第7章参数估计习题及答案精编版
第7章参数估计答案

·61·第7章 参数(点)估计系 班姓名 学号一、填空题1、设总体X 服从二项分布),(p N B ,10<<P ,n X X X 21,是其一个样本,那么矩估计量=N ˆ )X /B 1/(X 2- ,=p ˆ XB 12- .2、设总体X 服从指数分布 )0(00)(>⎩⎨⎧≤>=-λλϕλx x e x x n X X X ,,21是来自X的样本,则未知参数λ的矩估计量是 X /1 ,极大似然估计量是 X /1 .3. 设 总 体)p ,1(B ~X , 其 中 未 知 参 数 01<<p , X X X n 12,, 是 X的 子样, 则 p 的 矩 估 计 为_∑=n 1i i X n 1_, 子 样 的 似 然 函 数 为_ii X 1n 1i X )p 1(p -=-∏__。
(x x)p 1(p)p ;x (f -= 为 X 的 概 率 密 度 函 数 ).4、 总 体 X 服 从 密 度 函 数 为f x x x (;)[()],()θπθ=+--∞<<+∞112 的 哥 西分 布。
),,(1n X X 为 从 X 抽 得 的 样 本, 则 当 n =1时 θ有 极 大 似 然 估 计 为θ=_1X。
5. 设 X X X n 12,, 是 来 自 总 体),(N ~X 2σμ的 样 本, 则 有 关 于 μ及 σ2的似 然 函 数L X X X n (,,£;,)12 μσ=_2i )X (21n1i e21μ-σ-=∏σπ__。
二、选择题1、设n X X X ,,21是取自总体),0(2σN 的样本,则可以作为2σ的无偏估计量是( A ).A 、∑=n i i X n 121B 、∑=-n i i X n 1211C 、∑=ni i X n 11D 、∑=-ni i X n 1112、设罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,其中k 个白球,则罐子里黑球数与白球数之比R 的最大似然估计量为( B ).·62·A 、nk B 、1-knC 、1D 、kn三、计算和证明题1、设总体X 具有分布密度10,)1(),(<<+=x x x P ααα,其中1->α是未知参数,n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计.解:因⎰⎰++=+=1011α1α1αdx x dx x x X E a)()()(2α1α2α1α102++=++=+|a x 令2α1α++==ˆˆ)(X X EXX --=∴112αˆ为α的矩估计 因似然函数221211αα),()(),,(n n n X X X X X X L +=∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=∂∂ni i X nL 101ααln ln 得,α的极大似量估计量为)ln (ˆ∑=+-=ni iXn11α2、设总体X 服从二项分布),(p k b ,k 是正整数,10<<p ,两者都是未知参数,n X X X 21,是一个样本,试求k 和p 的矩估计.解:由于)(~1P k b Xkp X =∈∴)( )1()(p kp X D -=于是令⎪⎩⎪⎨⎧--==∑=ni i X X n X D XX E 1)(11)()( 解之得XX X n X p ni i ∑=---=12)(11ˆ])(11[ˆ122∑=---=ni i X X n X Xk3、设n X X X ,,21为从一总体中抽出的一组样本,总体均值μ已知,用∑=--ni i X n 12)(11μ去估计总体方差2σ,它是否是2σ的无偏估计,应如何修改,才能成为无偏估计.·63·解:因∑∑==--=--n i n i ii X E n X n E 1122)(11])(11[μμ221σσ≠-=n n ∑=--∴ni i X n 12)(11μ不是2σ的无偏估计 但∑=-n i i X n 12)(1μ是2σ的无偏估计4、设一批产品中含有废品,从中随机抽取75件,其中有废品10件,试估计这批产品的废品率.解:设这批产品的废品率为p ,⎩⎨⎧=次抽到合格品第次抽到废品第i i X i 01于是p X P i ==)1(p X P i -==1)0(即ii x xi i ij p p x X P p x f --===1)1()()(72,11,0 ==i x i故极大似然函数∑-∑=-===--=751751751751)1()1(i ii iii x x x x i p pp p L π∑∑==--+=751751)1ln()75(ln ln i i i i p x p x p L令∑∑===---=7517510)75(111ln i i i i x p x p dp L d解之得p 的极大似然估计值 ∑====7511527510751ˆi i x p。
[优质文档]第7章参数估计习题及答案
![[优质文档]第7章参数估计习题及答案](https://img.taocdn.com/s3/m/8f9aba35f78a6529647d53a5.png)
第7章 参数估计 ----点估计一、填空题1、设总体X 服从二项分布),(p N B ,10<<P ,n X X X 21,是其一个样本,那么矩估计量=pˆ XN. 2、 设 总 体)p ,1(B ~X, 其 中 未 知 参 数 01<<p , X X X n 12,, 是 X 的样本,则 p 的 矩 估 计 为_∑=n 1i i X n 1_, 样本 的 似 然 函 数 为_ii X 1n1i X )p 1(p -=-∏__。
3、 设 12,,,n X X X 是 来 自 总 体 ),(N ~X 2σμ的 样 本, 则 有 关 于 μ及 σ2的 似 然 函 数212(,,;,)n L X X X μσ=_2i 2)X (21n1i e21μ-σ-=∏σπ__。
二、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计.解:因⎰⎰++=+=1011α1α1αdx x dx x x X E a)()()(2α1α2α1α102++=++=+|a x 令2α1α++==ˆˆ)(X X EXX --=∴112αˆ为α的矩估计 因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=∂∂ni i X nL 101ααln ln 得,α的极大似量估计量为)ln (ˆ∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-⎧>=⎨⎩其他 ,n X X X ,,21是来自X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极大似然估计.解:(1)由于1()E X λ=,令11X Xλλ=⇒=,故λ的矩估计为1ˆX λ= (2)似然函数112(,,,)nii x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=⇒=∑∑∑故λ的极大似然估计仍为1X。
第七章 参数估计-含答案

答案:B
3.假定抽样单位数为400,抽样平均数为300和30,相应的变异系数为50%和20%,试以0.9545的概率来确定估计精度为()。
A.15和0.6B.5%和2%
C.95%和98% D.2.5%和1
答案:C
4.根据10%抽样调查资料,甲企业工人生产定额完成百分比方差为25,乙企业为49。乙企业工人数四倍于甲企业,工人总体生产定额平均完成率的区间()。
C.总体参数取值的变动范围
D.抽样误差的最大可能范围
答案:A
11.无偏性是指( )。
A.抽样指标等于总体指标 B.样本平均数的平均数等于总体平均数
C.样本平均数等于总体平均数 D. 样本成数等于总体成数
答案:B
12.一致性是指当样本的单位数充分大时,抽样指标( )。
A.小于总体指标 B. 等于总体指标
答案:ABC
4.点估计( )。
A.考虑了抽样误差大小B.没有考虑抽样误差大小
C.能说明估计结果的把握程度D.是抽样估计的主要方法
E.不能说明估计结果的把握程度
答案:BE
5.在其它条件不变时,抽样推断的置信度1-α越大,则( )。
A.允许误差范围越大B.允许误差范围越小
C.抽样推断的精确度越高D.抽样推断的精确度越低
答案:D
18.设X~N(μ,σ2)σ为未知,从中抽取n=16的样本,其样本均值为 ,样本标准差为s,则总体均值的置信度为95%的置信区间为()。
答案:C
二、多项选择题
1.在区间估计中,如果其他条件保持不变,置信度与精确度之间存在下列关系( )。
A.前者愈低,后者也愈低B. 前者愈高,后者也愈高
C. 前者愈低,后者愈高D.前者愈高,后者愈低
第七章参数估计参考答案

