广东省广州市南沙区2019-2020学年七年级数学(上)期末试卷

合集下载

2019-2020学年广东省七年级数学上册期末考试模拟试卷(A)有答案-推荐

2019-2020学年广东省七年级数学上册期末考试模拟试卷(A)有答案-推荐

2019-2020学年上学期期末A 卷七年级数学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

22.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版七上第1~4章。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.–12的相反数是 A .–2 B .2 C .–12 D .122.作为“一带一路”倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著.两年来,已有18个项目在建或建成,总投资额达185亿美元.185亿用科学记数法表示为A .91.8510⨯B .101.8510⨯C .111.8510⨯D .111.8510⨯3.下列运算正确的是A B .0–(–6)=6 C D .(–3)÷(–6)=24.下列各式运用等式的性质变形,错误的是A .若a b -=-,则a b =B ,则a b =C .若ac bc =,则a b =D .若22(1)(1)m a m b +=+,则a b =5.若x =–3是方程x +a =4的解,则a 的值是A .7B .1C .–1D .–76.如图所示,若∠AOB =∠COD ,那么A.∠1>∠2 B.∠1=∠2 C.∠1<∠2 D.∠1与∠2的大小不能确定7.如图,某同学家在A处,现在该同学要去位于B处的同学家去玩,请帮助他选择一条最近的路线A.A→C→D→B B.A→C→F→BC.A→C→E→F→B D.A→C→M→B8.a※b是新规定的这样一种运算法则:a※b=a+2b,例如3※(–2)=3+2×(–2)=–1.若(–2)※x=2+x,则x的值是A.1 B.5 C.4 D.29.如图是一个正方体的表面展开图,若正方体中相对的面上的数或式子互为相反数,则2x+y的值为A.0 B.–1 C.–2 D.110.观察下图,第1个图形中有1个小正方形,第2个图形中有3个小正方形,第3个图形中有6个小正方形,…依此规律,若第n个图形中小正方形的个数为66,则n等于A.13 B.12 C.11 D.10第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)11.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,可记作+0.23米,那么小东跳出了3.75米,记作__________.12.有理数a ,b ,c ,d 在数轴上对应的点的位置如图,则abc __________0,abcd __________0.(填“>”或“<”)13.如果多项式32281x x x -+-与关于x 的多项式323237x mx x ++-的和不含二次项,则m =________.14.如图:若CD =4 cm ,BD =7 cm ,B 是AC 的中点,则AB 的长为__________.15.某班图书柜里有书若干本,该班阅读兴趣小组有x 人,若每人4本还余9本,若每人5本还差3本,依题意列方程为__________.16.如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为__________.三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:(1)8+(–10)+(–2)–(–5);(218.(本小题满分6分)解方程:(1)6363(5)x x -+=--;(2 19.(本小题满分6分)已知277A B a ab -=-,且2–467B a ab =++.(1)求A ;(2A 的值.20.(本小题满分7分)某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g ,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5 g,求该食品的抽样检测的合格率.21.(本小题满分76,然而方程右边的–1忘记乘6,因而求得的解为x =4,试求a 的值,并正确求出原方程的解.22.(本小题满分7分)小明房间窗户的装饰物如图所示,它们由两个四分之一圆组成(半径相同).(1)请用代数式表示装饰物的面积(结果保留π);(2)请用代数式表示窗户能射进阳光部分的面积(结果保留π);(3)若a=1,b=23,请求出窗户能射进阳光的面积的值(取π=3).23.(本小题满分9分)甲、乙两站相距336千米,一列慢车从甲站开出,每小时行驶72千米,一列快车从乙站开出,每小时行驶96千米.(1)若两车同时相向而行,则几小时后相遇?几小时后相距84千米?(2)若两车同时反向而行,则几小时后相距672千米?24.(本小题满分9分)某市百货商场元旦期间搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元,优惠10%,超过500元的,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品不打折值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将这两次的钱合起来购相同的商品是更节省还是亏损?说明理由.25.(本小题满分9分)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.。

2019-2020学年广东省广州市数学七年级(上)期末质量检测模拟试题

2019-2020学年广东省广州市数学七年级(上)期末质量检测模拟试题

2019-2020学年广东省广州市数学七年级(上)期末质量检测模拟试题一、选择题1.如图,若延长线段AB 到点C ,使BC=AB ,D 为AC 的中点,DC=5cm ,则线段AB 的长度是( )A.10cmB.8cmC.6cmD.4cm2.下列判断中,正确的是( )①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.A.①②B.①③C.①④D.②③3.如图,直线l 是一条河,P ,Q 是两个村庄。

欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )A. B.C. D.4.一项工程的施工现场,调来72名司机师傅参加挖土和运土工作,已知3名司机师傅挖出的土1名司机师傅恰好能开车全部运走,怎样分配这72名司机师傅才能使挖出的土能及时运走?可设派名司机师傅挖士,其他的人运土,列方程:上述所列方程,正确的有___个A.1B.2C.3D.45.一项工程甲单独做需20天完成,乙单独做需30天完成,甲先单独做4天,然后甲、乙两人合作x 天完成这项工程,则下面所列方程正确的是( ) A.41202030x +=+ B.41202030x +=⨯ C.412030x += D.412030x x ++= 6.下列等式变形正确的是( ) A.由a=b ,得3a -=3b - B.由﹣3x=﹣3y ,得x=﹣y C.由4x =1,得x=14 D.由x=y ,得x a =y a7.如果3x 2m y n+1与﹣12x 2y m+3是同类项,则m ,n 的值为( ) A.m=﹣1,n=3 B.m=1,n=3 C.m=﹣1,n=﹣3 D.m=1,n=﹣38.如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长 为3,则另一边长是()A .m+3B .m+6C .2m+3D .2m+69.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是( )A .96B .86C .68D .5210.在—1,+7,0,0.01,237-, 80中,正数有( ) A.1个 B.2个 C.3个 D.4个11.如果a 表示有理数,那么下列说法中正确的是( )A.+a 和一(-a)互为相反数B.+a 和-a 一定不相等C.-a 一定是负数D.-(+a)和+(-a)一定相等 12.下列各组数中互为相反数的是( )A.-2B.-2C.2与()2 |二、填空题13.计算:①33°52′+21°54′=________;②18.18°=________°________′________″.14.111.已知∠1与∠2互余,∠2与∠3互补,若∠1=63°,则∠3=_____.15.下面解方程的步骤,出现错误的是第_____步. 33324x x +--= 解:方程两边同时乘4,得:32x +×4﹣34x -×4=3×4…① 去分母,得:2(3+x )﹣x ﹣3=12…②去括号,得:6+2x ﹣x ﹣3=12 …③移项,得:2x ﹣x=12﹣6+3 …④合并同类项,得:x=9 …⑤16.人民路有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折.乙超市购物①不超过200元,不给予优惠;②超过200元而不超过600元,打9折;③超过600元,其中的600元仍打9折,超过600元的部分打8折.(假设两家超市相同商品的标价都一样)当标价总额是___________元时,甲、乙两家超市实付款一样.17.已知a ,b ,c 在数轴上的位置如图所示,化简:|a ﹣b|+|b+c|+|c ﹣a|=_____.18.-2018的相反数是____________ .19.已知单项式91m m +1n b +与-221m a -21n b -的积与536a b 是同类项,则n m =_______20.计算:21()2-=______.三、解答题21.一个角的补角比它的余角的3倍少20︒,求这个角的度数.22.一个角的补角比它的余角的3倍小20°,求这个角的度数.23.《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.24.某单位计划购买电脑若干台,经了解同一型号市场预售价均为每台5000元.现有两商场优惠促销,甲商场:购买不超过2台按原价销售,超过2台的部分每台打7折;乙商场:每台均打8折.(1)若学校购买5台,哪家商场较优惠?购买7台呢?(2)买多少台时两商场所需费用一样多?(3)你知道学校怎样选购更省钱?25.(1)化简:(3x 2+1)+2(x 2-2x+3)-(3x 2+4x );(2)先化简,再求值:13m-(13n 2-23m )+2(32m-13n 2)+5,其中m=2,n=-3. 26.化简与求值(1)化简:2m 2-2m-m 2-3;(2)先化简,再求值:2(a 2b+ab 2)-2(a 2b-1)-3(ab 2+1),其中a=-2,b=227.计算:(﹣0.5)+|0﹣614|﹣(﹣712)﹣(﹣4.75). 28.如图,已知A ,B 两点在数轴上,点A 表示的数为-10,OB=3OA ,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、点N 同时出发)(1)数轴上点B 对应的数是______.(2)经过几秒,点M 、点N 分别到原点O 的距离相等?【参考答案】一、选择题1.B2.B3.C4.B5.D6.A7.B8.C9.C10.C11.D12.A二、填空题13.55°46 18 10 48 14.153°15.②16.75017.-2a18.2018;19.120. SKIPIF 1 < 0 .解析:14.三、解答题21.35°22.35°23.城中有75户人家.24.(1)购买5台,乙商场更优惠;购买7台,甲商场更优惠;(2)6;(3)答案见解析.25.(1)2x2-8x+7(2)4m-n2+5,426.(1)m2-2m-3;(2)-ab2-1 ,7.27.1828.(1)30;(2)经过2秒或10秒,点M、点N分别到原点O的距离相等。

2019-2020学年七年级数学上学期期末原创卷B卷(广东)(参考答案)

2019-2020学年七年级数学上学期期末原创卷B卷(广东)(参考答案)

2019-2020学年上学期期末原创卷B 卷七年级数学·参考答案11.7-12.713.112°45′ 14.4030a b + 15.016.193517.【解析】原式=118962-+-⨯---()() =1496-+-- =-12.(6分) 18.【解析】3157146y y ---=, ()()33112257y y --=-,93121014y y --=-, 9101415y y -=-+,1y -=, 1y =-.(6分)19.【解析】原式=222232233x y xy xy x y xy xy ⎡⎤--++-⎣⎦2222=32233x y xy xy x y xy xy -+-+- 2=xy +xy .(4分)把133x y ==-,代入,原式=313⨯-()2+133⨯-()=12133-=-.(6分) 20.【解析】由22325x x -+=可得2233x x -=,(3分)()221315235244x x x x --=--1173544=⨯-=-.(7分) 21.【解析】∵OE 平分∠AOB ,∴∠AOE =∠BOE =12×90°=45°,(2分)又∵∠BOD=∠EOD﹣∠BOE,=70°﹣45°=25°,OD平分∠BOC,∴∠BOC=2∠BOD=2×25°=50°.(7分)22.【解析】(1)如图所示,线段AB即为所求.(2分)(2)你这样画的理由是“两点之间,线段最短”;(2分)(3)当点C在线段AB上时,AC=AB﹣BC=3;当点C在线段AB延长线上时,AC=AB+BC=7.综上,AC的长为3或7.(7分)23.【解析】(1)根据题意得:在甲商店购买x(x>10)本练习本所需费用为2×10+2×0.7(x-10)=1.4x+6(元),在乙商店购买x(x>10)本练习本所需费用为2×0.8x=1.6x(元).(4分)(2)根据题意得:1.4x+6=1.6x,解得:x=30.答:买30本时两家商店付款相同.(9分)24.【解析】(1)①若∠AOC=∠BOD=90°,∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC;(2分)②∵∠COD=40°,∴∠AOD=50°,∠AOB=∠AOD+∠BOD=140°;若∠AOB=150°,则∠AOD=∠AOB﹣90°=60°,∴∠COD=90°﹣∠AOD=30°.(4分)③∠AOB+∠DOC=180°,理由:∠AOB+∠DOC=90°+∠AOD+∠DOC=90°+90°=180°;(7分)(2)∠AOB +∠DOC =110°, 理由:若∠AOC =60°,∠BOD =50°,则∠AOB +∠DOC =∠AOD +∠DOC +∠BOC +∠DOC =∠AOC +∠BOD =110°.(9分) 25.【解析】(1)由题意得:40a +=,110b -=,解得:4a =-,11b =, ∴=4AO ,=11BO , ∴=4+3PO t ,=114QO t -, 根据题意得:4+3=114t t -,(2分)∴当114t ≤时,4+3=114t t -,解得:1t =, 当114t >时,4+3=411t t -,解得:15t =;(4分)(2)①当P 在OA 之间且未碰到挡板时,01t ≤≤, AP =4t ,QB =3t ,PQ =15-4t -3t =15-7t , ∴4t +3t =2(15-7t ), 解得:107t =(舍去); ②当P 碰到挡板反弹后在OA 之间时,12t <<, AP =8-4t ,QB =3t ,PQ =11-3t +4t -4=t +7 ∴8-4t +3t =2(t +7), 解得:t =-2(舍去),③当P 碰到挡板反弹后过了A 点,且Q 还未碰到挡板时,1123t ≤≤, AP =4t -8,QB =3t ,PQ =11-3t +4t -4=t +7, ∴4t -8+3t =2(t +7), 解得:225t =(舍去); ④当Q 碰到挡板反弹后在OB 之间时,112233t <<, AP =4t -8,QB =22-3t ,PQ =3t -11+4t -4=7t -15, ∴4t -8+22-3t =2(7t -15), 解得:4413t =(舍去);⑤当Q碰到挡板反弹后过了B点时,223t ,AP=4t-8,QB=3t-22,PQ=3t-11+4t-4=7t-15,∴4t-8+3t-22=2(7t-15),该方程无解.综上所述:不存在时间t,使得AP+BQ=2PQ.。

2019-2020学年七年级(上)期末考试数学试卷(解析版)

2019-2020学年七年级(上)期末考试数学试卷(解析版)

