径向基RBF神经网络模型
rbf神经网络原理
rbf神经网络原理RBF神经网络原理。
RBF神经网络是一种基于径向基函数的神经网络模型,它具有良好的非线性逼近能力和较快的学习速度,在模式识别、函数逼近、时间序列预测等领域有着广泛的应用。
本文将介绍RBF神经网络的原理及其在实际应用中的一些特点。
首先,RBF神经网络由三层结构组成,输入层、隐含层和输出层。
输入层接收外部输入信号,并将其传递给隐含层;隐含层使用径向基函数对输入信号进行非线性映射;输出层对隐含层的输出进行加权求和,并经过激活函数得到最终的输出结果。
整个网络的学习过程包括初始化、前向传播、误差反向传播和参数更新等步骤。
其次,RBF神经网络的核心在于径向基函数的选择。
常用的径向基函数包括高斯函数、多孔径函数等,它们具有局部化、非线性化的特点,能够更好地拟合复杂的非线性关系。
在实际应用中,选择适当的径向基函数对网络的性能有着重要影响,需要根据具体问题进行调整和优化。
另外,RBF神经网络的学习算法通常采用最小均方误差或梯度下降等方法,通过不断调整网络参数来最小化目标函数。
与传统的BP神经网络相比,RBF神经网络在学习速度和全局最优解的搜索能力上有一定优势,但也存在着局部最优解、过拟合等问题,需要结合具体问题进行调整和改进。
此外,RBF神经网络在模式识别、函数逼近、时间序列预测等领域有着广泛的应用。
例如,在模式识别中,RBF神经网络能够处理非线性可分问题,并且对噪声具有一定的鲁棒性;在函数逼近中,RBF神经网络能够较好地拟合复杂的非线性函数关系;在时间序列预测中,RBF神经网络能够捕捉数据的非线性动态特性,有着较好的预测效果。
综上所述,RBF神经网络是一种基于径向基函数的神经网络模型,具有良好的非线性逼近能力和较快的学习速度,在模式识别、函数逼近、时间序列预测等领域有着广泛的应用前景。
然而,在实际应用中,还需要进一步研究和改进其学习算法、径向基函数的选择以及网络结构的优化,以提高网络的性能和稳定性。
rbf神经网络原理
rbf神经网络原理
RBF神经网络是一种基于径向基函数(Radial Basis Function,简称RBF)的人工神经网络模型。
它在解决分类和回归等问题上具有优良的性能和灵活性。
RBF神经网络的基本思想是利用一组基函数来表示输入空间中的复杂映射关系。
这些基函数以输入样本为中心,通过测量样本与中心之间的距离来计算输出值。
常用的基函数包括高斯函数、多项式函数等。
与传统的前馈神经网络不同,RBF神经网络采用两层结构,包括一个隐含层和一个输出层。
隐含层的神经元是基函数的中心,负责对输入样本进行映射。
输出层的神经元用于组合隐含层的输出,并产生网络的最终输出结果。
RBF神经网络的训练过程分为两个阶段:中心选择和参数调整。
在中心选择阶段,通过聚类算法来确定基函数的中心,例如K-means聚类算法。
在参数调整阶段,使用误差反向传播算法来调整基函数的权值和输出层的权值。
RBF神经网络具有较强的非线性拟合能力和逼近性能。
它可以处理高维数据和大规模数据集,并且对于输入空间中的非线性映射具有较好的适应性。
此外,RBF神经网络还具有较快的训练速度和较好的泛化能力。
总结来说,RBF神经网络通过基函数的组合来实现对输入样
本的映射,从而实现对复杂映射关系的建模。
它是一种强大的人工神经网络模型,在多个领域和问题中表现出色。
径向基神经网络RBF介绍
径向基神经网络RBF介绍径向基神经网络(Radial Basis Function Neural Network,以下简称RBF神经网络)是一种人工神经网络模型。
它以径向基函数为激活函数,具有快速学习速度和较高的逼近能力,被广泛应用于函数逼近、模式识别、时间序列预测等领域。
下面将详细介绍RBF神经网络的基本原理、结构和学习算法。
1.基本原理:RBF神经网络由输入层、隐藏层和输出层组成。
输入层接收外部输入数据,隐藏层由一组径向基函数组成,输出层计算输出值。
其基本原理是通过适当的权值与径向基函数的线性组合,将输入空间映射到高维特征空间,并在该空间中进行线性回归或分类。
RBF神经网络的关键在于选择合适的径向基函数和隐藏层节点的中心点。
2.网络结构:隐藏层是RBF神经网络的核心,它由一组径向基函数组成。
每个径向基函数具有一个中心点和一个半径。
典型的径向基函数有高斯函数和多项式函数。
高斯函数的形式为:φ(x) = exp(-β*,x-c,^2)其中,β为控制函数衰减速度的参数,c为径向基函数的中心点,x为输入向量。
隐藏层的输出由输入向量与每个径向基函数的权值进行加权求和后经过激活函数得到。
输出层通常采用线性激活函数,用于输出预测值。
3.学习算法:RBF神经网络的学习算法包括两个步骤:网络初始化和权值训练。
网络初始化时需要确定隐藏层节点的中心点和半径。
常用的方法有K-means 聚类和最大极大算法。
权值训练阶段的目标是通过输入样本和对应的目标值来调整权值,使得网络的输出尽可能接近目标值。
常用的方法有最小均方误差算法(Least Mean Square,LMS)和最小二乘法。
最小均方误差算法通过梯度下降法修改权值,使网络输出的均方误差最小化。
最小二乘法则通过求解线性方程组得到最优权值。
在训练过程中,需要进行误差反向传播,根据输出误差调整权值。