f ( xi ; )
.
定义: 设总体的分布类型已知,但含有未知参数θ. (1)设 ( x , x
1 2
, , x n )
为总体 X 的一个样本观察值,若似
1 2
然函数 L ( ) 在 ˆ ˆ ( x , x
, , xn )
处取到最大值,则称
ˆ ( x1 , x 2 , , x n ) 为θ的极大似然估计值.
f ( xi ; 1 , 2 , , k )
将其取对数,然后对 1 , 2 , , k 求偏导数,得
ln L ( 1 , 2 , , k ) 0 1 ln L ( 1 , 2 , , k ) 0 k
1 2 n i i 1
(2) 设连续型总体 X 的概率密度函数为 f ( x ; ) , 则样本
( X 1 , X 2 , , X n ) 的联合概率密度函数
f ( x1 ; ) f ( x 2 ; ) f ( x n ; )
n
i 1
f ( x i ; )
n
仍称为似然函数,并记之为 L ( ) L ( x , x , , x ; )
用上面的解来估计参数θi就是矩法估计.
例: 设总体 X 服从泊松分布 ( ) ,参数λ 未知,
( X 1 , X 2 , , X n ) 是来自总体的一个样本,求参数λ
的矩
估计量.
解 总体X的期望为 E ( X ) 从而得到方程
1
X n
i 1
n
i
所以λ的矩估计量为
ˆ
得到含有未知参数(θ1,…,θk)的k个方程.解这k 个联立方程组就可以得到(θ1,…,θk)的一组解:
第七章参数估计习题

第七章 参数估计习题1.从各总体中随机地抽取若干样本单元,测得其值为:(1)2781 2836 2807 2763 2858;(2)221 191 202 205 236;(3)11.05 10.95 11.00 11.02 10.99 10.00 10.99 10.97 11.02 10.98(4)1061 1065 1092 1017 1021 1138 1143 1094 1270 1028 试用顺序统计量法估计各总体的均值和均方差。
2.已知某种木材的横纹抗压力服从正态分布,今从一批这种木材中,随机地抽取10根样品,测得它们的抗压值(单位:公斤/厘米2)为:482 493 457 471 510 446 435 418 394 469 试求这批木材均值和均方差的估计值。
3.已知某校一年级学生期末的数学成绩服从正态分布,今从该年级中任意抽取40名学生,他们的数学成绩(单位:分)为:90.8 83.6 72.2 87.1 64.8 74.7 85.0 88.371.2 66.0 88.2 95.8 78.6 67.4 85.6 73.294.2 84.8 74.8 86.8 77.7 87.6 66.7 76.485.9 71.1 54.7 87.0 97.8 76.8 68.4 83.387.4 61.9 64.8 78.6 84.6 65.8 75.6 50.6试求该年级学生数学成绩的均值和均方差的估计值。
4.设某厂生产一批钉子长度服从正态分布。
今从这批钉子中,任意抽取16只,测得它们的长度(单位:厘米)为:2.14 2.10 2.13 1.25 2.13 2.12 2.13 2.102.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11试用矩估计法求这批钉子的均值和方差的估计值5.已知总体X 在〔a ,b 〕上服从均匀分布⎪⎪⎩⎪⎪⎨⎧≤≤-=其它01),,(b x a a b b a x P其中a <b ,试用矩估计法求a 与b 的估计量。
概率论与数理统计第七章练习题与答案详解

概率论与数理统计 第七章 参数估计练习题与答案(答案在最后)1.设总体X 的二阶矩存在,n X X X ,,,21 是来自总体X 的一个样本,则2EX 的矩估计是( ).(A) X (B) ()∑=-n i i X X n 121 (C) ∑=n i i X n 121 (D) 2S2.矩估计必然是( ).(A) 总体矩的函数 (B) 样本矩的函数 (C) 无偏估计 (D) 最大似然估计3.某钢珠直径X 服从()1,μN ,从刚生产出的一批钢珠中随机抽取9个,求得样本均值06.31=X ,样本标准差98.0=S ,则μ的最大似然估计是 .4.设θˆ是未知参数θ的一个估计量,若θθ≠ˆE ,则θˆ是θ的( ) (A) 最大似然估计 (B) 矩估计 (C) 有效估计 (D) 有偏估计5.设21,X X 是()1,μN 的一个样本,下面四个关于μ估计量中,只有( )才是μ的无偏估计.(A) 213432X X + (B) 214241X X + (C)215352X X + (D) 214143X X - 6.设总体X 服从参数为λ的Poisson 分布,n X X X ,,,21 是来自总体X 的一个样本,则下列说法中错误的是( ).(A) X 是EX 的无偏估计量 (B) X 是DX 的无偏估计量 (C) X 是EX 的矩估计量 (D) 2X 是2λ的无偏估计量 7.设321,,X X X 是()1,μN 的一个样本,下面四个关于μ无偏估计量中,根据有效性这个标准来衡量,最好的是( ).(A) 321313131X X X ++ (B) 213132X X + (C)321412141X X X ++ (D) 216561X X + 8.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,则⎪⎪⎭⎫⎝⎛+-n U X n U X σσ025.0025.0,作为μ的置信区间,其置信水平是( ).(A) 0.9 (B) 0.95 (C) 0.975 (D) 0.05 9.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,μ的置信水平为α-1的置信区间⎪⎪⎭⎫ ⎝⎛+-n U X n U X σσαα22 ,的长度是α的减函数,对吗?10.总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它101x x x f θθ,其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.11.总体X 的密度函数为()⎪⎩⎪⎨⎧>=-其它002222x ex x f x θθ, 其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.12.设总体X 服从几何分布:()()11--==x p p x X P ,() ,2,1=x ,n X X X ,,,21 是来自总体X 的一个样本,求参数p 的最大似然估计. 13.设n X X X ,,,21 是来自总体()2,0σN 的一个样本,求参数2σ的最大似然估计.14.设n X X X ,,,21 是来自总体()2,7t a n σμ+N 的一个样本,其中22πμπ<<-,求参数2,σμ的最大似然估计.15.设n X X X ,,,21 是来自总体()2,~σμN X 的一个样本,对给定t ,求()t X P ≤的最大似然估计.16.一个罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,发现其中有k 个白球,求罐中黑球数和白球数之比R 的最大似然估计. 17.总体X 的分布律是:()()()θθθ312,0,21-=====-=X P X P X P ,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计和最大似然估计. 18.设总体X 服从二项分布()p N B ,,N 为正整数,10<<p ,n X X X ,,,21 是来自总体X 的大样本,求参数p N ,的矩估计量.19.设μ=EX ,n X X X ,,,21 是来自总体X 的一个样本,证明:()∑=-=n i i X n T 121μ是总体方差的无偏估计.20.总体X 服从()θθ2,上均匀分布,n X X X ,,,21 是来自总体X 的一个样本,证明X 32ˆ=θ是参数θ的无偏估计.21.设总体X 服从二项分布()p m B ,,n X X X ,,,21 是来自总体X 的一个样本,证明∑==ni i X n m p 11ˆ是参数θ的无偏估计. 22.设n X X X ,,,21 是来自总体X 的一个样本,且X 服从参数为λ的Poisson 分布,对任意()1,0∈α,证明()21S X αα-+是λ的无偏估计,其中2,S X 分别是样本均值和样本方差.23.设02>=σDX ,n X X X ,,,21 是来自总体X 的一个样本,问2X 是否是()2EX 的无偏估计.24.设321,,X X X 是来自总体()2,σμN 的一个样本,试验证:32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,都是参数μ的无偏估计,并指出哪个更有效.25.从总体()1,1μN 抽取一个容量为1n 的样本:1,,,21n X X X ,从总体()4,2μN 抽取一个容量为2n 的样本:2,,,21n Y Y Y ,求21μμα-=的最大似然估计αˆ.假定总的样本容量21n n n +=不变时,求21,n n 使αˆ的方差最小. 26.为了测量一台机床的椭圆度,从全部产品中随机抽取100件进行测量,求得样本均值为mm X 081.0=,样本标准差为mm S 025.0=,求平均椭圆度μ的置信水平为0.95的置信区间.27.自动机床加工的同类零件中,随机抽取9件,测得长度如下:21.1,21.3,21.4,21.5,21.3,21.7,21.4,21.3,21.6,已知零件长度X 服从()2,σμN ,置信水平为0.95,(1) 若15.0=σ,求μ置信区间; (2) 若σ未知,求μ置信区间; (3) 若4.21=μ,求σ置信区间; (4) 若μ未知,求σ置信区间. 28.设总体X 服从()23,μN ,如果希望μ的置信水平为0.9的置信区间长度不超过2,则需要抽取的样本容量至少是多少?29.某厂利用两条自动化流水线灌装面粉,分别从两条流水线上抽取12和17的两个独立样本,其样本均值和样本方差分别为:6.10=X ,4.221=S ,5.9=Y ,7.422=S ,假设两条生产线上灌装面粉的重量都服从正态分布,其均值分别为21,μμ,方差相等,求21μμ-的置信水平为0.9的置信区间. 30.设两位化验员独立对某种聚合物含氯量用相同方法各作10次测定,其测定值的样本方差分别为:5419.021=S ,6065.022=S ,设2221,σσ分别为两位化验员所测定值总体的方差,设两位化验员的测定值都服从正态分布,求方差比2221σσ的置信水平为0.9的置信区间.31.从一批产品中抽取100个产品,发现其中有9个次品,求这批产品的次品率p 的置信水平为0.9的置信区间.答案详解1.C 2.B 3.31.064.D 5.C 6.D 7.A 8.B 9.对10.(1) 矩估计因为()⎰∞+∞-=dx x xf EX 11+==⎰θθθθdx x ,所以21⎪⎭⎫⎝⎛-=EX EX θ,而X EX =∧,由此得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X θ (2) 最大似然估计似然函数为:()()∏==ni i x f L 1θ()()121-=θθnnx x x ,两边取对数, ()θL ln ()()nx x x n21ln 1ln 2-+=θθ,令()θθd L d ln ()0ln 21221=+=n x x x n θθ, 得参数θ的最大似然估计为:212ln ˆ⎪⎭⎫⎝⎛=∑=ni i x n θ11.(1) 矩估计因为()⎰∞+∞-=dx x xf EX ⎰∞+-=022222dx exx θθ⎰∞+∞--=dx e xx 2222221θθ⎰∞+∞--=dx exx 2222222θθπθπθπ22=, 所以EX πθ2=,而X EX =∧,由此得参数θ的矩估计量为X πθ2ˆ=。
第七章参数估计习题