2019-2020学年七年级(上)期末考试数学试卷一、选择题(每小题3分,共30分)1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.32.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是()A.每名学生是总体的一个个体B.样本容量是500C.样本是500名学生D.该校一定有1000名学生近视7.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.48.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣310.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825二、填空题(每小题3分,共15分)11.比较大小:1 ﹣2(填“>,<或=”)12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是千克.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了元.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.17.(5分)解方程:﹣=1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?参考答案一、选择题1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.3【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.解:1+(﹣2)=﹣(2﹣1)=﹣1.故选:B.【点评】本题主要考查的是有理数的加法法则,熟练掌握有理数的加法法则是解题的关键.2.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.【分析】直接利用相反数的定义分析得出答案.解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.【分析】熟悉立体图形的基本概念和特性即可解.解:圆柱的上下底面都是圆,所以正确的是D.故选D.【点评】熟记常见圆柱体的特征,是解决此类问题的关键.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.上升﹣3℃的意义是下降3℃.解:温度先上升6℃,再上升﹣3℃的意义是温度先上升6℃,再下降3℃.故选:C.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)【分析】根据除以一个不等于0的数,等于乘这个数的倒数可得.解:把(﹣)÷(﹣)转化为乘法是(﹣)×(﹣),故选:D .【点评】本题主要考查有理数的除法,解题的关键是掌握有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是( )A .每名学生是总体的一个个体B .样本容量是500C .样本是500名学生D .该校一定有1000名学生近视【分析】根据总体,样本,个体,样本容量的定义写出即可.解:A .每名学生的视力情况是总体的一个个体,此选项错误;B .样本容量是500,此选项正确;C .样本是500名学生的视力情况,此选项错误;D .该校大约有800名学生近视,此选项错误;故选:B .【点评】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.7.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【分析】利用绝对值的代数意义求出a 的值即可.解:若a 为有理数,且|a |=2,那么a 是2或﹣2,故选:C.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.8.(3分)某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 【分析】由总价=单价×数量,可用含a,b的代数式表示出需付金额,此题得解.解:依题意,需付(100a+50b)元.故选:A.【点评】本题考查了列代数式,根据数量之间的关系,利用含a,b的代数式表示出需付总金额是解题的关键.9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣3【分析】根据多项式、单项式、系数、常数项的定义分别进行判断,即可求出答案.解:A.多项式x2+2x2y+1是三次三项式,此选项错误;B.单项式2x2y的次数是3,此选项错误;C.0是单项式,此选项正确;D.单项式﹣3πx2y的系数是﹣3π,此选项错误;故选:C.【点评】此题考查了多项式、单项式;把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.二、填空题(每小题3分,共15分)11.比较大小:1 >﹣2(填“>,<或=”)【分析】根据有理数的大小比较法则比较即可.解:∵负数都小于正数,∴1>﹣2,故答案为:>.【点评】本题考查了对有理数的大小比较法则的应用,注意:负数都小于正数.12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2 .【分析】根据有理数的运算法则即可求出答案.解:原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.【点评】本题考查有理数的运算,解题的关键熟练运用有理数的运算法则,本题属于基础题型.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为 1.94×1010.【分析】根据科学记数法的表示方法:a×10n,可得答案.解:19400000000用科学记数法表示为:1.94×1010,故答案为:1.94×1010.【点评】本题考查了科学记数法,确定n的值是解题关键,n是整数数位减1.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是9 千克.【分析】设△的质量为xkg,□的质量为ykg,根据图示,列出关于x和y的二元一次方程组,解之即可.解:设△的质量为xkg,□的质量为ykg,根据题意得:,解得:,即□的质量为9kg.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了383.5 元.【分析】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.解:132+(﹣12.5)+(﹣10.5)+127+(﹣87)+136.5+98=132﹣12.5﹣10.5+127﹣87+136.5+98=132+98+127﹣87+136.5﹣12.5﹣10.5=230+40+113.5=383.5;答:这一周食品店的盈余了383.5元.故答案为:383.5.【点评】此题主要考查了正数和负数及有理数加法在实际生活中的应用,解题的关键是熟练掌握有理数的加法法则.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.【分析】根据有理数的乘除法和加减法可以解答本题.解:﹣32﹣(﹣2)3+4÷2×2=﹣9﹣(﹣8)+4=﹣9+8+4=3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(5分)解方程:﹣=1.【分析】依次去分母、去括号、移项、合并同类项、系数化为1可得.解:2(x﹣3)﹣3(4x+1)=6,2x﹣6﹣12x﹣3=6,2x﹣12x=6+6+3,﹣10x=15,x=﹣.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.【分析】先算乘法,再合并同类项,最后代入求出即可.解:原式=3m2n﹣3mn﹣6m2n+4mn=﹣3m2n+mn,当m=1,n=2时,原式=﹣3×12×2+1×2=﹣6+2=﹣4.【点评】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?【分析】设x小时后两车相距30km,根据相距30km有两种情况分别列出方程求出即可.解:设x小时后两车相距30km,根据题意,得:(80+70)x=480﹣30或(80+70)x=480+30,解得:x=3或.答:3小时或小时后两车相距30km.【点评】此题主要考查了一元一次方程的应用,根据两车相距30km分类讨论得出是解题关键.20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了200 名学生;(2)被调查的学生中,最喜爱丁类图书的有15 人,最喜爱甲类图书的人数占本次被调查人数的40 %;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.解:(1)共调查的学生数:40÷20%=200(人);故答案为:50;(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;故答案为:15,40;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,1.5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.【分析】(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可.(2)根据题意得到:∠DOM为∠DON的余角.解:(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角,∵∠AON+∠BOM=90°,∠DOM=∠MOB,∴∠AON+∠DOM=90°,∴∠NOD+∠BOM=90°,故∠DON的余角为:∠DOM,∠BOM.【点评】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解题的关键.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.【分析】(1)根据直线、射线及线段的定义作图可得;(2)结合图形,依据点与直线的位置关系和直线与直线的位置关系逐一判断即可得.解:(1)如图所示:(2)由图知,①点C在直线AB外;②点E在直线CD上;③直线AB与直线CD相交.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握直线、射线及线段的定义和点与直线、直线与直线的位置关系.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.。

2019-2020学年七年级数学上学期期末原创卷A卷(广东)(全解全析)

2019-2020学年七年级数学上学期期末原创卷A卷(广东)(全解全析)

2019-2020学年上学期期末原创卷A 卷七年级数学·全解全析12345678910BCCBDCBCCA1.【答案】B 【解析】2-的相反数是2,2的倒数是12,故选B.2.【答案】C 【解析】从a 的取值范围应是大于等于1,小于10,可以确定B 、D 选项错误;1500是4位数,所以n 应该是4-1=3,故选C.3.【答案】C 【解析】∵侧面展开图为3个三角形,∴该几何体是三棱锥,故选C .4.【答案】B【解析】∵AD +BC =AC +CD +BD +CD ,∴AD +BC =2CD +AC +BD ,又∵AD +BC =75AB ,∴2CD +AC +BD =75AB ,∵AB =AC +BD +CD ,AC +BD =a ,∴75(a +CD )=2CD +a ,解得:CD =23a ,故选B .5.【答案】D 【解析】A.2与x 不是同类项,不能合并,故错误;B.x +x +x =3x ,故选项错误;C.3ab -ab =2ab ,故选项错误;D.222223310.2544=4x x x x x +=+,故选项正确;故选D.6.【答案】C 【解析】∵221x x -+=5,∴22x x -=4,∴2361x x -+=3(22x x -)+1=3×4+1=13.故选:C .7.【答案】B 【解析】去分母得9(x -1)=1+2x ,去括号得9x -9=1+2x ,故选B.8.【答案】C【解析】A 、32ab 2c 的次数是4次,说法正确,故此选项不合题意;B 、多项式2x 2﹣3x ﹣1是二次三项式,说法正确,故此选项不合题意;C 、多项式3x 2﹣2x 3y +1的次数是4次,原说法错误,故此选项符合题意;D 、2πr 的系数是2π,说法正确,故此选项不合题意;故选:C .9.【答案】C 【解析】∵OB 是∠AOC 的平分线,OD 是∠COE 的平分线,∴∠COD =12∠COE ,∠BOC =∠AOB =12∠AOC ,又∵∠AOB =40°,∠COE =60°,∴∠BOC =40°,∠COD =30°,∴∠BOD =∠BOC +∠COD =40°+30°=70°,故选C .10.【答案】A【解析】设这款服装的进价是每件x 元,由题意,得300×0.8﹣x =60.故选:A .11.【答案】105°【解析】∠1的补角:180°﹣75°=105°.故答案为:105°.12.【答案】8【解析】因为a 、b 互为相反数,c 、d 互为倒数,并且x 的绝对值等于3,所以有a +b =0,cd =1,a b cd ++=1,29x =,即原式=23108-+=.13.【答案】1【解析】∵单项式﹣3a 2m +b 3与4a 2b 3n 是同类项,∴2233m n +==,,∴01m n ==,,∴1m n +=,所以答案为1.14.【答案】-2【解析】根据一元一次方程的定义可得:1120k k ⎧-=⎨-≠⎩,解得2k =-.15.【答案】98【解析】()()2(4)(82)482168298-⊕-=---=+=.故答案为98.16.【答案】6cm 或4cm 【解析】①当点C 在线段AB 的延长线上时,此时AC =AB +BC =12,∵M 是线段AC 的中点,则AM =12AC =6;②当点C 在线段AB 上时,AC =AB -BC =8,∵M 是线段AC 的中点,则AM =12AC =4.故答案为6或4.17.【解析】(﹣2)3×3﹣4÷(12-)=(﹣8)×3+8=﹣24+8=﹣16.(6分)18.【解析】12226y y y -+-=-去分母得:()()631122y y y --=-+,去括号得:633122y y y -+=--,移项得:631223y y y -+=--,合并得:47y =,系数化为1得:74y =.(6分).19.【解析】原式=2a +2a ﹣2b ﹣3a +2b +b =a +b ,(3分)当a =﹣2,b =5时,原式=﹣2+5=3.(6分)20.【解析】(1)∵(3×5)2=225,32×52=225,[(-12)×4]2=4,(-12)2×42=4,∴每组两个算式的结果相等;(2分)(2)由(1)可知,(ab )2=a 2b 2;猜想,当n 为正整数时,(ab )n =a n •b n ,即(ab )的n 次方=ab •ab •ab …ab =a •a •a …a •b •b •b …b =a n b n .(3分)(3)①(-8)2019×(18)2019=(-8×18)2019=-1,(5分)②(-115)2020×(56)2020=202065-56⎡⎤⎛⎫⨯ ⎪⎢⎥⎝⎭⎣⎦=1.(7分)21.【解析】(1)由题意,可得所挡的二次三项式为:(x 2-5x +1)-3(x -1)=x 2-5x +1-3x +3=x 2-8x +4;(3分)(2)当x =-3时,x 2-8x +4=(-3)2-8×(-3)+4=9+24+4=37.(7分)22.【解析】(1)∵()215290a b -+-=,∴()215a -=0,29b -=0,∵a 、b 均为非负数,∴a =15,b =4.5.(4分)(2)∵点C 为线段AB 的中点,AB =15,∴17.52AC AB ==,∵CE =4.5,∴AE =AC +CE =12,∵点D 为线段AE 的中点,∴DE =12AE =6,∴CD =DE −CE =6−4.5=1.5.(7分)23.【解析】(1)根据题意,设湿地公园x 个,森林公园为(x +4)个,则(4)42x x ++=,解得:19x =,∴湿地公园有19个,∴森林公园有:19+4=23(个);(4分)(2)①根据题意,设标价为m 元,则0.82000200020%m -=⨯,解得:3000m =,∴该电器的标价为3000元;(7分)②30000.9200027002000700⨯-=-=元,∴获得利润为700元.(9分)24.【解析】(1)∵()324825M a x x x =++-+是关于x 的二次多项式,且二次项系数为b ,∴40,8a b +==,则4a =-,∴A 、B 两点之间的距离为4812-+=,故答案为-4;8;12.(3分)(2)依题意得,4123456720182019--+-+-+-++- 410092019=-+-1041=-,故点P 所对应的有理数的值为1041-.(4分)(3)设点P 对应的有理数的值为x ,①当点P 在点A 的左侧时,PA =-4-x ,PB =8-x ,依题意得,8-x =3(-4-x ),解得x =-10;(5分)②当点P 在点A 和点B 之间时,PA =x -(-4)=x +4,PB =8-x ,依题意得,8-x =3(x +4),解得x =-1;(7分)③当点P 在点B 的右侧时,PA =x -(-4)=x +4,PB =x -8,依题意得,x -8=3(x +4),解得x =-10,这与点P 在点B 的右侧(即x >8)矛盾,故舍去;综上所述,点P 所对应的有理数分别是-10和-1.(9分)25.【解析】(1)由题意得,∠AOB =∠EOD =90°,∵125AOE ∠=︒,∴∠AOD =AOE ∠-∠DOE =125°-90°=35°,∴∠BOD =∠AOB -∠AOD =90°-35°=55°.(3分)(2)设∠BOE =x ,则∠AOE =∠AOB +∠BOE =90°+x,∠BOD =∠DOE -∠BOE =90°-x,∵4AOE BOD ∠=∠,∴90°+x =4(90°-x ),∴x =54°,∴∠BOE =54°.(6分)(3)在图1中,∠BOD =∠DOE -∠BOE =90°-∠BOE,∠AOE =∠AOB +∠BOE =90°+∠BOE,∴∠BOD +∠AOE =(90°-∠BOE )+(90°+∠BOE )=180°,在图2中,∠BOD =∠DOE +∠BOE =90°+∠BOE,∠AOE =∠AOB -∠BOE =90°-∠BOE,∴∠BOD +∠AOE =(90°+∠BOE )+(90°-∠BOE )=180°,在图3中,∠BOD +∠AOE =360°-∠AOB -∠DOE =360°-90°-90°=180°.(9分)。

广州市2019-2020学年七年级上学期数学期末考试试卷(I)卷

广州市2019-2020学年七年级上学期数学期末考试试卷(I)卷

广州市2019-2020学年七年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2017七下·金乡期末) 下列各组数中互为相反数的是()A . ﹣2与﹣B . 2与|﹣2|C . ﹣2与D . ﹣2与2. (2分) (2019七上·港闸期末) 数字25800000用科学记数法表示为()A . 258×105B . 2.58×109C . 2.58×107D . 0.258×1083. (2分) (2016七上·启东期中) 方程2x+a﹣4=0的解是x=﹣2,则a等于()A . ﹣8B . 0C . 2D . 84. (2分) (2017九上·云南月考) 下列运算正确的是()A .B .C .D .5. (2分) (2019七上·桐梓期中) 下面计算正确的是()A . 3a+6b=9abB . 3a3b-3ba3=0C . 8a4-6a3=2aD . y2- y2=6. (2分) (2018七上·大石桥期末) 下列平面图形中不能围成正方体的是()A .B .C .D .7. (2分) (2018七上·龙江期末) 若∠A=12°12′,∠B=20°15′30″,∠C=20.25°,则()A . ∠A>∠B>∠CB . ∠B>∠C>∠AC . ∠A>∠C>∠BD . ∠C>∠A>∠B8. (2分)(2018·凉山) 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A . 和B . 谐C . 凉D . 山9. (2分)(2019·合肥模拟) 某校九年级月份中考模拟总分分以上有人,同学们在老师们的高效复习指导下,复习效果显著,在月份中考模拟总分分以上人数比月份增长,且月份的分以上的人数按相同的百分率继续上升,则月份该校分以上的学生人数().A . 人B . 人C . 人D . 人二、填空题 (共7题;共16分)10. (1分) (2017七上·鄞州月考) =________.11. (1分) (2019八上·江汉期中) 如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B 处在C处的南偏西80°方向,则∠ABC的度数为 ________12. (1分) (2016七上·昌平期中) 已知p是数轴上的一点﹣4,把p点向左移动3个单位后再向右移1个单位长度,那么p点表示的数是________.13. (1分) (2019七上·且末期末) 30度的余角等于________ 度.120度的补角等于 ________ 度.14. (1分) (2018八上·江汉期末) 若x2﹣y2=8,x2﹣z2=5,则(x+y)(y+z)(z+x)(x﹣y)(y﹣z)(z ﹣x)=________.15. (1分) (2015八上·吉安期末) “十一”黄金周,国光超市“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x元,男装部购买了原价为y元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为________.16. (10分) (2020七上·抚顺期末) 解方程:(1)﹣2x+9=3(x﹣2)(2) 1+ .三、解答题 (共9题;共82分)17. (10分) (2018六上·普陀期末) .18. (10分) (2019七上·吉林期末) 先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=﹣.19. (10分)七(2)班男生进行引体向上测试,以做5个为合格标准,超过的次数用正数表示,不足的次数用负数表示,其中6名学生的成绩如下表:A B C D E F2-103-2-3(1)这6名同学一共做了多少个引体向上?(2)他们6人共有几人合格?合格率是多少?20. (5分) (2015七下·宽城期中) 要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?21. (10分) (2018七上·泰州月考) 如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.22. (11分)已知数轴上有A,B,C三点,分别代表-24,-10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A,B,C的距离和为40个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.23. (5分)在一次植树活动中,甲班植树的棵数比乙班多20%,乙班植树的棵数比甲班的一半多10棵,设乙班植树x棵.(1)列两个不同的含x的代数式,分别表示甲班植树的棵数;(2)根据题意列出含未知数x的方程;(3)检验甲班、乙班植树的棵数是不是分别为35棵和25棵.24. (10分) (2019七下·长春月考) 如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.25. (11分) (2019七下·闽侯期中) 已知∠MAN,点B是∠MAN内的点,以点B为顶点作∠CBD(1)如图1,若边BC∥AN,BD∥AM,点C,D分别在边AM,AN上,求证:∠CBD=∠MAN;(2)如图2,∠MAN是钝角,BD⊥AM,垂足为D,BC∥AN,且2∠MAN﹣∠CBD=30°,请你补全图形,并求∠MAN 的度数.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共7题;共16分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、解答题 (共9题;共82分) 17-1、18-1、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、第11 页共11 页。

