胡克定律,即弹性变形与所产生的恢复力成正比。
胡克定律可以用数学表达式表示为:F = -kx,其中F是弹簧对物体施加的恢复力,k是弹簧的弹性系数,x是物体相对于平衡位置的位移。
根据胡克定律,当物体向弹簧施加力使其产生变形时,弹簧会对物体施加一个与变形方向相反的恢复力。
弹簧的弹性系数k越大,弹簧对物体的恢复力越大,变形也越大。
二、弹性势能的概念弹性势能是指系统由于受到弹性力而存储的能量。
当弹簧发生弹性变形时,其具有弹性势能。
弹性势能可以通过弯曲或拉伸弹簧所做的功来计算。
考虑一个弹簧其劲度系数为k,弹簧一端固定,另一端悬空。
现在我们将一个物体悬挂在弹簧下方。
当我们将物体向下拉伸或压缩弹簧时,弹簧会存储弹性势能。
根据弹性势能的定义,可以用数学公式表示为:PE = 1/2kx^2,其中PE是弹性势能,k是弹簧的弹性系数,x是物体相对于平衡位置的位移。
弹性势能与弹簧的弹性系数和位移的平方成正比。
当位移增大时,弹性势能也随之增加。
同时,弹簧的弹性系数也是影响弹性势能大小的关键因素。
三、弹簧力和弹性势能在生活中的应用弹簧的力和弹性势能在生活中有许多应用。
以下是一些常见的例子:1. 弹簧秤:弹簧秤是一种常见的测量工具,其原理就是利用弹簧的力学特性。
当物体悬挂在弹簧下方时,弹簧的弹性变形会产生恢复力,并导致弹簧产生位移。
根据胡克定律,弹簧秤可以通过测量弹簧的伸缩变化来估算物体的重量。
2. 汽车避震器:汽车避震器是用于吸收和减缓汽车运动中产生的冲击和振动的装置。
避震器的原理是利用弹簧的弹性势能来减轻汽车行驶过程中的颠簸感。
当汽车经过颠簸路面时,避震器中的弹簧会发生变形,并将它的弹性势能转化为动能,从而使汽车行驶更加平稳。
专题4.1 弹簧模型(解析版)
第四部分 重点模型与核心问题深究专题4.1 弹簧模型目录模型一 静力学中的弹簧模型 (1)模型二 动力学中的弹簧模型 (3)模型三 与动量、能量有关的弹簧模型 (5)专题跟踪检测 (9)模型一 静力学中的弹簧模型静力学中的弹簧模型一般指与弹簧相连的物体在弹簧弹力和其他力的共同作用下处于平衡状态的问题,涉及的知识主要有胡克定律、物体的平衡条件等,难度中等偏下。
【例1】如图所示,一质量为m 的木块与劲度系数为k 的轻质弹簧相连,弹簧的另一端固定在斜面顶端。
木块放在斜面上能处于静止状态。
已知斜面倾角θ=37°,木块与斜面间的动摩擦因数μ=0.5。
弹簧在弹性限度内,最大静摩擦力等于滑动摩擦力,重力加速度为g ,sin37°=0.6,cos 37°=0.8。
则( )A .弹簧可能处于压缩状态B .弹簧的最大形变量为3mg 5kC .木块受到的摩擦力可能为零D .木块受到的摩擦力方向一定沿斜面向上【答案】C【解析】木块与斜面间的最大静摩擦力f max =μmg cos θ=0.4mg ,木块重力沿斜面方向的分力为G 1=mg sin θ=0.6mg ,由G 1>f max 可知,弹簧弹力的方向不可能向下,即弹簧不可能处于压缩状态,故A 错误;弹簧有最大形变量时满足G 1+f max =k Δx m ,解得Δx m =mg k,故B 错误;当G 1=F 弹时,木块受到的摩擦力为零,故C 正确;当G 1>F 弹时,木块受到的摩擦力沿斜面向上,当G 1<F 弹时,木块受到的摩擦力沿斜面向下,故D 错误。
【规律方法】(1)弹簧的最大形变量对应弹簧弹力的最大值。
(2)当木块刚好不上滑时所受静摩擦力达到最大值,此时弹簧弹力最大。
【分类训练】类型1 形变情况已知的弹簧模型1.木块A、B分别重50 N和70 N,它们与水平地面之间的动摩擦因数均为0.2,与A、B相连接的轻弹簧被压缩了5 cm,系统置于水平地面上静止不动,已知弹簧的劲度系数为100 N/m。
大学物理课后习题答案第三章
第3章 力学基本定律与守恒律 习题及答案1.作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t tt F v m t m F v m p v m p 000000d )d (,于是⎰∆==-=∆t p t F p p p 0102d,同理, 12v v ∆=∆,12I I=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2.一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将bat =代入,得 ba I 22= (3)由动量定理可求得子弹的质量202bv a v I m == 3.如图所示,一质量为m 的球,在质量为M 半径为R 的1/4圆弧形滑槽中从静止滑下。
大学物理上学习指导作业参考答案(1)
大学物理上学习指导作业参考答案(1)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 2分 ()x x xd 62d 020⎰⎰+=v v v2分()2 213x x +=v 1分2、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x10 m 处,初速度v 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t ⎰⎰=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v 1分c t a t ==d /d v 1分 ()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -=1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.O RP解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 1分08.420==gt vs 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得tss t l l d d 2d d 2=题1-4图根据速度的定义,并注意到l ,s 是随t 减少的,∴ tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船第二章 运动与力课 后 作 业1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得 θμθμsin cos +=MgF 2分令 0)sin (cos )cos sin (d d 2=++--=θμθθμθμθMg F ∴ 6.0tg ==μθ,637530'''︒=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.N2、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大 (取g =10 m/s 2)解:人受力如图(1) 图2分a m g m N T 112=-+ 1分 底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少环与绳间的摩擦力多大m 1m 22a解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分 222a m g m T '=- 2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-= 1分2121212)(m m a m g m m a +--=' 