4.特点与应用:RBF神经网络具有以下特点:-输入输出非线性映射能力强,可以逼近复杂的非线性函数关系;-学习速度较快,只需通过非线性映射学习输出函数,避免了反向传播算法的迭代计算;-具有较好的泛化能力,对噪声和异常数据有一定的鲁棒性。
径向基函数(rbf)
径向基函数(rbf)
径向基函数(radial basis function,简称RBF)是一类基于距
离的函数,在机器学习和统计模型中被广泛使用。
它们的主要方法是
将观测数据空间映射到一个高维特征空间,然后在特征空间中选择一
个合适的核函数,以此来建立模型。
RBF函数主要有三种类型:高斯函数、多次项函数和反函数。
其中高斯函数是RBF中最常见的一种,它可以有效地表示各种距离之间的
相似度,具有很好的非线性特性。
RBF在机器学习领域中的应用非常广泛,尤其是在监督学习算法中。
其中最经典的应用是径向基函数神经网络(radial basis function neural network,简称RBFNN),它是一种三层前向式神经网络,由输入层、隐含层和输出层组成。
RBFNN的隐含层是一组集中的RBF节点,用于对输入数据进行特征提取和非线性映射,而输出层则是一个线性
模型。
RBFS的主要优点是可以处理非线性问题,能够在高维特征空间中
实现有效的决策边界,具有很好的鲁棒性和泛化能力。
此外,RBF也可
以作为一种优秀的插值和拟合方法,用于函数逼近、信号处理和图像处理等领域。
然而,在实际应用中,RBF也存在一些问题。
首先,RBF无法处理参数多样性的问题,需要通过选择合适的核函数和调整参数来解决。
其次,RBF的计算复杂度较高,需要对大量数据进行处理,会导致处理速度慢。
此外,RBF也容易陷入局部极小值和过拟合等问题,需要通过一系列的优化方法来解决。
在未来的研究中,RBF可以通过结合其他机器学习算法和深度学习技术来进一步优化和完善,以实现更高效和准确的模型训练和预测。
神经网络控制(RBF)
神经网络控制(RBF)神经网络控制(RBF)是一种基于径向基函数(RBF)的神经网络,用于控制系统,其主要功能是通过对输入信号进行处理来实现对系统输出的控制。
通过神经网络控制,控制器可以学习系统的动态行为和非线性模型,从而使得控制器能够自适应地进行调整和优化,实现对系统的精确控制。
RBF 网络通常由三层组成:输入层、隐藏层和输出层。
输入层接受系统的输入信号,并将其传递到隐藏层,隐藏层对输入数据进行处理并输出中间层的值,其中每个中间层神经元都使用一个基函数来转换输入数据。
最后,输出层根据隐藏层输出以及学习过程中的权重调整,计算并输出最终的控制信号。
RBF 网络的核心是数据集,该数据集由训练数据和测试数据组成。
在训练过程中,通过输入训练数据来调整网络参数和权重。
训练过程分为两个阶段,第一阶段是特征选择,该阶段通过数据挖掘技术来确定最优的基函数数量和位置,并为每个基函数分配一个合适的权重。
第二阶段是更新参数,该阶段通过反向传播算法来更新网络参数和权重,以优化网络的性能和控制精度。
RBF 网络控制的优点在于其对非线性控制问题具有优秀的适应性和泛化性能。
另外,RBF 网络还具有强大的学习和自适应调整能力,能够学习并预测系统的动态行为,同时还可以自动调整参数以提高控制性能。
此外,RBF 网络控制器的结构简单、易于实现,并且具有快速的响应速度,可以满足实时控制应用的要求。
然而,RBF 网络控制也存在一些局限性。
首先,RBF 网络需要大量的训练数据来确定最佳的基函数数量和位置。
此外,由于网络参数和权重的计算量较大,实时性较低,可能存在延迟等问题。
同时,选择合适的基函数以及与其相应的权重也是一项挑战,这需要在控制问题中进行深入的技术和经验探索。
总体而言,RBF 网络控制是一种非常有效的控制方法,可以在广泛的控制问题中使用。
其结构简单,性能稳定,具有很强的适应性和泛化性能,可以实现实时控制,为复杂工业控制问题的解决提供了一个重要的解决方案。
RBF神经网络概述
RBF神经网络概述1 RBF神经网络的基本原理2 RBF神经网络的网络结构3 RBF神经网络的优点1 RBF神经网络的基本原理人工神经网络以其独特的信息处理能力在许多领域得到了成功的应用。
它不仅具有强大的非线性映射能力,而且具有自适应、自学习和容错性等,能够从大量的历史数据中进行聚类和学习,进而找到某些行为变化的规律。
径向基函数(RBF)神经网络是一种新颖有效的前馈式神经网络,它具有最佳逼近和全局最优的性能,同时训练方法快速易行,不存在局部最优问题,这些优点使得RBF网络在非线性时间序列预测中得到了广泛的应用。
1985年,Powell提出了多变量插值的径向基函数(Radial-Basis Function, RBF)方法。
1988年,Broomhead和Lowe首先将RBF应用于神经网络设计,构成了径向基函数神经网络,即RBF神经网络。
用径向基函数(RBF)作为隐单元的“基”构成隐含层空间,对输入矢量进行一次变换,将低维的模式输入数据变换到高维空间内,通过对隐单元输出的加权求和得到输出,这就是RBF网络的基本思想。
2 RBF神经网络的网络结构RBF网络是一种三层前向网络:第一层为输入层,由信号源节点组成。
第二层为隐含层,隐单元的变换函数是一种局部分布的非负非线性函数,他对中心点径向对称且衰减。