广东省广州市南沙区2019-2020学年七年级上学期期末数学试卷 (含解析)

广东省广州市南沙区2019-2020学年七年级上学期期末数学试卷 (含解析)

广东省广州市南沙区2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共20.0分)1.若气温为零上10℃记作+10℃,则−3℃表示气温为()A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃2.|−5|的倒数是()A. 15B. −15C. 5D. −53.下列运算错误的是()A. 3xy−(x2−2xy)=5xy−x2B. 5x(2x2−y)=10x3−5xy,C. 5mn(2m+3n−1)=10m2n+15mn2−1D. (ab)2(2ab2−c)=2a3b4−a2b2c4.某数的8倍与13的差比它的12大5,设某数为x,则所列方程为()A. 8x−13=12(x+5) B. 8x+13=12(x+5)C. 8(x−13)=12(x+5) D. 8x−13=12x+55.(−2)3与−23()A. 相等B. 互为倒数C. 互为相反数D. 它们和为166.如图所示的几何体是一个由圆柱体和一个长方体组成的立体图形,从上面观察这个立体图形,能得到的平面图形是()A. B.C. D.7.2018年国庆期间国内旅游收入5990.8亿元,将5990.8亿用科学记数法表示为()A. 5.9908×1010B. 5.9908×1011C. 5.9908×1012D. 5.9908×1038.9.已知代数式a−2b+7的值是13,那么代数式2a−4b的值是()A. 6B. 12C. 15D. 269.已知x=1是方程x−k3=32x−12的解,则2k+3的值是()A. −2B. 2C. 0D. −110.在直线m上顺次取A、B、C三点,已知AB=5cm.BC=3cm.则AC的长为()A. 2cmB. 8cmC. 2cm或8cmD. 15cm二、填空题(本大题共6小题,共18.0分)11.若单项式−4a2b的系数为x,次数为y,则x+y=______ .12.如图,∠AOC=∠BOD=78°,∠BOC=35°,则∠AOD=______ °.13.已知∠1=35°,则它的余角为______ 度,补角是______ 度.14.如图一个正方体的平面展开图,若将它折叠成正方体,相对的两个面上的数字互为相反数,则xy=______.15.已知有理数a在数轴上的位置如图,则a+|a−1|=______.16.已知线段AB,延长AB到C,使BC=13AB,D为AC的中点,若AB=9cm,则DC的长为________.三、计算题(本大题共2小题,共16.0分)17.计算题(1)8−(−3)+2+(−6)(2)−22×3−(−3)2÷318.解方程:(1)2(x−2)+2=x+1(2)x−32−4x+15=1.四、解答题(本大题共5小题,共46.0分)19.(1)当a=−2,b=−1时,求代数式a2+a−2b2的值;(2)求多项式−x2+3xy−12y2与−12x2+4xy−32y2的差.20.一个检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,某天行车里程(单位:千米)依先后次序记录如下:−4,+7,−9,+8,+6,−5,−2.(1)请问收工时检修小组离A地多远?在A地的什么方向?(2)若每千米耗油0.1升,请问这天共耗油多少升?21.如表是某次篮球联赛积分的一部分球队比赛现场胜场负场积分前进1410424光明149523远大147721卫星1441018备注:积分=胜场积分+负场积分(1)请问胜一场积多少分?负一场积多少分?(2)某队的负场总积分是胜场总积分的n倍,n为正整数,求n的值.(注意:本题只能用一元一次方程求解,否则不给分).CB,延长DC到点A,22.已知线段CD,按要求画出图形并计算:延长线段CD到B,使得DB=12使AC=2DB,若AB=8cm,求出CD与AD的长.23.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=28°,则∠BOE=______ °,有∠BOE=______ ∠COF;(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的关系是否仍然成立?如成立,请说明理由.(3)在图3中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD+∠AOF=1(∠BOE−∠BOD)?若存在,请求出∠BOD的度数;若不存在,请说明理由.2-------- 答案与解析 --------1.答案:B解析:解:若气温为零上10℃记作+10℃,则−3℃表示气温为零下3℃.故选:B.此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.答案:A,解析:解:∵|−5|=5,5的倒数是15∴|−5|的倒数是1.5故选:A.首先化简绝对值,然后根据倒数的定义求解.此题主要考查了绝对值及倒数的定义.绝对值的定义:正数和0的绝对值是它本身,负数的绝对值是它的相反数;倒数的定义:乘积为1的两个数互为倒数.注意0没有倒数.3.答案:C解析:本题主要考查了整式的加减以及单项式乘多项式.熟练掌握运算法则是解答本题的关键,计算时需注意符号的处理.解:A.3xy−(x2−2xy)=3xy−x2+2xy=5xy−x2,计算正确,不符合题意,故A选项错误;B.5x(2x2−y)=10x3−5xy,计算正确,不符合题意,故B选项错误;C.5mn(2m+3n−1)=10m2n+15mn2−5mn,计算错误,符合题意,故C选项正确;D.(ab)2(2ab2−c)=a2b2(2ab2−c)=2a3b4−a2b2c,计算正确,不符合题意,故D选项错误.故选C.解析:本题主要考查了一元一次方程的应用.解题关键在于利用题意的等量关系列出方程即可.大5列方程即可.根据某数的8倍与13的差比它的12大5,设某数为x,解:∵某数的8倍与13的差比它的12∴8x−13=1x+5.2故选D.5.答案:A解析:本题考查了有理数的乘方,相反数的有关知识.根据有理数的乘方的定义进行计算,再判断即可得解.解:∵−23=−8,(−2)3 =−8,∴−23 =(−2)3.故选A.6.答案:C解析:本题考查了画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.根据圆柱体和长方体的俯视图解答.解:圆柱体的俯视图是圆,长方体的俯视图是长方形,所以,组合图形为长方形内有一个圆的图形.故选C.解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值⩾10时,n是正数;当原数的绝对值<1时,n是负数.解:5990.8亿=599080000000=5.9908×1011,故选:B.8.答案:B解析:首先根据a−2b+7=13,求出a−2b的值是多少;然后把求出的a−2b的值代入,求出代数式2a−4b的值是多少即可.【详解】解:∵a−2b+7=13,∴a−2b=13−7=6,∴2a−4b=2(a−2b)=2×6=12.故选:B.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.9.答案:D解析:本题考查了方程的解及解一元一次方程,先将x=1代入,然后解出k,再代入2k+3即可得到答案.解:将x=1代入x−k3=32x−12得1−k3=32−12解得k=−2∴2k+3=−1故选D10.答案:B解析:本题考查的是线段的和差,熟知各线段之间的和、差关系是解答此题的关键.根据AC=AB+BC即可得出结论.解:∵在直线m上顺次取A,B,C三点,AB=5cm.BC=3cm,∴AC=AB+BC=5+3=8cm.故选B.11.答案:−1解析:解:∵单项式−4a2b的系数为x=−4,次数为y=3,∴x+y=−1.故答案为:−1.直接利用单项式的次数与系数的定义得出答案.此题主要考查了单项式的次数与系数,正确把握相关定义是解题关键.12.答案:121解析:本题考查了角的计算,关键是利用角的和差关系进行计算,解答此题可根据∠AOC=∠BOD=78°,∠BOC=35°,先求出∠AOB=∠AOC−∠BOC,再求∠AOD即可.解:根据∠AOC=∠BOD=78°,∠BOC=35°,∴∠AOB=∠AOC−∠BOC=78°−35°=43°,故∠AOD=∠AOB+∠BOD=43°+78°=121°.故答案为121.13.答案:55;145解析:解:∵∠1=35°,∴∠1的余角为90°−∠1=55°,∠1的补角为180°−∠1=145°,故答案为:55,145.根据余角的定义求出90°−∠1°,即可得出答案,根据补角的定义求出180°−∠1,即可得出答案.本题考查了余角和补角的应用,注意:∠1是的余角是90°−∠1,补角是180°−∠1.14.答案:8解析:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“y+2”与“2y−8”是相对面,x+1”与“2x−11”是相对面,“12“3”与“−3”是相对面,所以,y+2+2y−8=0,则y=2.1x+1+2x−11=0,则x=4.2所以xy=2×4=8.故答案是:8.15.答案:1解析:解:由数轴上a点的位置可知,a<0,∴a−1<0,∴原式=a+1−a=1.故答案为:1.先根据a在数轴上的位置确定出a的符号,再根据绝对值的性质把原式进行化简即可.本题考查的是数轴的特点及绝对值的性质,比较简单.16.答案:6cm解析:本题考查了线段的和差,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.AB,AB=9cm,解:∵BC=13∴BC=3cm,AC=AB+BC=12cm,AC=6cm.又因为D为AC的中点,所以DC=12故答案为:6cm.AB,AB=9cm,可求出BC的长,从而求出AC的长,又因为D为AC的中点,继而求因为BC=13出答案.17.答案:解:(1)8−(−3)+2+(−6)=8+3+2+(−6)=7;(2)−22×3−(−3)2÷3=−4×3−9÷3=−12−3=−15.解析:(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.答案:解:(1)2x−4+2=x+12x−x=1+4−2x=3;(2)5(x−3)−2(4x+1)=105x−15−8x−2=105x−8x=10+15+2−3x=27x=−9.解析:本题考查解一元一次方程,掌握解一元一次方程的一般步骤包括去分母、去括号、移项、合并同类项、系数化为1是解题的关键.(1)去括号、移项、合并同类项、系数化为1即可求出方程的解;(2)去分母、去括号、移项、合并同类项、系数化为1即可求出方程的解.19.答案:解:(1)原式=(−2)2+(−2)−2×(−1)2=4−2−2=0;(2)根据题意列式:(−x2+3xy−12y2)−(−12x2+4xy−32y2)=−x2+3xy−12y2+12x2−4xy+32y2=−12x2−xy+y2.解析:此题考查了整式的加减及求代数式的值,熟练掌握运算法则是解本题的关键.(1)原式将a、b的值代入计算即可求出值;(2)根据题意列出关系式,去括号合并即可得到结果.20.答案:解:(1)−4+7−9+8+6−5−2=1,故收工时检修小组离A地1千米,在A地的东方.(2)每次记录的绝对值的和×0.1就是这天中的耗油量,即|−4|+|7|+|−9|+|8|+|6|+|−5|+|−2|=41千米,41×0.1=4.1升.故这辆汽车共耗油4.1升.解析:本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.(1)根据正负数的意义,把行车里程相加,再根据计算结果进行判断即可;(2)求出所有记录的绝对值的和,然后乘以0.1,即可得出答案.21.答案:解:(1)设胜一场积x分,则由前进队胜、负积分可知负一场积24−10x4分,由光明队胜、负积分可得如下方程:9x+5(24−10x)4=23,解得:x=2,24−10x4=24−10×24=1.答:胜一场积2分,负一场积1分.(2)设胜了x场,则负了(14−x)场,由题意得:2nx=14−x,解得:x=142n+1,∵x和n均为正整数,∴2n+1为正奇数且又是14的约数,∴2n+1=7,∴n=3.答:n的值为3.解析:本题考查了一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.(1)设胜一场积x分,则由前进队胜、负积分可知负一场积24−10x4分,根据光明队胜9场负5场积23分即可得出关于x的一元一次方程,解之即可得出结论;(2)设胜了x场,则负了(14−x)场,由胜一场积2分负一场积1分结合负场总积分是胜场总积分的n 倍即可得出关于x的一元一次方程,解方程求出x值,再根据x、n均为正整数即可得出n的值.22.答案:解:如图所示:设CD=xcm,∵DB=12CB,∴CD=BD=xcm,∵AC=2DB=2xcm,∵AB=AC+CD+BD=8cm,∴2x+x+x=8,解得x=2,∴CD=2cm,AD=AC+CD=4+2=6cm,答:CD的长为2cm,AD的长为6cm.解析:本题考查了两点的距离,即连接两点的线段的长,考查了基本作图,根据线段的和与差的关系,找等量关系列方程是关键.先按要求画图,发现:AB=4CD=4BD,设CD=xcm,根据AB=8cm列方程解出x的值,再求CD和AD的长.23.答案:(1)56,2;(2)∠BOE=2∠COF仍然成立;理由如下:∵∠COE=90°,∴∠EOF=90°−∠COF,∵OF平分∠AOE,∴∠AOE=2∠EOF=180°−2∠COF,∴∠BOE=180°−∠AOE=180°−(180°−2∠COF)=2∠COF;(3)存在,只需∠BOD=16°即可;∵∠COF=65°,∠COE=90°,∴∠BOE=130°,∠EOF=25°,∵OF平分∠AOE,∴∠AOF=∠EOF=25°,∵2∠BOD+∠AOF=12(∠BOE−∠BOD),即2∠BOD+25°=12(130°−∠BOD),解得∠BOD=16°.解析:解:(1)∵∠COF=28°,∠COE=90°,∴∠EOF=90°−28°=62°,∵OF平分∠AOE,∴∠AOE=2∠EOF=124°,∴∠BOE=180°−∠AOE=56°;可知∠BOE=2∠COF,故答案为56,2;(2)见答案;(3)见答案.利用角的平分线和角的和差关系计算;首先由角平分线和∠COF的度数求出∠AOE,再根据邻补角关系求出∠BOE.此题考查了角的计算,关键是利用角平分线认真观察图形,找出角的和差关系是解题关键.。

广州市南沙区20192020学年七年级上期末数学试题及

广州市南沙区20192020学年七年级上期末数学试题及

广州市南沙区 2019-2020 学年七年级上期末数学试题及答案 - 学年第一学期期末学业水平测试七年级 数学本试卷分第一部分 ( 选择题 ) 和第二部分(非选择题),总分100 分。

考试时间 90 分钟。

注意事项:1. 答题前,考生务必在答题卡上用黑色笔迹的钢笔或署名笔填写学校、姓名、试室号和座位号;填写自己的考号,再用2B 铅笔把对应当两号码的标号涂黑。

2. 选择题每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需变动,用橡皮擦洁净后,再选涂其余答案;不可以答在试卷上。

3. 非选择题答案一定写在答题卡各题目指定地区内的相应地点上;如需变动,先划掉本来的答案,而后再写上新的答案,变动的答案也不可以高出指定的地区;除作图可用2B 铅笔外,其余都一定用黑色笔迹钢笔或署名笔作答。

