04六年级奥数题 (5)
小学六年级奥数题及答案五篇
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是⽆忧考整理的《⼩学六年级奥数题及答案五篇》相关资料,希望帮助到您。
1.⼩学六年级奥数题及答案 1、今年哥俩的岁数加起来是55岁,曾经有⼀年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟的2倍,哥哥今年_________岁。
2、三块布共长220⽶,第⼆块布长是第⼀块的3倍,第三块布长是第⼆块的2倍,第⼀块布长_________⽶。
3、有两层书架,共有书173本。
从第⼀层拿⾛38本书后,第⼆层的书是第⼀层的2倍还多6本,则第⼆层有_________本书。
参考答案: 1、设那时弟弟的岁数是1份。
哥哥的岁数是2份,那么哥哥与弟弟的岁数之差为1份。
⼆⼈的岁数之差是不会变的,今年他们的年龄仍差1份。
⽽题⽬中说:“那时哥哥的岁数与今年弟弟的岁数相同”。
因此今年弟弟的岁数也是2份,⽽哥哥今年的岁数是2+1=3(份)。
今年,哥哥与弟弟的年龄之和是:3+2=5(份) 每份是:55÷5=11(岁)所以今年哥哥是:11×3=33(岁)。
2、设第⼀块布长为1份,第⼀块布长=220÷(1+3+3×2)=22(⽶) 3、设把第⼀层余下的书算作“1”份: 每⼀份=(173-38-6)÷3=43(本)第⼆层的书共有:43×2+6=92(本) 2.⼩学六年级奥数题及答案 1、南京长江⼤桥⽐美国纽约⼤桥长4570⽶,纽约⼤桥⽐我国武汉长江⼤桥长530⽶。
已知三座桥长10640⽶,这些桥长分别是_________⽶,_________⽶,_________⽶。
2、甲筐有梨400个,⼄筐有梨240个,现在从两筐取出数⽬相等的梨,剩下梨的个数,甲筐恰好是⼄筐的5倍,甲筐所剩的梨是_________个,⼄筐所剩下的梨是_________个。
(六年级)小学六年级奥数题及答案
小学六年级奥数题及答案六年级的奥数学习应该有更强的针对性,从最近的一些的考试可以看出一个趋势,就是题量大,时间短,对于单位时间内的做题效率有很高的要求,即速度和正确率。
下面给大家带来关于六年级奥数题及答案,希望对你们有所帮助。
小升初六年级奥数题及答案1、抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
2、牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
如果设每个人每小时的淘水量为1个单位.那么船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30. 船内原有水量与8小时漏水量之和为1×5×8=40。
每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。
船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。
小学六年级奥数练习题及参考答案
小学六年级奥数练习题及参考答案小学六年级奥数练习题及参考答案篇一2、一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?3、一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?4、一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?5、某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?参考答案:1、解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
2、解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天3、答案是15棵算式:1÷(1/6-1/10)=15棵4、答案45分钟。
小学六年级奥数题【5篇】
【导语】学习奥数要有⼀个计划,每个年级都有不同的内容,所以,我们⼀定要制定好计划,不要滞后,也不要超前,按照⼤纲进度学习适合⾃⼰的内容。
以下是整理的《⼩学六年级奥数题【5篇】》相关资料,希望帮助到您。
1.⼩学六年级奥数题 1、⼀个数除以3余2,除以5余3,除以7余2,求适合此条件的最⼩数。
解答:⽤除以3的余数乘以70,⽤除以5的余数乘以21,⽤除以7的余数乘以15,再把三个乘积相加。
如果这三个数的和⼤于105,那么就减去105,直⾄⼩于105为⽌。
这样就可以得到满⾜条件的解。
其解法如下:⽅法1:270+321+215=233;233-1052=23符合条件的最⼩⾃然数是23。
2、李叔叔下午要到⼯⼚上3点的班,他估计快到上班的时间了,就到屋⾥去看钟,可是钟停在了12点10分。
他赶快给钟上⾜发条,匆忙中忘了对表就上班去了,到⼯⼚⼀看离上班时间还有10分钟。
夜⾥11点下班,李叔叔回到家⼀看,钟才9点钟。
如果李叔叔上、下班路上⽤的时间相同,那么他家的钟停了多长时间? 解答:这道题看起来很乱,但我们透过钟⾯显⽰的时刻,计算出实际经过的时间,问题就清楚了。
钟从12点10分到9点共经过8时50分,这期间李叔叔上了8时的班,再减去早到的10分钟,李叔叔上、下班路上共⽤8时50分-8时-10分=40(分)。
李叔叔到⼯⼚时是2点50分,上班路上⽤了20分钟,所以出发时间是2点30分。
因为出发时钟停在12点10分,所以钟停了2时20分。
2.⼩学六年级奥数题 1、有3个⾃然数,其中每⼀个数都不能被另外两个数整除,⽽其中任意两个数的乘积却能被第三个数整除。
那么这样的3个⾃然数的和的最⼩值是多少? 答案与解析: 设这三个⾃然数为A,B,C,且A=×,B=×,C=×,当、、c均是质数时显然满⾜题意,为了使A,B,C的和最⼩,则质数、、应尽可能的取较⼩值,显然当、、为2、3、5时最⼩,有A=2×3=6,B=3×5=15,C=5×2=10。
小学六年级奥数题及答案
小学六年级奥数题及答案小学奥数网权威发布六年级小学奥数题及答案【五篇】,更多六年级小学奥数题及答案【五篇】相关信息请访问小学奥数网。
【导语】芬芳袭人花枝俏,喜气盈门捷报到。