隐含层的单元数由所描述问题的需要确定。
第三层为输出层,网络的输出是隐单元输出的线性加权。
RBF网络的输入空间到隐含层空间的变换是非线性的,而从隐含层空间到输出层空间的变换是线性。
不失一般性,假定输出层只有一个隐单元,令网络的训练样本对为,其中为训练样本的输入,为训练样本的期望输出,对应的实际输出为;基函数为第个隐单元的输出为基函数的中心;为第个隐单元与输出单元之间的权值。
单输出的RBF网络的拓扑图如图1所示:图1RBF网络的拓扑图当网络输入训练样本时,网络的实际输出为:(1)通常使用的RBF有:高斯函数、多二次函数(multiquadric function)、逆多二次函数、薄板样条函数等。
3.6 径向基函数神经网络模型与学习算法
2.5.3 RBF网络学习算法的MATLAB实现
newrb() 功能
建立一个径向基神经网络
格式
net = newrb(P,T,GOAL,SPREAD,MN,DF)
说明
P为输入向量,T为目标向量,GOAL为圴方误差, 默认为0,SPREAD为径向基函数的分布密度,默 认为1,MN为神经元的最大数目,DF为两次显示 之间所添加的神经元神经元数目。
I w ij exp d 2 X k ti max
2
2.5.3 RBF网络学习算法的MATLAB实现
RBF网络的MATLAB函数及功能
函 数 名 newrb() newrbe() newgrnn() newpnn() 功 能 新建一个径向基神经网络 新建一个严格的径向基神经网络 新建一个广义回归径向基神经网络 新建一个概率径向基神经网络
2.5.3 RBF网络学习算法的MATLAB实现
newrbe() 功能
建立一个严格的径向基神经网络,严格是指径向基 神经网络的神经元的个数与输入值的个数相等。
格式 (1) 说明
net = newrb(P,T, SPREAD)
各参数的含义见Newrb。
2.5.3 RBF网络学习算法的MATLAB实现
训练样本集X=[X1,X2,…,Xk,…,XN]T, 任一训练样本Xk=[xk1,xk2,…,xkm,…,xkM] ; 对应的实际输出为Yk=[Yk1, Yk2,…, Ykj,…, YkJ] 期望输出为dk=[dk1, dk2,…, dkj,…, dkJ] ;
;
当输入训练样本Xk时,第j个输出神经元的实际输出为:
GX k , X i G X k X i
1 2 Xi= [xi1,xi2,…,xim,…,xiM] exp Xk Xi 2 2 i 1 M 2 xkm xim exp 2 2 m 1 i
径向基函数(RBF)神经网络
径向基函数(RBF)神经⽹络RBF⽹络能够逼近任意的⾮线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能⼒,并有很快的学习收敛速度,已成功应⽤于⾮线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明⼀下为什么RBF⽹络学习收敛得⽐较快。
当⽹络的⼀个或多个可调参数(权值或阈值)对任何⼀个输出都有影响时,这样的⽹络称为全局逼近⽹络。
由于对于每次输⼊,⽹络上的每⼀个权值都要调整,从⽽导致全局逼近⽹络的学习速度很慢。
BP⽹络就是⼀个典型的例⼦。
如果对于输⼊空间的某个局部区域只有少数⼏个连接权值影响输出,则该⽹络称为局部逼近⽹络。
常见的局部逼近⽹络有RBF⽹络、⼩脑模型(CMAC)⽹络、B样条⽹络等。
径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。
样本点总共有P个。
RBF的⽅法是要选择P个基函数,每个基函数对应⼀个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。
||X-X p||表⽰差向量的模,或者叫2范数。
基于为径向基函数的插值函数为:输⼊X是个m维的向量,样本容量为P,P>m。
可以看到输⼊数据点X p是径向基函数φp的中⼼。
隐藏层的作⽤是把向量从低维m映射到⾼维P,低维线性不可分的情况到⾼维就线性可分了。
将插值条件代⼊:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度⽆关,当Φ可逆时,有。
对于⼀⼤类函数,当输⼊的X各不相同时,Φ就是可逆的。
下⾯的⼏个函数就属于这“⼀⼤类”函数:1)Gauss(⾼斯)函数2)Reflected Sigmoidal(反常S型)函数3)Inverse multiquadrics(拟多⼆次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越⼩,宽度越窄,函数越具有选择性。
完全内插存在⼀些问题:1)插值曲⾯必须经过所有样本点,当样本中包含噪声时,神经⽹络将拟合出⼀个错误的曲⾯,从⽽使泛化能⼒下降。
RBF神经网络概述
RBF神经网络概述RBF(径向基函数)神经网络是一种基于径向基函数的神经网络模型。
它由两部分组成:输入层和输出层。
输入层接收外部输入信号,然后通过径向基函数层将输入映射到隐含层。
隐含层采用径向基函数来计算输入向量与各个隐含单元的距离,并输出给输出层。
输出层根据隐含层的输出计算最终的输出结果。