禁止使用涂改液。

不按以上要求作答的答案无效。

4. 考生一定保持答题卡的整齐。

5. 全卷共 24 小题,请考生检查题数。

一、 选择题 (此题有 10 个小题,每题2 分,满分 20 分,下边每题给出的四个选项中,只有一个是正确的)1. 在 3 ,3 , 0 , 20% , 20% ,0.5 , 2 , 2中,此中负分数 的个数的是( * )5 5...A. 3 个;B. 4 个;C. 5 个D. 6个2. 青藏高原是世界拔最高的高原,它的面积约为 2 500 000 平方千米 . 将 2 500 000用科学记数法表示应为( * )A.107 B. 107 C.106D. 25 1053. 以下计算正确的选项是( * )A. ( 15) ( 1 1) 3 1 2 B. 2 1 3 2 1 2C. ( 3)25 93 4) 2D. ( 164. 以下判断中正确的选项是( * ) A .若x7 ,则 x 1B.若 11x 2 ,则 x 6 76C .若 3x 6 0 ,则 3x 6D.若 axbx ,则 a b1 / 65. 以下变形中,不正确 的是( * )...A. a (b c d) a b c dB. a (b c d ) a b c dC. a b (c d ) a b c dD.a b ( c d ) a b c d6. 方程 2x 4 5 3x 的解为( *)A. 1B. 1C.1 1 5D.57. 如图是一个正方形盒的睁开图,若在此中的三个正方形 A 、B 、 C内分别填入适合的数,使得它们折成正方形后相对的面上的两个数互为相反数,则填入正方形 A 、B 、 C 内的三个数挨次为( * )A. 1 , 2 , 0B. 0 , 2 , 1C.2 ,0, 1D2 , 1, 08. 以下说法正确的选项是( * )A. 近似数精准到十分位;B. 近似数10 4 精准到十分位有 3 位有效数字;D.10 3 有 2 位有效数字 9. 若 a3, b4 ,且 ab 0 ,则 a b 的值是( * )A. 1B.7C. 7或7 D. 1或 110. 在时辰 8: 30, 时钟的时针和分针之间的夹角是(* )A . 85°B . 75°C . 70°D . 60°二、填空题(此题有 6 个小题,每题 2 分,共 12 分)11. 假如向北走 20m 记作 20m ,那么向南走 30m 表示 _________;12. 写出 x 2 y 的一个同类项 _____________ ;13. 假如45 22 ,的余角=_________,的补角 =________;14. 已知对于 x 的方程 2x a 9 0 的解是 x 2 ,则 a 的值为 ________;15. 年内计划举办千人绘画颂南沙活动,在会场上摆放了一些长桌用于作画,每张桌子单独摆放时,能够容6 人同时署名,(如图1,每个小圆弧代表一个署名的地点),按图2 的方式摆放两张长桌能够容纳10 人同时署名,若按这类方式摆放n 张桌子(如图3),这 n 张桌子能够同时容纳的署名人数是_________________.图 1 图 2 图 316. 有理数 a 、 b 、 c 在数轴上的地点如下图,化简a b a c b c 的结果是 ________________ .2 / 6三、解答题 (此题共 8 个小题,共 68 分,解答要求写出文字说明,证明过程或计算步骤)17. 计算(此题 12 分,每题 4 分) ( 1) ( 2) ( 3)( 2) 2 3 ( 4)( 3) ( 2) 2221( 10) 2418. 解一元一次方程( 8 分)x 2 2 x42 1219. ( 6 分)第一行的图形绕虚线转一周,能形成第二行的某个几何体,按要求填空 .图 1 旋转形成 _______, 图 2 旋转形成 _______, 图 3 旋转形成 _______,图 4 旋转形成 _______, 图 5 旋转形成 _______, 图 6 旋转形成 _______.20. ( 8 分)如图,已知 C 点为线段 AB 的中点, D 点为 BC 的中点, AB 8cm ,求 AD 的长度。

2019-2020学年七年级数学上学期期末考试试卷(解析版)

2019-2020学年七年级数学上学期期末考试试卷(解析版)

2019-2020学年七年级数学上学期期末考试试卷一、选择题(本大题共10小题,共30.0分)1.一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作()A. B. C. D.2.如图,数轴上有A,B,C,D四个点,其中所对应的数互为相反数的是()A. A与CB. A与DC. B与CD. B与D3.单项式-2x3y的系数为()A. B. 1 C. 2 D. 34.下列各式错误的是()A. B. C. D.5.如图所示,这个圆锥的侧面展开图可能是()A.B.C.D.6.已知a=b,下列变形不一定成立的是()A. B. C. D.7.买两种布料共120米,花了540元.其中蓝布料每米3元,黑布料每米5元,设买了蓝布料x米,依题意列方程()A. B.C. D.8.如图,将三角形纸片ABC沿EF折叠,点C落在C′处.若∠BFE=65°,则∠BFC′的度数为()A.B.C.D.9.如图,取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分,各去掉中间一段,余下八条线段,达到第3阶段;…;这样一直继续操作下去,当达到第2017个阶段时,余下的线段的长度之和为()A. B. C. D.10.下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°;⑨若线段AB=3,BC=2,则线段AC的长为1或5;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α).其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.-的倒数是______.12.将一副三角板如图放置,则∠ABD的度数为______°.13.多项式3a2b-2ab+5是______次______项式,其中常数项为______.14.某货轮O在航行过程中,发现灯塔A在它的南偏东55°方向上,同时在它的北偏东40°方向发现了一座海岛B,则∠AOB的度数为______°.15.某商品按成本增加20%定出价格,由于库存积压,现将该商品按定价九折出售,那么出售该商品最终是______(填“盈利”或“亏损”),利润率或亏损率为______.16.如图,数轴上A,B两点之间的距离AB=16,有一根木棒PQ沿数轴向左水平移动,当点Q移动到点B时,点P所对应的数为6,当点Q移动到线段AB的中点时,点P所对应的数为______.三、计算题(本大题共3小题,共30.0分)17.先化简,再求值:3ab2+2(ab2-a3b)-3(2ab2-a3b),其中a=-2,b=.18.()观察积分榜,请直接写出球队胜一场积分,负一场积分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共16轮(每个球队各有16场比赛),D队希望最终积分达到28分,你认为有可能实现吗?请说明理由.19.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度、每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接写出a=______,b=______;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动;同时点N从原点O出发沿数轴向左运动,运动时间为t,点P为线段ON的中点.若MP=MA,求t的值;(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t.当以M,N,O,A为端点的所有线段的长度和为109时,求此时点M对应的数.四、解答题(本大题共5小题,共42.0分)20.计算.(1)80°-53°17′;(2)(3-5)×4+(-6)2÷921.解方程(1)2(x+3)=5x:(2)1-.22.某车间每天能制作甲种零件50只,或制作乙种零件25只,甲、乙两种零件各一只配成一套产品.现要使60天内制作的产品成套.则甲、乙两种零件各应安排制作多少天?23.如图,延长线段AB到点C,使BC=AB,点D为AC的中点.(1)若AB=8,请补齐图形并求线段BD的长;(2)若F为BC的三等分点,则的值为______(直接写出结果)24.如图,∠AOB=α,∠COD=β,且90°<α<180°,0°<β<90°.(1)如图1,已知α=128°.①若OD平分∠BOC,∠AOC与∠BOD互为余角,求∠AOC的度数;②若β=30°,分别作∠AOC和∠BOD平分线OP,OQ.求∠POQ的度数;(2)如图2,若α+β=160°,∠COD在平面内绕点O旋转,分别作∠AOC和∠BOD 平分线OP,OQ,则∠POQ的度数为______°(直接写出结果).答案和解析1.【答案】D【解析】解:一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作-3m,故选:D.根据正数和负数表示相反意义的量,向右移动记为正,可得向左移动的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:A=-2,-1<B<0,C=1,D=2,所以所对应的数互为相反数的是A和D,故选:B.根据数轴和相反数的概念解答即可.本题考查了数轴,学会根据点在数轴上的位置来判断数的大小与正负.3.【答案】A【解析】解:单项式-2x3y的系数为:-2.故选:A.利用单项式中的数字因数叫做单项式的系数,进而得出答案.此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.4.【答案】C【解析】解:A、-(-3)=3,正确;B、|2|=|-2|,正确;C、0<|-1|,错误;D、-2>-3,正确;故选:C.根据正数大于零,零大于负数和绝对值、相反数的概念可得答案.本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.5.【答案】B【解析】解:观察图形可知,这个圆锥的侧面展开图可能是.故选:B.根据圆锥的侧面展开图是扇形,结合选项即可求解.本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.6.【答案】D【解析】解:由等式a=b,可得:a-n=b-n,an=bn,a2=b2,但b=0时,无意义,故选:D.分别利用等式的基本性质判断得出即可.此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.7.【答案】A【解析】解:设蓝布料x米,则黑布料(120-x)m,根据题意可得:3x+5(120-x)=540,故选:A.首先设蓝布料x米,则黑布料(120-x)m,进而利用买两种布料共120m,花了540元得出等式求出即可.此题主要考查了一元一次方程的应用,得出正确的等量关系是解题关键.8.【答案】B【解析】解:设∠BFC′的度数为α,则∠EFC'=65°+α,由折叠可得,∠EFC=∠EFC'=65°+α,又∵∠BFC=180°,∴∠EFB+∠EFC=180°,∴65°+65°+α=180°,∴α=50°,∴∠BFC′的度数为50°,故选:B.设∠BFC′的度数为α,则∠EFC=∠EFC'=65°+α,依据∠EFB+∠EFC=180°,即可得到α的大小.本题考查了三角形内角和定理以及折叠的性质,解题时注意:折叠前后两图形全等,即对应角相等,对应线段相等.解:根据题意知:第一阶段时,余下的线段的长度之和为,第二阶段时,余下的线段的长度之和为×=()2,第三阶段时,余下的线段的长度之和为××=()3,…以此类推,第五个阶段时,余下的线段的长度之和为()5,当达到第n个阶段时(n为正整数),余下的线段的长度之和为()n.∴达到第2017个阶段时,余下的线段的长度之和为()2017,故选:C.根据题意可知:当第一阶段时,余下线段之和为,当第二阶段时,余下线段之和为:=()2,当第三阶段时,余下线段之和为:=()3,于是得到结论.此题考查图形的变化规律,找出图形之间的联系,得出规律,解决问题.10.【答案】A【解析】解:①平面内3条直线两两相交,有1个或3个交点;故错误;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°或160°;故错误;③若线段AB=3,BC=2,则线段AC的长为1或5;点C不一定在直线AB上,故错误;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α),故正确.故选:A.根据线段的和差,相交线的定义,角平分线的定义,余角和补角的定义进行判断找到正确的答案即可.本题考查了基本的几何定义,比较简单,属于基础题.解:-的倒数是-2.故答案为:-2.乘积是1的两数互为倒数.本题主要考查的是倒数的定义,熟练掌握倒数的概念是解题的关键.12.【答案】15【解析】解:∠ABD=∠CBD-∠ABC=45°-30°=15°.故答案为:15.根据角的和差关系即可求解.考查了角的计算,关键是熟记三角板上面的度数.13.【答案】三三 5【解析】解:因为多项式的最高次项是3a2b,由三个单项式的和组成,所以多项式3a2b-2ab+5是三次三项式,其中常数项是-5.故答案是:三,三,5.根据多项式次数和项数以及常数项的定义求解.此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.常数项是不含字母的项.14.【答案】85【解析】解:∠AOB=180°-60°-35°=85°.故答案是:85.首先根据方向角的定义作出图形,根据图形即可求解.本题考查了方向角的定义,正确理解方向角的定义,理解A、B、O的相对位置是关键.15.【答案】盈利8%【解析】解:设成本为a元,根据题意可得:(1+20%)a•90%-a=0.08a,即出售该商品最终是盈利,利润率为8%.故答案是:盈利,8%.设成本为a元,按成本增加20%定出价格,求出定价,再根据按定价的90%出售,求出售价,最后根据售价-进价=利润,列式计算即可.本题考查了一元一次方程的应用,解题的关键是理清数量之间的关系,求出每件商品的售价.16.【答案】-2【解析】解:设AB的中点为C,则AC=BC=8,∵当点Q移动到点B时,点P所对应的数为6,∴此时AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,∴点P所对应的数为6-8=-2,故答案为:-2.设AB的中点为C,则AC=BC=8,求得AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,根据两点间的距离的求法即可得到结论.本题考查了数轴,正确理解两点间的距离是解题的关键.17.【答案】解:原式=3ab2+2ab2-2a3b-6ab2+3a3b=-ab2+a3b,当,时,原式==.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】2 1【解析】解:(1)2,1(2)设胜x场,则负(11-x)场依题意列方程2x+(11-x)=13解得x=2,则负场为 11-2=9(场)答:E对11场比赛胜2场,负9场(3)不可能实现,理由如下:设接下来的5场比赛胜x场,则负(5-x)场依题意列方程:2x+(5-x)=28-17x=6>5,不符合题意故不可能实现本题是典型的比赛积分问题.清楚积分的组成部分及胜负积分的规则是本题的关键.本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与负场的和.19.【答案】5 6【解析】解:(1)∵|a-5|+(b-6)2=0.∴a-5=0,b-6=0∴a=5,b=6故答案为5,6.(2)①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,即3t+10-5t=5t,解得t=②点M到达O返回时当(2<t≤4时),OM=5t-10,AM=20-5t,即3t+5t-10=20-5t,解得t=③点M到达O返回时,即t>4时,不成立(3)①依题意,当M在OA之间时,NO+OM+AM+MN+OA+AN=6t+20+11t+10+6t=109,解得t=>2,不符合题意,舍去;②当M在A右侧时,NO+OA+AM+AN+OM+MN=6t+5t+11t+10+6t+5t=109,解得 t=3,点M对应的数为15答:此时点M对应的数为15.本题涉及数轴即路程为题,清楚各个点之间距离的表示方式是解题的关键.另外要注意路程相等的几种情况.本题考查学生对数轴相关知识的掌握情况及利用一元一次解决实际问题的能力.20.【答案】解:(1)原式=79°60'-53°17'=26°43';(2)原式=-2×4+36÷9=-8+4=-4.【解析】(1)根据度分秒的计算解答即可;(2)根据有理数的混合计算解答.此题考查度分秒的换算,关键是根据度分秒的和、差计算即可.21.【答案】解:(1)2(x+3)=5x,去括号,得:2x+6=5x,移项合并同类项,得3x=6,化系数为1,得x=2;(2)1-,去分母,得10-x=4x+8,移项合并同类项,得5x=2,化系数为1,得.【解析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22.【答案】解:设安排甲制作x天,则安排乙制作(60-x)天,依题意列方程:50x=25(60-x)解得x=20,则安排乙制作 60-20=40(天)答:安排甲制作20天,则安排乙制作40天.【解析】可设甲种零件应制作x天,则乙种零件应制作(60-x)天,本题的等量关系为:甲、乙两种零件各一只配成一套产品.由此可得出方程求解.考查了一元一次方程的应用,解题关键是弄清题意,合适的等量关系,列出方程.本题要注意关键语“甲、乙两种零件各一只配成一套产品”得出等量关系,从而求出解.23.【答案】或【解析】解:(1)补图如图,∵BC=AB,AB=8,∴BC=4,∴AC=AB+BC=12,∵点D为AC的中点,∴DC=AC=6,∴BD=DC-BC=6-4=2.(2)由(1)知AD=DC=6,分两种情况讨论:①点F靠点B近,BF=,=;②点F靠点B近,BF=,=.故答案为:或.(1)先根据已知条件求出BC,再求出AC,由线段中点的定义求出DC,最后由BD=DC-BC求得答案;(2)由(1)知AD=DC=6,因为F为BC的三等分点,但是没有说明点F靠点B近,还是靠点C 近,所以需要分两种情况讨论:①点F 靠点B 近,BF=;②点F 靠点B 近,BF=.本题主要考查的是两点间的距离,掌握图形间线段之间的和差关系是解题的关键.24.【答案】100或80【解析】解:(1)①∵OD 平分∠BOC ,∠AOC+∠BOD=90°,∴∠BOD=∠COD=β,∴∠AOB=∠AOD+∠BOD=90°+β=128°,即β=38°,∴∠AOC=90°-β=52°; ②∵OP 平分∠AOC ,OQ 平分∠BOD ,∴∠AOP=∠AOC ,∠BOQ=∠BOD ,∴∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD =∠AOB+15°=64°+15°=79°;(2)如图1,∵OP ,OQ 分别是∠AOC 和∠BOD 平分线,∴∠COP=∠AOC ,∠DOQ=∠BOD ,∴∠COP+∠DOQ=(∠AOC+∠BOD )=(∠AOB-∠COD )=(α-β),∴∠POQ=∠COP+∠DOQ+∠COD=(α-β)+β=(α+β)=80°; 如图2,∵∠AOD=∠AOB+∠COD-∠BOC=α+β-∠BOC ,∵OP ,OQ 分别是∠AOC 和∠BOD 平分线,∴∠COP=∠AOC ,∠BOQ=∠BOD ,∴∠POQ=∠COP+∠BOQ+∠BOC=(∠AOB-∠COD )+∠BOC=100°, 故答案为:80°或100°.(1)①根据角平分线的定义可以求得∠BOD=∠COD=β,可得∠AOB=∠AOD+∠BOD=90°+β=128°,求得β=38°,从而得到∠AOC的度数;②根据角平分线的定义得到∠AOP=∠AOC,∠BOQ=∠BOD,可得∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD,从而得到∠POQ的度数;(2)分两种情况进行讨论,本题考查了角平分线定义,熟练掌握角平分线的定义是解题的关键.。

