六年级数学图形与几何练习题

合集下载

人教版六年级数学下册《图形与几何》专项训练卷(附答案)

人教版六年级数学下册《图形与几何》专项训练卷(附答案)

人教版六年级数学下册《图形与几何》专项训练姓名: ___________班级: ___________考号: ___________一、填空题1. 一个等腰三角形的一条边长是, 另一条边长是, 那么这个等腰三角形的周长是(______)。

2. 钟面上, 经过3小时, 时针旋转了(______);经过30分钟, 分针旋转了(______)。

3. 一个梯形的下底是, 如果下底缩短, 那么面积就减少, 并且得到的新图形是一个平行四边形, 原来梯形的面积是(__________)。

4. 如右图, 直角梯形的周长, 它的面积是(________)。

5. 一个长方体正好可以切成4个棱长为的正方体, 原长方体的棱长总和可能是(______), 也可能是(______)。

6.右图是一个圆柱和一个圆锥, 圆柱的底面直径是圆锥的2倍, 它们的高度相等。

一个这样的圆柱可以熔铸成(________)个这样的圆锥。

7.观察下图, 图①和图②中的三角形均为等边三角形, 图①中小三角形的面积是大三角形面积的。

图③中小正方形的面积占大正方形面积的。

8. 小明从一个长方体纸盒上撕下两个相邻的面(展开后如右图), 这个纸盒的底面积是_____平方厘米, 体积是_____立方厘米.9.如下图所示, 一张长方形铁皮, 切割下阴影部分的两个圆和一个长方形刚好能做一个油桶, 这个油桶的容积是(________)。

10. 右图中圆的面积与长方形面积相等。

圆的周长是, 那么阴影部分的周长是(______)。

二、选择题11. 图中正方形的面积()平行四边形的面积。

A. 大于B. 等于C. 小于D. 无法判断12.用10倍的放大镜看40°的角, 看到的角是()A. 40°B. 400°C. 4°13.一个等腰三角形的一个底角是, 它的顶角是()。

A. B. C. D.14.下列四个图形中, 不能通过基本图形平移得到的是()。

人教版数学六年级下册 总复习——图形与几何 同步练习

人教版数学六年级下册 总复习——图形与几何 同步练习

人教版数学六年级下册总复习——图形与几何同步练习1.一个长方体的长、宽、高分别是 am、bm、hm。

如果高增加 2m,那么体积就会比原来增加多少m3?2.一只小狗被主人拴在一个建筑物外部的墙角上,这个建筑物的基座是一个边长为 4m的正方形,已知绳子的长是 5m,这只小狗的活动范围有多大?3.一个底面半径是 6cm的圆柱形玻璃器m里装有一部分水,水中浸没着一个高为9cm 的圆锥形铅锤。

把铅锤从水中取出后,水面下降了0.5cm。

这个圆锥形铅锤的底面积是多少平方厘米?4.小明请 6 名同学来家里做客,他选用一盒饮料(形状如图 1)招待同学,给每个同学倒满一杯(杯子形状如图 2)。

他自已还能喝上饮料吗?(写出分析过)5.一种水稻碾米机的漏斗是由圆柱和圆锥两部分组成的。

底面直径是4dm,圆柱的高是 3dm,圆锥的高是 6dm。

每立方分米谷重 0.65kg,这个漏斗大约能装多少千克稻谷?(得数保留整数)6.一根圆柱形木料如果截成3段表面就增加 50.24dm2如果沿着直径劈成两个半圆柱,它的表面积就增加80dm2。

原来这根圆柱形木料的表面积是多少平方分米?7.一个正方体的棱长和是 60cm,它的表面积和体积分别是多少?8.有一个小女孩儿叫小红帽,她家住在 A 地,外婆家住在河同一侧的 B 地。

小红帽每天上学前要到河岸边提一桶水送给外婆。

到河岸边的哪一点去取水所走的路程最短?9.如图,是由三个半圆弧围成的花坛。

甲、乙两人沿着花坛散步。

甲:我绕着花,甲:如果我们俩同坛走一圈要 2 分钟;乙:我走一圈的时间要比你用的时间多12时从 A 点出发,相向而行,将在花坛的C点相遇,并且与 B 点相距20m;乙:花坛一圈长多少米? 根据上面的对话及图示,你能解决乙提出的问题吗?10.小红的爸爸新买了一块手表,以家里的闹钟时间为参考,手表每小时比闹钟快 30 秒。

可是,家里的闹钟每小时比标准时间慢 30 秒你说手表准不准?11.四个同样形状的长方形和一个小正方形拼成一个大正方形,如下图。

小学数学西师版六年级下册总复习《图形与几何》练习题(计算+解决问题)(无答案)

小学数学西师版六年级下册总复习《图形与几何》练习题(计算+解决问题)(无答案)

六年级数学下册《图形与几何》练习题班级考号姓名总分
一、计算下面阴影部分的面积。

(单位:厘米)
二、动手操作。

1、量一量、画一画、算一算。


(1)用直尺量出线段AB的长度是()厘米。

(2)过C点画出已知线段AB的垂线,过D点画出已知线段AB的平行线。

(3)以线段AB为直径画一个圆,所画圆的周长是()厘米,面积是()平方厘米。

2、分别画出从正、上面、右面看到的图形。

(6分)
3、按要求画图。

(1)画出图形A的另一半,使它成为一个轴对称图形。

(2)画出把图形B绕○点顺时针旋转900,再向右平移6格后得到的图形。

(3)画出把图形C按3:1的比例放大后的图形。

三、问题解决。

1、一个圆锥形沙堆,底面积10m2,高是1.5m,把这堆沙铺在一个长12.5m,宽4m的长方体沙坑中,能铺多厚?
2、一个从里面量底面直径是12cm的圆柱形玻璃杯内盛有一些水,现将两个同样大小的铁球沉入水中,这时水面上升了6cm,刚好与杯口齐平,没有水溢出。

一个铁块的体积是多少?
3、有一块长方形铁皮(如图)长40cm,在这块铁皮的四个角各剪下一个边长是4cm的小正方形,剩余的铁皮做成一个长方体盒子。

已知这个盒子的表面积是736cm2,如果不计铁皮的厚度,这个盒子的容积是多少立方厘米?。

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析1.判断下列图a、图b、图c能否一笔画.【答案】图a和图c能,图b不能。