第七章 参数估计一、 填空题:1.设总体),(~2σμN X ,n X X X ,,,21 是来自X 的一个样本,参数2,σμ都是未知的,则μ的矩估计量为 。
2σ的矩估计量为 。
2.设总体),(~2σμN X ,其中2σ未知,μ已知,n X X X ,,,21 是来自X 的一个样本,做样本函数如下①∑=-n i i X n 12)(1μ,②21])([∑=-ni i X σμ,③∑=-n i i X X n 12)(1,④∑=--n i iX X n 12)(11,⑤∑=+--ni i i X X n 121)()1(21,这些样本函数中,是统计量的有 , 统计量中是的无偏估计量的有 。
3.设某总体X 的密度函数为⎪⎩⎪⎨⎧<<-=其他,00,)(2);(2ααααx x x f ,对容量为n 的样本,参数α的矩估计量为 。
4.假设总体)81.0,(~μξN ,n X X X ,,,21 是来自ξ的样本,测得样本均值5=x ,则置信度是0.99的μ的置信区间是5.设n X X X ,,,21 是来自总体X 的样本,对总体方差进行估计时,常用的无偏估计量是 。
6.设总体X 在区间],0[θ上服从均匀分布,则未知参数θ的矩法估计量为 。
二、选择题:1.设n X X X ,,,21 是来自总体X 的样本,2)(,)(σμ==x D x E ,并且和是未知参数,下面结论中是错误的[ ]。
(A )X =1ˆμ是μ的无偏估计; (B )12ˆX =μ是μ的无偏估计; (C )21ˆˆμμ比有效; (C )21)(1∑=-ni i X n μ是2σ的 极大似然估计量。
2.设n X X X ,,,21 是来自总体X 的样本,X 的分布函数);(θX F 含未知参数,则下列结论中,正确的是[ ]。
(A ) 用矩估计法和极大似然估计法求出θ的估计量相同; (B ) 用矩估计法和极大似然估计法求出θ的估计量不同;(C ) 用矩估计法和极大似然估计法求出θ的估计量不一定相同; (D ) 用极大似然估计法求出的估计量是唯一的;3.在区间估计中αθθθ-=<<1)ˆˆ(21P 的正确含义是[ ] (A)θ以α-1的概率落在区间)ˆ,ˆ(21θθ内; (B)θ落在区间)ˆ,ˆ(21θθ以外的概率为α; (C)θ不落在区间)ˆ,ˆ(21θθ以外的概率为α; (D)随机区间)ˆ,ˆ(21θθ包含θ的概率为α-1。
第七章参数估计练习题精编版