心花怒放看通知,梦想实现今日事,喜笑颜开忆往昔,勤学苦读最美丽。
在学习中学会复习,在运用中培养能力,在总结中不断提高。
以下是大范文网为大家整理的《六年级小学奥数题及答案【五篇】》供您查阅。
【第一篇:销售时装】甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?答案与解析:把甲的套数看作5份,乙的套数就是6份。
甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份甲比乙多4-3=1份,这1份就是10套。
所以,甲原来购进了10×5=50套。
【第二篇:两块地植树】甲、乙、丙三人在A、B两块地植树,A地要植900棵,B 地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?答案与解析:总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵需要种的天数是2150÷86=25天甲25天完成24×25=600棵那么乙就要完成900-600=300棵之后,才去帮丙,即做了300÷30=10天之后即第11天从A地转到B地。
【第三篇:车速】一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?答案与解析:原定时间是1÷10%×(1-10%)=9小时如果速度提高20%行完全程,时间就会提前9-9÷(1+20%)=3/2因为只比原定时间早1小时,所以,提高速度的路程是1÷3/2=2/3所以甲乙两第之间的距离是180÷(1-2/3)=540千米另一种解法原速度:减速度=10:9,所以减时间:原时间=10:9,所以减时间为:1/(1-9/10)=10小时;原时间为9小时;原速度:加速度=5:6,原时间:加时间=6:5,行驶完180千米后,原时间=1/(1/6)=6小时,所以形式180千米的时间为9-6=3小时,原速度为180/3=60千米/时,所以两地之间的距离为60*9=540千米【第四篇:里程碑上的数字】一辆匀速行驶的汽车从北京出发去往深圳,行驶一段时间时张杰看到里程碑上的数字是一个两位数,又过了一小时后张杰又看到另一个里程碑上数字与前面的数字的十位数字与个位数字正好颠倒了,并且发现两个数字的和为10,汽车的速度为 54km/h.你能猜出这个两位数吗?【第五篇:点蜡烛】有两支粗细不同的蜡烛,细蜡烛之长是粗蜡烛之长的2倍,细蜡烛点完需一小时,粗蜡烛点完需两小时.有一次停电,将这两支蜡烛同时点燃,来电时,发现两支蜡烛所剩下的长度一样,问停电多少时间?答案与解析:设:停电X小时,细蜡烛的长度为单位长度2,粗的为1,则细的每小时烧的长度是2,粗的是1/2,依题意列方程:2-X*2=1-X*1/2-2X+X/2=1-2-3/2X=-1X=2/3。
小学六年级奥数题及解答(五篇)
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩学六年级奥数题及解答(五篇)》相关资料,希望帮助到您。
⼩学六年级奥数题及解答篇⼀ 3箱苹果重45千克.⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 考点:整数、⼩数复合应⽤题。
专题:简单应⽤题和⼀般复合应⽤题。
分析:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答 解答:解:45+5×3 =45+15 =60(千克) 答:3箱梨重60千克。
点评:本题的关键是先求出3箱梨⽐3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。
⼩学六年级奥数题及解答篇⼆ 题⽬: ⼀块牧场长满了草,每天均匀⽣长。
这块牧场的草可供10头⽜吃40天,供15头⽜吃20天。
可供25头⽜吃多少天? 答案与解析: 假设1头⽜1天吃草的量为1份 (1)每天新⽣的草量为:(10×40-15×20)÷(40-20)=5(份); (2)原来的草量为:10×40-40×5=200(份); (3)安排5头⽜专门吃每天新长出来的草,这块牧场可供25头⽜吃:200÷(25-5)=10(天)。
⼩学六年级奥数题及解答篇三 我⼈民解放军追击⼀股逃窜的敌⼈,敌⼈在下午16点开始从甲地以每⼩时10千⽶的速度逃跑,解放军在晚上22点接到命令,以每⼩时30千⽶的速度开始从⼄地追击。
已知甲⼄两地相距60千⽶,问解放军⼏个⼩时可以追上敌⼈? 解答案与解析:是[10×(22-6)]千⽶,甲⼄两地相距60千⽶。
由此推知 追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(⼩时) 答:解放军在11⼩时后可以追上敌⼈。
小学六年级奥数题及答案(全面)
小学六年级奥数题及答案(全面)【注意】本文仅供参考学习使用,严禁用于商业目的。
小学六年级奥数题及答案(全面)第一题:计算题1. 求100以内所有偶数的和。
解答:要求100以内所有偶数的和,我们可以从2开始,每次递增2,直到100。
然后将这些偶数相加即可。
2 + 4 + 6 + 8 + ... + 98 + 100 = 2550因此,100以内所有偶数的和为2550。
第二题:几何题2. 在平面直角坐标系内,A(2, 3)和B(-1, -5)为两个点,求线段AB 的长度。
解答:根据两点间距离公式,可以计算出线段AB的长度。
线段AB的长度= √((x2 - x1)² + (y2 - y1)²)代入点的坐标:线段AB的长度= √((-1 - 2)² + (-5 - 3)²)= √((-3)² + (-8)²)= √(9 + 64)= √73因此,线段AB的长度为√73。
第三题:代数题3. 若x² + 5x + 6 的值为15,求x。
解答:根据题意,我们可以列出方程:x² + 5x + 6 = 15将方程转化为标准形式:x² + 5x + 6 - 15 = 0x² + 5x - 9 = 0然后,我们可以使用因式分解或配方法求解此方程。
通过因式分解,可以得到:(x + 3)(x - 2) = 0根据零乘法,我们可以得到两个解:x + 3 = 0 或 x - 2 = 0解方程得到:x = -3 或 x = 2因此,方程的解为x = -3 或 x = 2。