【解析】图a能,因为有2个奇点,图b不能,因为图形不是连通的,图c能,因为图中全是奇点。

2.下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?【答案】甲蚂蚁,从奇点出发才能一笔画出图形。

【解析】要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够。

3.下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?【答案】入口和出口应该分别放在F和I点。

【解析】要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F和I点。

4.如图,在188的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?【答案】【解析】我们数出阴影部分中完整的小正方形有8+15+15+1654个,其中部分有6+6+8 20个,部分有6+6+820(个),而1个和1个正好组成一个完整的小正方形,所以阴影部分共包含54+2074(个)完整小正方形,而整个方格纸包含818144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的,即.5.用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?【答案】无穷多【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图):⑴做长方形的两条对角线,设交点为⑵过点任作一条直线,直线将长方形平均分割成两块.可见用线段平分长方形的分法是无穷多的.6.将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【答案】【解析】图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点.7.请把下面的图形分成形状、大小都相同的块,使每一块里面都有“春蕾杯赛”个字.【答案】【解析】如下图所示:答案不唯一.8.如图,它是由个边长为厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后个小图形的周长总和与原来大图形的周长相差厘米.【答案】;8;22【解析】⑴因为总共有个小正方形,所以分成个大小形状相同的图形后每个图形应该有(个)小正方形,如图.⑵每个小图形的周长为厘米.⑶个小图形的周长和:(厘米),原图形的周长:(厘米),所以相差(厘米).9.如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.【答案】【解析】分割的方法不唯一,如右图所示.10.用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【答案】【解析】能用四块同样大小的等腰直角三角板拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形.11.有6个完全相同的,你能将它们拼成下面的形状吗?【答案】→→【解析】利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照上面的顺序标号即可完成.12.三种塑料板的型号如图:() () ()已有型板30块,要购买、两种型号板若干,拼成正方形10个,型板每块价格5元,型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买、两种板要花多少元?【答案】192【解析】要使花的钱尽可能的少,已有30个型板最好能用上,而价格较贵的型板尽可能少用,因为型与型的面积都为3,所以在拼成的的正方形中,除了型外,余下的面积应能被3整除.有或能被3整除知,只能用4块型板或1块型板,考虑尽可能多地使用型板,有如下图1、图2 的拼法:图1 图2图1的拼法要花(元),图2的拼法要花(元),因为只有30块型板,所以在10快的正方形中,图2的拼法只能有4块,剩下6块用图1拼法,共需:(元) 13.小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?【答案】【解析】要使裁剪的块数少,就要充分利用等腰直角三角形的特点,还要尽可能多的让长方形的边与三角形的边重合,假设拼好的长方形以为长,现在要把△补到△的位置上,这就要求这两个三角形完全一样,显然,只要取、分别为、的中点即可.所以首先连接的中点和的中点,将△沿剪开,再按顺时针方向旋转180°即可.14.把一个正方形分成8块,再把它们拼成一个正方形和一个长方形,使这个正方形和长方形的面积相等.【答案】⑴⑵⑶【解析】连接正方形的对角线,把正方形分成了4个相等的等腰直角三角形,再连接各腰中点,又把它们分成4个小等腰直角三角形和4个等腰梯形.(如图⑴所示),出于分成正方形、长方形面积相等的要求考虑:分别取出两个小等腰直角三角形和两个梯形,就能一一拼出所要求的正方形和长方形了(如图⑵、⑶所示).15.把下图中两个图形中的某一个分成三块,最后都拼在一起,使它们成为一个正方形.【答案】【解析】不管分其中的哪一块,最后拼得正方形的面积与图中两块面积和相等,甲面积(平方厘米);乙面积(平方厘米).所以甲面积乙面积(平方厘米),也就是最后拼得正方形的边长为10厘米.甲、乙两图形各有一边是10厘米,可视为正方形的一条边,然后把乙剪成三块拼成的正方形,即可.16.有个小长方形,它们的长和宽分别相等,用这个小长方形拼成的大长方形(如图)的面积是平方厘米,求这个大长方形的周长.【答案】29【解析】从图上可以知道,小长方形的长的倍等于宽的倍,所以长是宽的倍.每个小长方形的面积为平方厘米,所以宽宽,所以宽为厘米,长为厘米.大长方形的周长为厘米.17.右图的长方形被分割成个正方形,已知原长方形的面积为平方厘米,求原长方形的长与宽.【答案】12;10【解析】大正方形边长的倍等于小正方形边长的倍,所以大正方形的边长是小正方形边长的倍,大正方形的面积是小正方形面积的倍,所以小正方形面积为平方厘米,所以小正方形的边长为厘米,大正方形的边长为厘米,原长方形的长为厘米,宽为厘米.18.如图,是矩形,,,对角线、相交.、分别是与的中点,图中的阴影部分以为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(取3)【答案】180【解析】扫出的图形如右上图所示,白色部分实际上是一个圆柱减去两个圆锥后所形成的图形.两个圆锥的体积之和为(立方厘米);圆柱的体积为(立方厘米),所以白色部分扫出的体积为(立方厘米).19.如图,,,,,.求.【答案】【解析】本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的种情况.最后求得的面积为.20.如图,在长方形中,是的中点,是的中点,如果厘米,厘米,求三角形的面积.【答案】24【解析】∵是的中点,是的中点,∴,,又∵是长方形,∴ (平方厘米).21.如图,在三角形ABC中,厘米,高是6厘米,E、F分别为AB和AC的中点,那么三角形EBF的面积是多少平方厘米?【答案】6【解析】∵是的中点∴同理∴(平方厘米).22.如图ABCD是一个长方形,点E、F和G分别是它们所在边的中点.如果长方形的面积是36个平方单位,求三角形EFG的面积是多少个平方单位.【答案】9【解析】如右图分割后可得,(平方单位).23.将一个边长为4厘米的正方形对折,再沿折线剪开,得到两个长方形.请问:这两个长方形的周长之和比原来正方形的周长多几厘米?【答案】8【解析】剪开后的图形与原图形相比,多了两条边,这两条边的长度即为所求.4×2=8厘米24.用7根长度都是1寸的火柴棍拼成了一个三角形.请问:这个三角形的三条边长分别是多少?【答案】3,3,1或3,2,2【解析】3寸、3寸、1寸或3寸、2寸、2寸.25.有两个相同的直角三角形纸片,三条边分别为3厘米、4厘米、5厘米.不许折叠,用这两个直角三角形可以拼成几种平行四边形?【答案】3【解析】3种.26.若干棱长为1的立方体拼成了一个11×11×11的大立方体,那么从一点望去,最多能看到多少个单位立方体?【答案】331【解析】从一点望去,最多可以看见三个两两相邻的面,如下图所示:而每个面对应有11×11=121个小立方体,但是注意到公共棱上对应的小正方体被计算了两次,应减去三个棱上对应的小立方体,但是此时顶点(望去的那一点)又多减了1次,所以必须补上,于是有:一眼看去,有121×3-11×3+1=331个单位立方体可以看到.27.如图,在直线上两个相距l厘米的点A和B上各有一只青蛙.A点的青蛙沿直线跳往关于B点的对称点Al ,而B点的青蛙跳往关于A点的对称点Bl;然后B1点的青蛙跳往关于Bl点的对称点A2,Bl点的青蛙跳往关于Al点的对称点B2.如此跳下去,两只青蛙各跳了7次后,原来在A点的青蛙跳到的位置距离B点有多少厘米?【答案】1093【解析】两只青蛙各跳一次,距离增加为原来的3倍,所以A7B7=37×1=2187(寸),而且A7在右,B7在左(跳奇数次时,A点的青蛙在左.跳偶数次时,B点的青蛙在左).显然有B7A=BA7,所以BA7=(B7A7-AB)÷2=(2187-1)÷2=1093,即答案为1093.28.如图,正方形的树林每边长1000米,里边有白杨树和榆树.小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰到一株榆树就往正东走,最后他走到了东北角上.问小明一共走了多少米的距离?【答案】2000【解析】小明往正北走路程可能分许多段.不管是多少段,各段距离的和正好是正方形南北方向的一条边长1000米;同样小明往正东方向走若干段距离的和也正好是东西方向的一条边长1000米.所以,小明一共走了1000+1000=2000(米).29.图1、图2是两个形状、大小完全相同的大长方形.在每个大长方形内放入4个如图3所示的小长方形,斜线区域是空下来的地方.已知大长方形的长比宽多6厘米,问:图1、图2中画斜线的区域的周长哪个大?大多少厘米?【答案】第一个大,大12cm【解析】为了方便叙述,在原图中标上字母,如下图所示:图1中画阴影区域的周长恰好等于大长方形的周长,图19-9中画阴影区域的周长显然比大长方形的周长小,两者之差是2AB.从图2中的竖直方向看,AB=a-CD.再从图2的水平方向看,大长方形的长是a+2b,宽是2b+CD.已知大长方形的长比宽多6厘米,所以(a+2b)-(2b+CD)=a-CD=6(厘米),从而AB=6(厘米) .因此图1中画斜线区域的周长比图2中的画斜线区域的周长大2AB=12(厘米).30.如图,有一个八边形,任意相邻的两条边都互相垂直.为确定这个八边形的周长,最少需要知道其中几条边的长度?【答案】3【解析】我们利用例4的方法,放一只小虫使它沿八边形的边缘爬行一周回到原出发点,有向左的长度等于向右的长度,向下的长度等于向上的长度,而爬行一周的路程即为图形的周长,所以只用量出向上,向左的长度,在下图中(实际小虫是在八边形的边上爬行,而不是沿示意线爬行),即为AB,ED,AG的长度.显然只用量出3条线段的长度,即可求出八边形的周长.。

小学数学六年级几何练习册(附详细答案)

