集成电路工艺流程简介(ppt 86页)
合集下载
集成电路的基本制造工艺PPT培训课件
二氧化硅、氧化铝等是集成电路制造中常用的介质材料,用于隔离不同器件和层间绝缘。
氧化物
氮化硅、氮化硼等是具有高硬度、高熔点和高化学稳定性的介质材料,常用于保护和钝化表面。
氮化物
介质材料
金属材料
铜
铜是目前集成电路中主要的互连材料,具有低电阻、高可靠性等优点。
铝
铝是早期集成电路中常用的互连材料,具有成本低、延展性好等优点。
详细描述
集成电路的发展历程
集成电路的应用领域
总结词:集成电路的应用领域非常广泛,包括通信、计算机、消费电子、工业控制、医疗器械等。随着技术的不断发展,集成电路的应用领域还将不断扩大。
02
集成电路制造工艺流程
前道工艺流程
通过物理或化学气相沉积等方法在衬底上形成薄膜,作为集成电路的基本材料。
利用光刻胶和掩膜板,将设计好的电路图案转移到衬底上。
合金材料
金、银、铂等贵金属和铜、镍等贱金属的合金材料在集成电路制造中也有应用,用于提高器件性能和可靠性。
光刻胶是集成电路制造中最关键的材料之一,用于图形转移和掩膜。
光刻胶
研磨料用于表面处理和研磨,以实现平滑和洁净的表面。
研磨料
其他材料
04
集成电路制造设备与技术
光刻设备
用于将电路图案转移到晶圆片上,包括曝光机和光刻机等。
制造设备
随着集成电路的集成度不断提高,制程技术不断向纳米级别发展,目前已经达到纳米级别。
纳米制程技术
新型材料如碳纳米管、二维材料等在集成电路制造中的应用逐渐增多,为集成电路的发展提供了新的可能性。
新型材料应用
通过将多个芯片堆叠在一起,实现更高速的信号传输和更低的功耗,成为集成电路制造技术的重要发展方向。
集成电路制造工艺PPT课件
40
净化厂房
精选
41
芯片制造净化区域走廊
精选
42
投 影 式 光 刻 机
Here in the Fab Two Photolithography area we see one of
our 200mm 0.35 micron I-Line Steppers. this stepper can
image and align both 6 & 8精i选nch wafers.
精选
最快速度:2.4GHz
24
集成电路的分类
–器件结构类型 –集成度 –电路的功能 –应用领域
精选
25
按器件结构类型分类
• 双极集成电路:主要由双极型晶体管构成
–NPN型双极集成电路
–PNP型双极集成电路
• 金属-氧化物-半导体(MOS)集成电路:主要由 MOS晶体管(单极型晶体管)构成
–NMOS
and SemiTool in 1995. Again these are the world's first 300mm wet
process cassettes (that can be spin rin精s选e dried).
44
12 英 寸 氧 化 扩 散 炉
As we look in this window we see the World's First true 300mm production
精选
18
❖ 集成电路单片集成度和最小特征尺寸的发展曲线
精选
19
精选
20
发展 阶段
主要特征 元件数/芯片
特征线宽(um)
栅氧化层厚度 (nm)
《集成电路工艺》课件
集成电路工艺设备
薄膜制备设备
化学气相沉积设备
用于在硅片上沉积各种薄膜,如氧化硅、氮化硅 等。
物理气相沉积设备
用于沉积金属、合金等材料,如蒸发镀膜机。
化学束沉积设备
通过离子束或分子束技术,在硅片上形成高纯度 、高质量的薄膜。
光刻设备
01
02
03
投影式光刻机
将掩膜板上的图形投影到 硅片上,实现图形的复制 。
降低成本
集成电路工艺能够实现大规模生产,降低了单个电子 元件的成本。
促进技术进步
集成电路工艺的发展推动了半导体制造技术的进步, 促进了微电子产业的发展。
02
CATALOGUE
集成电路制造流程
薄膜制备
物理气相沉积(PVD)和化学气相沉积(CVD )是最常用的两种沉积技术。