2019-2020 学年七年级上学期期末数学试题(解析版 )

2019-2020 学年七年级上学期期末数学试题(解析版 )

初中2019级第一学期末教学质量监测数学第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分.)1. 5的相反数是( )A. 15B.15- C. 5 D. 5-【答案】D【解析】【分析】根据相反数的定义解答.【详解】解:只有符号不同的两个数称为互为相反数,则5的相反数为-5,故选D.【点睛】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2. 下列四个几何体中,是三棱柱的为( ).A. B.C. D.【答案】C【解析】【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【详解】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选C.【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.3. 中国陆地面积约为29600000km ,将数字9600000用科学记数法表示为()A. 59610⨯B. 69.610⨯C. 79.610⨯D. 80.9610⨯ 【答案】B【解析】【分析】根据科学记数法的表示方法写出即可.【详解】解:将9600000用科学记数法表示为69.610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 如果单项式312m x y +-与2x 4y n+3的差是单项式,那么(m+n)2019的值为( ) A. 1-B. 0C. 1D. 22019【答案】A【解析】 【分析】 根据312m x y +-和2x 4y n+3是同类项,求出m 和n 的值,即可得出答案. 【详解】∵单项式312m x y +-与2x 4y n+3的差是单项式 ∴m+3=4,n+3=1解得:m=1,n=-2∴(m+n)2019=[1+(-2)]2019=-1故答案选择A.【点睛】本题考查的是同类项的定义:①字母相同;②相同字母的指数相同.5. 若(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程,则k 的值为( )A. 5B. ﹣5C. 5 或﹣5D. 4 或﹣4【答案】B【解析】【分析】由一元一次方程的定义可得|k |﹣4=1且k ﹣5≠0,计算即可得到答案.【详解】∵(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程, ∴|k |﹣4=1且k ﹣5≠0,解得:k =﹣5.故选B .【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.6. 用四舍五入法得到的近似数1.02×104,其精确度为( )A. 精确到十分位B. 精确到十位C. 精确到百位D. 精确到千位【答案】C【解析】【分析】 先把近似数还原,再求精确度,即可得出答案.【详解】1.02×104=10200,2在百位上,故答案选择C. 【点睛】本题考查的是近似数的精确度,比较简单,近似数最后一位所在的数位即为该数的精确度. 7. 下列说法错误的是 ( )A. 若a=b,则3-2a=3-2bB. 若a b c c =,则a=b C. 若a b =,则a=bD. 若a=b,则ca=cb【答案】C【解析】【分析】 根据等式的性质逐一判断即可得出答案.【详解】A :因为a=b ,所以-2a=-2b ,进而3-2a=3-2b ,故选项A 正确;B :因为a b c c =,所以a=b ,故选项B 正确;C :因为a b =,所以a=b 或a=-b ,故选项C 错误;D :因为a=b ,所以ca=cb ,故选项D 正确;故答案选择C.【点睛】本题考查的是等式的性质,比较简单,需要熟练掌握等式的基本性质.8. 一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是( )A. 17道B. 18道C. 19道D. 20道【答案】C【解析】【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.9. 已知x2+3x=2,则多项式3x2+9x﹣4的值是()A. 0B. 2C. 4D. 6【答案】B【解析】【分析】【详解】解:∵x²+3x=2,∴3x²+9x−4=3(x²+3x)−4=3×2−4=6−4=2,故选B. 10. 已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A. a+bB. ﹣a﹣cC. a+cD. a+2b﹣c【答案】C【解析】【分析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选C11. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.12. 如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36°B. 45°C. 60°D. 72°【答案】D【解析】【分析】先推出∠AOD+∠BOC=180°,结合∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD-∠COE即可解答.【详解】解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD ,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE 为∠BOC 的平分线,∴∠COE=12∠BOC=18°,∴∠DOE=∠COD−∠COE=90°−18°=72°,故选择:A.【点睛】本题考查了角平分线的定义,角的和差计算及数形结合的数学思想,根据图中的数量关系求出∠BOC=36°是解答本题的关键.第Ⅱ卷(非选择题,共64分)二、填空题:(本大题共6小题,每小题3分,共18分.)13. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,这样做的依据是:__________.【答案】两点确定一条直线【解析】【分析】由直线公理可直接得出答案.【详解】建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.14. 用“>、=、<”符号填空:45-______78-.【答案】> 【解析】【分析】先求绝对值,再用绝对值相减即可得出答案.【详解】∵44=55-,77=88-又4732-353-==-0 584040<∴47 < 58∴47 ->-58故答案为:>【点睛】本题考查的是负数的比较大小,先取绝对值,再比较大小,绝对值大的反而小.15. 如图,OA是北偏东28°36′方向的一条射线,OB是北偏西71°24′方向的一条射线,则∠AOB=__________.【答案】100°【解析】【分析】根据题意求出∠AOC和∠BOC的度数,相加即可得出答案.【详解】根据题意可得:∠AOC =28°36′,∠BOC=71°24′∠AOB=71°24′+28°36′=100°故答案为:100°【点睛】本题考查的是角度的计算,比较简单,角度的计算记住满60进1.16. 已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____. 【答案】10【解析】【分析】【详解】∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m =4,n =﹣2,∴2m ﹣n =8﹣(﹣2)=10.点睛:本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.17. 规定“Δ”是一种新的运算法则,满足:a △b=ab-3b ,示例:4△(-3)=4×(-3)-3×(-3)=-12+9=-3.若-3△(x+1)=1,则x=____________. 【答案】76- 【解析】【分析】根据新定义代入得出含x 的方程,解方程即可得出答案.【详解】∵a △b=ab-3b∴-3△(x+1)=-3(x+1)-3(x+1)=-6(x+1)∴-6(x+1)=1解得:x=76- 【点睛】本题考查的是新定义,认真审题,理清题目意思是解决本题的关键.18. 在数轴上点A 对应的数为-2,点B 是数轴上的一个动点,当动点B 到原点的距离与到点A 的距离之和为6时,则点B 对应的数为_________.【答案】-4或2【解析】【分析】先设点B 对应的数为b ,再用距离公式计算即可得出答案.【详解】设点B 对应的数为b解:设点B 表示的数为b ,①当点B 在点A 的左侧时,则有-2-b-b=6,解得,b=-4,②当点B 在OA 之间时,AB+AO=2≠6,因此此时不存在,③当点B 在原点的右侧时,则有b+2+b=6,解得,b=2,故答案为:-4或2.【点睛】本题考查的是数轴的动点问题,解题关键是利用距离公式进行计算.三、解答题(本大题共6个小题,共46分.)19. 计算:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ 【答案】0【解析】【分析】按照有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,若有括号先算括号内的,计算即可. 【详解】解:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ =-1-12×13×(3-9) =-1-16×(-6) =-1+1=0【点睛】本题考查有理数的混合运算,掌握运算顺序及法则,正确计算是本题的解题关键.20. 解方程:12136x x x -+-=- 【答案】27x =-【解析】【分析】方程两边同时乘以最小公倍数去掉分母,进而去括号、移项、合并同类项即可求解.【详解】解:去分母得:6x-2(1-x )=x+2-6,去括号得:6x-2+2x=x+2-6,移项得:6x+2x-x=2-6+2,合并同类项得:7x=-2,解得:27x =-. 【点睛】本题考查一元一次方程的解法,掌握解方程的步骤正确计算是本题的关键.21. 先化简,再求值:已知()()222242x x y x y --+- ,其中1x =-,y=2. 【答案】22x y +;5.【解析】【分析】先去括号再合并同类项,然后把1x =-,y=2代入计算.【详解】解:原式=22222422=2x x y x y x y --+++, 当1x =-,y=2时,原式=(-1)2+2×2=5. 【点睛】本题考查了整式的加减−化简求值:先去括号,再合并同类项,然后把满足条件的字母的值代入计算得到对应的整式的值.22. 如图所示,已知C ,D 是线段AB 上的两个点,M ,N 分别为AC ,BD 的中点,若AB=10cm ,CD=4cm ,求线段MN 的长;【答案】7cm【解析】【分析】根据题目求出AC+DB 的值,进而根据中点求出AM+DN 的值,即可得出答案.【详解】解:∵AB=10cm ,CD=4cm∴AC+DB=AB-CD=6cm又M ,N 分别为AC ,BD 的中点∴AM=CM=12AC ,DN=BN=12DB ∴AM+DN=12(AC+DB)=3cm ∴MN=AB-(AM+DN)=7cm【点睛】本题考查的是线段的中点问题,解题关键是根据进行线段之间等量关系的转换.23. 小魏和小梁从A ,B 两地同时出发,小魏骑自行车,小梁步行,沿同条路线相向匀速而行。