1分4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得: T ( r )-T ( r + d r ) = ( M / L ) d r r ω2令 T ( r )-T (r + d r ) = - d T ( r )得 d T =-( M ω2/ L ) r d r 4分 由于绳子的末端是自由端 T (L ) = 01分有r r L M T Lrr T d )/(d 2)(⎰⎰-=ω ∴ )2/()()(222L r L M r T -=ω 3分LOO ′rO O ′ d r T (r ) T (r +d )第三章 动量与角动量课 后 作 业hAv1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为t q m m ∆=∆ 1分设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分 将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f =∴ 14922=+=y x f f f N 2分f与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.2分30°F2、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分物体开始运动后,所受冲量为 ⎰-︒=tt t N F I 0d )30cos (μ)(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v速度的大小为 8.28==mIv m/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少( 空气阻力不计,g =9.8 m/s 2)解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的.利用 2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分设炮弹到最高点时(v y =0),经历的时间为t ,则有 S 1 = v x t ①h=221gt ②由①、②得 t =2 s , v x =500 m/s 2分 以2v表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221③0==+y y m m m v v v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分Mmv4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分第四章 功和能课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F 以及当质点从A 点运动到B 点的过程中F的分力x F和y F 分别作的功.解:(1)位矢 j t b i t a rωωsin cos += (SI) 可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy-==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v 2分(2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22-- 2分由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得222121)(kL kx x L F -=+- ② 2分由② 解出 kFL x 2-=使小球继续保持静止的条件为 F k FL k x k ≤-=2 ③ 2分 所求L 应同时满足①、③式,故其范围为 k F <L kF3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy l my f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =2022121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =l a l mg x x l mg la 2)(d 22-=⎰ 2分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分αh0v4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有 mgh m fs -=2021v 2分 ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分 )ctg 1(220αμ+=g h v =4.5 m 2分(2)根据功能原理有 fs m mgh =-221v 1分αμctg 212mgh mgh m -=v 1分[]21)ctg 1(2αμ-=gh v =8.16 m/s 2分第五章 刚体的转动课 后 作 业1、一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分a =r β 2分解上述5个联立方程得: T =11mg / 8 2分2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2 / 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T 2-T 1)R =J β=MR 2β / 4 ③ 2分因绳与滑轮无相对滑动, a =βR ④ 1分 ①、②、③、④四式联立解得 a =2g / 7 1分3、一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① 2分 T r =J β ② 2分由运动学关系有: a = r β ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt 22-1) 2分Am 1 ,l1v2俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l m J =)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m g M l f 10121d μμ-=⋅-=⎰ ② 2分由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 g m m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -== 3分观察者A测得立方体的质量 2201cm m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为a a x 221=,a a y 221= 面积可表示为: x y a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中2)/(1c a a x x v -=' =0.6×a 221 a a a yy 221==' 在O '系中测得的图形为菱形,其面积亦可表示为606.022=='⋅'='a a a S x y cm 23分aaO y