小学数学六年级几何练习册(附详细答案)

【练习1】【练习2】【练习3】【练习4】【练习5】【练习6】【练习7】【练习8】【练习9】【练习10】、相交于点;已知三角形与三角平方厘米,那么梯形的面积是平方厘【练习11】【练习12】,问阴影部分面积为多少?【练习13】【练习14】,三角形的面积为,那么三【练习15】【练习16】【练习17】【练习18】【练习19】【练习20】【练习21】【练习22】,则三角形的面积是.【练习23】【练习24】【练习25】【练习26】(取).【练习27】【练习28】【练习29】【练习30】平方厘米.【练习31】【练习32】【练习33】cm2,体积是cm【练习34】计算下面各圆锥体积(单位:厘米)(取)【练习35】【练习36】【练习1】【练习2】几何四边形一半模型等积变形【练习3】【练习4】,所以【练习5】【练习6】【练习7】【练习8】【练习9】:,所以【练习10】根据梯形中的蝴蝶模型(平方厘米),方厘米),故总面积为(平方厘米).蝴蝶模型【练习11】,根据蝴蝶模型和一半模型求出每一块的面积如图上标几何四边形蝴蝶模型基本梯形蝴蝶模型【练习12】如图,梯形面积为,四边形连接,在梯形中,;在梯形中,,并且四边形面积为,所以梯形空白部分的面积是,所以阴影的面积是【练习13】【练习14】.【练习15】【练习16】.【练习17】【练习18】平方厘米.【练习19】【练习20】【练习21】【练习22】,则三角形的面积是.可以看成三角形的“假高”(都是从顶点到底边连线,且两条“高”共线),【练习23】【练习24】【练习25】,【练习26】(取).【练习27】【练习28】【练习29】【练习30】平方厘米.【练习31】【练习32】【练习33】cm2,体积是cm(3)(4)【练习34】【练习35】【练习36】圆柱与圆锥圆柱与圆锥基本概念运用。

人教版小学六年级下册数学 6.2图形与几何 课时练 练习试题试卷含答案(1)

人教版小学六年级下册数学 6.2图形与几何 课时练 练习试题试卷含答案(1)

6.2图形与几何一、选择题(共8小题,每小题2分,共16分)1.圆周率p 表示()A.圆周长与直径的比值B.圆周长与半径的比值C.直径与圆周长的比值D.半径与圆周长的比值2.画一个周长是12.56cm 的圆,圆规两脚之间的距离是()cm .A.2B.3C.43.一根绳子可围成一个半径是6米的圆,若用它围成一个正三角形,它的边长是()米A.pB.4pC.6pD.12p4.小圆半径是3厘米,大圆半径是5厘米,小圆面积是大圆面积的()A.53B.925C.35D.2595.把一个圆平均分成若干份,切拼成一个近似的长方形,长方形与圆比()A.周长、面积都相等B.长方形周长大、圆面积大C.面积都相等、长方形周长大6.一个长方形和一个圆的周长相等.已知长方形的长是9分米,宽是6.7分米,圆的面积是()A.31.4平方分米B.78.5平方分米C.314平方分米D.68.8平方分米7.在一个边长是8厘米的正方形内画一个最大的圆,圆面积占正方形面积的()A.2p B.14C.12D.4p 8.如图,一个三角形的三个顶点分别为三个半径为3厘米的圆的圆心,则图中阴影部分的面积是()平方厘米.A.pB.9p C.4.5p D.3p二、填空题(共12小题,第3题3分,其余每题2分,共25分)1.同一个圆中,周长与半径的比是,直径与半径的比值是.2.画一个周长是6.28厘米的圆,圆规两脚间的距离是厘米,这个圆的面积是平方厘米.3.在一张长6分米,宽4分米的长方形纸里面剪去一个最大的圆,这个圆的直径是分米,周长是分米,面积是平方分米.4.已知小圆的半径是2厘米,大圆的半径是3厘米,小圆和大圆周长的比是,面积的比是.5.把一个直径是5厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成的图形的周长比原来圆的周长增加厘米.6.把一个圆沿对称轴分成两个半圆后,周长增加了12厘米.每个半圆的周长是厘米.7.一个挂钟的时针长4厘米,分针长8厘米,从9:00到11:00分针的尖端“走过”了厘米,时针“扫过”的面积是平方厘米.(p取3.14)8.一个圆的周长是31.4cm,半径增加了2cm后,面积增加了%cm.9.一个圆环,内圆周长是25.12cm,外圆半径是6cm,圆环的面积是210.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是平方厘米.cm.11.如图,圆的周长是18.84cm,空白部分是一个正方形.则阴影部分的面积是212.如图,长方形的周长是24厘米,阴影部分的面积是平方厘米.(p取3.14)三、计算题(共4小题,每小题6分,共24分)1.求如图的周长和面积.2.如图,正方形的边长是4厘米,求阴影部分的周长和面积.3.求出下面图形的周长和面积.(单位:厘米)( 3.14)p=4.小圆直径6cm,大圆直径10cm,求下面阴影部分的周长和面积.四、操作题(共2小题,每小题3分,共6分)1.按要求操作与解答.(1)画一个边长为4厘米的正方形.(2)在正方形内画一个最大的圆.(3)假如把正方形内的圆外部分称为“阴影部分”,求阴影部分面积与圆面积的比.2.在如图的长方形中画一个最大的半圆,并涂上阴影,再计算空白部分的面积.五、解决问题(共6小题,第27题4分,其余每题5分,共29分)1.一只钟表的分针长8厘米,那么半小时分针针尖走过的距离是多少厘米?半小时分针扫过的面积是多少?2.一只环形玉佩的外圆半径为2厘米,比内圆半径多1.5厘米,这只环形玉佩的面积是多少平方厘米?3.人民公园内的圆形石桌上刻有一个中国象棋棋盘,石桌的直径是40cm.(1)棋盘的面积是多少?(2)棋盘的面积占石桌面积的几分之几?4.将圆平均分成若干个小扇形,剪拼成一个近似的长方形(如图).(1)如果长方形的长是12.56厘米,圆的面积是多少?(2)如果圆的半径是10厘米,阴影部分的面积是多少?5.如图,草地上有一个长10米,宽8米的关闭着的羊圈,在羊圈的一角A用16米的绳子拴着一只羊P,则这只羊在草地上的活动范围有多大?(p取3.14)6.如图,某中学校园有一块长方形空地ABCD,AD的长为30米,在AD上有一段长24米的旧篱笆墙AE,现利用旧篱笆墙AE以及新购的48米长的篱笆材料围成一个面积最大的半圆形花园,但不能超出长方形ABCD的范围.(1)若AB长为10米,求半圆形花园的面积;(2)若AB长为15米,当围成的半圆形花园面积最大时,直径为多少米?(精确到1米)答案一、选择题1.A.2.A.3.B.4.B.5.C.6.B.7.D.8.C.二、填空题(共12小题)1.2:1p,2.2.1;3.14.3.4;12.56;12.56.4.2:3,4:9.5.5.6.15.42.7.100.48,29875.8.96.9.62.8.10.4.11.10.26.12.6.88.三、计算题1.解:周长是:3.14828´¸+12.568=+20.56()cm =;面积是:283.14(22´¸3.14162=´¸25.12=(平方厘米);答:这个图形的周长是20.56厘米,面积是25.12平方厘米.2.解:周长:4 3.1412.56´=(厘米)面积:244(42) 3.14´-¸´1612.56=-3.44=(平方厘米)答:阴影部分的周长是12.56厘米,面积是3.44平方厘米.3.解:3.1442 3.1422´´+´´25.1212.56=+37.68=(厘米)223.14(42)´-3.14(164)=´-3.1412=´37.68=(平方厘米);答:它的周长是37.68厘米,面积是37.68平方厘米.4.解:3.1462 3.14102106´¸+´¸+-9.4215.74=++29.12=(厘米)223.14(102)2 3.14(62)2´¸¸-´¸¸3.14252 3.1492=´¸-´¸39.2514.13=-25.12=(平方厘米)答:阴影部分的周长是29.12厘米,面积是25.12平方厘米.四、操作题(共2小题)1.解:(1)(2)如图所示,即为所要求画的正方形和圆:;(3)圆的面积:23.14(42)12.56´¸=(平方厘米),阴影部分的面积1612.56=-,3.44=(平方厘米);3.44:12.5643:157=答:阴影部分的面积与圆面积的比是43:157.2.解:如图所示:225 3.1422´-´¸10 6.28=-3.72=(平方厘米)答:空白部分的面积是3.72平方厘米.五、解决问题(共6小题)1.解:3.1482225.12´´¸=(厘米);23.1482´¸,3.14642=´¸,100.48=(平方厘米);答:半小时分针针尖走过的距离是25.12厘米,半小时分针扫过的面积是100.48平方厘米.2.解:2 1.50.5-=(厘米)223.14(20.5)´-3.14 3.75=´11.775=(平方厘米)答:这只环形玉佩的面积是11.775平方厘米.3.解:(1)40402´¸4020=´800=(平方厘米)答:棋盘的面积是800平方厘米.(2)2800[3.14(402)]¸´¸8001256=¸100157=答:棋盘的面积占石桌面积的100157.4.解:(1)圆的半径:12.562(2 3.14)´¸´25.12 6.28=¸4=(厘米)圆的面积:23.144´3.1416=´50.24=(平方厘米)答:圆的面积是50.24平方厘米.(2)阴影部分的面积:233.14104´´33144=´235.5=(平方厘米)答:阴影部分的面积是235.5平方厘米.5.解:2223113.1416 3.14(1610) 3.14(168)444´´+´´-+´´-,602.8828.2650.24=++,681.38=(平方米);答:这只羊在草地上的活动范围有681.38平方米.6.解:(1)211 3.14101015722S p ==´´´=半圆平方米,此时用去篱笆 3.141031.4C r p ==´=半圆米48<米,答:半圆形花园的面积为157平方米.(2)当12r =时, 3.141237.48C r p ==´=半圆米48<米,当15r =时, 3.141547.1C r p ==´=半圆米,47.1653.1l =+=半圆米48>米,所以,半圆的直径应大于24米且小于30米,设半圆的直径新增加a 米,则半圆弧长为242ap +´,根据题意得,24482aa p ++´=,解得,4a =,所以,半圆的直径为24428+=米,答:所设计的半圆形的直径为28米.。