2019-2020学年广东省广州市南沙区七年级(上)期末数学试卷

2019-2020学年广东省广州市南沙区七年级(上)期末数学试卷

2019-2020学年广东省广州市南沙区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(2分)如果气温升高2C ︒时气温变化记作2C +︒,那么气温下降2C ︒时气温变化记作( )A .2C +︒B .2C -︒ C .4C +︒D .4C -︒2.(2分)|2019|-的倒数是( )A .2019B .2019-C .12019D .12019- 3.(2分)下列计算正确的是( ) A .2()2a b a b --=-+B .2222c c -=C .22243x y yx x y -=-D .23545z z z +=4.(2分)设某数是x ,若比它的2倍大4的数是8,则可列方程为( )A .1482x +=B .1482x -=C .248x +=D .248x -=5.(2分)下列四个数3(4)-,34-,2(8)-,28-中,互为相反数的是( )A .34-和3(4)-B .3(4)-和28-C .28-和34-D .2(8)-和34-6.(2分)如图是由一个圆锥和一个长方体组成的几何体,从上面看它得到的平面图形是( )A .B .C .D .7.(2分)庆祝新中国成立70周年,国庆假期期间,各旅游景区节庆氛围浓厚,某景区同步设置的“我为祖国点赞”装置共收集约639000个“赞”,这个数字用科学记数法可表示为( )A .66.3910⨯B .60.63910⨯C .50.63910⨯D .56.3910⨯8.(2分)历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如1x =时,多项式2()37f x x x =+-的值记为f (1),f (1)231173=⨯+-=-,那么(1)f -等于( )A .2-B .3-C .5-D .11-9.(2分)小南在解关于x 的一元一次方程123x m -=时,由于粗心大意,去分母时出现漏乘错误,把原方程化为32x m -=,并计算得解为1x =.则原方程正确的解为( )A .83x =B .1x =C .16x =D .43x =- 10.(2分)如图,某工厂有三个住宅区,A 、B 、C 各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A 、B 、C 三点共线),已知1500AB m =,1000BC m =,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .A 住宅区B .B 住宅区C .C 住宅区D .B 、C 住宅区中间D 处二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)单项式3ab -的系数为 ,次数为 .12.(3分)如图,BD 在ABC ∠的内部,13ABD CBD ∠=∠,如果80ABC ∠=︒,则ABD ∠= .13.(3分)一个角是40︒,则它的补角是 度.14.(3分)2019年是中华人民共和国成立70周年,国庆当天在天安门广场举办70周年阅兵,小花通过电视直播看完阅兵仪式后,为祖国的强大而自豪,打算设计一个正方体装饰品,她在装饰品的平面展开图的六个面上分别写下了“七十周年阅兵”几个字.把展开图折叠成正方体后,与“年”字一面相对的面上的字是 .15.(3分)有理数a 、b 在数轴上的位置如图所示,则化简||||a b a b ++-的结果为 .16.(3分)如图,把一根绳子AB 以中点O 对折,点A 和点B 重合,折成一条线段OB ,在线段OB 取一点P ,使:1:3OP BP =,从P 处把绳子剪断,得到三段绳子.若剪断后的三段绳子中最短的一段为16cm ,则绳子的原长为 cm .三、解答题(本大题共7小题,满分62分.解答要求写出文字说明、证明过程或计算步骤.)17.(8分)计算:(1)20(7)(8)+---(2)201921(1)(1)23-⨯-÷ 18.(8分)解方程:(1)2(1)3x x -=-(2)12142x x ---= 19.(8分)已知:222A ax bx =-,2211B ax bx =-++.(1)化简A B +;(2)当2x =-时,13A B +=,求代数式a 的值.20.(8分)一辆出租车从甲地出发,在一条东西走向的街道上行驶,每次行驶的路程记录如下表(规定向东为正,其中x 是小于5的正数,单位:):km 第1次第2次 第3次 第4次 x 12x - 6x - 2(8)x -(1)通过计算,求出这辆出租车每次行驶的方向;(2)如果出租车行驶每千米耗油0.1升,当2x =时,求这辆出租车在这四次的行驶中总共耗油多少升?21.(8分)广州恒大足球队在亚冠足球联赛小组赛中屡次晋级.亚冠小组赛规则:①小组赛内有4支球队,每两支球队之间要进行两场比赛;②每队胜一场得3分,平一场得1分,负场得0分;③小组赛结束,积分前两名出线.广州恒大队经过6场小组赛后,总积分为10分,且负的场数是平的场数的两倍,求广州恒大队在小组赛共打平了多少场比赛?22.(10分)如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使3=(尺规作图,不写作法,保留作图痕迹);BC AB(2)在(1)的条件下,如果点D为线段BC的中点,且2AB=,求线段AD的长度;(3)在以上的条件下,若点P从A点出发,以每秒1个单位长度的速度向点C移动,到点=-?若存在,求C时停止.设点P的运动时间为t秒,是否存在某时刻t,使得PB PA PC出时间t:若不存在,请说明理由.23.(12分)如图①,点O为直线AB上一点,60∠=︒,将一把含有45︒角的直角三角AOC板的直角顶点放在点O处,直角边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板绕点O按逆时针方向旋转至图②的位置,使得90MOB∠=︒,此时∠角度为度;CON(2)将上述直角三角板从图1绕点O按逆时针旋转到图③的位置,当ON恰好平分AOC∠时,求AOM∠的度数;(3)若这个直角三角板绕点O按逆时针旋转到斜边ON在AOC∠的内部时(ON与OC、OA 不重合),试探究AOM∠之间满足什么等量关系,并说明理由.∠与CON2019-2020学年广东省广州市南沙区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.(2分)如果气温升高2C ︒时气温变化记作2C +︒,那么气温下降2C ︒时气温变化记作( )A .2C +︒B .2C -︒ C .4C +︒D .4C -︒【解答】解:如果气温升高2C ︒时气温变化记作2C +︒,那么气温下降2C ︒时气温变化记作2C ︒-.故选:B .2.(2分)|2019|-的倒数是( )A .2019B .2019-C .12019D .12019- 【解答】解:|2019|2019-=的倒数是:12019. 故选:C .3.(2分)下列计算正确的是( )A .2()2a b a b --=-+B .2222c c -=C .22243x y yx x y -=-D .23545z z z +=【解答】解:A 、2()22a b a b --=-+,故此选项错误;B 、2222c c c -=,故此选项错误;C 、22243x y yx x y -=-,正确;D 、234z z +,无法计算,故此选项错误;故选:C .4.(2分)设某数是x ,若比它的2倍大4的数是8,则可列方程为( )A .1482x +=B .1482x -=C .248x +=D .248x -=【解答】解:根据题意得:248x +=.故选:C .5.(2分)下列四个数3(4)-,34-,2(8)-,28-中,互为相反数的是( )A .34-和3(4)-B .3(4)-和28-C .28-和34-D .2(8)-和34-【解答】解:A 、3464-=-,3(4)64-=-,334(4)-=-,故此选项错误;B 、3(4)64-=-,2864-=-,32(4)8-=-,故此选项错误;C 、2864-=-,3464-=-,2384-=-,故此选项错误;D 、2(8)64-=,3464-=-,2(8)-与34-互为相反数,故此选项正确.故选:D .6.(2分)如图是由一个圆锥和一个长方体组成的几何体,从上面看它得到的平面图形是( )A .B .C .D .【解答】解:圆锥的俯视图是圆,长方体的俯视图是长方形,所以,组合图形为长方形内有一个圆的图形,圆在左上角.故选:A .7.(2分)庆祝新中国成立70周年,国庆假期期间,各旅游景区节庆氛围浓厚,某景区同步设置的“我为祖国点赞”装置共收集约639000个“赞”,这个数字用科学记数法可表示为( )A .66.3910⨯B .60.63910⨯C .50.63910⨯D .56.3910⨯【解答】解:5639000 6.3910=⨯,故选:D .8.(2分)历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如1x =时,多项式2()37f x x x =+-的值记为f (1),f (1)231173=⨯+-=-,那么(1)f -等于( )A .2-B .3-C .5-D .11-【解答】解:2()37f x x x =+-Q ,2(1)3(1)(1)75f ∴-=⨯-+--=-.故选:C .9.(2分)小南在解关于x 的一元一次方程123x m -=时,由于粗心大意,去分母时出现漏乘错误,把原方程化为32x m -=,并计算得解为1x =.则原方程正确的解为( )A .83x =B .1x =C .16x =D .43x =- 【解答】解:由题意可知:1x =是方程32x m -=的解,32m ∴-=,1m ∴=,∴原方程为1123x -=, 83x ∴=, 故选:A .10.(2分)如图,某工厂有三个住宅区,A 、B 、C 各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A 、B 、C 三点共线),已知1500AB m =,1000BC m =,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .A 住宅区B .B 住宅区C .C 住宅区D .B 、C 住宅区中间D 处【解答】解:当停靠点在A 区时,所有员工步行到停靠点路程和是:201500452500142500m ⨯+⨯=;当停靠点在B 区时,所有员工步行到停靠点路程和是:15150045100067500m ⨯+⨯=; 当停靠点在C 区时,所有员工步行到停靠点路程和是:15250020100057500m ⨯+⨯=; 当停靠点在D 区时,设距离B 区x 米,所有员工步行到停靠点路程和是:152000205004550062500m ⨯+⨯+⨯=.∴当停靠点在C 区时,所有员工步行到停靠点路程和最小.故选:C .二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)单项式3ab -的系数为 1- ,次数为 .【解答】解:单项式3ab -的系数为:1-,次数为:4.故答案为:1-,4.12.(3分)如图,BD 在ABC ∠的内部,13ABD CBD ∠=∠,如果80ABC ∠=︒,则ABD ∠= 20︒ .【解答】解:13ABD CBD ∠=∠Q ,80ABC ∠=︒, 1204ABD ABC ∴∠=∠=︒ 故答案为:20︒.13.(3分)一个角是40︒,则它的补角是 140 度.【解答】解:由补角的性质,得40︒角的补角是18040140︒-︒=︒,故答案为:140.14.(3分)2019年是中华人民共和国成立70周年,国庆当天在天安门广场举办70周年阅兵,小花通过电视直播看完阅兵仪式后,为祖国的强大而自豪,打算设计一个正方体装饰品,她在装饰品的平面展开图的六个面上分别写下了“七十周年阅兵”几个字.把展开图折叠成正方体后,与“年”字一面相对的面上的字是 阅 .【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“年”字相对的字是“阅”.故答案为:阅.15.(3分)有理数a 、b 在数轴上的位置如图所示,则化简||||a b a b ++-的结果为 2b - .【解答】解:由数轴知:0b a <<,||||b a >,所以0a b +<,0a b ->,||||a b a b ∴++-()a b a b =-++-a b a b =--+-2b =-.故答案为:2b -.16.(3分)如图,把一根绳子AB 以中点O 对折,点A 和点B 重合,折成一条线段OB ,在线段OB 取一点P ,使:1:3OP BP =,从P 处把绳子剪断,得到三段绳子.若剪断后的三段绳子中最短的一段为16cm ,则绳子的原长为 64 cm .【解答】解:12OA OB AB ==Q ,:1:3OP BP =, 111248OP AB AB ∴=⨯=, Q 剪断后的三段绳子中最短的一段为16cm ,12164OP AB ∴==, 64AB cm ∴=,∴绳子的原长为64cm ,故答案为:64.三、解答题(本大题共7小题,满分62分.解答要求写出文字说明、证明过程或计算步骤.)17.(8分)计算:(1)20(7)(8)+---(2)201921(1)(1)23-⨯-÷ 【解答】解:(1)20(7)(8)+---20(7)8=+-+21=;(2)201921(1)(1)23-⨯-÷ 21()43=-⨯-÷ 211()34=-⨯-⨯ 16=. 18.(8分)解方程:(1)2(1)3x x -=-(2)12142x x ---= 【解答】解:(1)去括号,可得:223x x -=-,移项,合并同类项,可得:1x =-.(2)去分母,可得:4(1)2(2)x x --=-,去括号,可得:4124x x -+=-,移项,合并同类项,可得:39x -=-,系数化为1,可得:3x =.19.(8分)已知:222A ax bx =-,2211B ax bx =-++.(1)化简A B +;(2)当2x =-时,13A B +=,求代数式a 的值.【解答】解:(1)222A ax bx =-Q ,2211B ax bx =-++,2222221111A B ax bx ax bx ax ∴+=--++=+;(2)当2x =-时,13A B +=,得到41113a +=, 解得:12a =. 20.(8分)一辆出租车从甲地出发,在一条东西走向的街道上行驶,每次行驶的路程记录如下表(规定向东为正,其中x 是小于5的正数,单位:):km(1)通过计算,求出这辆出租车每次行驶的方向;(2)如果出租车行驶每千米耗油0.1升,当2x=时,求这辆出租车在这四次的行驶中总共耗油多少升?【解答】解:(1)第1次,向东行驶x千米,第2次,向西行驶12x千米,第3次,向西行驶(6)x-千米,第4次,向东行驶2(8)x-千米;(2)行驶的总路程为:1362(8)2222x x x x x++-+-=-,当2x=时,原式22319=-=,0.119 1.9⨯=升,答:这辆出租车在这四次的行驶中总共耗油1.9升.21.(8分)广州恒大足球队在亚冠足球联赛小组赛中屡次晋级.亚冠小组赛规则:①小组赛内有4支球队,每两支球队之间要进行两场比赛;②每队胜一场得3分,平一场得1分,负场得0分;③小组赛结束,积分前两名出线.广州恒大队经过6场小组赛后,总积分为10分,且负的场数是平的场数的两倍,求广州恒大队在小组赛共打平了多少场比赛?【解答】解:设广州恒大队在小组赛共打平了x场比赛,则负的场数是2x场,胜的场数是(63)x-,由题意得3(63)10x x-+=,解得1x=答:广州恒大队在小组赛共打平了1场比赛.22.(10分)如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使3BC AB=(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,如果点D为线段BC的中点,且2AB=,求线段AD的长度;(3)在以上的条件下,若点P从A点出发,以每秒1个单位长度的速度向点C移动,到点C时停止.设点P的运动时间为t秒,是否存在某时刻t,使得PB PA PC=-?若存在,求出时间t:若不存在,请说明理由.【解答】解:如图所示,(1)延长线段AB到点C,使3BC AB=;(2)2AB =Q ,36BC AB ∴==,8AC AB BC ∴=+=,Q 点D 为线段BC 的中点, 132BD BC ∴==, 5AD AB BD ∴=+=.答:线段AD 的长度为5;(3)点P 从A 点出发,以每秒1个单位长度的速度向点C 移动,到点C 时停止. 设点P 的运动时间为t 秒,则|2|PB t =-,PA t =,8PC t =-,PB PA PC =-即|2|(8)t t t -=--解得2t =或103. 答:时间t 为2或103. 23.(12分)如图①,点O 为直线AB 上一点,60AOC ∠=︒,将一把含有45︒角的直角三角板的直角顶点放在点O 处,直角边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角板绕点O 按逆时针方向旋转至图②的位置,使得90MOB ∠=︒,此时CON ∠角度为 75 度;(2)将上述直角三角板从图1绕点O 按逆时针旋转到图③的位置,当ON 恰好平分AOC ∠时,求AOM ∠的度数;(3)若这个直角三角板绕点O 按逆时针旋转到斜边ON 在AOC ∠的内部时(ON 与OC 、OA 不重合),试探究AOM ∠与CON ∠之间满足什么等量关系,并说明理由.【解答】解:(1)图①中的三角板绕点O 按逆时针方向旋转至图②的位置,90MOB ∠=︒Q ,45MON ∠=︒60AOC ∠=︒,30COM ∴∠=︒,75CON COM MON ∴∠=∠+∠=︒,所以此时CON ∠角度为75︒.故答案为75;(2)直角三角板从图1绕点O 按逆时针旋转到图③的位置, ON Q 恰好平分AOC ∠时,1302AON CON AOC ∴∠=∠=∠=︒, 15AOM MON AON ∴∠=∠-∠=︒.答:AOM ∠的度数为15︒;(3)AOM ∠与CON ∠之间满足:15AOM CON ∠-∠=︒,理由如下: CON AOC AON ∠=∠-∠Q60AON =︒-∠60()MON AOM =︒-∠-∠60(45)AOM =︒-︒-∠15AOM =︒+∠所以15CON AOM ∠-∠=︒.。

2019-2020学年七年级(上)期末数学试卷(含答案)

2019-2020学年七年级(上)期末数学试卷(含答案)

2019-2020学年七年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列四个数中,在﹣2到0之间的数是()A.3 B.1 C.﹣3 D.﹣13.下列计算正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+a=3a2D.3a2b﹣4a2b=﹣a2b4.下列图形中,不是三棱柱的表面展开图是()A.B.C.D.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的()A.B.C.D.6.地球半径约为6 400 000米,这个数用科学记数法表示为()A.640×104B.64×105 C.6.4×106D.0.64×1077.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是38.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是()A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为5人9.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110 B.120 C.130 D.14010.如图,从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.无法确定11.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110° D.145°12.若a、b两数在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.>0二、填空题(本小题共4小题,每小题3分,共12分)13.﹣的倒数是.14.如果2a﹣b=1,则4a﹣2b﹣1=.15.一副三角板按如图所示方式重叠,若图中∠DCE=35°,则∠ACB=.16.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、解答题(本大题共8小题,共52分)17.计算:(1)﹣7+13﹣6+20(2)(﹣+﹣)×(﹣24)18.先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.19.解方程:(1)4﹣3x=6﹣5x;(2)﹣1=.20.如图所示是由若干个大小相同的小立方体所组成几何体从上面看的图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面看到的图,从左面看到的图.21.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22.李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?23.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以=∠BOC.所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°.(2)由(1)可知∠BOE=∠COE=﹣∠COD=°.所以∠AOE=﹣∠BOE=°.24.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.一、选择题(本题共12个小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.故选:B.2.下列四个数中,在﹣2到0之间的数是()A.3 B.1 C.﹣3 D.﹣1【解答】解:∵3>0,1>0,﹣3<﹣2,﹣2<﹣1<0,∴在﹣2到0之间的数是﹣1.故选:D.3.下列计算正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+a=3a2D.3a2b﹣4a2b=﹣a2b【解答】解:A、3a和4b不是同类项,不能合并,故本选项错误;B、字母不应去掉.故本选项错误;C、字母的指数不应该变,故本选项错误;D、符合合并同类项的法则,故本选项正确.故选D.4.下列图形中,不是三棱柱的表面展开图是()A.B.C.D.【解答】解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选D.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的()A.B.C.D.【解答】解:A、可以通过旋转得到两个圆柱,故本选项正确;B、可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C、可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D、可以通过旋转得到三个圆柱,故本选项错误.故选:A.6.地球半径约为6 400 000米,这个数用科学记数法表示为()A.640×104B.64×105 C.6.4×106D.0.64×107【解答】解:将6 400 000用科学记数法表示为6.4×106.故选C.7.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是3【解答】解:根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是2+1=3,只有D正确,故选:D.8.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是()A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为5人【解答】解:A、正确.从扇形统计图中看出:该班喜欢乒乓球的学生占30%,是最多的,故正确.B、正确.喜欢排球与篮球的学生均占20%,一样多,故正确.C、正确.因为25%÷20%=1.25,喜欢足球的人数是喜欢排球人数的1.25倍,故正确.D、错误.班喜欢其他球类活动的占5%,故错误.故选D.9.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110 B.120 C.130 D.140【解答】解:设标签上的价格为x元,根据题意得:0.7x=80×(1+5%),解得:x=120.故选B.10.如图,从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.无法确定【解答】解:从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为两点之间,线段最短.故选:B.11.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110° D.145°【解答】解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故选:C.12.若a、b两数在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.>0【解答】解:∵a<0<b,﹣a>b,∴a+b<0,∴选项A不正确,选项B正确;∵a<0<b,∴ab<0,∴选项C不正确;∵a<0<b,∴<0,∴选项D不正确.故选:B.二、填空题(本小题共4小题,每小题3分,共12分)13.﹣的倒数是﹣.【解答】解:(﹣)×(﹣)=1,所以﹣的倒数是﹣.故答案为:﹣.14.如果2a﹣b=1,则4a﹣2b﹣1=1.【解答】解:∵2a﹣b=1,∴4a﹣2b=2,∴4a﹣2b﹣1=2﹣1=1.故答案为:1.15.一副三角板按如图所示方式重叠,若图中∠DCE=35°,则∠ACB=145°.【解答】解:(1)∵∠ACD=∠ECB=90°,∴∠ACB=180°﹣35°=145°,故答案为145°.16.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.三、解答题(本大题共8小题,共52分)17.计算:(1)﹣7+13﹣6+20(2)(﹣+﹣)×(﹣24)【解答】解:(1)﹣7+13﹣6+20=6﹣6+20=20(2)(﹣+﹣)×(﹣24)=(﹣)×(﹣24)+×(﹣24)﹣×(﹣24)=18﹣4+9=2318.先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.【解答】解:2m2﹣4m+1﹣2(m2+2m﹣)=2m2﹣4m+1﹣2m2﹣4m+1=﹣8m+2,当m=﹣1时,原式=8+2=10.19.解方程:(1)4﹣3x=6﹣5x;(2)﹣1=.(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)4﹣3x=6﹣5x,移项,得5x﹣3x=6﹣4,合并同类项,得2x=2,系数化为1,得x=1;(2)去分母,得3(x+1)﹣6=2(2﹣x),去括号,得3x+3﹣6=4﹣2x,移项、合并同类项,得5x=7,系数化为1,得x=.2如图所示是由若干个大小相同的小立方体所组成几何体从上面看的图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面看到的图,从左面看到的图.【解答】解:如图所示:21.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是54°;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.【解答】解:(1)这次接受调查的市民总人数是:260÷26%=1000;(2)扇形统计图中,“电视”所对应的圆心角的度数为:(1﹣40%﹣26%﹣9%﹣10%)×360°=54°;(3)“报纸”的人数为:1000×10%=100.补全图形如图所示:(4)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:80×(26%+40%)=80×66%=52.8(万人).22.李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?【解答】解:设他推车步行了x分钟,依题意得:80x+250(15﹣x)=2900,解得x=5.答:他推车步行了5分钟.23.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=∠BOC.所以∠DOE=∠COD+ ∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE﹣∠COD=25°.所以∠AOE=∠AOB﹣∠BOE=155°.【解答】解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=∠BOC.所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE﹣∠COD=25°,所以∠AOE=∠AOB﹣∠BOE=155°.故答案为(1)∠COE;∠COE;90;(2)∠DOE(或者90°);25;∠AOB(或者180°);155.24.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为4.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为6或2.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.【解答】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=12÷3=4,∴数轴上点A表示的数为4,故答案为:4.(2)①∵S恰好等于原长方形OABC面积的一半,∴S=6,∴O′A=6÷3=2,当向左运动时,如图1,A′表示的数为2当向右运动时,如图2,∵O′A′=AO=4,∴OA′=4+4﹣2=6,∴A′表示的数为6,故答案为:6或2.②ⅰ.如图1,由题意得:CO•OA′=4,∵CO=3,∴OA′=,∴x=4﹣=,故答案为:;ⅱ.如图1,当原长方形OABC向左移动时,点D表示的数为,点E表示的数为,由题意可得方程:4﹣x﹣x=0,解得:x=,如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.。