薄膜的厚度、均匀性和晶体结构等特性对集成电路的 性能和可靠性具有重要影响。
分类
按照制造工艺技术,集成电路可分为 薄膜集成电路和厚膜集成电路;按照 电路功能,集成电路可分为模拟集成 电路和数字集成电路。
集成电路工艺的发展历程
小规模阶段
20世纪60年代,晶体管被集成 在硅片上,形成了小规模集成 电路。
大规模阶段
20世纪80年代,微处理器和内 存被集成在硅片上,形成了大 规模集成电路。
02
它通过化学腐蚀和机械研磨的协同作用,将硅片表面研磨得更
加平滑,减小表面粗糙度。
抛光液的成分、抛光压力和抛光时间等参数对抛光效果具有重
03
要影响。
03
CATALOGUE
集成电路工艺材料
硅片
硅片是集成电路制造中最主要的材料之一,其质量直 接影响集成电路的性能和可靠性。
薄膜制备设备
化学气相沉积设备
用于在硅片上沉积各种薄膜,如氧化硅、氮化硅 等。
物理气相沉积设备
用于沉积金属、合金等材料,如蒸发镀膜机。
化学束沉积设备
通过离子束或分子束技术,在硅片上形成高纯度 、高质量的薄膜。
光刻设备
01
02
03
投影式光刻机
将掩膜板上的图形投影到 硅片上,实现图形的复制 。
降低成本
集成电路工艺能够实现大规模生产,降低了单个电子 元件的成本。
促进技术进步
集成电路工艺的发展推动了半导体制造技术的进步, 促进了微电子产业的发展。
02
CATALOGUE
集成电路制造流程
薄膜制备
物理气相沉积(PVD)和化学气相沉积(CVD )是最常用的两种沉积技术。
薄膜的厚度、均匀性和晶体结构等特性对集成电路的 性能和可靠性具有重要影响。
分类
按照制造工艺技术,集成电路可分为 薄膜集成电路和厚膜集成电路;按照 电路功能,集成电路可分为模拟集成 电路和数字集成电路。
集成电路工艺的发展历程
小规模阶段
20世纪60年代,晶体管被集成 在硅片上,形成了小规模集成 电路。
大规模阶段
20世纪80年代,微处理器和内 存被集成在硅片上,形成了大 规模集成电路。
02
它通过化学腐蚀和机械研磨的协同作用,将硅片表面研磨得更
加平滑,减小表面粗糙度。
抛光液的成分、抛光压力和抛光时间等参数对抛光效果具有重
03
要影响。
03
CATALOGUE
集成电路工艺材料
硅片
硅片是集成电路制造中最主要的材料之一,其质量直 接影响集成电路的性能和可靠性。
集成电路制造工艺流程
P N+ N-P+
23
1.1.1 工艺流程(续5) 蒸镀金属 反刻金属
P P+ N+ N- P+
P-Sub
2021/1/7 韩良
P N+ N-P+
24
1.1.1 工艺流程(续6) 钝化 光刻钝化窗口后工序
P P+ N+ N- P+
P-Sub
2021/1/7 韩良
P N+ N-P+
25
1.1.2 光刻掩膜版汇总
N–-epi
钝化层
SiO2
P+
P-Sub 2021/1/7 韩良
N+埋层 27
EB C
N+ P
N+
N–-epi
P+
1.1.4 埋层的作用
1.减小串联电阻(集成电路中的各个电极均从 上表面引出,外延层电阻率较大且路径较长。 2.减小寄生pnp晶体管的影响(第二章介绍)
光P+刻胶
SiO2
EB C
N+ P
计公司。
2021/1/7
2
韩良
引言
2. 代客户加工(代工)方式
➢ 芯片设计单位和工艺制造单位的分离,即芯片设计单位可以不拥有生产线而存在和发 展,而芯片制造单位致力于工艺实现,即代客户加工(简称代工)方式。
➢ 代工方式已成为集成电路技术发展的一个重要特征。
2021/1/7
3
韩良
引言
3. PDK文件
2021/1/7
5
韩良
引言
5. 掩模与流片
➢ 代工单位根据设计单位提供的GDS-Ⅱ格式的版图 数据,首先制作掩模(Mask),将版图数据定义 的图形固化到铬板等材料的一套掩模上。
第一章集成电路的基本制造工艺ppt课件
➢ 由于SOC(系统芯片)的出现,给IC设计者提出了 更高的要求,也面临着新的挑战:设计者不仅要懂系 统、电路,也要懂工艺、制造。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