x3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s 3分(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间如以飞船上的时钟计算,所需时间又为多少年解:以地球上的时钟计算: 5.4≈=∆vSt 年 2分 以飞船上的时钟计算: ≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分那么,在S '系中测得两事件之间距离为:2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 2 2分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分 ∴ )1111(22122220c c c m W v v ---==4.72×10-14 J =2.95×105 eV 2分第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件二者在何位置开始分离解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分A = 10 cm ,N/m 3.060=k 有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求: (1) 质点的振动方程; (2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A =t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+= 由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分25cos /==φx A cm 1分∴ 振动方程 )434cos(10252π-π⨯=-t x (SI) 1分(2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分3、一质量为m 的质点在力F = -π2x 的作用下沿x 轴运动.求其运动的周期.解:将F = -π2x 与F = -kx 比较,知质点作简谐振动, k = π2. 3分 又 mm k π==ω 4分m T 22=π=ω3分4、一物体同时参与两个同方向的简谐振动: )212cos(04.01π+π=t x (SI), )2cos(03.02π+π=t x (SI)求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为 )cos(φω+=t A x则 )cos(2122122212φφ-++=A A A A A ① 2分 以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm 3分又 22112211cos cos sin sin arctg φφφφφA A A A ++= ②≈127°≈2.22 rad 3分 ∴ )22.22cos(05.0+π=t x (SI) 2分5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm . (1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分由题意,t = 0时v 0 = 0;x = x 0则02020)/(x x A =+=ωv 2分又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分(2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )cos(φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成 )/27cos(1.0φλ+π-π=x t y (SI) 2分 t = 1 s 时 0])/1.0(27cos[1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分 而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有 05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分3/17π-=φ 1分∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y (SI) 2分或 ]3112.07cos[1.0π+π-π=x t y (SI)(m) -2、图示一平面简谐波在t = 0 时刻的波形图,求(1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时 0cos 0==φA y , 0sin 0>-=φωA v所以 π-=21φ 2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2cos[04.0π--π=x t y (SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分∴ )2121cos(5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程; (2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212cos(1π-π=t A y ν , )212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212cos(π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν)2cos(2π+ππ=t A νν 3分5、设入射波的表达式为 )(2cos 1Ttx A y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分(2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ 2分λn x 21= , n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为])/(2cos[1φλν+-π=x t A y 2分则反射波的表达式是 ])(2cos[2ππ++-+-=φλνxOP OP t A y 2分合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分第九章 温度和气体动理论课 后 作 业1、黄绿光的波长是5000A (1A =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000A 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解: 223131v v ρ==nm p∴ 90.1/32==v p ρ kg/m 3 5分3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w vm/s 3分(2) ()k w T 3/2==300 K . 