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析1.观察下面的图,看各至少用几笔画成?【答案】图(1)要4笔画出,图(2)能1笔画出,图(3)能1笔画出。

【解析】图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出,图(3)能一笔画出。

2. 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【答案】【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了。

而图B中有4个奇点显然不能一笔画出.3.右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【答案】能够【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门。

4.如图所示,四个全等的圆每个半径均为2m,阴影部分的面积是.【答案】16【解析】我们虽没有学过圆或者圆弧的面积公式,但做一定的割补后我们发现其实我们并不需要知道这些公式也可以求出阴影部分面积.如图,割补后阴影部分的面积与正方形的面积相等,等于.5.图中小圆的面积是30平方厘米,则大圆的面积是多少平方厘米.(取)【答案】60【解析】设图中大圆的半径为,正方形的边长为,则小圆的直径等于正方形的边长,所以小圆的半径为,大圆的直径等于正方形的对角线长,即,得.所以,大圆的面积与小圆的面积之比为:,即大圆的面积是小圆面积的2倍,大圆的面积为(平方厘米).6.直角三角形放在一条直线上,斜边长厘米,直角边长厘米.如下图所示,三角形由位置Ⅰ绕点转动,到达位置Ⅱ,此时,点分别到达,点;再绕点转动,到达位置Ⅲ,此时,点分别到达,点.求点经到走过的路径的长.【答案】【解析】由于为的一半,所以,则弧为大圆周长的,弧为小圆周长的,而即为点经到的路径,所以点经到走过的路径的长为(厘米).7.把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【答案】【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为,所以,如果我们把每一个小三角形的面积看做1,那么就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右下图的另两种分法.8.下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.【答案】【解析】直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,边长正好为3,所以边分成两段,找到的三等分点,现在,,,,所以还要找到的中点,连接,就把梯形分成完全相同的两部分.如右上图.9.把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?【答案】【解析】先把图形分成相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如右上图.10.如图,它是由个边长为厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后个小图形的周长总和与原来大图形的周长相差厘米.【答案】;8;22【解析】⑴因为总共有个小正方形,所以分成个大小形状相同的图形后每个图形应该有(个)小正方形,如图.⑵每个小图形的周长为厘米.⑶个小图形的周长和:(厘米),原图形的周长:(厘米),所以相差(厘米).11.有6个完全相同的,你能将它们拼成下面的形状吗?【答案】→→【解析】利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照上面的顺序标号即可完成.12.试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.【答案】【解析】把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.13.如下图两个正方形的边长分别是和(),将边长为的正方形切成四块大小、形状都相同的图形,与另一个正方形拼在一起组成一个正方形.【答案】【解析】拼成大正方形的面积应是,设边长,则有等式,又因为将边长为的正方形切成四个全等形,那么分割线一定经过正方形中心,假设切割线为大正方形边长,如图⑴,一定有,而,则:,所以,由此可以确定,然后将绕中心旋转到位置,即可把正方形切成符合要求的4块.如图⑵与图⑶.这种分法同时确保图⑶的中间部分就是边长为的小正方形.这是因为:⑴中心四边形的角即边长为的正方形的四个角,∠,∠,∠,∠,又因为各边长度相等.因此中心四边形是正方形.⑵中心正方形的边长.因此,中间部分是边长为的正方形.14.下图是一个锯齿状的零件,每一个锯齿的两条线段都长2厘米,求这个零件的周长.【答案】48【解析】平移法,将锯齿状的零件转化成平行四边形,两组对边相等都等于24厘米,所以这个零件的周长是24×2=48(厘米).15.求右图所示图形的周长(单位:分米)【答案】220【解析】这道题最简单的方法也是用平移法来解.下面我们来看一个基本解法.这是一个组合图形,由两个矩形组成,不要误认为两个矩形周长的和就是组合图形的周长.仔细观察图形可以发现:右边矩形的右边边长可以移到左边,这样就可以使左边的矩形变得完整.所以,这个组合图形的周长就是左边矩形的周长再加上右边矩形的一条已知边长的倍.即:(分米)16.如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和形区域乙和丙.甲的周长为厘米,乙的边长是甲的周长的倍,丙的周长是乙的周长的倍,那么丙的周长为多少厘米?长多少厘米?【答案】2【解析】乙的周长实际上是正方形的周长(我们可将乙与甲重合的两条线段分别向左、向下平移),同样的,丙的周长也就是正方形的周长.由于,,所以丙的周长为厘米,(厘米).17.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.【答案】1/18【解析】连接、.根据共角定理∵在和中,与互补,∴.又,所以.同理可得,,.所以.所以.18.一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的,黄色三角形面积是.问:长方形的面积是多少平方厘米?【答案】60【解析】黄色三角形与绿色三角形的底相等都等于长方形的长,高相加为长方形的宽,所以黄色三角形与绿色三角形的面积和为长方形面积的,而绿色三角形面积占长方形面积的,所以黄色三角形面积占长方形面积的.已知黄色三角形面积是,所以长方形面积等于().19.如图,在长方形中,是的中点,是的中点,如果厘米,厘米,求三角形的面积.【答案】24【解析】∵是的中点,是的中点,∴,,又∵是长方形,∴ (平方厘米).20.如图ABCD是一个长方形,点E、F和G分别是它们所在边的中点.如果长方形的面积是36个平方单位,求三角形EFG的面积是多少个平方单位.【答案】9【解析】如右图分割后可得,(平方单位).21.数一数,图中共有多少个角?【答案】8【解析】锐角、直角各4个,共8个角.22.将一个边长为4厘米的正方形对折,再沿折线剪开,得到两个长方形.请问:这两个长方形的周长之和比原来正方形的周长多几厘米?【答案】8【解析】剪开后的图形与原图形相比,多了两条边,这两条边的长度即为所求.4×2=8厘米23.用12个边长为1的小正方形拼一个大长方形,这个长方形的周长最短是多少?【答案】14【解析】拼成的图形长和宽最接近时,新的图形周长最短.即新图形边长为3和4时,周长最短,为(3+4)×2=1424.长方形有四个角,剪掉一个角,还剩几个角?【答案】如解析【解析】共有三种情况,如下图,分别剩下5、4、3个角.25.有两个相同的直角三角形纸片,三条边分别为3厘米、4厘米、5厘米.不许折叠,用这两个直角三角形可以拼成几种平行四边形?【答案】3【解析】3种.26.如图所示,剪一块纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘).那么这个多面体的面数、顶点数和棱数的总和是多少?【答案】74【解析】多面体的面数,可以直接从侧面展开图中数出来,12个正方形加8个三角形,共20面.下图是多面体上部的示意图共有9个顶点;同样,下部也是9个顶点,共18个顶点.棱数要分三层来数,上层从示意图数,有15条;下层也是15条;中间部分分为6条.一共15×2+6=36条棱.20+18+36=74.所以多面体的面数、顶点数和棱数的总和为74.27.如图,这是一个用若干块体积相同的小正方体粘成的模型.把这个模型的表面(包括底面)都涂上红色,那么,把这个模型拆开以后,有3面涂上红色的小正方体比有2面涂上红色的小正方体多多少块?【答案】12【解析】三面涂上红色的小正方形有2×4+5×4=28(个);两面涂上红色的小正方形有3×4+1×4=16(个),所以多出28-16=12(个).28.如图,四边形的面积是平方米,,,,,求四边形的面积.【答案】13.2【解析】连接.由共角定理得,即同理,即所以连接,同理可以得到所以平方米29.如图,正方形的树林每边长1000米,里边有白杨树和榆树.小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰到一株榆树就往正东走,最后他走到了东北角上.问小明一共走了多少米的距离?【答案】2000【解析】小明往正北走路程可能分许多段.不管是多少段,各段距离的和正好是正方形南北方向的一条边长1000米;同样小明往正东方向走若干段距离的和也正好是东西方向的一条边长1000米.所以,小明一共走了1000+1000=2000(米).30.在图中,共有多少个不同的三角形?【答案】85【解析】下图中共有35个三角形,两个叠加成题中图形时,又多出5+5×2=15个三角形,共计35×2+15=85个三角形.。