广州市2019-2020学年七年级上学期期末数学试题(I)卷-1

广州市2019-2020学年七年级上学期期末数学试题(I)卷-1

广州市2019-2020学年七年级上学期期末数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列图形中,哪一个是正方体的展开图()A.B.C.D.2 . 下列各题中,计算结果正确的是()A.19a2b﹣9ab2=10ab B.3x+3y=6xyC.16y2﹣9y2=7D.3x﹣4x+5x=4x3 . 有理数﹣1,﹣2,0,3中,最小的数是()A.﹣1B.﹣2C.0D.34 . 已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm5 . 已知等式,则下列等式中不一定成立的是()A.B.C.D.6 . 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;④在同一平面内,垂直于同一条直线的两条直线互相平行.其中是真命题的个数是()A.1个B.2个C.3个D.4个7 . 下列两个单项式中,是同类项的是()A.3与x B.3x2y与2xy2C.3ab与a3b D.3m2n与﹣nm28 . 如图,数轴上点A表示数a,则﹣a表示的数是()A.﹣1B.0C.1D.29 . 下列说法正确的是()A.过一点有且只有一条直线与已知直线垂直B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.在平面内,有且只有一条直线与已知直线垂直D.直线a外一点M与直线a上各点连接而成的所有线段中最短线段的长是3cm,则点M到直线a的距离是3cm10 . 已知是方程的解,则()A.1B.2C.3D.7二、填空题11 . 如图,若,则___________________________.12 . 如图,直线AB与CD相交于点O,且∠1+∠2=60°,则∠AOD的度数为____.13 . 某市对居民天然气收费采用阶梯气价,以“年度”作为一个阶梯气价结算周期,年度用气量分档和价格如下:第一档:年用气量0~242(含)立方米,价格a元/立方米,第二档:年用气量242~360(含)立方米,价格b元/立方米,即年用气量超过242度,超出部分气价按b元收费,某户居民一年用天然气300立方米,该户居民这一年应交纳天然气费是_____元.(用含a,b的代数式表示)14 . 我们根据指数运算,得出了一种新的运算.下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子,①log232=5;②log416=4;③log2=﹣1,其中正确的是_____(填式子序号)15 . 学校举行“大家唱大家跳”文艺汇演,设置了歌唱与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类节目比舞蹈类节目的3倍少2个,则全校师生表演的歌唱类节目有▲ 个.16 . 上海世博会场地是当今世界最大的太阳能应用场所,装有460000亿瓦的太阳能光伏并网发电装置, 460000亿瓦用科学记数法表示为亿瓦.三、解答题17 . 尺规作图.如图,已知在平面上有三个点A,B,C,请按下列要求作图:(1)作直线AB;(2)作射线AC;(3)在射线AC上作线段AD,使AD=2AA.18 . (1)已知(x+y+3)2+=0,试求多项式x2+y2-x-3的值.(2)已知多项式,在时,其值为8,试求时,其多项式的值.19 . 某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为3000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措;甲旅行社对每位员工七五折优惠,而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10人),则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示,并化简)(2)如果计划在五月份外出旅游七天,设最中间一天的日期为x,则这七天的日期之和为.(用含x 的代数式表示,并化简)(3)在(2)的条件下,假如这七天的日期之和为49的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)(4)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.20 . 如图,OM是∠AOB的平分线,OP是∠MOB内的一条射线.已知∠AOP比∠BOP大30°,试求∠MOP的度数.21 . 解下列一元一次方程:(1)(2)2(10-0.5y)=-(1.5y+2)22 . 某粮库3天内的粮食进出库的吨数为:+26,-32,-15,+34,-38,-20.问:(1)经过这3天,库里的粮食是增多了多少?还是减少了多少?(2)经过这3天,仓库管理员发现库里还存有520吨粮食,那么3天前库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这3天需要多少装卸费?23 . 如图,直线、相交于,比大,是的2倍.(1)求的度数;(2)试说明平分.24 . 先化简,再求值:(a+)(a﹣)﹣a(a﹣2),其中a=-1.25 . 计算:﹣14+(﹣3)×[(﹣4)2+2]﹣(﹣2)3÷4.26 . 已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点左边,距离原点8个单位长度,点B 在原点的右边.(1)请直接写出A,B两点所对应的数.(2)数轴上点A以每秒1个单位长度的速度出发向左运动,同时点B以每秒3个单位长度的速度出发向左运动,在点C处追上了点A,求C点对应的数.(3)已知,数轴上点M从点A向左出发,速度为每秒1个单位长度,同时点N从点B向左出发,速度为每秒2个单位长度,经t秒后点M、N、O(O为原点)其中的一点恰好到另外两点的距离相等,求t的值.。

2019-2020学年七年级数学上学期期末原创卷B卷(广东)(考试版)【测试范围:人教版七上全册】

2019-2020学年七年级数学上学期期末原创卷B卷(广东)(考试版)【测试范围:人教版七上全册】

数学试题第1页(共4页)数学试题第2页(共4页)绝密★启用前2019-2020学年上学期期末原创卷B卷七年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版七上全册。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一袋大米的标准重量为25kg ,把一袋重25.5kg 的大米记为0.5kg +,则一袋重24.8kg 的大米记为A .9.8kg-B .9.8kg+C .0.2kg-D .0.2kg2.光年是天文学中的距离单位,1光年大约是9500000000000km ,这个数据用科学记数法表示是A .0.95×1310kmB .950×1010km C .95×1110km D .9.5×1210km3.若()125m m x --=是一元一次方程,则m 的值为A .±2B .-2C .2D .44.将“祝你考试成功”这六个字分别写在一个正方体的六个面上.若这个正方体的展开图如图所示,则在这个正方体中,与“你”字相对的字是A .考B .试C .成D .功5.数a 、b 在数轴上的位置如图,则化简|a |+|b |的结果为A .a ﹣bB .a +bC .﹣a +bD .﹣a ﹣b6.当x =2时,代数式ax 3+bx +1的值为6,那么当2x =-时,这个代数式的值是A .1B .4-C .6D .5-7.若将一副三角板按如图所示的不同方式摆放,则图中∠α与∠β相等的是A .B .C .D .8.若x =2是关于x 的方程2x﹣a =x +2的解,则a 2﹣1的值是A .10B .﹣10C .8D .﹣89.小明用x 元买学习用品,若全买水笔,则可买6支;若全买笔记本,则可买4本.已知一支水笔比一本笔记本便宜1元,则下列所列方程中,正确的是A .164x x =-B .164x x =+C .164x x -=D .164x x +=10.已知a >0,b <0,且|a |<|b |,则下列关系正确的是A .b <﹣a <a <﹣bB .﹣a <b <a <﹣bC .﹣a <b <﹣b <aD .b <a <﹣b <a第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)11.计算223--=_________.12.若23ma bc 和322n a b c -是同类项,则m n +=_________.13.∠a =67°15′,则∠a 的补角=_________.14.有a 名男生和b 名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块,这a 名男生和b 名女生一共搬了_________块砖(用含a 、b 的代数式表示)数学试题第3页(共4页)数学试题第4页(共4页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………15.如图,数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,若原点O 是线段AC上的任意一点,则a +b -2c =_________.16.用⊕表示一种运算,它的含义是:A ⊕B =1(1)(1)x A B A B ++++,如果5213⊕=,那么3⊕4=_________.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:4321123152-+-⨯------()()().18.解方程:3157146y y ---=.19.先化简,再求值:222233[22()]32x y xy xy x y xy xy ---+-,其中13.3x y ==-,四、解答题(二)(本大题共3小题,每小题7分,共21分)20.己知代数22 32x x -+的值为5,求代数式213524x x --的值.21.如图,已知OE 平分∠AOB ,OD 平分∠BOC ,∠AOB 是直角,∠EOD =70°,试求∠BOC 的度数.22.如图,我们知道,从A 地到B 地有四条道路,除它们外,可以再修一条从A 地到B 地的最短道路.解答下列问题:(1)请你在图上画出最短线路?(2)你这样画的理由是“两点决定一条直线”呢,还是“两点之间,线段最短”?(3)如果已知三点A 、B 、C 在同一条直线上,且AB =5,BC =2,求AC 的长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本2元,甲商店的优惠条件是:购买十本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售.(1)设小丽要购买x (x >10)本练习本,则小丽到甲、乙两商店购买时,各须付款多少元?列代数式表示;(2)买多少本练习本时,两家商店付款相同?24.已知∠AOC 与∠BOD 具有公共顶点,∠COD 是两个角叠合的部分.(1)若∠AOC =∠BOD =90°,观察图形(一)并完成下列问题:①直接写出图中两个相等的锐角:=;②如果∠COD =40°,则∠AOB =,若∠AOB =150°,则∠COD =;③猜想∠AOB +∠DOC =°,请说明理由.(2)探究图形(二):若∠AOC =60°,∠BOD =50°,则∠AOB +∠DOC =°,请说明理由.25.在数轴上点A 表示数a ,点B 表示数b ,AB 表示点A 和点B 之间的距离.a ,b 满足24(11)0a b ++-=.(1)在原点O 处放了一挡板,若一小球P 从点A 处以3个单位/秒的速度向左运动,同时另一个小球Q 从点B 处以4个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反方向运动,设运动时间t (秒),问t 为何值时,P 、Q 两球到原点的距离相等?(2)若小球P 从点A 以每秒4个单位的速度向右运动,小球Q 同时从点B 以每秒3个单位得速度向左运动,则是否存在时间t ,使得AP +BQ =2PQ ?若存在,请求出时间t ;若不存在,请说明理由.。

广州市南沙区七年级上学期期末数学模拟试卷

广州市南沙区七年级上学期期末数学模拟试卷

第 1 页 共 10 页2020-2021学年广州市南沙区七年级上期末数学模拟试卷解析版一.选择题(共10小题,满分20分,每小题2分)1.在有理数1,0,12,﹣2中,是负数的为( ) A .1 B .0C .﹣2D .12 【解答】解:在有理数1,0,12,﹣2中,是负数的为﹣2.故选:C .2.下列各数中,2020的倒数是( )A .12020B .﹣2020C .|﹣2020|D .−12020 【解答】解:2020的倒数是:12020. 故选:A .3.去括号是进行整式加减的基础,下列式子中不正确的是( )A .3x +(5﹣2x )=3x ﹣2x +5B .﹣(x ﹣6)=﹣x ﹣6C .7x ﹣(x +1)=7x ﹣x ﹣1D .3(﹣x +8)=24﹣3x【解答】解:A 、3x +(5﹣2x )=3x ﹣2x +5,不合题意;B 、﹣(x ﹣6)=﹣x +6,符合题意;C 、7x ﹣(x +1)=7x ﹣x ﹣1,不合题意;D 、3(﹣x +8)=24﹣3x ,不合题意;故选:B .4.某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x 个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是( )A .22x =64(27﹣x )B .2×22x =64(27﹣x )C .64x =22(27﹣x )D .2×64x =22(27﹣x ) 【解答】解:设分配x 名工人生产螺栓,则(27﹣x )名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母64个或螺栓22个,∴可得2×22x =64(27﹣x ).故选:B .5.下列四个数(﹣4)3,﹣43,(﹣8)2,﹣82中,互为相反数的是( )。