2分4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K 时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: R R iR i C P +=+=222, ∴ ()5122=⎪⎭⎫⎝⎛-=-=R C R R C i P P ,2分 可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少?(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt = T iR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K .3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分==N E w K / 6.2×10-21 J 1分kwT 32== 300 K 3分第十章 热力学第一定律课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A .(1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).1 2 3 12 OV (10-3 m 3) 5 A BC解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J .Q 3 =W 3+ΔE 3=-250 J 3分(2) W = W 1 +W 2 +W 3=100 J .Q = Q 1 +Q 2 +Q 3 =100 J 2分2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量. 气体对外界所作的功. 气体吸收的热量. 此过程的摩尔热容.解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分 (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分(3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中 ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分BAOVp p 2V 1V 2(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中1 2 3 1 2 3 a bcV (L)p (atm)气体对外作的功; 气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分 (2) 由图看出 P a V a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:Oadcbp (×105 Pa)V (×10-3 m 3)2312(1) 气体循环一次,在吸热过程中从外界共吸收的热量; (2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程, 吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-==800 J 4分(2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分(3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R ,T a T c = (p a V a p c V c )/R 2=(12×104)/R 2T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量) A BC DO Vp解: 121Q Q -=η Q 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ) )/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--= 4分 根据绝热过程方程得到:γγγγ----=D D AA T p T p 11, γγγγ----=C CB B T p T p 11 ∵ p A = p B , pC = pD ,∴ T A / T B = T D / T C 4分故 %251112=-=-=BC T T Q Q η 2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环的热机效率;(2) 第二个循环的高温热源的温度.解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T W Q -= 且 1212T T Q Q = ∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 4分 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') 3分 =''='1/Q W η29.4% 1分 (2) ='-='η121T T 425 K 2分。
大学物理参考答案(白少民)第2章 力学中的守恒定律
向心力
F心 = m
2 υc = mg sin α(3 + 2 cos θ) l
它由重力分力和绳子的张力共同提供 F心 = −mg sin αcos θ + Tc
∴T
c
= F心 + mg sin αcos θ = 3mg sin α + 2mg sin αcos θ + mg sin αcos θ
(1 + cos θ) =1.47(1 + cos θ)N = 3mg sin α
第二章 力学中的守恒定律 2.1 在下面两种情况中,合外力对物体作的功是否相同 ?(1)使物体匀速铅直地升高 h 。(2) 使 物体匀速地在水平面上移动 h。如果物体是在人的作用下运动的,问在两种情况中对物体作的功 是否相同? 答:合外力对物体做功不同。 2.2 A 和 B 是两个质量相同的小球,以相同的初速度分别沿着摩擦系数不同的平面滚动。 其中 A 球先停止下来,B 球再过了一些时间才停止下来,并且走过的路程也较长,问摩擦力对这两个 球所作的功是否相同? 答:摩檫力对两球做功相同。 2.3 有两个大小形状相同的弹簧:一个是铁做成的,另一个是铜做成的,已知铁制弹簧的倔 强系数比铜大。 (1) 把它们拉长同样的距离,拉哪一个做功较大? (2) 用同样的力来拉,拉哪一个做功较大? 答:(1)拉铁的所做功较大; (2)拉铜的做功较大。 2.4 当你用双手去接住对方猛掷过来的球时,你用什么方法缓和球的冲力。 答:手往回收,延长接球时间。 2.5 要把钉子钉在木板上,用手挥动铁锤对钉打击,钉就容易打进去。如果用铁锤紧压着钉 , 钉就很难被压进去,这现象如何解释? 答:前者动量变化大,从而冲量大,平均冲力也大。 2.6 "有两个球相向运动,碰撞后两球变为静止,在碰撞前两球各以一定的速度运动,即各 具有一定的动量。由此可知,由这两个球组成的系统,在碰撞前的总动量不为零,但在碰撞后, 两球的动量都为零,整个系统的总动量也为零。这样的结果不是和动量守恒相矛盾吗?" 指出上述讨论中的错误。 答:上述说法是错误的,动能守恒是成立的。虽然碰前各自以一定的速度不为零,相应的动 量也不为零,但动量是矢量,系统的总动量在碰前为 0,满足动量守恒定律。 2.7 试问:(1) 一个质点的动量等于零,其角动量是否一定等于零 ?一个质点的角动量等于零, 其动量是否一定等于零? (2) 一个系统对某惯性系来说动量守恒,这是否意味着其角动量也守恒? 答:(1)一个质点的动量等于零,其角动量也一定为零;一个质点的角动量等于零,其动 量不一定为零。 (2)一个系统对某惯性系来说动量守恒,这并不意味其角动量也守恒。 * * * * * * 2 2.8 一蓄水池,面积为 S = 50m ,所蓄的水面比地面低 5.0m,水深 d=1.5m。用抽水机把这 池里的水全部抽到地面上,问至少要作多少功? 解:池中水的重力为 F = mg = ρsdg =1.0 ×10 3 ×50 ×1.5 ×10 = 7.5 ×10 5