第四题:逻辑题4. 小明、小李、小张三人坐在一个长凳上,从左到右依次是:小明、小李、小张。
已知:- 小明比旁边坐的人大一岁;- 小李比小张大两岁;- 小明的年龄是10岁。
问:小张的年龄是多少岁?解答:根据题意,我们可以列出以下等式:小明的年龄 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2小明的年龄 = 10带入已知条件,我们可以得到以下等式:10 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2根据第一个等式,可以得到:小明旁边坐的人的年龄 = 10 - 1= 9根据第二个等式,可以得到:小张的年龄 = 小李的年龄 - 2此时,我们需要知道小李的年龄。
小学六年级奥数题及答案(三篇)
小学六年级奥数题及答案(三篇)篇一原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土()方。
答案:方法一:调走6人还剩18人,那么18个人还干24个人的活,即3个人干4个人的活,每个人要多干原来的三分之一的活,而多三分之一就是要多挖1方土,所以每个人要挖3方土;方法二:假设每人每天挖x方,完成任务的天数为y天,那么共有24xy方土需要挖,5天内挖了24×5x方土,5天后剩下24x(y-5)方土没挖,这时只有24-6=18人了,则有24x(y-5)=18(x+1)×(y-5),解此不定方程即可。
解:方法一:调走人后每人每天多干原来的几分之几:24÷(24-6)-1=1/3,原计划每人每天挖土的方数:1÷(1/3)=3(方)。
方法二:设每人每天挖x方,完成任务的天数为y天,则共有24xy方土需要挖,5天内挖了24×5x方土,所以24x(y-5)=18(x+1)×(y-5),根据题意得出y必须大于5,所以24x=18x+186x=18x=3答:原计划每人每天挖土3方。
故答案为:3。
篇二甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判。
每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战。
半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局。
那么整个训练中的第3局当裁判的是_______。
答案:本题是一道逻辑推理要求较高的试题。
首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的。
那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的比赛进行的局数。
⑴丙当了5局裁判,则甲乙进行了5局;⑵甲一共打了15局,则甲丙之间进行了15-5=10局;⑶乙一共打了21局,则乙丙之间进行了21-5=16局;所以一共打的比赛是5+10+6=31局。
六年级奥数题及答案(五篇)
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
六年级奥数题5道及答案
六年级奥数题5道及答案1. 题目一:一个数字由1、2、3、4、5、6这六个数字组成,其中每个数字恰好使用一次。
如果这个数字能被4整除,那么这个数字是多少?答案:这个数字是123456。
因为一个数字能被4整除的条件是其最后两位组成的数字能被4整除。
在1、2、3、4、5、6中,只有4和6组成的数字(46)能被4整除,所以最后两位是46。
由于数字是递增的,所以这个数字是123456。
2. 题目二:一个班级有48名学生,其中1/4的学生喜欢数学,1/3的学生喜欢英语,剩下的学生喜欢科学。
问喜欢科学的学生有多少人?答案:喜欢数学的学生有48 * 1/4 = 12人,喜欢英语的学生有48 * 1/3 = 16人。
所以喜欢科学的学生有48 - 12 - 16 = 20人。
3. 题目三:一个长方体的长、宽、高分别是a、b、c,如果长方体的体积是120立方厘米,且长和宽的比是2:3,宽和高的比是4:5,求a、b、c的值。
答案:根据题意,我们有以下比例关系:a:b = 2:3,b:c = 4:5。
将b的值用a和c表示,我们得到a:b = 2:3 = 8:12,b:c = 4:5 = 12:15。
由此可知,a:b:c = 8:12:15。
设 a = 8x,b = 12x,c = 15x,根据体积公式abc = 120,我们得到(8x)(12x)(15x) = 120,解得x = 1,所以a = 8,b = 12,c = 15。
4. 题目四:一个水池,如果打开一个水龙头,可以在10小时内注满水池;如果打开两个水龙头,可以在5小时内注满水池。
问如果打开三个水龙头,需要多少时间注满水池?答案:设水池的容量为C。
一个水龙头的注水速度为C/10,两个水龙头的注水速度为C/5。
三个水龙头的注水速度为C/5的两倍,即2C/5。
设三个水龙头注满水池需要t小时,我们有(2C/5) * t = C,解得t = 2.5小时。
5. 题目五:一个数字序列,每个数字都是它前面两个数字的和,序列的前三个数字是1,1,2。
小学六年级奥数题及答案【5篇】
小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。
第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。
问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。
如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
3.妈妈每四天去一次杂货店,每五天去一次百货商店。
妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。
2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。
如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。