1.非线性映射能力:径向基函数作为非线性映射函数,可以将输入空间映射到高维特征空间,从而可以处理非线性问题。
2.局部处理和全局处理:隐含层的每个隐含单元都对输入向量进行局部处理,隐含单元之间相互独立运算。
然后输出层将各个隐含单元的输出结果进行全局处理,得到最终的输出结果。
3.高维特征空间:由于径向基函数的作用,RBF神经网络可以将输入空间映射到高维特征空间,从而提高网络的抽象能力和判别能力。
4.可解释性:RBF神经网络中的隐含单元具有一定的物理意义,例如高斯函数的中心表示样本的分布情况,标准差表示隐含单元的灵敏度。
这样的特点使得RBF神经网络具有较好的可解释性。
1. 中心确定:通过聚类算法(如K-means算法)确定隐含层的中心,中心可以看作是样本的代表点。
2.方差确定:针对每个隐含单元,计算样本与该隐含单元中心的距离,并计算方差。
方差越大,隐含单元对距离远的样本的响应越强,方差越小,隐含单元对距离近的样本的响应越强。
3.权值确定:根据中心和方差计算得到每个隐含单元的权值。
通常采用最小二乘法或者广义逆矩阵法。
4.输出计算:根据隐含层的输出和权值,计算输出层的输出。
5.网络训练:使用样本数据进行网络训练,通过调整权值来减小网络的误差。
常用的方法有梯度下降法、遗传算法等。
RBF神经网络在模式识别、函数逼近、数据挖掘等领域有着广泛的应用。
它具有较好的非线性映射能力和逼近能力,能够处理高维特征空间的模式识别问题。
同时,RBF神经网络具有较好的可解释性,能够提供有关样本分布和网络响应的有效信息。
然而,RBF神经网络也存在一些问题。
基于径向基函数(RBF)神经网络模型的金融混沌预警研究
HA N r AN FI AN N CE
基于径 向基函数( BF 神经 网络模型建 设 银行 湖 南 总 审计 室 ,湖 南 长 沙 4 0 0 中 10 5)
摘 要 : 文研 究 了金 融 混 沌 的 预 警 问题 。 用 径 向基 函 数 ( B ) 经 网 络模 型 对金 融 系统 重 构 相 空 间 中的 相 点 本 利 R F神
融 系统 在 运 行 过 程 中 陷 于混 沌 状 态 。 关 键 词 : 融 混 沌 ; 向基 函数 ; 经 网络 模 型 ; 警 金 径 神 预
中 图分 类 号 : 80 F 3 文献 标 识 码 : 文 章 编 号 :03 9 3 (0 20 - 0 20 OI1.9 9 .s . 0 — 0 1 0 20 .8 A 10 — 0 12 1 )6 0 3 - 4 D :0 6 /i n1 3 9 3 . 1 . 0 - 3 js 0 2 6
是 完 全 连 接 , 以 。 常 情 况 下 取 输 入 层 节 点 与 隐含 层 节 所 通
性系统 。依 赖于传统技术 经济 的预警方法 已经越来越不 含 层 。由 于输 入 层 只是 将 信 号 传 递 到 隐含 层 ,两 者 之 间
基 金 项 目 : 家 自然 科 学 基金 项 目f 8 3 3 )湖 南 省社 科 重 点项 目(5 D 8 。 国 7 70 7、 0 0Z 0 )
一
、
引言
而 通 过 神经 网络 可 以不 必 事 先 建 立 主 观 模 型 对 系统 运 行 状 态 进 行 预 测 与 预 警 。特 别 是 前 馈 型 径 向 基 函数 ( B ) 经 网 络 的提 出 , 以 以 任 意 精 度 、 局 最 优 、 R F神 可 全 结
径向基神经网络
径向基神经网络1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function,RBF)方法。
1988年,Moody和Darken提出了一种神经网络结构,即RBF神经网络,属于前向神经网络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。
RBF网络的结构与多层前向网络类似,它是一种三层前向网络。
输入层由信号源节点组成;第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数RBF是对中心点径向对称且衰减的非负非线性函数;第三层为输出层,它对输入模式的作用做出响应。
从输入空间到隐含层空间的变换是非线性的,而从隐含层空间的输出层空间变换是线性的。
RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入向量直接映射到隐空间。
当RBF的中心点确定以后,这种映射关系也就确定了。
而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和。
此处的权即为网络可调参数。
由此可见,从总体上看,网络由输入到输出的映射是非线性的,而网络的输出对可调参数而言却是线性的。
这烟大哥网络的权就可由线性方程直接解出,从而大大加快学习速度并避免局部极小问题。
一、RBF神经元模型径向基函数神经元的传递函数有各种各样的形式,但常用的形式是高斯函数(radbas)。
与前面介绍的神经元不同,神经元radbas的输入为输入向量p和权值向量ω之间的距离乘以阈值b。
径向基传递函数可以表示为如下形式:二、RBF网络模型径向基神经网络的激活函数采用径向基函数,通常定义为空间任一点到某一中心之间欧氏距离的单调函数。