半导体材料:硅
扩散
➢ 替位式扩散:杂质离子占据硅原子的位:
Ⅲ、Ⅴ族元素
一般要在很高的温度(950~1280℃)下进行 磷、硼、砷等在二氧化硅层中的扩散系数
均远小于在硅中的扩散系数,可以利用氧 化层作为杂质扩散的掩蔽层。
➢ 间隙式扩散:杂质离子位于晶格间隙:
Na、K、Fe、Cu、Au 等元素 扩散系数要比替位式扩散大6~7个数量级
2(Dt) 2
其中,NT:预淀积后硅片表面浅层的P原子浓度
N T311 0 5 (1cm )
D:P的扩散系数 t :扩散时间 x:扩散深度
只要控制NT 、T、t 三个因素就可以决定扩散深度及浓度。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
集成电路芯片的显微照片
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
V ss
p o ly 栅
V dd 布 线 通 道 参考孔
N+
P+
有源区
集成电路的内部单元(俯视图)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
半导体材料:硅
扩散
➢ 替位式扩散:杂质离子占据硅原子的位:
Ⅲ、Ⅴ族元素
一般要在很高的温度(950~1280℃)下进行 磷、硼、砷等在二氧化硅层中的扩散系数
均远小于在硅中的扩散系数,可以利用氧 化层作为杂质扩散的掩蔽层。
➢ 间隙式扩散:杂质离子位于晶格间隙:
Na、K、Fe、Cu、Au 等元素 扩散系数要比替位式扩散大6~7个数量级
2(Dt) 2
其中,NT:预淀积后硅片表面浅层的P原子浓度
N T311 0 5 (1cm )
D:P的扩散系数 t :扩散时间 x:扩散深度
只要控制NT 、T、t 三个因素就可以决定扩散深度及浓度。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
集成电路芯片的显微照片
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
V ss
p o ly 栅
V dd 布 线 通 道 参考孔
N+
P+
有源区
集成电路的内部单元(俯视图)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
集成电路设计与制造的主要流程PPT培训课件
集成电路设计与制造的主要流程 ppt培训课件
目录
• 集成电路概述 • 集成电路设计流程 • 集成电路制造流程 • 集成电路封装与测试 • 集成电路设计与制造的挑战与未来发展
01
集成电路概述
集成电路的定义与特点
总结词
集成电路是将多个电子元件集成在一块衬底上,实现一定电路或系统功能的微型电子部件。其主要特点包括高集 成度、高可靠性、低功耗、低成本等。
制造工艺的发展趋势是不断追求更高的集成度、更小的特征尺寸和更好的性能。
晶圆制备
晶圆是制造集成电路的基础材 料,其质量直接影响集成电路 的性能和良品率。
晶圆制备包括切割、研磨、抛 光等环节,目的是获得表面平 整、晶体结构完整的晶圆。
晶圆制备技术的发展趋势是追 求更薄的晶圆、更小的晶圆直 径和更高的加工精度。
设计审查与后仿真
设计审查
对完成的版图进行审查,确保其符合规格要求和制造工艺要 求。
后仿真
在版图设计完成后,进行后仿真验证,确保电路的功能和性 能符合要求。
03
集成电路制造流程
制造工艺简介
制造工艺是将集成电路设计转化为实际产品的过程,涉及多个复杂的技术环节。
集成电路制造工艺主要包括晶圆制备、薄膜制备、掺杂与刻蚀、工艺集成与良品率 控制等步骤。
详细描述
集成电路的发展历程可以分为三个阶段:小规模集成电路、大规模集成电路和超大规模集成电路。从 小规模集成电路到超大规模集成电路的发展过程中,集成电路的集成度不断提高,性能不断优化,成 本不断降低,推动了电子技术的飞速发展。
集成电路的应用领域
总结词