2.从五年级的六个班级中选出一个学习、体育、健康先进集体。
有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。
他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。
所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。
3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。
有50道测试题。
评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。
六年级奥数题 (5)
奥数综合练习(包含问题)1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。
那么有多少人两个小组都不参加?2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。
那么语文成绩得满分的有多少人?3、50名同学面向老师站成一行。
老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。
问:现在面向老师的同学还有多少名?4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。
按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。
那么游艺会为该项活动准备的奖品铅笔共有多少支?5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。
问绳子共被剪成了多少段?6、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。
现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。
那么,这些卡片一共有多少张?8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?9、五年级三班学生参加课外兴趣小组,每人至少参加一项。
其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。
小学奥数题六年级
小学奥数题六年级小学奥数题六年级 11、有鸡兔共20只,脚44只,鸡兔各几只?2、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?3、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?4、有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同。
这两桶油各有多少千克?5、瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268。
6元,求打破了几只花瓶?6、学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?7、蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶。
现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付1.8元。
该校每学期买两种墨水各多少瓶?8、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。
小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?9、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。
问小毛做对几道题?10、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张。
他兑换了两种面额的人民币各多少张?小学奥数题六年级 21、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379。
6元,问这次搬运中玻璃损坏了几只?2、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?3、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?4、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?5、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?6、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?7、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?8、大油瓶一瓶装4千克,小油瓶2瓶装1千克。
(word完整版)小学六年级奥数题及答案(全面)(2021年整理)
(word完整版)小学六年级奥数题及答案(全面)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)小学六年级奥数题及答案(全面)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)小学六年级奥数题及答案(全面)(word版可编辑修改)的全部内容。
小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A—2)/4,及格的就是A+22,不及格的就是A+(A—2)/4-(A+22)=(A-90)/4,而6*(A—90)/4=A+22,则A=314,80分以下的人数是(A—2)/4,也即是78,参赛的总人数314+78=3922。