第七章参数估计练习题一.选择题1.估计量的含义是指()A.用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体取值2.一个95%的置信区间是指()A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。
D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。
3.95%的置信水平是指()A.总体参数落在一个特定的样本所构造的区间内的概率是95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C.总体参数落在一个特定的样本所构造的区间内的概率是5%D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%4.根据一个具体的样本求出的总体均值的95%的置信区间()A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D.要么包含总体均值,要么不包含总体均值5. 当样本量一定时,置信区间的宽度()A.随着置信水平的增大而减小B. .随着置信水平的增大而增大C.与置信水平的大小无关D。
与置信水平的平方成反比6.当置信水平一定时,置信区间的宽度()A.随着样本量的增大而减小B. .随着样本量的增大而增大C.与样本量的大小无关D。
与样本量的平方根成正比7.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。
这种评价标准称为()A.无偏性 B.有效性 C. 一致性D. 充分性8. 置信水平(1-α)表达了置信区间的()A.准确性 B. 精确性 C. 显著性D. 可靠性9. 在总体均值和总体比例的区间估计中,边际误差由()A.置信水平决定 B. 统计量的抽样标准差确定C. 置信水平和统计量的抽样标准差D. 统计量的抽样方差确定10. 当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是()A.正态分布B. t分布C.χ2分布D. F分布11. 当正态总体的方差未知,且为大样本条件下,估计总体均值使用的分布是()A.正态分布 B . t 分布 C.χ2 分布 D. F 分布12. 当正态总体的方差已知时,且为小样本条件下,估计总体均值使用的分布是( )A.正态分布 B . t 分布 C.χ2 分布 D. F 分布13. 当正态总体的方差已知时,且为大样本条件下,估计总体均值使用的分布是( )A.正态分布 B . t 分布 C.χ2 分布 D. F 分布14. 对于非正态总体,在大样本条件下,估计总体均值使用的分布是( )A.正态分布 B . t 分布 C.χ2 分布 D. F 分布15.对于非正态总体,在大样本条件下,总体均值在(1-α)置信水平下的置信区间可以写为( ) A. n z x 22/σα± B. n z x 22/σα± C . n z x σα2/± D. ns z x 22/α± 16.正态总体方差已知时,在小样本条件下,总体均值在(1-α)置信水平下的置信区间可以写为( ) A. n z x 22/σα± B. n s t x 2/α± C . n z x σα2/± D. ns z x 22/α± 17.正态总体方差未知时,在小样本条件下,总体均值在(1-α)置信水平下的置信区间可以写为( ) A. n z x 22/σα± B . n s t x 2/α± C. n z x σα2/± D. ns z x 22/α± 18. 在进行区间估计时,若要求的置信水平为90%,则其相应的临界值为( )A .1.65 B.1.96 C.2.58 D. 1.519.在其他条件相同的条件下,95%的置信区间比90%的置信区间( )A .要宽 B.要窄 C.相同 D. 可能宽也可能窄20.指出下面的说法哪一个是正确的( )A .置信水平越大,估计的可靠性越大 B. 置信水平越大,估计的可靠性越小C. 置信水平越小,估计的可靠性越大D. 置信水平的大小与估计的可靠性无关21. 指出下面的说法哪一个是正确的( )A .样本量越大,样本均值的抽样标准误差就越小B. 样本量越大,样本均值的抽样标准误差就越大C. 样本量越小,样本均值的抽样标准误差就越小D.样本均值的抽样标准误差与样本量无关22. 一项调查表明,有33%的被调查者认为她们所在的公司十分适合女性工作。
统计学第七章、第八章课后题答案

统计学复习笔记第七章参数估计一、思考题1.解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2.简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)—致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4.解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95% (的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5.简述样本量与置信水平、总体方差、估计误差的关系。
1.估计总体均值时样本量n为其中:E22.样本量n与置信水平1- a、总体方差•:、估计误差E之间的关系为与置信水平成正比,在其他条件不变的情况下,置信水平越大,所 需要的样本量越大;与总体方差成正比,总体的差异越大,所要求的样本量也越大; 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接 受的估计误差的平方越大,所需的样本量越小。
二、练习题1. 从一个标准差为5的总体中采用重复抽样方法抽出一个样本 量为40的样本,样本均值为25。
(完整版)第七章参数估计练习题

第七章参数估计练习题一.选择题1.估计量的含义是指()A.用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体取值2.一个95%的置信区间是指()A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。
D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。
3.95%的置信水平是指()A.总体参数落在一个特定的样本所构造的区间内的概率是95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C.总体参数落在一个特定的样本所构造的区间内的概率是5%D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%4.根据一个具体的样本求出的总体均值的95%的置信区间()A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D.要么包含总体均值,要么不包含总体均值5. 当样本量一定时,置信区间的宽度()A.随着置信水平的增大而减小B. .随着置信水平的增大而增大C.与置信水平的大小无关D。
与置信水平的平方成反比6.当置信水平一定时,置信区间的宽度()A.随着样本量的增大而减小B. .随着样本量的增大而增大C.与样本量的大小无关D。
与样本量的平方根成正比7.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。
这种评价标准称为()A.无偏性 B.有效性 C. 一致性D. 充分性8. 置信水平(1-α)表达了置信区间的()A.准确性 B. 精确性 C. 显著性D. 可靠性9. 在总体均值和总体比例的区间估计中,边际误差由()A.置信水平决定 B. 统计量的抽样标准差确定C. 置信水平和统计量的抽样标准差D. 统计量的抽样方差确定10. 当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是()A.正态分布B. t分布C.χ2分布D. F分布11. 当正态总体的方差未知,且为大样本条件下,估计总体均值使用的分布是()A.正态分布 B . t 分布 C.χ2 分布 D. F 分布12. 当正态总体的方差已知时,且为小样本条件下,估计总体均值使用的分布是( )A.正态分布 B . t 分布 C.χ2 分布 D. F 分布13. 当正态总体的方差已知时,且为大样本条件下,估计总体均值使用的分布是( )A.正态分布 B . t 分布 C.χ2 分布 D. F 分布14. 对于非正态总体,在大样本条件下,估计总体均值使用的分布是( )A.正态分布 B . t 分布 C.χ2 分布 D. F 分布15.对于非正态总体,在大样本条件下,总体均值在(1-α)置信水平下的置信区间可以写为( ) A. n z x 22/σα± B. n z x 22/σα± C . n z x σα2/± D. ns z x 22/α± 16.正态总体方差已知时,在小样本条件下,总体均值在(1-α)置信水平下的置信区间可以写为( ) A. n z x 22/σα± B. n s t x 2/α± C . n z x σα2/± D. ns z x 22/α± 17.正态总体方差未知时,在小样本条件下,总体均值在(1-α)置信水平下的置信区间可以写为( ) A. n z x 22/σα± B . n s t x 2/α± C. n z x σα2/± D. ns z x 22/α± 18. 在进行区间估计时,若要求的置信水平为90%,则其相应的临界值为( )A .1.65 B.1.96 C.2.58 D. 1.519.在其他条件相同的条件下,95%的置信区间比90%的置信区间( )A .要宽 B.要窄 C.相同 D. 可能宽也可能窄20.指出下面的说法哪一个是正确的( )A .置信水平越大,估计的可靠性越大 B. 置信水平越大,估计的可靠性越小C. 置信水平越小,估计的可靠性越大D. 置信水平的大小与估计的可靠性无关21. 指出下面的说法哪一个是正确的( )A .样本量越大,样本均值的抽样标准误差就越小B. 样本量越大,样本均值的抽样标准误差就越大C. 样本量越小,样本均值的抽样标准误差就越小D.样本均值的抽样标准误差与样本量无关22. 一项调查表明,有33%的被调查者认为她们所在的公司十分适合女性工作。
概率论与数理统计+第七章+参数估计+练习题