小学六年级数学几何图形练习题及答案

小学六年级数学几何图形练习题及答案

小学六年级数学几何图形练习题及答案本文将为小学六年级的学生提供一些数学几何图形的练习题及答案,帮助他们巩固和提高几何图形的认知和理解能力。

以下是一些常见的几何图形及其练习题:一、直线、线段、射线1. 完成下图:画出两条不同的线段,并用字母标记它们。

答案:答案因为文字发不了图片二、点、面、角1. 下图中的阴影部分是什么?答案:阴影部分是一个三角形。

三、正方形1. 下图中的图形是什么?答案:下图中的图形是一个正方形。

2. 画出一个边长为5cm的正方形。

答案:答案因为文字发不了图片四、长方形1. 下图中哪个图形是长方形?答案:图形B是长方形。

2. 画出一个长6cm、宽3cm的长方形。

答案:答案因为文字发不了图片五、圆形1. 下图中哪个图形是圆形?答案:图形A是圆形。

2. 画出一个直径为8cm的圆。

答案:答案因为文字发不了图片六、三角形1. 画出一个任意形状的三角形。

答案:答案因为文字发不了图片2. 判断下列各形状是否是三角形:(1)正方形 (2)长方形 (3)梯形答案:(1)正方形不是三角形 (2)长方形不是三角形 (3)梯形是三角形七、梯形1. 下图中哪个图形是梯形?答案:图形C是梯形。

2. 画出一个上底为4cm,下底为8cm,高为3cm的梯形。

答案:答案因为文字发不了图片以上是一些小学六年级数学几何图形的练习题及答案,希望能帮助学生们更好地理解和掌握这些几何图形的特性和性质。

学习数学要多做题多练习,通过实际操作加深对知识的理解,才能在数学学习中取得好成绩。

祝愿学生们能够在几何图形的学习中取得更进一步的进展!。

小学六年级数学上册《图形与几何》练习题

小学六年级数学上册《图形与几何》练习题

参考答案:一、填空题1、根据(方向)与(距离)可以确定物体的位置。

2、在平面图上标出物体位置的方法:先用(量角器)确定方向,再以选定的(单位长度)为标准用直尺确定图上距离,最后找出物体的位置,标上(名称)。

3、(圆心)决定圆的位置,(半径)决定圆的大小。

4、Π是一个(无限不循环),实际计算常常只取其近似值(3.14)。

5、在同一个圆中,扇形的大小与这个扇形的(圆心角)大小有关。

6、外圆内方中正方形(对角连线)的长度是圆的直径,通常把正方形看成2个(大三角形)或4个(小三角形)。

7、从圆心到圆上任意一点的线段,都是这个圆的(半径)。

8、两端都在圆上的线段,(直径)最长。

9、(1)如图,公安局在银行的(东)偏(南)(20°)方向(900)米处。

(2)供电局在公安局的(东)偏(北)(40°)方向(1200)米处。

(3)医院在供电局的(东)偏(南)(30°)方向(600)米处。

(4)小明从银行到医院需要走(2700)米。

10、一个半圆形的养鱼池,直径是14m,它的周长是(35.98)m,占地面积是(76.93)m2。

11、一个圆形水库,半径是500m,沿池边每隔4m栽一棵柳树,一共能栽(785)棵。

12、一个钟表的分针长10cm,从2时到3时,分针的针尖共走了(62.8)cm。

二、选择题13、确定物体的位置应(B)A、先确定距离,再确定方向B、先确定方向,再确定距离C、方向和距离不分先后14、化工厂位于县城的南偏西25°方向12km处,正确的画法是(B)。

A、B、C、15、在边长是6cm的正方形内画一个最大的圆,圆的面积占正方形面积的(B)。

A、2ΠB、4ΠC、4116、一个圆的周长是62.8m,它的面积是(A)m2。

A、314B、62.8C、7.8517、观察下面两个图形中的阴影部分,周长和面积的大小关系是(B)。

A、周长相等,面积不相等B、周长和面积都相等C、周长不相等,面积相等三、应用题18、求阴影部分的面积。

最新人教版六年级下册总复习图形和几何练习试题以及答案 (3套题)

最新人教版六年级下册总复习图形和几何练习试题以及答案 (3套题)

六年级下册图形和几何测试试卷一、填空题。

1、一个平行四边形的面积是1.2平方分米,它的高是0.6分米,底是()分米。

2、一个长方体的长、宽、高分别是3cm、2cm、4cm,这个长方体的棱长总和是( ),表面积是(),体积是()。

3、一个半圆的直径是6厘米,它的面积是()平方厘米,周长是()厘米。

4、6时整时,钟面上分针和时针所组成的角是( )°,它是一个()角;9时整时,分针和时针所组成的夹角是()°,它是一个()角,能形成这样的角的时刻还有()时整。

5、两个正方形的边长比是1∶2,它们的周长比是(),面积比是();两个圆的周长比是1∶3,则它们的半径比是(),面积比是()。

6、圆柱的体积一定,它的底面积和高成()比例关系。

7、把长为8cm,宽为6cm,高为4cm的长方体木块切成棱长是2cm的小正方体,能切出()块。

8、0.6dm3=( )cm3 3.02公顷=( )平方米530dm2=()m2二、选择题。

1、下面的图形中,不能折成正方体的是()C.2、一个正方体的棱长缩小到原来的21,表面积就会缩小到原来的( ),体积缩小到原来的( )。

A.21 B.41 C.81 3、小朋友喜欢玩的跷跷板的运动是( )。

A.旋转B.平移C.轴对称C.三、判断题。

1、在同一幅地图上,图上距离越大,实际距离也就越大。

( )2、长方体、正方体、圆柱和圆锥的体积计算公式可以统。

( )3、只有两个角是锐角的三角形一定是钝角三角形。

( )4、把一个长方形框架拉成一个平行四边形,它的周长不变,面积变大了。

( )5、甲在乙的东偏北30°方向,乙在甲的西偏南30°方向。

( )四、我会画。

(1)在下图中找出各点位置,并按顺序进行连线。

(5,1)(2,1)(2,4) (1,4)(3,6)(5,6)2、以图中的虚线为对称轴,画出图形的另一半。

五、解答题。

1、李叔叔家里要进行房屋装修,其中客厅长为5米,宽为4米,高为3米。

小学数学六年级下册总复习《图形与几何》专项练习(附参考答案和相关知识整理汇总)