径向基神经网络的激活函数是以输入向量和权值向量之间的距dist为自变量的。
径向神经网络的激活函数一般表达式为随着权值和输入向量之间距离的减少,网络输出是递增的,当输入向量和权值向量一致时,神经元输出1。
b为阈值,用于调整神经元的灵敏度。
利用径向基神经元和线性神经元可以建立广义回归神经网络,该种神经网络适用于函数逼近方面的应用;径向基神经元和竞争神经元可以组件概率神经网络,此种神经网络适用于解决分类问题。
RBF(径向基)神经网络
RBF(径向基)神经⽹络 只要模型是⼀层⼀层的,并使⽤AD/BP算法,就能称作 BP神经⽹络。
RBF 神经⽹络是其中⼀个特例。
本⽂主要包括以下内容:什么是径向基函数RBF神经⽹络RBF神经⽹络的学习问题RBF神经⽹络与BP神经⽹络的区别RBF神经⽹络与SVM的区别为什么⾼斯核函数就是映射到⾼维区间前馈⽹络、递归⽹络和反馈⽹络完全内插法⼀、什么是径向基函数 1985年,Powell提出了多变量插值的径向基函数(RBF)⽅法。
径向基函数是⼀个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意⼀点c的距离,c点称为中⼼点,也就是Φ(x,c)=Φ(‖x-c‖)。
任意⼀个满⾜Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数,标准的⼀般使⽤欧⽒距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。
最常⽤的径向基函数是⾼斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中x_c为核函数中⼼,σ为函数的宽度参数 , 控制了函数的径向作⽤范围。
⼆、RBF神经⽹络 RBF神将⽹络是⼀种三层神经⽹络,其包括输⼊层、隐层、输出层。
从输⼊空间到隐层空间的变换是⾮线性的,⽽从隐层空间到输出层空间变换是线性的。
流图如下: RBF⽹络的基本思想是:⽤RBF作为隐单元的“基”构成隐含层空间,这样就可以将输⼊⽮量直接映射到隐空间,⽽不需要通过权连接。
当RBF的中⼼点确定以后,这种映射关系也就确定了。
⽽隐含层空间到输出空间的映射是线性的,即⽹络的输出是隐单元输出的线性加权和,此处的权即为⽹络可调参数。
其中,隐含层的作⽤是把向量从低维度的p映射到⾼维度的h,这样低维度线性不可分的情况到⾼维度就可以变得线性可分了,主要就是核函数的思想。
这样,⽹络由输⼊到输出的映射是⾮线性的,⽽⽹络输出对可调参数⽽⾔却⼜是线性的。
⽹络的权就可由线性⽅程组直接解出,从⽽⼤⼤加快学习速度并避免局部极⼩问题。
径向基神经网络学习算法(RBF)
Mezer chen 2018.5.9
RBF简介
1989年,Moody和Darken提出了一种由两个阶段组成的混 合学习过程的思路。
①无监督的自组织学习阶段 ②有监督学习阶段
其任务是用自组织聚类方法为隐 层节点的径向基函数确定合适的 数据中心,并根据各中心之间的 距离确定隐节点的扩展常数。 一般采用Duda和Hart1973年提 出的k-means聚类算法。
其任务是用有监督 学习算法训练输出 层权值,一般采用 梯度法进行训练。
RBF网络的工作原理
RBF网络特点
只有一个隐含层,且隐层神经元与输出层神经元的模型不同。 隐层节点激活函数为径向基函数,输出层节点激活函数为线 性函数。 隐层节点激活函数的净输入是输入向量与节点中心的距离 (范数)而非向量内积,且节点中心不可调。 隐层节点参数确定后,输出权值可通过解线性方程组得到。 隐层节点的非线性变换把线性不可分问题转化为线性可分问 题。 局部逼近网络(MLP是全局逼近网络),这意味着逼近一个输 入输出映射时,在相同逼近精度要求下,RBF所需的时间要 比MLP少。 具有唯一最佳逼近的特性,无局部极小。 合适的隐层节点数、节点中心和宽度不易确定。
RBF神经网络中心选取
① 从样本输入中选取中心
一般来说,样本密集的地方中心点可以适当多些,样本 稀疏的地方中心点可以少些;若数据本身是均匀分布的,
中心点也可以均匀分布。总之,选出的数据中心应具有代
表性。径向基函数的扩展常数是根据数据中心的散布而确 定的,为了避免每个径向基函数太尖或太平,一种选择方 法是将所有径向基函数的扩展常数设为
d max 2I
② 自组织选取中心法
常采用各种动态聚类算法对数据中心进行自组织选择,在
径向基神经网络的介绍及其案例实现
径向基神经网络的介绍及其案例实现径向基(RBF)神经网络是一种常用的人工神经网络模型,它以径向基函数作为激活函数来进行模式分类和回归任务。
该网络在模式识别、函数逼近、数据挖掘等领域都具有良好的性能,并且具有较好的泛化能力。
引言:径向基(RBF)神经网络最早是由Broomhead和Lowe于1988年引入的,它是一种前馈式神经网络。
RBF神经网络的主要思想是以输入向量与一组高斯函数的基函数作为输入层,然后再通过隐藏层进行特征映射,最后通过输出层进行模式分类或回归。
1.RBF神经网络的结构:RBF神经网络包括输入层、隐藏层和输出层三层。
输入层负责接收输入向量,隐藏层负责特征映射,输出层负责输出结果。
输入层:输入层接收具有所要分类或回归的特征的数据,通常使用欧几里德距离计算输入层的神经元与输入向量之间的距离。