滨州学院《概率论与数理统计》(公共课)练习题第七章 参数估计一、填空题1.假设总体X 服从参数为λ的泊松分布,n X X X ,,,21 是来自总体X 的简单随机样本,X 是样本均值,2S 是样本方差,则对于任意实数α,[]2)1(S X αα-+E = .2.设总体X 服从参数为λ的泊松分布,n X X X ,,,21 是来自总体X 的简单随机样本,则概率{}1≥X P 的最大似然估计量为 .3.设总体X 的概率密度为: ⎩⎨⎧<≥=--;,,,若若θθθθx x x f x 0e );()(,()n X X X ,,,1 是来自总体X的简单随机样本,则未知参数θ的最大似然估计量θˆ= .4.设来自总体X 的简单随机样本()n X ,,X 1,总体X 的概率分布⎪⎪⎭⎫⎝⎛--θθθ312201~X ,其中0<θ<1/3,未知参数θ的矩估计量θˆ= .5.设总体X 的概率密度为⎪⎩⎪⎨⎧<<=-,,若不然,,若0 10 );(1x x x f θθθ,其中未知参数θ>0,n X X X ,,,21 是来自总体X 的简单随机样本,则θ的矩估计量为 .6.设正态总体X 的标准差为1,由来自X 的简单随机样本建立的数学期望μ的0.95置信区间,则当样本容量为25时置信区间的长度L = ;为使置信区间的长度不大于0.5,应取样本容量≥n .7.设总体X 服从参数为λ的泊松分布;),,,(21n X X X 是来自X 的简单随机样本,则2λ的无偏估计量为 . 二、选择题1.设σ是总体X 的标准差,n X X X ,,,21 是来自总体X 的简单随机样本,则样本标准差S 是总体标准差σ的( ).(A) 矩估计量; (B) 最大似然估计量;(C) 无偏估计量; (D) 相合估计量.2.设),(~),,(~22σσb N Y a N X ,并且相互独立;基于分别来自总体X 和Y 容量相应为9和11的简单随机样本,得样本均值X 和Y ,样本方差22yx S S 和;记)(2122212y x S S S +=,)108(181 222y x xy S S S +=,由熟知的事实“服从自由度为ν的2χ分布的随机变量的方差等于2ν”,可见2σ的4个无偏估计量221222,,,xy y x S S S S 中方差最小者是( ). (A) 2x S ; (B) 2y S ; (C) 212S ; (D) 2xy S .3.设()n X X X ,,,21 是来自正态总体),(~2σμN X 的简单随机样本,为使()∑-=+-=1121n i i i X X k D 成为总体方差2σ的无偏估计量,应选k=( ).(A)11-n ; (B) n 1; (C) ()121-n ; (D) n 21. 三、解答题1.假设随机变量X 在区间],[b a 上均匀分布,试求区间端点a 和b 最大似然估计量. 2.假设随机变量X 在数集{0,1,2,…,N }上等可能分布,求N 的最大似然估计量. 3.设来自总体X 的简单随机样本()n X X X ,,,21 ,总体X 的概率分布为⎪⎪⎭⎫⎝⎛--22)1()1(2321~θθθθX ,其中0<θ<1.分别以221,νν表示()n X X X ,,,21 中1,2出现的次数,试求(1) 未知参数θ的最大似然估计量; (2) 未知参数θ的矩估计量;(3) 当样本值为(1,1,2,1,3,2)时的最大似然估计值和矩估计值.4.假设一批产品的不合格品数与合格品数之比R (未知常数).现在按还原抽样方式随意抽取的n 件中发现k 件不合格品.试求R 的最大似然估计值.5.假设总体X 在区间[]θ,0上服从均匀分布,n X X X ,,,21 是来自X 的简单随机样本,试求(1) 端点θ的最大似然估计量; (2) 端点θ的0.95置信区间.6.为观察某药对高胆固醇血症的疗效,测定了五名患者服药前和服药一个疗程后的血清胆固醇含量,得如下数据:假设化验结果服从正态分布律.试建立服药前后血清胆固醇含量的均值差的0.95置信区间,并对所得结果作出解释.7.假设随机变量X 在区间]1,[+θθ上均匀分布,其中θ未知;),,,(21n X X X 是来自X 的简单随机样本,X 是样本均值,而{}n X X X X ,,,min 21)1( =是最小观测值;记11ˆ21ˆ)1(21+-=-=n X X θθ, (1) 证明1ˆθ和2ˆθ都是θ的无偏估计量; (2) 证明2ˆθ比1ˆθ更有效,即12ˆˆθθD D ≤. 8.设总体X 的概率分布为⎪⎪⎭⎫⎝⎛--θθθθθ21)1(23210~22X其中)210(<<θθ是未知参数,利用总体X 的如下样本值 3,1,3,0,3,1,2,3, 求θ的矩估计值和最大似然估计值. 9.设总体X 的分布律为N k N k X P ,,1,0,11)( =+==,其中N 为未知的正整数,又n X X X ,,,21 为取自总体X 的一个样本,试求N 的最大似然估计.10.设总体X 的密度函数为⎪⎩⎪⎨⎧≤≤=-其他10)(1x xx f θθ,其中0>θ为未知参数,n X X X ,,,21 为取自总体X 的一个样本, 试求(1) θ的矩估计量; (2) θ的极大似然估计量.11.设),(~ln 2σμN X Z =, 试证22σμ+=eEX , 若从上述总体X (参数2,σμ均未知)中取一个随机样本n X X X ,,,21 , 试求EX 的极大似然估计.12.为了估计湖中有多少条鱼,从湖中捞出1000条鱼,标上记号后又放回湖中,过一段时间后,再捞出150条鱼,发现其中有10条带有标记,估计湖中鱼的总数为多少是使上述事件的概率最大. 13.12,,,n X X X 是正态总体2~(,)X N μσ的简单随机样本,μ,2σ为未知参数,求)2(>X P 的极大似然估计.14.已知11(,),,(,)n n X Y X Y 是独立地取自二元正态22(0,0,,,)N σσρ的样本,求2σ和ρ的极大似然估计.15.设总体X 的k 阶矩1,E ≥=k X k k μ存在. 又设n X X X ,,,21 是X 的一个样本. 试证明不论总体服从什么分布, k 阶样本(原点)矩∑==n i ki k X n M 11一定是k 阶总体(原点)矩μk 的无偏估计.16.设总体X 的均值为μ,方差为2σ,从中分别抽取容量为21,n n 的两个独立样本,21,X X 分别是两个样本的均值,试证明,对于满足1=+b a 的任何常数a 及b , 21X b X a Y +=都是μ的无偏估计,并确定常数a 及b ,使Y 的方差达到最小.17.设X ~],0[θU ,参数θ 未知,n X X X ,,,21 是其大小为n 的样本. 则(1) 矩估计量 X M2ˆ=θ是无偏的; (2) 似然估计},,,max{ˆ21)(nn L X X X X ==θ,不是参数θ 的无偏估计, 但 )(1ˆ1n L X nn n n +=+θ是比X M 2ˆ=θ有效的估计量. 18.设总体X 的概率密度函数为 ⎩⎨⎧<≥=--μμλμλx x e x f x ,,0)()( ,这里μ 和λ)0(>都是参数. 又设n 21,,,X X X 为该总体的简单样本;(1)设λ已知,求μ的极大似然估计量L μˆ ; (2)设μ已知,求λ的矩估计量M λˆ.(3)μ的极大似然估计L μˆ是μ的无偏估计吗?为什么? 19.设n X X X 221,,, 是来自方差有限的总体X 的大小为2n 的简单随机样本,令∑∑=====ni i n i i X n T X n X T 1222111,21. 则(1)对总体期望作估计时1T 和2T 是否无偏? 1T 是否比2T 有效? 请说明上述结论的理由; (2)证明2T 是总体期望的一致估计 (即相合估计). 20.随机从一批零件中抽取16件,测得长度(单位:cm )为2.14 2.10 2.13 2.15 2.13 2.12 2.13 2.102.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11 设零件长度的分布是正态的,试求总体均值μ的95%置信区间. (1)01.0=σ;(2)σ未知.21.对方差2σ为已知的正态总体,要使均值μ的α-1置信区间长度不大于δ2,抽取的样本容量n 至少为多大?22.假设0.50, 1.25, 0.80, 2.00 是来自总体X 的简单样本值. 已知X Y ln =服从正态分布N (,)μ1.(1) 求X 的数学期望EX ;(2) 求μ的置信度为0.95的置信区间;(3) 利用上面结果求b 的置信度为0.95的置信区间.。
第七章参数估计-含答案