小学数学六年级下册总复习《图形与几何》专项练习(附参考答案和相关知识整理汇总)

六年级数学下册图形与几何练习题班级考号姓名总分一、填空题。

1. 3.5平方米=()平方分米2立方分米3立方厘米=()立方分米5.02升=()升()毫升公顷=()平方米2.在钟面上,6时的时候,分针和时针所夹的角的度数是(),是一个()角。

3.一个三角形中,∠1=∠2=35°,∠3=(),按边分是()三角形。

4.一个三角形与一个平行四边形等底等高,如果三角形的面积是3.6平方分米,那么平行四边形的面积是()平方分米。

5.一个圆柱的底面直径是8厘米,高是1分米,它的侧面积是()平方厘米。

把它沿着底面直径垂直切成两半,表面积会增加()平方厘米。

6.三个棱长为2厘米的正方体拼成一个长方体,这个长方体的体积是()立方厘米,表面积是()平方厘米。

7.一个长方体相交于同一个顶点的三条棱的长度之比是3∶2∶1,这个长方体的棱长总和是72厘米。

长方体的表面积是()平方厘米,体积是()立方厘米。

8.一个圆柱和一个圆锥等底等高,圆柱与圆锥的体积之和是60立方厘米,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

二、判断题。

(对的画“√”,错的画“✕”)1.平角是一条直线。

()2.三角形具有稳定性,四边形不具有稳定性。

()3.两个面积相等的梯形,可以拼成一个平行四边形。

()4.一个玻璃容器的体积与容积相等。

()5.一个棱长是6厘米的正方体的表面积和体积相等。

()三、选择题。

(把正确答案的序号填在括号里)1.射线()端点。

A.没有B.有一个C.有两个2.下面图形中对称轴最少的是()。

A.长方形B.正方形C.等腰梯形3.下面的立体图形从左边看到的图形是()。

4.下图中,甲和乙两部分面积的关系是()。

A.甲>乙B.甲<乙C.甲=乙5.一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()。

A.πB.2πC.r四、计算题。

1.计算下面图形中阴影部分的面积。

(单位:厘米)2.计算以红色直线为轴旋转形成的立体图形的体积。

六年级数学下册《图形与几何》练习题及答案解析(北师大版)

六年级数学下册《图形与几何》练习题及答案解析(北师大版)

六年级数学下册《图形与几何》练习题及答案解析(北师大版) 学校:___________姓名:___________班级:___________考号:___________一、选择题(16分)1.计算鱼缸能装水多少升,是求鱼缸的()。

A.表面积B.棱长总和C.体积D.容积2.营养学家建议:儿童每天水的摄入量应不少于1500mL。

要达到这个要求,小明每天用底面直径6cm,高10cm的圆柱形水杯喝水,至少喝水()杯。

A.4 B.5 C.6 D.73.两个圆柱形容器内原来的水面高度都是6cm。

它们的底面直径都是10cm。

①号容器内放入一个小球后,水面高度为10cm。

②号容器内放入一个小球和一个大球,水面高度为16cm。

两个容器内的小球完全相同,水也均未溢出,小球的体积与大球的体积的比是()。

A.5∶8 B.2∶5 C.2∶3 D.5∶124.制作一个无盖的圆柱形容器,应该选择()。

A.①和③B.①和④C.②和③D.②和④5.下面各图中,()是不正确的。

A.B.C.D.6.如图是由7个立方体摆成的几何体,从右面观察到的图形是()。

A.B.C.D.7.一个三角形,三个内角度数比是2∶3∶1,这个三角形按角分是()。

A.钝角三角形B.锐角三角形C.直角三角形D.无法确定8.如图,甲与乙的周长相比,()。

A.甲的周长>乙的周长B.甲的周长<乙的周长C.甲的周长=乙的周长D.无法比较二、填空题(26分)9.如图,有两个边长是6厘米的正方形,把其中一个正方形的顶点固定在另一个正方形的中心点上。

旋转其中一个正方形,重叠部分的面积是( )平方厘米。

10.将一个长方体的高增加3厘米后变成一个正方体,它的表面积比原来增加84平方厘米,原来长方体的体积是( )立方厘米。

11.在一幅比例尺为1∶3000的图纸上,量得一个三角形菜地的底是20厘米,高15厘米,这块菜地的实际面积是( )公顷。

12.一顶帽子,上面是直径2dm,高1dm的圆柱形(有帽顶),帽檐部分是一个宽1dm的圆环,做这顶帽子,至少要用( )的布料。

六年级下册数学人教版随堂测试第6单元《6.2图形与几何》试卷含答案

六年级下册数学人教版随堂测试第6单元《6.2图形与几何》试卷含答案

随堂测试6.2 图形与几何一、选择题1.至少用()个同样的正方体才能拼成一个新的正方体。

A.4B.8C.16D.272.9:30时,钟面上时针和分针所夹的角是()。

A.锐角B.钝角C.直角D.平角3.一个梯形中最多有()个直角。

A.4B.2C.14.以下图形中不是轴对称图形的是()。

A.平行四边形B.正方形C.等腰三角形D.圆5.下面的图形()不能由下面图形通过旋转得到。

A.B.C.D.二、填空题6.在两条平行线之间可以画( )条与平行线垂直的线段,这些垂直线段的长度( )。

7.过一点最多可以画( )条直线,过两点最多可以画( )条直线。

8.一个等腰三角形,它的顶角是50°,它的一个底角是( )。

9.把一个棱长为12dm的正方体削成一个最大的圆锥,这个圆锥的体积是( )3dm。

10.如图,平行四边形被分成甲、乙、丙三个三角形,甲的面积比乙多218cm,乙与丙的面积比是2∶3,这个平行四边形的面积是( )2cm。

三、判断题11.半径是2cm的圆,它的周长和面积的大小是相等的。

( )12.两个面积相同的三角形能拼成一个平行四边形。

( )13.两条不相交的直线一定是平行线。

( )14.小于180°的角一定是钝角。

( )四、解答题15.小东从一棵小树旁出发,先向西走60m,沿逆时针方向旋转90°,再向前走40m,又沿逆时针方向旋转90°,接着向前走80m,最后向西走20m。

此时小东在小树的什么方向?距离小树多少米?16.有一张长方形铁皮,剪下两个圆及一个长方形(如下图),正好可以做成一个圆柱。

这个圆柱的体积是多少立方厘米?17.如下图,把底面直径为4cm的圆柱切成若干等份,拼成一个近似的长方体。

这时表面积比原来增加240cm。

那么这个近似的长方体的表面积是多少平方厘米?18.下图中圆的面积与长方形的面积相等,圆的周长是25.12dm,求阴影部分的面积。

19.林玲做了一个长方体收纳盒,展开图如下。

【精选】苏教版六年级下册数学期末复习《图形与几何》专项练习(含答案)

【精选】苏教版六年级下册数学期末复习《图形与几何》专项练习(含答案)

【精选】苏教版六年级下册数学期末复习《图形与几何》专项练习(含答案)一、填空。

(每空3 分,共27 分)1.在同一平面内,如果直线b 和c都与直线a垂直,那么直线b和c的位置关系是( )。

2.一个圆形花坛的直径是6 米,现在沿花坛的外围铺上一条宽 1 米的水泥路,水泥路的面积是( )平方米。

3.一个立体图形,从前面看到的形状是,从左面看到的形状是,搭一个这样的立体图形至少要( )个小正方体。

(至少有一个面相接) 4.豆豆有9 根a厘米长的小棒和6 根b厘米长的小棒(a与b不相等,且均不为0),他用其中的12 根搭成一个长方体框架,长方体框架的棱长和是( )厘米。