高中物理:一端固定一端可动的弹簧问题
高中物理:一端固定一端可动的弹簧问题1、弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。
例1、劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析:物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。
显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。
2、弹簧能承受拉伸的力,也能承受压缩的力。
例2、如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<>解析:以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。
若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。
因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。
根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。
所以另外,根据胡可定律:解以上式得:即只有正确分析出弹簧处于伸长状态,才能判断出弹力的方向。
3、很多由弹簧设计的物理问题,在其运动的过程中隐含着已知条件,只有充分利用这一隐含的条件才能有效的解决问题。
例3、已知弹簧劲度系数为k,物块重为m,弹簧立在水平桌面上,下端固定,上端固定一轻质盘,物块放于盘中,如图3所示。
现给物块一向下的压力F,当物块静止时,撤去外力。
在运动过程中,物块正好不离开盘,求:(1)给物块所受的向下的压力F。
(2)在运动过程中盘对物块的最大作用力。
解析:(1)由于物块正好不离开盘,可知物块振动到最高点时,弹簧正好处在原长位置,所以有:由对称性,物块在最低点时的加速度也为a,因为盘的质量不计,由牛顿第二定律得:物块被压到最低点静止时有:由以上三式得:(2)在最低点时盘对物块的支持力最大,此时有:,解得。
力学功和能功能原理例倔强系数为K的轻弹簧一端固-精品
力学 动量守恒和机械能守恒
例、两个质量分别为 m和M的物体A和B.物体B为梯形物块, H、h 和w 如图所示。物体A与B以及B与地面之间均为光滑 接触。开始时物体A位于物体B的左上方顶端处,物体A和B 相对于地面均处于静止状态。求当物体A沿物体B由斜面顶
2l
2l
2
v
g
[(l
2
a2
)
(l
1
a)2 ]2
l
例2、倔强系数为k的轻弹簧,一端固定于墙上,另 一端与质量为m2的木块B用轻绳相连,整个系统放 在光滑水平面上(如图)。然后以不变的力 F向后 拉m2 ,使 m1自平衡位置由静止开始运动,求木块 A、B系统所受合外力为零时的速度,以及此过程中 绳的拉力T对 A所作的功,恒力F 对 m2所作的功。
对滑轮, T1 (T2' )RJ(4)
又T1 T1',T2 T2' (5) 以上各式联立求:解,得
a2g/7
注:试比较下面的问题,绳与滑轮间无摩擦,有相对滑动的情况
一根细绳跨过一定滑轮,一端挂一质量为M的物体,另一端被 人用手拉着,人的质量为M/2,若人相对绳以加速度a0向上爬,
对m2
:WF
WT2
1 2m2V2
(1)
代入(1)式,可求得: V F / k (m1 m2 )
由(2)式可得:
WT 2
WF
1 2
m2V
2
F2 [1
m2
]
k
2(m1 m2 )
F 2 (2m1 m2 ) 2k (m1 m2 )
由于绳拉A和B的方向相反,大小相等,而位移又相同, 所以绳的拉力对m1所作的功:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
O
解:取弹簧的自然长度为坐标原点O, 建立坐标系, 在t 0时,静止于x L的小球开始运动的条件: kL F (1) 小球运动到x处的静止的条件,由动能定理: -F (L x) 1 kx2 1 kL2 (2)
22
BOXB源自BX L使小球继续保持静止的条件为
k x k L 2F F (3) k
A
B
k
T
m1
m2
F
u=0
解:设弹簧伸长为x1时,A, B系统 所受合外力为零,即:
F kx1 0, x1 F / k 设T对m2所作的功为WT 2,F对m2所作的功为WF, 木块所受合外力为零时的速度为V,弹簧在此
过程中所作的功为Wk,
对m1, m2系统,由动能定理
WF
Wk
1 2 (m1
m2 )V
2
(1)
对m2
: WF
WT 2
1 2
m2V
2
(1)
代入(1)式,可求得:V F / k (m1 m2 )
由(2)式可得:WT 2
WF
1 2
m2V
2
F 2 [1
m2
]
k
2(m1 m2 )
F 2 (2m1 m2 ) 2k (m1 m2 )
由于绳拉A和B的方向相反,大小相等,而位移又相同, 所以绳的拉力对m1所作的功:
Wp为重力P所作的功
Wp
l
a
pdx
l
a
mg l
xdx
mg(l 2 a2 ) 2l
又由(1)知W f
mg(l a)2
2l
mg(l 2 a2 ) mg (l a)2 1 mv2
2l
2l
2
v
g
[(l
2
a2
)
(l
a)2
1
]2
l
例2、倔强系数为k的轻弹簧,一端固定于墙上,另 一端与质量为m2的木块B用轻绳相连,整个系统放 在光滑水平面上(如图)。然后以不变的力 F向后 拉m2 ,使 m1自平衡位置由静止开始运动,求木块 A、B系统所受合外力为零时的速度,以及此过程中 绳的拉力T对 A所作的功,恒力F 对 m2所作的功。
WT1
WT 2
F 2 (2m1 m2 ) 2k(m1 m2 )
力学 动量守恒和机械能守恒
例、两个质量分别为 m和M的物体A和B.物体B为梯形物块, H、h 和w 如图所示。物体A与B以及B与地面之间均为光滑 接触。开始时物体A位于物体B的左上方顶端处,物体A和B 相对于地面均处于静止状态。求当物体A沿物体B由斜面顶
(2)以子弹+木板为系统,则在碰撞过程中,
M 外=0,系统角动量守恒:
mv0l mvl J ml(v0 v) / J
其中J为木板对oo'的转动惯量, J 1 ML2 3
10103 0.36 (500 200) 9rad / s
1 1 0.602 3 或由角动量定理(对木板)
最大伸长量。
m1
k
m2
A
B
受力分析如图:
F1
T1 T1’ A
m2
F
T2’ T2
B
解:
(1)释
放后,弹簧恢复到原
长时A将要离开墙壁设此时B的速度为VB
,
0
由机械能守恒,有1 2
k x02
3mVB20
/
2得:VB0
x0
k 3m
A离开墙壁后,系统在光滑水平面上运动,系统动量
守恒,机械能守恒,有
m1V1 m2V2=m2VB0 (1)
(2)链条离开桌边时的速度是多少?