隐藏层:隐藏层是RBF神经网络的核心部分,它通过一组径向基函数来进行特征映射。
隐藏层的神经元数量通常和训练样本数量相同,每个神经元负责响应一个数据样本。
输出层:输出层根据隐藏层的输出结果进行模式分类或回归预测,并输出网络的最终结果。
2.RBF神经网络的训练:RBF神经网络的训练主要包括两个步骤:聚类和权值调整。
聚类:首先通过K-means等聚类算法将训练样本划分为若干个类别,每个类别对应一个隐藏层神经元。
这样可以将输入空间划分为若干个区域,每个区域中只有一个样本。
权值调整:通过最小化残差误差或最小化目标函数来优化隐藏层和输出层的权值。
常用的优化算法有最小二乘法、梯度下降法等。
3.RBF神经网络的案例实现:案例1:手写数字识别案例2:股票市场预测RBF神经网络也可以应用于股票市场的预测。
该案例中,RBF神经网络接收一组与股票相关的指标作为输入,通过隐藏层的特征映射将指标转化为更有意义的特征表示,最后通过输出层进行未来股价的回归预测。
该系统的训练样本为历史股票数据以及与之对应的未来股价。
结论:径向基(RBF)神经网络是一种应用广泛且效果良好的人工神经网络模型。
径向基函数神经网络模型及其在预测系统中的应用
径向基函数神经网络模型及其在预测系统中的应用概述:径向基函数神经网络(Radial Basis Function Neural Network, RBFNN)是一种基于神经网络的非线性模型,具有广泛的应用领域。
在预测系统中,RBFNN能够准确预测未知输入与输出之间的关系,从而为预测问题的解决提供了有效的方法。
一、径向基函数神经网络模型的基本原理1.1 RBFNN的结构径向基函数神经网络由输入层、隐含层和输出层构成。
输入层接受原始数据,隐含层通过径向基函数对输入数据进行转换,输出层将转换后的数据映射到期望的输出。
1.2 径向基函数的选择径向基函数的选择对RBFNN的性能有重要影响。
常用的径向基函数有高斯函数、多项式函数和细分函数等。
根据问题的需求和特点选择合适的径向基函数,以提高模型的预测能力。
1.3 模型的训练与优化通过使用已知输入与输出的训练数据,结合误差反向传播算法,可以对RBFNN的参数进行学习和优化。
训练的目标是使得模型的输出与实际输出之间的误差最小化,从而提高预测的准确性。
二、径向基函数神经网络模型在预测系统中的应用2.1 股票市场预测股票市场价格的预测一直是金融领域的研究热点。
RBFNN通过学习历史价格与因素的关系,能够预测未来的股票价格走势。
通过准确的预测,投资者可以做出更明智的决策,提高投资回报率。
2.2 污染物浓度预测环境污染是当今社会面临的严重问题之一。
RBFNN可以利用区域内的环境数据,如气象数据、监测数据等,预测出某个时刻某地区的污染物浓度。
这有助于预警系统的建立,提前采取措施避免污染的扩散。
2.3 交通流量预测交通流量的预测在城市交通管理中具有重要意义。
通过收集历史交通流量和相关影响因素的数据,RBFNN能够准确预测未来某个时间段某条道路的交通流量。
这有助于交通规划和拥堵疏导的决策。
2.4 预测市场需求在制造业和零售业等领域,准确预测市场的需求对企业决策具有重要影响。
RBFNN可以通过学习历史销售数据和市场因素的关系,预测未来某段时间内产品的需求量。
rbf神经网络原理
rbf神经网络原理
RBF神经网络,即径向基函数神经网络,是一种常用的神经网络模型。
它的核心思想是通过选择合适的基函数来近似非线性函数关系,从而实现对复杂模式的学习与分类。
RBF神经网络由三层组成:输入层,隐含层和输出层。
输入层接收外部输入的数据,每个输入节点对应一个特征。
隐含层是RBF神经网络的核心,其中的每个神经元都是一个径向基函数。
在隐含层中,每个神经元都有一个中心向量和一个标准差,用于确定其基函数的形状和大小。
通过计算输入向量与神经元中心之间的距离,再经过基函数的转换,即可得到神经元的输出。
输出层是整个神经网络的分类器,它通常采用线性组合来产生最终的输出。
常见的方法是采用最小均方误差(MSE)准则函数来训练神经网络,通过调整神经元中心和标准差的参数,以最小化实际输出与期望输出之间的误差。
RBF神经网络具有以下优点:
1. 相较于传统的前馈神经网络,RBF神经网络对线性可分和线性不可分问题的逼近能力更强。
2. RBF神经网络的训练速度较快,且容易实现并行计算。
3. 网络结构简单,参数少,不容易出现过拟合问题。
4. 对于输入输出空间中的噪声和干扰具有较强的鲁棒性。
总而言之,RBF神经网络通过径向基函数的选取,能够有效地近似非线性函数,并在模式分类等任务中取得较好的结果。
RBF神经网络模型在遥感目标检测中的应用
RBF神经网络模型在遥感目标检测中的应用随着遥感技术的不断发展,遥感图像的应用越来越广泛,其中遥感目标检测在土地利用、资源调查、环境监测等领域起着越来越重要的作用。
传统的遥感目标检测方法主要基于像元级的图像处理技术和统计分析方法,这些方法往往需要较多的人工干预和专业知识,缺乏普适性和准确性。
因此,使用人工智能的方法进行遥感目标检测成为研究热点之一。
本文将介绍一种基于径向基函数(RBF)神经网络模型的遥感目标检测方法。
RBF神经网络是一种常用的人工神经网络模型,其基本原理是通过将特征空间转换成高维空间,在高维空间中使用线性方法对数据进行分类。