(接口处忽略不计)5.右图中三角形ABC 的面积是30 平方厘米,平行四边形BCDE的面积是( )平方厘米。

6.下面的立体图形①、②、③的底面积相等,④、⑤的底面积都是①的3 倍,③的高是其他立体图形的3 倍。

和②的体积相等的是立体图形( )和( )。

7.如右图,半径为20 厘米的圆的外面和里面各有一个正方形,外面正方形的面积是( )平方厘米,里面正方形的面积是( )平方厘米。

二、选择。

(将正确答案的字母填在括号里)(每小题3 分,共15 分)1.一种牛奶采用长方体纸盒密封包装,从外面量,长7 厘米,宽4 厘米,高10 厘米。

下面哪个盒上的标注是合理的?( )。

A.260±10 毫升B.270±10 毫升C.280±10 毫升D.280 毫升2.如右图,一张顶角为40°的等腰三角形纸片,剪去顶角后得到一个四边形,则∠ 1+ ∠2=( )°。

A.140 B.180 C.200 D.2203.把绕点O顺时针旋转90°后得到的图形是( )。

4.一个圆柱的侧面展开图是正方形,这个圆柱的底面直径与高的比是( )。

A.2π ∶ 1 B.1 ∶ 1 C.1 ∶π D.π ∶ 15.下列说法中,正确的有( )个。

冀教版小学数学六年级下册《图形与几何》练习试题(含答案)

冀教版小学数学六年级下册《图形与几何》练习试题(含答案)

第1课时图形的认识1.认真填一填。

(1)经过一点可以画()条直线,经过两点可以画()条直线。

(2)过直线外一点到这条直线所画的线段中,()最短。

(3)角的大小要看两条边()的大小,与两边画出的长短没有关系。

(4)长方体和正方体都有()个面,()条棱,()个顶点。

(5)圆柱的侧面展开图是(),圆锥的侧面展开图是()形。

(6)()是圆内最长的线段。

2.仔细选一选。

(1)下面的图形中,()是正方体的展开图。

(2)只有一条对称轴的图形是()。

A.正方形B.平行四边形C.等腰三角形(3)从下面4条线段中选3条围成一个三角形,不可以选()。

(4)如右图所示,平行四边形的面积()正方形的面积。

A.大于B.小于C.等于(5)下面的图形中,()是由旋转得到的。

(6)一个三角形的内角之比是1∶2∶3,这个三角形是()三角形。

A.钝角B.直角C.锐角D.不能确定3.火眼金睛辨真伪。

(1)半圆的周长是整个圆周长的一半。

()(2)用同样长的铁丝分别围成正方形和圆,其中圆的面积较大。

()(3)两个面积相等的梯形一定能拼成平行四边形。

()。

() (4)把一个圆柱形的木料削成一个最大的圆锥,削去的部分相当于圆柱的124.我是小画家。

(1)画一个边长是1厘米的正方形。

(2)过直线l外一点P画出它的平行线和垂线。

5.如图所示,求∠1,∠2的度数。

6.在方格纸中分别画出下面立体图形从正面、上面、左面看到的图形。

第1课时图形的认识1.(1)无数一(2)垂线段(3)分开(4)6128(5)长方形扇(6)直径2.(1)A(2)C(3)C(4)C(5)C(6)B3.(1)✕(2)√(3)✕(4)✕4.(1)(2)5.∠1=180°-130°=50°∠2=180°-65°-50°=65°6.如图所示第2课时测量(1)1.认真填一填。

(1)一个正方体的棱长是4分米,它的表面积是()平方分米,体积是()立方分米。

六年级数学图形与几何练习题

六年级数学图形与几何练习题

六年级数学图形与几何练习题一填空(15分)1、3小时20分=()小时 9公顷200平方米=()公顷2、棱长是1分米的正方体,把它切成棱长1厘米的小正方体,摆成一排长()米。

3、一个棱长总和是48分米的长方体,长、宽、高的比是5:4:3,表面积是(),体积是()。

4、把一个正方体平均分成两个小长方体,其中一个长方体的表面积是原来正方体表面积的()。

5、把一个长20厘米、宽15厘米的长方形按1:5缩小后,长是()厘米,宽是()厘米,面积缩小到原来的()。

6、王丽坐在教室最后一排的最后一列上,她的位置可以表示为(6,8),这个班中共有( )名学生。

7、把高10厘米的圆柱分成16等份,拼成近似长方体,表面积增加了80平方厘米,圆柱的体积是()立方厘米。

8、两个圆的半径分别是3厘米和5厘米,它们周长的比是(),面积的比是()。

2倍。

( )7、如果一个圆柱的底面直径和高相等,那么把圆柱的侧面沿高展开是一个正方形。

()8、一条直线上的两点把这条直线分成两条射线和一条线段,所以射线比直线短。

()9、.圆有无数条对称轴,而半圆只有一条对称轴。

()10、教室里小华的位置用数对表示是(2,3),他的同桌可以用数对(2,4)表示。

()三、选择A、一架飞机从某机场向南偏东50°方向飞行了1000米,返回时飞机要向( )A、南偏东50°方向飞行1000米B、西偏北50°方向飞行1000米C、南偏西50°方向飞行1000米D、北偏西50°方向飞行1000米2、把一段圆钢削成一个最大的圆锥,削去部分重4千克,这段圆钢原来重()千克。

A、24B、6C、 12D、 83、在一个等腰三角形中,已知两条边分别长8厘米和4厘米,这个等腰三角形的周长是()厘米。

A、12B、 16C、 20D、 16或204、一个等腰梯形周长是48厘米,面积96平方厘米,高是8厘米,腰长()厘米。

A、24B、12C、18D、 365、.从上向下看图,应是右图中所示的( )四、计算(10分)3×(31+81)×8 3.2×1.25 ×0.25 0.32×6.7+3.2×0.3324×(83×43) 41÷85+43÷85五、动手操作(10分)1、求图中立体图形的体积。

六年级下册数学第六单元2图形与几何图形的专项练习(同步练习)

六年级下册数学第六单元2图形与几何图形的专项练习(同步练习)

六年级图形专项练习
1.如下图,已知阴影部分的面积是8平方厘米,求圆的面积。

2.下图大正方形的边长是10厘米,求阴影部分的面积。

3.求阴影部分的周长。

(单位:厘米)
4.求阴影部分的面积。

5.如图用31.4米长的篱笆靠墙围一个半圆形的花园,这个花园的面积是多少?
6.求下图阴影部分面积。

(单位:cm;π取3.14)
7.计算图中阴影部分的面积。

(单位:厘米)
2BC,求阴影8.已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=
3
部分的面积。

9.如图求阴影部分的面积。

(单位:cm π取3.14)
10.求右图中阴影部分的面积。

11.如图R=6.r=4厘米,则阴影部分的周长是多少厘米?
12.如图:ABCD是正方形,形半径是60毫米求明影部分面积。

(5分)
D
13..平行四边形ABCD的周长是102厘米,以CD为底时。

高为14厘米;以BC为底时,高为20厘米,求平行四边形的面积。

(8分)
14.如图所示,两个相邻的正方形边长分别是8cm、3cm,求图中阴影部分的面积和周长。

(结果保留π)
15.如下图所示有一个长方体,现将它切成三个完全一样的长方体。

怎样切使切成的三个长方体表面积的和比原来长方体表面积增加最多,算一算表面积最多增加了多少?
16.求下面图形的侧面积和体积。

单位:分米
17.ABCD 是直角梯形,以CD为轴将梯形旋转一周,得到一个旋转体,它的体积是多少立方厘米?
2。

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析

六年级数学几何图形相关问题试题答案及解析1.下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?【答案】甲蚂蚁,从奇点出发才能一笔画出图形。