第七章参数估计-含答案第七章参数估计⼀、单项选择题1.区间X2.58x S的含义是()。
A. 99%的总体均数在此范围内B. 样本均数的99%可信区间C. 99%的样本均数在此范围内D. 总体均数的99%可信区间答案:D2.以下关于参数估计的说法正确的是()。
A. 区间估计优于点估计B. 样本含量越⼤,参数估计准确的可能性越⼤C. 样本含量越⼤,参数估计越精确D. 对于⼀个参数只能有⼀个估计值答案:B3.假定抽样单位数为400,抽样平均数为300和30,相应的变异系数为50%和20%,试以0.9545的概率来确定估计精度为()。
A.15和0.6B.5%和2%C.95%和98%D.2.5%和1答案:C4.根据10%抽样调查资料,甲企业⼯⼈⽣产定额完成百分⽐⽅差为25,⼄企业为49。
⼄企业⼯⼈数四倍于甲企业,⼯⼈总体⽣产定额平均完成率的区间()。
A. 甲企业较⼤B. ⼄企业较⼤C. 两企业⼀样D. ⽆法预期两者的差别答案:A5.对某轻⼯企业抽样调查的资料,优质品⽐重40%,抽样误差为4%,⽤多⼤的概率才能确信全及总体的这个指标不⼩于32%()。
A.0.6827B.0.9545C.0.9973D.2.00答案:B6.根据抽样调查的资料,某城市⼈均⽇摄⼊热量2500千卡,抽样平均误差150千卡,该市⼈均摄⼊热量在2350千卡⾄2650千卡之间的置信度为()。
A.0.9545B. 0.6827C.1D. 0.90答案:B7.对进⼝的⼀批服装取25件作抽样检验,发现有⼀件不合格。
概率为0.9545时计算服装不合格率的抽样误差为7.3%。
要使抽样误差减少⼀半,必须抽()件服装做检验。
A.50B.100C.625D.25答案:B8.根据以往调查的资料,某城市职⼯平均每户拥有国库券和国债的⽅差为1600,为使极限抽样误差在概率保证程度为0.9545时不超过4元,应抽取()户来进⾏调查。
A.I600B.400C.10D.200答案:B9.⼀般情况下,总体平均数的⽆偏、有效、⼀致的估计量是()。
概率与数理统计第7章参数估计习题与答案

第7章参数估计----点估计一、填空题1、设总体X服从二项分布B(N,p),0P1,X1,X2X n是其一个样本,那么矩估计量p?XN.2、设总体X~B(1,p),其中未知参数0p1,X1,X2,X n是X的样本,则p的矩估计为_ 1n in1X i _,样本的似然函数为_in1X i(1p)1Xp__。
i3、设X1,X2,,X n是来自总体X~N(,2)的样本,则有关于及2的似然函数2L(X,X,X n;,)_12 in112e12(X) i22__。
二、计算题1、设总体X具有分布密度f(x;)(1)x,0x1,其中1是未知参数,X1,X2,X为一个样本,试求参数的矩估计和极大似然估计.n解:因E(X ) 1x1a()α1(α1)xdx1x dxαα112a2|xααα12令E(X)X?α?α122X1α?为的矩估计1Xn因似然函数L(x1,x2,x;)(1)(x1x2x)nnnlnLnln(α1)lnX,由αii1 l nLαnα 1inlnX0得,i1n ?的极大似量估计量为(1)αnln Xii12、设总体X服从指数分布f(x)xe,x00,其他,X1,X2,X n是来自X的样本,(1)求未知参数的矩估计;(2)求的极大似然估计.56解:(1)由于1 E(X),令11 X X,故的矩估计为? 1 X(2)似然函数nL(x,x,,x )e12ni nx i 1nlnLnlnxii1 ndlnLnnx0 indi1x ii1故的极大似然估计仍为1 X 。
3、设总体 2 X~N0,, X 1,X 2,,X n 为取自X 的一组简单随机样本,求 2 的极大似然估计;[解](1)似然函数n1 Le i122 x i 2 22n 22en 2x i 2 i 12于是n2nnx2i lnLln2ln2222i1 dlnLn1d224 22n i1 2x i,令 d lnL 2d 2 0,得的极大似然估计:n 122X ini1. 4、设总体X 服从泊松分布P(),X 1,X 2,,X n 为取自X 的一组简单随机样本,(1)求 未知参数估计;(2)求大似然估计. 解:(1)令E(X )X?X ,此为估计。
概率论与数理统计第七章参数估计习题答案

3028701.设总体X 服从二项分布B(n,p),n已知,X1,X 2,L,X n为来自X的样本 求参数p的矩法估计. 解:E( X ) = np, E( X ) = A1 = X ,\ np = X . \ p的矩估计量 pˆ = X n
大学数学云课堂
3028702.设总体X的密度函数(f x,q)= ìïíq22 (q - x), 0 < x < q ,
n
-q
-q xi
i=1
i =1
i =1
0 < x < 1, 其他.
n
g = ln L = n lnq -q å xi
i =1
由 dg
å å dq
=
d ln L dq
=n q
-
n i =1
xi
= 0知qˆ
=
n
n
xi
所以q的极大似然估计量为qˆ = 1 . i=1
X
大学数学云课堂
3028703.设总体X
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
ta
/2
(n
-1)
=
t0.025
(19)
=
2.093,
c2 a /2
(n
-1)
=
c2 0.025
(19)
=
32.852,
c2 0.975
(19)
=
8.907
i =1
n
ln L = n lnq + (q -1) ln Õ xi
i =1
概率与数理统计第7章参数估计习题及答案

第7章参数估计 ----点估计一、填空题1、设总体X 服从二项分布),(p N B ,10P ,n X X X 21,是其一个样本,那么矩估计量pX N.2、设总体)p ,1(B ~X ,其中未知参数01p, X X X n 12,,是X 的样本,则p 的矩估计为_n1i iX n1_,样本的似然函数为_iiX 1n1i X )p 1(p __。
3、设12,,,n X X X 是来自总体),(N ~X 2的样本,则有关于及2的似然函数212(,,;,)n L X X X _2i2)X (21n1i e21__。
二、计算题1、设总体X 具有分布密度(;)(1),01f x x x ,其中1是未知参数,n X X X ,,21为一个样本,试求参数的矩估计和极大似然估计.解:因10101α1α1αdxxdxx x X E a)()()(2α1α2α1α12|a x令2α1α)(XX E XX112α为的矩估计因似然函数1212(,,;)(1)()nn n L x x x x x x ni i X n L 1α1αln )ln(ln ,由ni iX n L 101ααln ln 得,的极大似量估计量为)ln (ni iX n11α2、设总体X 服从指数分布,0()0,xe xf x 其他,n X X X ,,21是来自X 的样本,(1)求未知参数的矩估计;(2)求的极大似然估计.解:(1)由于1()E X ,令11XX,故的矩估计为1X(2)似然函数112(,,,)nii x nn L x x x e111ln lnln 0nii nini ii L n x d Lnnx dx 故的极大似然估计仍为1X。
3、设总体2~0,X N ,12,,,n X X X 为取自X 的一组简单随机样本,求2的极大似然估计;[解] (1)似然函数222112i x ni Le2212222ni i x ne于是2221ln ln 2ln222ni i x n n L22241ln 122n ii d L n x d,令2ln 0d L d,得2的极大似然估计:2211nii X n.4、设总体X 服从泊松分布()P , 12,,,n X X X 为取自X 的一组简单随机样本, (1)求未知参数的矩估计;(2)求的极大似然估计.解:(1)令()E X XX ,此为的矩估计。
第7章参数估计习题答案