集成电路的应用领域非常广泛,包括通信、计算机、 消费电子、工业控制、汽车电子等。
测试与可靠性评估
目录
• 集成电路概述 • 集成电路设计流程 • 集成电路制造流程 • 集成电路封装与测试 • 集成电路设计与制造的挑战与未来发展
01
集成电路概述
集成电路的定义与特点
总结词
集成电路是将多个电子元件集成在一块衬底上,实现一定电路或系统功能的微型电子部件。其主要特点包括高集 成度、高可靠性、低功耗、低成本等。
制造工艺的发展趋势是不断追求更高的集成度、更小的特征尺寸和更好的性能。
晶圆制备
晶圆是制造集成电路的基础材 料,其质量直接影响集成电路 的性能和良品率。
晶圆制备包括切割、研磨、抛 光等环节,目的是获得表面平 整、晶体结构完整的晶圆。
晶圆制备技术的发展趋势是追 求更薄的晶圆、更小的晶圆直 径和更高的加工精度。
设计审查与后仿真
设计审查
对完成的版图进行审查,确保其符合规格要求和制造工艺要 求。
后仿真
在版图设计完成后,进行后仿真验证,确保电路的功能和性 能符合要求。
03
集成电路制造流程
制造工艺简介
制造工艺是将集成电路设计转化为实际产品的过程,涉及多个复杂的技术环节。
集成电路制造工艺主要包括晶圆制备、薄膜制备、掺杂与刻蚀、工艺集成与良品率 控制等步骤。
详细描述
集成电路的发展历程可以分为三个阶段:小规模集成电路、大规模集成电路和超大规模集成电路。从 小规模集成电路到超大规模集成电路的发展过程中,集成电路的集成度不断提高,性能不断优化,成 本不断降低,推动了电子技术的飞速发展。
集成电路的应用领域
总结词
集成电路的应用领域非常广泛,包括通信、计算机、 消费电子、工业控制、汽车电子等。
测试与可靠性评估
集成电路设计与制造的主要流程框架(PPT 48张)
第四阶段:时序验证与版图设计 任务:静态时序分析从整个电路中提取出所有 时序路径,然后通过计算信号沿在路径上的延 迟传播,找出违背时序约束的错误(主要是 SetupTime 和 HoldTime),与激励无关。在深亚 微米工艺中,因为电路连线延迟大于单元延迟, 通常预布局布线反复较多,要多次调整布局方 案,对布局布线有指导意义。 流程:预布局布线(SDF文件)--网表仿真(带延时 文件)--静态时序分析--布局布线--参数提取-SDF文件--后仿真--静态时序分析--测试向量生 成。
第一阶段:项目策划 任务:形成项目任务书 (项目进度,周期管理等)。流 程:市场需求--调研--可行性研究--论证--决策--任务 书。 第二阶段:总体设计 任务:确定设计对象和目标,进一步明确芯片功能、 内外部性能要求,参数指标,论证各种可行方案,选 择最佳方式,加工厂家,工艺水准。 流程:需求分析--系统方案--系统设计--系统仿真。 输出:系统规范化说明(System Specification):包括系 统功能,性能,物理尺寸,设计模式,制造工艺,设计周期, 设计费用等等.
流程:逻辑设计--子功能分解--详细时序框图--分块 逻辑仿真--电路设计(算法的行为级,RTL级描述)-功能仿真--综合(加时序约束和设计库)--电路网表-网表仿真。 输出: 功能设计(Function Design):将系统功能的实现方案 设计出来.通常是给出系统的时序图及各子模块之 间的数据流图。 逻辑设计(Logic Design):这一步是将系统功能结构 化.通常以文本(Verilog HDL 或VHDL),原理图,逻辑 图表示设计结果,有时也采用布尔表达式来表示设 计结果。 电路设计(Circuit Design):电路设计是将逻辑设计表 达式转换成电路实现。
集成电路的制造工艺流程
集成电路的制造工艺流程
目录
• 集成电路制造概述 • 集成电路设计 • 集成电路制造工艺 • 集成电路制造设备与材料 • 集成电路制造的环境影响与可持
续性 • 集成电路制造的案例研究
01
集成电路制造概述
集成电路的定义与重要性
集成电路是将多个电子元件集成在一块衬底上,实现一定的电路或系统功能的微 型电子部件。由于其体积小、性能高、可靠性强的特点,集成电路在通信、计算 机、消费电子、汽车电子、工业控制等领域得到广泛应用。