电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x—3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙.这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
小升初六年级奥数题-20道题(中等难度)
小升初六年级奥数题及答案20道题(中等难度)【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学六年级奥数练习题及解答
小学六年级奥数练习题及解答小学六年级奥数练习题及解答篇一解:设丙缸酒精溶液的重量为x千克,则乙缸为(50-x)千克。
50×48%+(50-x)×62.5%+x×(2/3)=100×56%解得:x=18所以丙缸中纯酒精含量是18×(2/3)=12(千克)答:丙缸中纯酒精的量是12千克。
小学六年级奥数练习题及解答篇二分析:设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球。
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球。
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数。
所以将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答。
解:设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球。
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球。
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数。
将42分拆成若干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数。
所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子。
答:一共有7只、4只或3只盒子。
小学六年级奥数练习题及解答篇三分析:解:设陈宇从甲地步行去乙地所用时间为2X分钟,根据题意,前一半时间和后一半的时间共走(0.07+0.08)X千米,已知甲乙两地相距6千米,由此列出方程(0.07+0.08)X=6,解方程求出一半的时间,因此前一半比后一半时间多走:(80-70)×40米解答:解:设陈宇从甲地步行去乙地所用时间为X分钟,根据题意得:(0.07+0.08)X=6,0.15X=6,X=40;前一半比后一半时间多走:(80-70)×40=10×40=400(米)答:前一半比后一半的时间多走400米。
小学六年级奥数题及答案[6篇]
小学六年级奥数题及答案[6篇]1.小学六年级奥数题及答案篇一1、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?答案:25%解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/ 5)÷1/5=25%需要多少分钟?2、甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。
甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?答案:432分钟解析:甲行驶2.5小时的路程,乙用了3.5小时。
所以甲乙的速度比为7:5,走相同路程的时间比是5:7。
那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。
2.小学六年级奥数题及答案篇二1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?答案与解析:人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183答:陕西省至少有183人的头发根数一样多。
2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?答案与解析:①做正方形的另一条对角线。
得到四个完全相同的等腰直角三角形。
②一个等腰直角三角形的面积是:8÷2=4(直角边)4×4÷2=8(平方米)③四个等腰直角三角形的面积,即正方形的面积。
8×4=32(平方米)3.小学六年级奥数题及答案篇三1、125×(17×8)×4=125×8×4×17=1000×68=680002、375×480+6250×48=480×(375+625)=4800003、25×16×125=25×2×8×125=500004、13×99=13×(100-1)=1300-13=12875、75000÷125÷15=75×1000÷125÷15=75÷15×1000÷125=5×8=406、7900÷4÷25=7900÷(4×25)=797、150×40÷50=150÷50×40=3×40=1208、5600÷(25×7)=56×100÷25÷7=56÷7×100÷25=329、210÷42×6=210÷7÷6×6=3010、39600÷25=396×100÷25=396×4=15844.小学六年级奥数题及答案篇四有三块草地,面积分别是5,15,24亩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数题练习:
126
25
2
⨯
36
11
35⨯
75
74
73⨯1999
1998
1997
⨯20
1
20
1
22⨯
6
1
57
7
1
⨯
5
4
4
1
51
4
3
3
1
41⨯
+
⨯
2
1
3
15
1
16
7
15
1
8
3
15
7
⨯
+
⨯
+
⨯
13
6
18
5
13
2
9
5
13
1
6
5
⨯
+
⨯
+
⨯
例41
20
1
166÷
1999
1998
1998
1998÷17
5
2
54÷
239
238
238
238÷
39
1
41
13
1
163÷
转化单位“1”复习题
1.某小学低年级原有少先队员是非少先队员的1/3,后来又有39名同学
加入了少先队组织。
这样,少先队员的人数是非少先队员的7/8。
低年级有多少学生?