在实际运用中,RBF神经网络模型能够较好地处理非线性问题,具有较高的泛化能力和预测精度。
本文基于RBF神经网络模型将遥感图像进行分类,具体步骤如下:首先,将遥感图像进行预处理,包括图像直方图均衡化、滤波和降维等。
这些预处理方法能够有效地去除图像噪声、增强图像边缘等,为后续的遥感目标检测建立了基础。
其次,提取特征并进行特征选择。
在遥感图像中,常用的颜色、纹理、形状等特征具有很好的分类性能。
通过特征提取和特征选择,可以减少特征数量和冗余度,提高分类算法的精度和效率。
最后,使用RBF神经网络对特征进行分类,得到遥感图像中不同目标的分布情况。
在训练过程中,可以通过交叉验证等方法对网络参数进行调整,进一步提高分类算法的精度和稳定性。
在实际应用中,可以使用软件工具如MATLAB、Python等实现RBF神经网络。
本文中基于RBF神经网络模型的遥感目标检测方法具有以下优点:1.较好的泛化能力。
RBF神经网络通过高维空间的转换,能够有效地处理非线性问题,具有较高的泛化能力和预测精度,在遥感目标分类中具有广泛的应用前景。
2.较快的分类速度。
RBF神经网络模型具有快速的收敛速度和低计算复杂度,能够在较短时间内处理大量的遥感图像数据。
3.良好的适应性。
RBF神经网络模型能够灵活地适应不同的遥感图像数据和应用场景,可以通过调整网络参数和输入特征进行定制化设置,提高分类效果和处理速度。
径向基函数神经网络RBF与BP神经网络
3.把一切把一切问题的特征都变为数字,把一切推理 都变为数值计算,其结果势必是丢失信息。
BP神经元模型
RBF隐层神经元模型
P1 P2
பைடு நூலகம்
w1,1
P3
n
fa
PR-1 PR
w1,R
R(|| dist ||) e||dist||2
a=f(wp+b)
传递函数:A=logsig(n) A=tansig(n) A=purelin(n)
激活函数:
注:|| dist || 是输入向量和 权值向量之间的欧氏距离
神经元的数据中心即为样本本身,参数设计只需考虑扩展 常数和输出节点的权值。
当采用广义RBF网络结构时,RBF网络的学习算法应该解决 的问题包括:如何确定网络隐节点数,如何确定各径向基 函数的数据中心及扩展常数,以及如何修正输出权值。
RBF网络学习算法的MATLAB实现
RBF网络常用函数表
函数名
功能
径向基函数神经网络
神经网络基础知识
工作原理:模拟生物大脑神经处理信息的方式 构成:大量简单的基本元件——神经元相互连接 功能:进行信息的并行处理和非线性转化 本质:就是利用计算机语言模拟人类大脑做决定
的过程。
神经元结构模型
输入信号
x1
x2
x3 xj
ij
xn
阈值
yi
i
输出值 与神经元xj的连接权值
使用这些数据 实现回归公式
RBF与BP神经网络的比较
从网络结构上比较: 传递函数不同;神经元层数可能不同;RBF 网络隐层神经元个数可以确定,BP网络不 易确定。
RBF神经网络:原理详解和MATLAB实现
RBF神经网络:原理详解和MATLAB实现——2020年2月2日目录RBF神经网络:原理详解和MATLAB实现 (1)一、径向基函数RBF (2)定义(Radial basis function——一种距离) (2)如何理解径向基函数与神经网络? (2)应用 (3)二、RBF神经网络的基本思想(从函数到函数的映射) (3)三、RBF神经网络模型 (3)(一)RBF神经网络神经元结构 (3)(二)高斯核函数 (6)四、基于高斯核的RBF神经网络拓扑结构 (7)五、RBF网络的学习算法 (9)(一)算法需要求解的参数 (9)0.确定输入向量 (9)1.径向基函数的中心(隐含层中心点) (9)2.方差(sigma) (10)3.初始化隐含层至输出层的连接权值 (10)4.初始化宽度向量 (12)(二)计算隐含层第j 个神经元的输出值zj (12)(三)计算输出层神经元的输出 (13)(四)权重参数的迭代计算 (13)六、RBF神经网络算法的MATLAB实现 (14)七、RBF神经网络学习算法的范例 (15)(一)简例 (15)(二)预测汽油辛烷值 (15)八、参考资料 (19)一、径向基函数RBF定义(Radial basis function——一种距离)径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意一点c的距离,c点称为中心点,也就是Φ(x,c)=Φ(‖x-c‖)。
任意一个满足Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数。
标准的一般使用欧氏距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。
在神经网络结构中,可以作为全连接层和ReLU层的主要函数。
如何理解径向基函数与神经网络?一些径向函数代表性的用到近似给定的函数,这种近似可以被解释成一个简单的神经网络。
径向基函数在支持向量机中也被用做核函数。
常见的径向基函数有:高斯函数,二次函数,逆二次函数等。
RBF神经网络学习算法
RBF神经网络学习算法RBF(径向基函数)神经网络是一种常用的神经网络模型,其学习算法主要分为两个步骤:网络初始化和参数优化。