第7章 参数估计习题参考答案7.1 参数的点估计习题答案1 解 (1)总体X 的期望 ()E X mp =, 从而得到方程 11ˆni i m p X n==∑所以p 的矩估计量为 111ˆni i p X X m nm===∑.(2)总体X 服从二项分布,则有 ()(1),0,1,..x xm xmP X x C p p x m-==-= 从而似然函数为11121()(1) (1)nniiiiin i i nx m n x x x m x x x x mm mmi L p Cpp C CCpp ==--=∑∑=-=-∏取对数 1211ln ()ln(...)ln ()ln(1)n nnx x x m m mi i i i L p C C C x p m n x p ===++--∑∑,令1111ln ()()01nnii i i d L p x m n x dppp===--=-∑∑,解得p 的极大似然估计值为 111ˆni i px x m nm===∑,故极大似然估计量为 111ˆni i pX X m nm===∑.2. 解(1)11()1E X x xdx θθθθ-==+⎰,从而得到方程1ˆ1ˆ1nii xx nθθ===+∑所以θ的矩估计值为 ˆ1xxθ=-.(2)似然函数为1121()(,)(...)nni n i L f x x x x θθθθ-===∏取对数 1l n ()l n (1)l n nii L nx θθθ==+-∑,令1ln ()ln 0nii d nL xd θθθ==+=∑,得θ的极大似然估计值为1ˆln nii nxθ==-∑7.2估计量的评选标准习题答案1.解 (1) 1123123111111ˆ()442442E E X X X E X E X E X μμ=++=++=2123123111111ˆ()623623E E X X X E X E X E X μμ=++=++= 3123123111111ˆ()333333E E X X X E X E X E X μμ=++=++=, 123ˆˆˆ,,μμμ∴均为μ的无偏估计量。
第七章参数估计练习题