【解析】要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够。

2.一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?【答案】30千米【解析】图中共有8 个奇点,必须在8 个奇点间添加4 条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画。

在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4 条连线,这4 条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米。

走法参考右下图(走法不唯一)。

3.王老师与王平和李刚两位同学的平均年龄是岁,李老师与王平和李刚两位同学的平均年龄是岁.王老师今年岁,李老师今年多少岁?【答案】26岁【解析】王老师比李老师大(岁).故李老师今年的年龄为(岁).4.如图,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【答案】16【解析】开始时,甲在顺时针方向距乙8+13+8=29米.因为一边最长为13、所以最少要追至只相差13,即至少要追上29-13=16米.甲追上乙16米所需时间为16÷(3-2)=16秒,此时甲行了3×16=48米,乙行了2×16=32米.甲、乙的位置如右图所示:显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面的那条边之前到达上面的边,从而看见乙.而甲要到达上面的边,需再跑2米,所需时间为2÷3=秒.所以经过16+=16秒后甲第一次看见乙.5.如图,在188的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?【答案】【解析】我们数出阴影部分中完整的小正方形有8+15+15+1654个,其中部分有6+6+8 20个,部分有6+6+820(个),而1个和1个正好组成一个完整的小正方形,所以阴影部分共包含54+2074(个)完整小正方形,而整个方格纸包含818144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的,即.6.如右图,有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.则花瓣图形的面积是多少平方厘米?(取3)【答案】19【解析】本题直接计算不方便,可以利用分割移动凑成规则图形来求解.如右上图,连接顶角上的4个圆心,可得到一个边长为4的正方形.可以看出,与原图相比,正方形的每一条边上都多了一个半圆,所以可以把原花瓣图形的每个角上分割出一个半圆来补在这些地方,这样得到一个正方形,还剩下4个圆,合起来恰好是一个圆,所以花瓣图形的面积为(平方厘米).在求不规则图形的面积时,我们一般要对原图进行切割、移动、补齐,使原图变成一个规则的图形,从而利用面积公式进行求解.这个切割、移动、补齐的过程实际上是整个解题过程的关键,我们需要多多练习,这样才能快速找到切割拼补的方法。

人教版六年级数学下册《图形与几何》专项训练卷(附答案)

人教版六年级数学下册《图形与几何》专项训练卷(附答案)

人教版六年级数学下册《图形与几何》专项训练卷(附答案)1. 一个等腰三角形的一条边长为4cm,另一条边长为8cm,求这个等腰三角形的周长。

2. 钟面上,经过3小时,时针旋转了多少度?经过30分钟,分针旋转了多少度?3. 一个梯形的下底为18cm,下底缩短8cm后得到一个平行四边形,面积减少28cm2,原来梯形的面积是多少?4. 如图,直角梯形的周长为40cm,它的面积是多少?5. 一个长方体正好可以切成4个棱长为2cm的正方体,原长方体的棱长总和可能是多少?又可能是多少?6. 如图,一个圆柱和一个圆锥,圆柱的底面直径是圆锥的2倍,它们的高度相等。

一个这样的圆柱可以熔铸成多少个这样的圆锥?7. 观察下图,图①和图②中的三角形均为等边三角形,图①中小三角形的面积是大三角形面积的多少?③中小正方形的面积占大正方形面积的多少?8. 小明从一个长方体纸盒上撕下两个相邻的面(展开后如右图),这个纸盒的底面积是多少平方厘米,体积是多少立方厘米?9. 如下图所示,一张长方形铁皮,切割下阴影部分的两个圆和一个长方形刚好能做一个油桶,这个油桶的容积是多少L?10. 如图,圆的面积与长方形面积相等。

圆的周长是25.12cm,那么阴影部分的周长是多少?11. 图中正方形的面积是大于、等于还是小于平行四边形的面积?12. 用10倍的放大镜看40度的角,看到的角是多少度?13. 一个等腰三角形的一个底角是a度,它的顶角是多少度?14. 下列四个图形中,不能通过基本图形平移得到的是哪个?15. 如图,D、E分别是BC、AD边上的中点,那么阴影部分面积是ABC面积的多少?16. 一个平行四边形相邻的两边分别是8cm、10cm,其中一边上高是4cm,求这个平行四边形的面积。

答案:这个平行四边形的面积是36cm2。

2. 选B3. 选A4. 选C5. 选B6. 选D7. 选A8. 选C9. 选B10. 选C11. 选A12. 选C13. 选B14. 选D15. 选B16. 选C17. 无法呈现展开图,删除该题18. 改写:将大长方体切成两个完全一样的小长方体,每个小长方体的长、宽、高分别为5cm、2cm、1.5cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学图形与几何练习题
一填空《15分》
1;3小时20分=《》小时 9公顷200平方米=《》公顷
2;棱长是1分米的正方体,把它切成棱长1厘米的小正方体,摆成一排长《》米。

3;一个棱长总和是48分米的长方体,长;宽;高的比是5:4:3,表面积是《》,体积是《》。

4;把一个正方体平均分成两个小长方体,其中一个长方体的表面积是原来正方体表面积的《》。

5;把一个长20厘米;宽15厘米的长方形按1:5缩小后,长是《》厘米,宽是《》厘米,面积缩小到原来的《》。

6;王丽坐在教室最后一排的最后一列上,她的位置可以表示为《6,8》,这个班中共有( )名学生。

7;把高10厘米的圆柱分成16等份,拼成近似长方体,表面积增加了80平方厘米,圆柱的体积是《》立方厘米。

8;两个圆的半径分别是3厘米和5厘米,它们周长的比是《》,面积的比是《》。

2倍。

( )
7;如果一个圆柱的底面直径和高相等,那么把圆柱的侧面沿高展开是一个正方形。

《》
8;一条直线上的两点把这条直线分成两条射线和一条线段,所以射线比直线短。

《》
9;;圆有无数条对称轴,而半圆只有一条对称轴。

《》
10;教室里小华的位置用数对表示是《2,3》,他的同桌可以用数对《2,4》表示。

《》
三、选择
A;一架飞机从某机场向南偏东50°方向飞行了1000米,返回时飞机要向( )
A、南偏东50°方向飞行1000米 B;西偏北50°方向飞行1000米
C;南偏西50°方向飞行1000米 D;北偏西50°方向飞行1000米
2、把一段圆钢削成一个最大的圆锥,削去部分重4千克,这段圆钢原来重《》千克。

A;24 B;6 C; 12 D; 8
3、在一个等腰三角形中,已知两条边分别长8厘米和4厘米,这个等腰三角形的周长是《》厘米。

A;12 B; 16 C; 20 D; 16或20
4、一个等腰梯形周长是48厘米,面积96平方厘米,高是8厘米,腰长《》厘米。

A;24 B;12 C;18 D; 36
5;;从上向下看图,应是右图中所示的( )
四、计算《10分》
3×《31+81
》×8 3;2×1;25 ×0;25 0
;32×6;7+3;2×0;33
24×《83×43》 41÷85+43÷85
五;动手操作《10分》
1;求图中立体图形的体积。

《单位:厘米》
6
2;一个长方体的高如果增加2厘米,就成为一个正方体,这时表面积比原来增加了48平方厘米,原来长方体的体积是多少立方厘米?
3;一根铁丝可以围成一个半径是3厘米的半圆,这根铁丝有多长?它所围成的半圆的面积有多大?
4;一个生日蛋糕有两层每层高度相等,总高度是20厘米,底面直径分别是30厘米和20厘米,如果要在蛋糕表面浇上奶油,浇奶油部分的面积是多少平方分米?
5;下图是一块长方形铁皮,阴影部分刚好能做成一个圆柱形油桶(接头处不计》。

求这个油桶的容积。

《单位:分米》
→ 16;56分米←
6;在一块长22厘米,宽8厘米的长方形铁板的四个角各剪去四个边长为2厘米的小正方形,做成一个无盖的长方体纸盒,求纸盒的体积和表面积各是多少?。

相关文档
最新文档