2019-2020学年七年级上学期期末考试数学试题及解答

2019-2020学年七年级上学期期末考试数学试题及解答

2019-2020学年七年级上学期期末考试数学试题一、选择题(本大题共12小题,共24.0分)1.的倒数是A. 6B.C.D.【答案】D【解析】解:的倒数是.故选:D.根据倒数的定义求解.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为A. B. C. D.【答案】B【解析】解:将13000用科学记数法表示为:.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是非负数;当原数的绝对值时,n是负数.此题考查了科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,适宜采用普查方式的是A. 了解一批圆珠笔的寿命B. 了解全国九年级学生身高的现状C. 检查一枚用于发射卫星的运载火箭的各零部件D. 考察人们保护海洋的意识【答案】C【解析】解:A、了解一批圆珠笔的寿命适宜采用抽样调查方式,A错误;B、了解全国九年级学生身高的现状适宜采用抽样调查方式,B错误;C、检查一枚用于发射卫星的运载火箭的各零部件适宜采用普查方式,B正确;D、考察人们保护海洋的意识适宜采用抽样调查方式,D错误;故选:C.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列计算正确的是A. B.C. D.【答案】D【解析】解:A、3m和2y不是同类项,不能合并,故本选项错误;B、和不是同类项,不能合并,故本选项错误;C、,故本选项错误;D、,故本选项正确;故选:D.先判断是不是同类项,再根据合并同类项的法则进行计算,即可得出正确答案.本题考查了合并同类项,掌握同类项的定义和合并同类项的法则是解题的关键,是一道基础题.5.下列说法中,错误的是A. 正多边形的各边都相等B. 各边都相等的多边形是正多边形C. 正三角形的三条边都相等D. 正六边形的六个内角都相等【答案】B【解析】解:正多边形的各边都相等,正确;各边都相等且各内角都相等的多边形是正多边形,错误;C. 正三角形的三条边都相等,正确;正六边形的六个内角都相等,正确故选:B.根据正多边形的定义:各个边相等,各个角相等的多边形是正多边形,除正三边形以外,各边相等,各角相等,两个条件必须同时成立.本题考查了正多边形的定义,注意除正三边形以外,各边相等,各角相等,两个条件必须同时成立.6.三个连续奇数排成一行,第一个数为x,最后一个数为y,且用下列整式表示中间的奇数时,不正确的一个是A. B. C. D.【答案】C【解析】解:三个连续奇数排成一行,第一个数为x,则第二个奇数为;当最后一个数为y,则第二个奇数可表示为;第二个奇数也表示为.故选:C.由于相邻奇数相差为2,则中间的奇数可表示为或或.本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式列代数式五点注意:仔细辨别词义认真审题,抓住关键词语,仔细辩析词义,分清数量之间的关系.7.如图,,点O为线段AB上的任意一点,C为AO的中点,D为OB的中点,则线段CD长为A. 3cmB. 4cmC. 5cmD. 6cm【答案】C【解析】解:为AO的中点,D为OB的中点,,故选:C.由中点定义可得,,即可求CD的长.本题考查了两点间的距离,中点定义,熟练运用中点定义是本题的关键.8.已知,,且,则代数式的值为A. 1或7B. 1或C. 或D. 或【答案】A【解析】解:,;,;,,,或,,,时,;,时,;代数式的值为1或7.故选:A.首先根据,可得;再根据,可得;然后根据,可得,据此求出a、b的值各是多少,即可求出代数式的值为多少.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值题型简单总结以下三种:已知条件不化简,所给代数式化简;已知条件化简,所给代数式不化简;已知条件和所给代数式都要化简.9.甲、乙二人从相距21千米的两地同时出发,相向而行,120分钟相遇甲每小时比乙多走500米,设乙的速度为x千米小时,下面所列方程正确的是A. B.C. D.【答案】B【解析】解:设乙的速度为x千米时,则甲的速度为千米时,依题意得:.故选:B.设乙的速度为x千米时,则甲的速度为千米时,根据题意可得等量关系:乙2小时的路程甲2小时的路程千米,根据等量关系列出方程即可.此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系.10.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是A. 4B. 5C. 6D. 7【答案】B【解析】解:几何体分布情况如下图所示:则小正方体的个数为,故选:B.根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.11.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么的值是A. 1B. 4C. 7D. 9【答案】A【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“”是相对面,“y”与“”是相对面,“z”与“3”是相对面,相对面上所标的两个数互为相反数,,,,.故选:A.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.如图所示是一个运算程序的示意图,若开始输入的x值为27,则第5次输出的结果为A. 3B. 27C. 9D. 1【答案】D【解析】解:把代入得:,把代入得:,把代入得:,把代入得:,依此类推,则第5次输出的结果为1,故选:D.把x的值代入运算程序中计算即可.此题考查了代数式求值,弄清程序中的运算是解本题的关键.二、填空题(本大题共5小题,共15.0分)13.在数轴上与所对应的点相距4个单位长度的点表示的数是______.【答案】2或【解析】解:当该点在的右边时,由题意可知:该点所表示的数为2,当该点在的左边时,由题意可知:该点所表示的数为,故答案为:2或由于题目没有说明该点的具体位置,故要分情况讨论.本题考查数轴,涉及有理数的加减运算、分类讨论的思想.14.若,则______.【答案】【解析】解:,,故答案为:.根据,可以求得的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.已知,,OC在它的内部,且把分成1:3两部分,则度数为______.【答案】或【解析】解:,OC在它的内部,且把分成1:3的两个角,或.故答案为:或.根据OC在的内部,且把分成1:3的两个角,则或,然后把代入计算即可.本题考查了角度的计算,正确的理解题意是解题的关键.16.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则化简______.【答案】0【解析】解:由数轴得,,,因而,,.原式.故答案为:0.由数轴可知:,,所以可知:,,根据负数的绝对值是它的相反数可求值.此题主要是考查学生对数轴和绝对值的理解,学生要对这些概念性的东西牢固掌握.17.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第是大于0的整数个图形需要黑色棋子的个数是______.【答案】【解析】解:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子个,则第n个图形需要黑色棋子的个数是.故答案为:.根据题意,分析可得第1个图形需要黑色棋子的个数为,第2个图形需要黑色棋子的个数为,第3个图形需要黑色棋子的个数为,依此类推,可得第n个图形需要黑色棋子的个数是,计算可得答案.此题考查规律型:图形的变化类,解题时注意图形中有重复的点,即多边形的顶点.三、计算题(本大题共2小题,共26.0分)18.计算:化简求值:,其中,.【答案】解:原式;原式;原式,当,时,原式.【解析】根据有理数的运算法则即可求出答案.先根据整式的运算法则进行化简,然后将x与y的值代入即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19.某校组织7年级师生外出进行研究性学习活动,学校联系了旅游公司提供车辆该公司现有50座和35座两种车型如果用35座的,会有5人没座位;如果全部换乘50座的,则可比35座车少用2辆,而且多出15个座位若35座客车日租金为每辆250元,50座客车日租金为每辆300元,请你算算参加互动师生共多少人?请你设计一个方案,使租金最少,并说明理由.【答案】解:设参加互动师生共x人,由题意得:即:解得:人,所以,参与本次师生互动的人共有285人.设计方案为:租用1辆35座的车,租用5辆50座的车.设租用x辆35座的,则还需租用辆50座的,其中由题意得:由于辆,需要租金:元;所以当时,,需要租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,辆,需租金:元;当时,,此时需租金:元;综合上述比较当租用1辆35座的车,租用5辆50座的车时,所需资金最少另法:假设租了35座汽车x辆,其余人乘坐50座客车,则所花租金等于:,若要使租金最少,即要使值最小,当时,租金为1750元时为最低.故租了35座汽车1辆,50座客车5辆最合算.【解析】设参加互动师生共x人,那么如果用35座的需辆,全部换乘50座的需辆,已知:如果全部换乘50座的,则可比35座车少用2辆,以此为等量关系列出方程求解;分类讨论,看什么时候所用租金最少,就选择该方案.本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系,列出方程求解;运用“分类讨论”的方法,得出租金最少时的方案.四、解答题(本大题共5小题,共35.0分)20.解方程【答案】解:方程两边同时乘以6得:,去括号得:,移项得:,合并同类项得:,系数化为1得:.【解析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状.【答案】解:如图所示【解析】根据三视图的概念作图即可得.本题考查作图三视图在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉本题画几何体的三视图时应注意小正方形的数目及位置.22.武侯区为了丰富群众的文体生活,开展了“行随我动”跳绳比赛,该活动得到了学校的积极响应,某校为了了解七年级学生跳绳的训练情况,随机抽取了七年级部分学生进行60秒跳绳测试,并将这些学生的测试成绩即60秒跳绳的个数,且这些测试成绩都是~范围内分段后给出相应等级,具体为:测试成绩在~范围内的记为D级,~范围内的记为C级,~范围内的记为B级,~范围内的记为A级,现将数据整理绘制成如下两幅不完整的统计图,请根据图中的信息解答下列问题:在扇形统计图中,A级所占百分比为______;在这次测试中,一共抽取了______名学生,并补全频数分布直方图;在的基础上,在扇形统计图中,求D级对应的圆心角的度数.【答案】100【解析】解:级所在扇形的圆心角的度数为,级所占百分比为;故答案为:;级有25人,占,抽查的总人数为人,级有人,频数分布图为:类的圆心角为:.根据A级所在扇形的圆心角为求得其所占的百分比即可;用A级的人数除以其所占的百分比即可求得总人数;用D级的人数除以总人数乘以周角的度数即可求得对应的圆心角的度数.本题考查了频数分布直方图及扇形统计图的知识,解题的关键是从统计图中整理出相关的信息,难度不大.23.如图,,OP平分,OQ平分,求的度数【答案】解:,平分,OQ平分,,,.【解析】根据角平分线的定义求出与的度数,然后相减即可得到的度数.本题考查了角的计算与角平分线的定义,准确识图,找出的等量关系是解题的关键.24.阅读材料:求值:,解答:设,将等式两边同时乘2得:,将得:,即.请你类比此方法计算:.其中n为正整数【答案】解:设,将等式两边同时乘2得:,将下式减去上式得:,即,则;设,两边同时乘3得:,得:,即,则.【解析】设,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;同理即可得到所求式子的值.本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年七年级(上)期末数学试卷
一.选择题(共10小题)
1.如果气温升高2°C时气温变化记作+2°C,那么气温下降2°C时气温变化记作()
A.+2°C B.﹣2°C C.+4°C D.﹣4°C
2.|﹣2019|的倒数是()
A.2019 B.﹣2019 C.D.
3.下列计算正确的是()
A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2
C.x2y﹣4yx2=﹣3x2y D.z2+4z3=5z5
4.设某数是x,若比它的2倍大4的数是8,则可列方程为()
A. B.C.2x+4=8 D.2x﹣4=8
5.下列四个数(﹣4)3,﹣43,(﹣8)2,﹣82中,互为相反数的是()
A.﹣43和(﹣4)3 B.(﹣4)3和﹣82 C.﹣82和﹣43 D.(﹣8)2和﹣43
6.如图是由一个圆锥和一个长方体组成的几何体,从上面看它得到的平面图形是()
A.B.
C.D.
7.庆祝新中国成立70周年,国庆假期期间,各旅游景区节庆氛围浓厚,某景区同步设置的“我为祖国点费”装置共收集约639000个“赞”,这个数字用科学记数法可表示为()
A.6.39×106 B.0.639×106 C.0.639×105 D.6.39×105
8.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f (a)来表示,例如x=1时,多项式f(x)=3x2+x﹣7的值记为f(1),f(1)=3×12+1﹣7=﹣3,那么f(﹣1)等于()
A.﹣2 B.﹣3 C.﹣5 D.﹣11
9.小南在解关于x的一元一次方程时,由于粗心大意,去分母时出现漏乘错误,把原方程化为3x ﹣m=2,并计算得解为x=1.则原方程正确的解为()
A.B.x=1 C.D.
10.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()
A.A住宅区B.B住宅区
C.C住宅区D.B、C住宅区中间D处
二.填空题(共6小题)
11.单项式﹣ab3的系数为,次数为.
12.如图,BD在∠ABC的内部,∠ABD=∠CBD,如果∠ABC=80°,则∠ABD=.
13.一个角是40°,则它的补角是度.
14.2019年是中华人民共和国成立70周年,国庆当天在天安门广场举办70周年阅兵,小花通过电视直播看完阅兵仪式后,为祖国的强大而自豪,打算设计一个正方体装饰品,她在装饰品的平面展开图的六个面上分别写下了“七十周年阅兵”几个字.把展开图折叠成正方体后,与“年”字一面相对的面上的字是.
15.有理数a、b在数轴上的位置如图所示,则化简|a+b|+|a﹣b|的结果为.
16.如图,把一根绳子AB以中点O对折,点A和点B重合,折成一条线段OB,在线段OB取一点P,使OP:BP=1:3,从P处把绳子剪断,得到三段绳子.若剪断后的三段绳子中最短的一段为16cm,则绳子的原长为cm.
三.解答题(共7小题)
17.计算:
(1)20+(﹣7)﹣(﹣8)(2)(﹣1)2019×(﹣1)÷22
18.解方程:
(1)2(x﹣1)=x﹣3 (2)
19.已知:A=2ax2﹣2bx,B=﹣ax2+2bx+11.
(1)化简A+B;
(2)当x=﹣2时,A+B=13,求代数式a的值.
20.一辆出租车从甲地出发,在一条东西走向的街道上行驶,每次行驶的路程记录如下表(规定向东为正,其中x是小于5的正数,单位:km):
第1次第2次第3次第4次
x x﹣6 2(8﹣x)
(1)通过计算,求出这辆出租车每次行驶的方向;
(2)如果出租车行驶每千米耗油0.1升,当x=2时,求这辆出租车在这四次的行驶中总共耗油多少升?
21.广州恒大足球队在亚冠足球联赛小组赛中屡次晋级.亚冠小组赛规则:①小组赛内有4支球队,每两支球队之间要进行两场比赛;②每队胜一场得3分,平一场得1分,负场得0分;③小组赛结束,积分前两名出线.广州恒大队经过6场小组赛后,总积分为10分,且负的场数是平的场数的两倍,求广州恒大队在小组赛共打平了多少场比赛?
22.如图,已知线段AB,按下列要求完成画图和计算:
(1)延长线段AB到点C,使BC=3AB(尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,如果点D为线段BC的中点,且AB=2,求线段AD的长度;
(3)在以上的条件下,若点P从A点出发,以每秒1个单位长度的速度向点C移动,到点C时停止.设点P的运动时间为t秒,是否存在某时刻t,使得PB=PA﹣PC?若存在,求出时间t:若不存在,请说明理由.
23.如图①,点O为直线AB上一点,∠AOC=60°,将一把含有45°角的直角三角板的直角顶点放在点O处,直角边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图①中的三角板绕点O按逆时针方向旋转至图②的位置,使得∠MOB=90°,此时∠CON角度为度;
(2)将上述直角三角板从图1绕点O按逆时针旋转到图③的位置,当ON恰好平分∠AOC时,求∠AOM 的度数;
(3)若这个直角三角板绕点O按逆时针旋转到斜边ON在∠AOC的内部时(ON与OC、OA不重合),试探究∠AOM与∠CON之间满足什么等量关系,并说明理由.
参考答案见下一页
参考答案与试题解析
一.选择题
1.B 2C 3.C 4.C 5.D 6.A 7.D 8.C 9.A 10.C
二.填空题
11.﹣1,4.12.20°13.140 14.阅15.﹣2b 16.64
三.解答题
17.解:(1)20+(﹣7)﹣(﹣8)
=20+(﹣7)+8
=21;
(2)(﹣1)2019×(﹣1)÷22
=﹣1×(﹣)÷4
=﹣1×(﹣)×
=.
18.解:(1)去括号,可得:2x﹣2=x﹣3,
移项,合并同类项,可得:x=﹣1.
(2)去分母,可得:4﹣(x﹣1)=2(x﹣2),
去括号,可得:4﹣x+1=2x﹣4,
移项,合并同类项,可得:﹣3x=﹣9,
系数化为1,可得:x=3.
19.解:(1)∵A=2ax2﹣2bx,B=﹣ax2+2bx+11,
∴A+B=2ax2﹣2bx﹣ax2+2bx+11=ax2+11;
(2)当x=﹣2时,A+B=13,得到4a+11=13,
解得:a=.
20.解:(1)第1次,向东行驶x千米,第2次,向西行驶x千米,第3次,向西行驶(6﹣x)千米,第4次,向东行驶2(8﹣x)千米;
(2)行驶的总路程为:x+x+6﹣x+2(8﹣x)=22﹣x,
当x=2时,原式=22﹣3=19,
0.1×19=1.9升,
答:这辆出租车在这四次的行驶中总共耗油1.9升.
21.解:设广州恒大队在小组赛共打平了x场比赛,则负的场数是2x场,胜的场数是(6﹣3x),由题意得3(6﹣3x)+x=10,解得x=1
答:广州恒大队在小组赛共打平了1场比赛.
22.解:如图所示,
(1)延长线段AB到点C,使BC=3AB;
(2)∵AB=2,∴BC=3AB=6,∴AC=AB+BC=8,
∵点D为线段BC的中点,∴BD=BC=3,∴AD=AB+BD=5.
答:线段AD的长度为5;
(3)点P从A点出发,以每秒1个单位长度的速度向点C移动,到点C时停止.
设点P的运动时间为t秒,
则PB=|t﹣2|,PA=t,PC=8﹣t,
PB=PA﹣PC,即|t﹣2|=t﹣(8﹣t)
解得t=2或.
答:时间t为2或.
23.解:(1)图①中的三角板绕点O按逆时针方向旋转至图②的位置,
∵∠MOB=90°,∠MON=45°∠AOC=60°,
∴∠COM=30°,
∴∠CON=∠COM+∠MON=75°,
所以此时∠CON角度为75°.
(2)直角三角板从图1绕点O按逆时针旋转到图③的位置,
∵ON恰好平分∠AOC时,
∴∠AON=∠CON=AOC=30°,∴∠AOM=∠MON﹣∠AON=15°.
答:∠AOM的度数为15°;
(3)∠AOM与∠CON之间满足:∠AOM﹣∠CON=15°,理由如下:
∵∠CON=∠AOC﹣∠AON=60°﹣∠AON=60°﹣(∠MON﹣∠AOM)
=60°﹣(45°﹣∠AOM)=15°+∠AOM
所以∠CON﹣∠AOM=15°.。

相关文档
最新文档