第七章参数估量练习题一.选择题1.估量量的含义是指〔〕A.用来估量总体参数的统计量的名称B.用来估量总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体取值2.一个95%的置信区间是指〔〕A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。
D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。
3.95%的置信水平是指〔〕A.总体参数落在一个特定的样本所构造的区间内的概率是95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C.总体参数落在一个特定的样本所构造的区间内的概率是5%D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%4.依据一个具体的样本求出的总体均值的95%的置信区间〔〕A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.肯定包含总体均值D.要么包含总体均值,要么不包含总体均值5. 当样本量肯定时,置信区间的宽度〔〕A.随着置信水平的增大而减小B. .随着置信水平的增大而增大C.与置信水平的大小无关D。
与置信水平的平方成反比6.当置信水平肯定时,置信区间的宽度〔〕A.随着样本量的增大而减小B. .随着样本量的增大而增大C.与样本量的大小无关D。
与样本量的平方根成正比7.在参数估量中,要求通过样本的统计量来估量总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。
这种评价标准称为〔〕A.无偏性 B.有效性 C. 一致性D. 充分性8. 置信水平〔1-α〕表达了置信区间的〔〕A.精确性 B. 精确性 C. 显著性D. 可靠性9. 在总体均值和总体比例的区间估量中,边际误差由〔〕A.置信水平决定 B. 统计量的抽样标准差确定C. 置信水平和统计量的抽样标准差D. 统计量的抽样方差确定10. 当正态总体的方差未知,且为小样本条件下,估量总体均值使用的分布是〔〕A.正态分布B. t分布C.χ2分布D. F分布11. 当正态总体的方差未知,且为大样本条件下,估量总体均值使用的分布是〔〕A.正态分布 B . t 分布 C.χ2 分布 D. F 分布12. 当正态总体的方差已知时,且为小样本条件下,估量总体均值使用的分布是〔 〕A.正态分布 B . t 分布 C.χ2 分布 D. F 分布13. 当正态总体的方差已知时,且为大样本条件下,估量总体均值使用的分布是〔 〕A.正态分布 B . t 分布 C.χ2 分布 D. F 分布14. 对于非正态总体,在大样本条件下,估量总体均值使用的分布是〔 〕A.正态分布 B . t 分布 C.χ2 分布 D. F 分布15.对于非正态总体,在大样本条件下,总体均值在〔1-α〕置信水平下的置信区间可以写为〔 〕 A. n z x 22/σα± B. n z x 22/σα± C . n z x σα2/± D. ns z x 22/α± 16.正态总体方差已知时,在小样本条件下,总体均值在〔1-α〕置信水平下的置信区间可以写为〔 〕 A. n z x 22/σα± B. n s t x 2/α± C . n z x σα2/± D. ns z x 22/α± 17.正态总体方差未知时,在小样本条件下,总体均值在〔1-α〕置信水平下的置信区间可以写为〔 〕 A. n z x 22/σα± B . n s t x 2/α± C. n z x σα2/± D. ns z x 22/α± 18. 在进行区间估量时,假设要求的置信水平为90%,则其相应的临界值为〔 〕A .1.65 B.1.96 C.2.58 D. 1.519.在其他条件相同的条件下,95%的置信区间比90%的置信区间〔 〕A .要宽 B.要窄 C.相同 D. 可能宽也可能窄20.指出下面的说法哪一个是正确的〔 〕A .置信水平越大,估量的可靠性越大 B. 置信水平越大,估量的可靠性越小C. 置信水平越小,估量的可靠性越大D. 置信水平的大小与估量的可靠性无关21. 指出下面的说法哪一个是正确的〔 〕A .样本量越大,样本均值的抽样标准误差就越小B. 样本量越大,样本均值的抽样标准误差就越大C. 样本量越小,样本均值的抽样标准误差就越小D.样本均值的抽样标准误差与样本量无关22. 一项调查说明,有33%的被调查者认为她们所在的公司十分适宜女性工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 参数估计 ----点估计一、填空题1、设总体X 服从二项分布),(p N B ,10<<P ,n X X X 21,是其一个样本,那么矩估计量=pˆ XN. 2、 设 总 体)p ,1(B ~X, 其 中 未 知 参 数 01<<p , X X X n 12,, 是 X 的样本,则 p 的 矩 估 计 为_∑=n 1i i X n 1_, 样本 的 似 然 函 数 为_ii X 1n1i X )p 1(p -=-∏__。
3、 设 12,,,n X X X 是 来 自 总 体 ),(N ~X 2σμ的 样 本, 则 有 关 于 μ及 σ2的 似 然 函 数212(,,;,)n L X X X μσ=_2i 2)X (21n1i e21μ-σ-=∏σπ__。
二、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计.解:因⎰⎰++=+=1011α1α1αdx x dx x x X E a )()()(2α1α2α1α102++=++=+|a x 令2α1α++==ˆˆ)(X X EXX --=∴112αˆ为α的矩估计 因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=∂∂ni i X nL 101ααln ln 得,α的极大似量估计量为)ln (ˆ∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-⎧>=⎨⎩其他 ,n X X X ,,21是来自X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极大似然估计.解:(1)由于1()E X λ=,令11X Xλλ=⇒=,故λ的矩估计为1ˆX λ= (2)似然函数112(,,,)nii x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=⇒=∑∑∑故λ的极大似然估计仍为1X。
3、设总体()2~0,X N σ,12,,,n X X X 为取自X 的一组简单随机样本,求2σ的极大似然估计;[解] (1)似然函数2221i x ni L σ-==()2212222ni i x n eσπσ=--∑=⋅于是2221ln ln 2ln 222ni i x n n L πσσ==---∑ 22241ln 122n i i d L n x d σσσ==-+∑, 令2ln 0d L d σ=,得2σ的极大似然估计:2211n i i X n σ∧==∑. 4、设总体X 服从泊松分布()P λ, 12,,,n X X X 为取自X 的一组简单随机样本, (1)求未知参数λ的矩估计;(2)求λ的极大似然估计.解:(1)令ˆ()E X X X λλ==⇒=,此为λ的矩估计。
(2)似然函数1121(,,,)!nii x n n nii e L x x x x λλ=-=∑=∏1111ln ln ln !ln 0n ni i i i n ni i i i L x n x x x d L n xd nλλλλλ=====--=-=⇒==∑∑∑∑故λ的极大似然估计仍为X 。
第七章 参数估计 ----点估计的评价标准一、填空题1、 设321,,X X X 是取自总体X 的一个样本,则下面三个均值估计量3213321232111214331ˆ,1254131ˆ,2110351ˆX X X uX X X u X X X -+=++=++=μ都是总体均值的无偏估计,则 2ˆμ最有效. 2、 设n X X X ,,21是取自总体),0(2σN 的样本,则可以作为2σ的无偏估计量是( A ).A 、∑=n i i X n 121B 、∑=-n i i X n 1211C 、∑=ni i X n 11D 、∑=-ni i X n 111二、计算题1、设n X X X ,,21为从一总体中抽出的一组样本,总体均值μ已知,用∑=--ni i X n 12)(11μ去估计总体方差2σ,它是否是2σ的无偏估计,应如何修改,才能成为无偏估计.解:因∑∑==--=--n i n i ii X E n X n E 1122)(11])(11[μμ221σσ≠-=n n ∑=--∴ni i X n 12)(11μ不是2σ的无偏估计 但∑=-n i i X n 12)(1μ是2σ的无偏估计 2、设n X X X ,,21是来自总体),(2σμN 的一个样本,若使∑-=+-⋅1121)(n i i i X XC 为2σ的无偏估计,求常数C 的值。
解:11221111122111122222122[()][()][2][2]12(1)2(1)n n i i i i i i n i i i i i n i E C X X C E X X C EX EX EX EX C n C C n μσμσμσσ--++==-++=-=⋅-=-=+-=+++-=-=⇒=-∑∑∑∑第七章 参数估计 ----区间估计一、选择题1、设总体),(~2σμN X ,2σ未知,设总体均值μ的置信度α-1的置信区间长度l ,那么l 与a 的关系为( A ).A 、a 增大,l 减小B 、a 增大,l 增大C 、a 增大,l 不变D 、a 与l 关系不确定2、设总体),(~2σμN X ,且2σ已知,现在以置信度α~1估计总体均值μ,下列做法中一定能使估计更精确的是( C ).A 、提高置信度α-1,增加样本容量B 、提高置信度α-1,减少样本容量C 、降低置信度α-1,增加样本容量D 、降低置信度α-1,减少样本容量二、计算题1、设总体)9.0,(~2μN X ,当样本容量9=n 时,测得5=X ,求未知参数μ的置信度为0.95的置信区间.解:μ的置信区间为22(X Z X Z αα-+05.0=α 9=n 9.0=σ 5X =0.0521.96Z =μ的置信区间为)588.5,412.4(。
2、设总体2~(,),X N μσ已知0,σσ=要使总体均值μ的置信水平为1α-的置信区间的长度不大于L ,问需要抽取多大容量的样本。
解:μ的置信区间为22(X Z X Z αα-+,22022242Z Z L n Lαασ≤⇒≥3、某车间生产自行车中所用小钢球,从长期生产实践中得知钢球直径),(~2σμN X ,现从某批产品里随机抽取6件,测得它们的直径(单位:mm)为:14.6,15.1,14.9,14.8,15.2,15.1,置信度95.01=-α(即05.0=α) (1)若06.02=σ,求μ的置信区间 (2)若2σ未知,求μ的置信区间(3)求方差2σ,均方差σ的置信区间.解:(1)2σ已知,则μ的置信区间为22(X Z X Z αα-+,25,0.05, 1.96n Z αα===代入则得μ的置信区间)15.15,75.14((2)2σ未知,则μ的置信区间为22(,X t X t αα-+,05.0,5==αn 查表得0.0522.5706t =,代入得μ的置信区间为)19.15,71.14((3)222(1)~(1)n S n χσ--2σ的置信区间2222122(1)(1)(,)(1)(1)n S n S n n ααχχ-----5,05.0==n α 代入得2σ的置信区间为:)3069.0,0199.0(。
均方差σ的置信区间为(0.1411,0.2627)=4、 设从正态总体X 中采用了n = 31个相互独立的观察值 , 算得样本均值 61.58=X 及样本方差 22)8.5(=S, 求总体X 的均值和方差的90%的置信区间解:,8.5s ,31n ,95.021,05.02,9.01===α-=α=α- 0.05(30) 1.6973t = ∴μ的 90%的置信区间为 :2(((56.84,60.38)X t n α±-= 220.050.95(30)43.77(30)18.49χχ== ,S 2 = 33.642σ的 (1-a )%的置信区间为 :2222221(1)(1),(1)(1)n s n s n n ααχχ-⎛⎫-- ⎪ ⎪--⎝⎭即6.541.2349.188.333077.4364.333022<<⨯<<⨯σσ∴σ2的 90%的 置 信 区 间 为 : (23.1 , 54.6)5、 设 某 种 灯 泡 的 寿 命 X 服 从 正 态 分 布 N(μ , σ2 ) , μ , σ2未 知 , 现 从中 任 取 5个灯 泡 进 行 寿 命 测 试 (单 位 : 1000小 时 ), 得 :10.5 , 11.0 , 11.2 , 12.5 , 12.8 ,求 方 差 及 均 方 差 的 90%的 置 信 区 间 .解:995.0)(41,6.1151512251=-===∑∑==i i i i x x S x x41,95.021,05.02,9.01=-=-==-n ααα220.050.95(4)9.488,(4)0.711x x ==598.5711.0995.04,419.0488.9995.04=⨯=⨯∴ σ2及 σ 的 90%的 置 信 区 间 为 (0.419 , 5.598)及 )366.2,647.0()598.5,419.0(=6、 二正态总体N(μ1 , σ12) , N(μ2 , σ22)的参数均未知 ,依次取容量为 n 1=10 , n 2=11的二独立样本 ,测得样本均值分别为121.2, 2.8x x ==,样本方差分别为 29.0,34.02221==S S , (1) 求二总体均值差12μμ-的90%的置信区间。
(2)求二总体方差比90%的置信区间。
解:1210.9,0.05,19,1102n n αα-==-=-=(1)290.34100.290.313719w s ⋅+⋅==,0.05(19) 1.729t =,12μμ-的90%的置信区间为(1.2 2.8 1.729 2.8 1.729( 2.0231, 1.1769)---+=--(2)0.05(9,10) 3.02F =0.950.0511(9,10)(10,9) 3.14F F ==17.129.034.02221==S S 2221/σσ∴的 90%的 置 信 区 间 为 : )67.3,39.0()14.317.1,02.3117.1(=⨯⨯。