本篇文章将详细介绍RBF 神经网络学习算法的原理和步骤。
1.网络初始化(1)选择隐藏层神经元的个数隐藏层神经元的个数决定了网络的复杂度。
一般情况下,隐藏层神经元的个数越多,网络的拟合能力越强。
但是隐藏层神经元个数的选择也受限于样本的数量和特征维度。
(2)选择径向基函数径向基函数用于将输入样本映射到隐藏层,常用的径向基函数有高斯函数、多项式函数等。
高斯函数是最常用的径向基函数,其具有良好的非线性映射性质。
选择合适的径向基函数如高斯函数可以提高网络的拟合能力。
(3)确定径向基函数的参数高斯函数有一个重要参数σ,控制了函数的宽度。
确定适当的σ值可以使得网络在训练过程中收敛更快,提高网络的学习效率。
2.参数优化(1)梯度下降法梯度下降法是一种常用的优化方法,通过不断迭代网络参数来最小化误差函数。
具体步骤如下:a.随机初始化网络的权值和偏置。
b.使用前向传播计算网络的输出。
d.根据误差计算参数的梯度。
e.根据梯度和学习率更新参数。
f.重复b-e直到满足停止准则。
(2)最小二乘法最小二乘法是一种基于最小化误差平方和的优化方法。
具体步骤如下:a.设置误差函数为平方和。
b.对误差函数求偏导,并令导数为0,得到参数的闭式解。
c.使用闭式解更新参数。
3.网络训练与预测(1)网络训练(2)网络预测网络预测是指使用训练好的网络来进行新样本的预测。
给定新样本的特征向量,通过前向传播计算网络的输出,即为网络对该样本的预测结果。
总结:本文首先介绍了RBF神经网络的基本原理和结构,然后详细描述了RBF神经网络的学习算法。
网络初始化包括选择隐藏层神经元个数、径向基函数和参数的确定。
参数优化主要通过梯度下降法和最小二乘法来优化网络的参数。
最后,本文介绍了网络训练和预测的过程。
通过合理选择网络结构和参数,RBF神经网络可以有效地处理非线性问题,具有很好的拟合能力和预测能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.径向基RBF 神经网络预测模型
RBF 网络是一种新颖的有效的前向型神经网络,由于该网络输出层对中间层的线性加权,使得该网络避免了像BP 网络那样繁琐冗长的计算,具有较高的运算速度和外推能力,同时使得网络有较强的非线性映射功能,RBF 网络是通过非线性基函数的线性组合实现从输入空间N R 到输出空间M R 的非线性转换。
而本题数据是一类非线性较强的时间序列,对其进行预测,即从前N 个数据中预测将来M 个数据,实质上就是找出从N R 到M R 的非线性映射关系。
因此,可以说径向基网络特别适合于非线性时间序列的预测。
2.1 RBF 网络结构及算法 1、网络的神经元结构
2、激活函数采用径向基函数
(1)以输入和权值向量之间的距离作为自变量
RBF 网络的输出是隐单元输出的线性加权和,学习速度加快;径向基神经网络使用径向基函数(一般使用高斯函数)作为激活函数,神经元输入空间区域很小,因此需要更多的径向基神经元 。
自组织选取中心学习方法有:
第一步,自组织学习阶段无导师学习过程,求解隐含层基函数的中
· · ·
x
1 x
m
x
2 2
-dist
R (dist )=e
心与方差;
第二步,有导师学习阶段求解隐含层到输出层之间的权值。
高斯函数作为径向基函数
网络的输出
设d 是样本的期望输出值,那么基函数的方差可表示为 :
2.求解方差
RBF 神经网络的基函数为高斯函数时,方差可由下式求解:
式中
为中所选取中心之间的最大距离。
3.计算隐含层和输出层之间的权值
隐含层至输出层之间神经元的连接权值可以用最小二乘法直接计算得到,计算公式如下:
2
2
1R()=exp(-)
2p i p i c c σ--x x h
2
2
i=11y =exp(-)
=1,2,,2j ij p i w c j n
σ-∑x 2
1m
j j i
j
d y c P σ=-
∑1,2,i i h
σ=
=max c 2
2max
exp(
)
1,2,,;1,2,,p i h
w x c p P i h
c =-==
2.2.数据处理及方法概述
由于本题数据可以看做一个时间序列处理,这里假定时间序列1,
,N x x ,现
在希望通过序列的前N 年的数据,预测出后M 年的数值。
这里可以采用序列的前N 年的数据为滑动窗口,并将其映射为M 个值。
这M 个值代表在该窗口之后的M 个时刻上的预测值。
如下表所示,列出了数据的一种划分方法。
该表把数据分为K 个长度为N M +的,有一定重叠的数据段,每一个数据段可以看作一个样本,这样就可以得到()1K L N M =-++个样本。
这样一来,就可以将每个样本的前N 个值作为RBF 神经网络的输入,后M 个值作为目标输出。
通过学习,实现从N R 到输出空间M R 的映射,从而达到时间序列预测的目的。
,N x ,N M x + 1,
,N x +
1,
,N M x ++
1,
,N K x +-
,
,N M K x ++通过大容量样本训练出来的网络其预报误差更小,外推能力也更强。
获得输入和输出变量之后,在学习之前,首先要对数据进行归一化处理,将数据处理为区间[0,1]之间的数据。
归一化方法有很多种形式,这里采用如下函数公式:
min
max min
ˆx x x
x x -=-。