2.王师傅生产一批零件,不合格产品是合格产品的1/19,后来从合格产
品中又发现2个不合格产品,这时算出产品的合格率是94%。
合格产品共有多少个?
3.某校六年级上学期男生占总人数的54%,本学期初转进3女生,转走3
名男生,这时女生占总人数的48%,现有男生多少人?
例1:某学校原有长跳绳的根数占长、短跳绳总数的3/8。
后来又买进20跟长跳绳,这时长跳绳的根数占长、短跳绳总数的7/12。
这个学校现有长、短绳总数是多少根?
例2:有两段布,一段布长40米,另一段布长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布所剩长度的3/5,每段布用去多少米?
例3:某商店原有黑白、彩色电视机共630台,其中黑白电视机占1/5,后来又运进一些黑白电视机。
这时黑白电视机占两种电视机总台数的30%,问:又运进黑白电视机多少台?
例4:甲数是乙数、丙数、丁数之和的1/2,乙数是甲数、丙数、丁数之和的1/3,丙数是甲数、乙数、丁数之和的1/4。
已知丁数是260,求甲、乙、丙、丁四数之和。
练习:
1.阅览室看书的同学中,女同学占3/5,从阅览室走出5位女同学后,看
书的同学中,女同学占4/7,原来阅览室里一共有多少名同学在看书?
2.一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,
这堆糖中有奶糖多少千克?
3.数学课外兴趣小组,上学期男生占5/9,这学期增加21名女生后,男
生就占2/5了,这个小组现有女生多少人?
4.今年父亲40岁,儿子12岁,当儿子的年龄是父亲的5/12时,儿子多
少岁?
5.有两根塑料绳,一根长80米,另一根长40米,如果从两根绳上各剪
去同样长的一段后,短绳剩下的长度是长绳剩下的2/7,两根绳各剪去多少米?
6.仓库里原来存的大米和面粉袋数相等,运出800袋大米和500袋面粉
后,仓库里所剩的大米袋数是面粉的3/4,仓库里原有大米和面粉各多少袋?
7.把12千克盐溶解于120千克水中,得到132千克盐水,如果要使盐水
中含盐8%,要往盐水中加盐还是加水?加多少千克?
例:△△=□□□□,△☆=□□□□,那么☆☆□=()个△
已知△=○○,△○=□□,☆=□□□,问△☆□=()个○
例:足球赛门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?
练习:
1.五个人比较身高,甲比乙高3厘米,乙比并矮7厘米,丙比丁高10厘
米,丁比戊矮5厘米,甲与戊相比谁高,高几厘米?
2.甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从
乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库
的货哪个最多?哪个最少?最多的比最少的多多少吨?
3.某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为
80分,那么不及格的同学平均分是多少?
4.游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生
总数增加20%,小学生占学生总数的40%,小学生增加百分之几?
5.五年级三个班的人数相等。
一班的男生人数和二班的女生的人数相等,
三班的男生人数是全部男生人数的2/5,全部女生人数占全年级人数的几分之几?
6.小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上
山后又沿原路下山的平均速度。