l-a o
a
x
解:取坐标ox如图,摩擦力作功为:
l
Wf fdx
a
某时刻的摩擦力为
f mg(l x) / l
W f
l
a
mg
l
(l
x)dx
mg
2l
(l
a)(2 -号表示作负功)
(2)以链条为对象,应用质点系的动能定理:
W=
1 2
mv2
1 2
mv0 2
W Wp Wf , v0 0
2
2
由式(1)、(2)可解出物体B的动量大小为
Mu Mm
2g(H h) (M m)[M (M m)tg 2w]
方向:沿x轴方向
例、两个质量分别为m1 和 m2的木块A和B,用一个质量忽 略不计、倔强系数为K的弹簧联接起来,放置在光滑水平面 上,使A紧靠墙壁,如图所示,用力推木块B使弹簧压缩 x, 然后释放。已知m1=m,m2=3m ,求(1)释放后,A,B两 木块速度相等时的瞬时速度的大小;(2)释放后,弹簧的
端滑至两物体分离时,物体B的动量。
x
o
A
A
y
w
w
H
H
B
h
B
h
解:建立坐标如图,并设物体A对B的速度为V, 物体B对地的速度为u, 水平方向动量守恒
Mu m(u V cosw) 0 (1) 机械能守恒
mg(H h) 1 Mu2 1 m[V 2 sin2 w (u V cosw)2 ] (2)
1 2
m1V12
1 2
k
x2
1 2
m2V22=
1 2
m2VB20
(2)
V1 V2时,解出:
3k V1 V2 3mVB0 / 4 4 3m
(2)弹簧有最大伸长量时,V1 V2 3mVB0 / 4,
再由(2)式得:xmax
1 2
x0
例、一块长为 L=0.60m ,质量为M=1kg 的均匀薄板,可绕 水平轴 oo’ 无摩擦地自由转动,当木块静止在平衡位置时, 有一质量为m=10x10-3kg 的子弹垂直击中木块A点,A离转 轴oo’ 距离l=0.36m,子弹击中木板前的速度为500m/s ,求:
所求L同时满足(1)、(3)式,故其范围为:
F L 3F
k
k
(2)式解为:x1
L,
x2
L
2F k
力学 功和能 动能定理
例1、一链条总长为l ,质量为m ,放在桌面上靠边 处,并使其一端下垂的长度为a ,设链条与桌面间 的滑动摩擦系数为 u,链条由静止开始运动,求(1) 到链条离开桌边的过程中 摩擦力对链条作了多少功?
力学 功和能 功能原理
例1、倔强系数为K的轻弹簧,一端固定,另一 端与桌面上的质量为m的小球B相连接。推动小 球,将弹簧压缩一段距离L后放开。假定小球所 受滑动摩擦力大小为 F且恒定不变,滑动摩擦系 数与静摩擦系数可视为相等,试求:L必须满足 什么条件才能使小球放开后就开始运动,而且一
旦停止下来就一直保持静止状态。
(1)子弹给予木块的冲量;(2)木板获得的角速度。
O
O’
l
L
v0
A
O
l v0
解 : (1)以子弹为研究对象,设木板给予它的冲量为I, 则由动量定理,在水平方向上:
px mv2 mv1 I I 10103 (200 500) 3N • S 故子弹给予木板的冲量为I I 3N • S