智能化与自动化
随着智能化和自动化技术的发展, 制造设备和材料需要更加智能化和 自动化,以提高生产效率和产品质 量。
05
集成电路制造的环境影响与 可持续性
制造过程中的环境影响
1 2
能源消耗
集成电路制造过程中需要大量的能源,包括电力、 蒸汽和冷却水等,能源消耗巨大。
废弃物产生
制造过程中会产生各种废弃物,如废水、废气和 固体废弃物等,对环境造成一定压力。
3. 刻蚀和切割
通过刻蚀技术将电路结构转移 到衬底上,并使用切割技术将 单个器件分离出来。
总结词
MEMS器件是一种微小型化的 机械和电子系统,具有高精度、 高可靠性和低成本等特点。
2. 制膜和光刻
在衬底上制备所需的薄膜材料, 并使用光刻技术将电路图形转 移到薄膜上。
4. 测试和封装
对制造完成的MEMS器件进行 性能测试,合格的产品进行封 装和可靠性试验。
绿色采购
优先选择环保合规的供应 商和原材料,从源头减少 对环境的负面影响。
环境友好型制造技术的未来发展
新材料和新工艺
研发和推广环境友好型新材料和 新工艺,替代传统的高污染材料 和工艺,降低能耗和减少废弃物 排放。
目录
• 集成电路制造概述 • 集成电路设计 • 集成电路制造工艺 • 集成电路制造设备与材料 • 集成电路制造的环境影响与可持
续性 • 集成电路制造的案例研究
01
集成电路制造概述
集成电路的定义与重要性
集成电路是将多个电子元件集成在一块衬底上,实现一定的电路或系统功能的微 型电子部件。由于其体积小、性能高、可靠性强的特点,集成电路在通信、计算 机、消费电子、汽车电子、工业控制等领域得到广泛应用。
智能化与自动化
随着智能化和自动化技术的发展, 制造设备和材料需要更加智能化和 自动化,以提高生产效率和产品质 量。
05
集成电路制造的环境影响与 可持续性
制造过程中的环境影响
1 2
能源消耗
集成电路制造过程中需要大量的能源,包括电力、 蒸汽和冷却水等,能源消耗巨大。
废弃物产生
制造过程中会产生各种废弃物,如废水、废气和 固体废弃物等,对环境造成一定压力。
3. 刻蚀和切割
通过刻蚀技术将电路结构转移 到衬底上,并使用切割技术将 单个器件分离出来。
总结词
MEMS器件是一种微小型化的 机械和电子系统,具有高精度、 高可靠性和低成本等特点。
2. 制膜和光刻
在衬底上制备所需的薄膜材料, 并使用光刻技术将电路图形转 移到薄膜上。
4. 测试和封装
对制造完成的MEMS器件进行 性能测试,合格的产品进行封 装和可靠性试验。
绿色采购
优先选择环保合规的供应 商和原材料,从源头减少 对环境的负面影响。
环境友好型制造技术的未来发展
新材料和新工艺
研发和推广环境友好型新材料和 新工艺,替代传统的高污染材料 和工艺,降低能耗和减少废弃物 排放。
集成电路封装技术-封装工艺流程介绍PPT课件(123页)
在芯片粘贴时,用盖印、丝网印刷、点胶 等方法将胶涂布于基板的芯片座中,再将芯片 置放在玻璃胶之上,将基板加温到玻璃熔融温 度以上即可完成粘贴。由于完成粘贴的温度要 比导电胶高得多,所以它只适用于陶瓷封装中。 在降温时要控制降温速度,否则会造成应力破 坏,影响可靠度。
第二章 封装工艺流程
2.4 芯片互连 芯片互连是将芯片焊区与电子封装外壳的I/O引线或基
硅片背面减技术主要有: 磨削、研磨、化学抛光 干式抛光、电化学腐蚀、湿法腐蚀 等离子增强化学腐蚀、常压等离子腐蚀等
减薄厚硅片粘在一个带有金属环或塑料框架的薄膜 (常称为蓝膜)上,送到划片机进行划片。现在划片机都 是自动的,机器上配备激光或金钢石的划片刀具。切割分 部分划片(不划到底,留有残留厚度)和完全分割划片。 对于部分划片,用顶针顶力使芯片完全分离。划片时,边 缘或多或少会存在微裂纹和凹槽这取决于刀具的刃度。这 样会严重影响芯片的碎裂强度。
2.3.3 导电胶粘贴法 导电胶是银粉与高分子聚合物(环氧树脂)的混合物。银
粉起导电作用,而环氧树脂起粘接作用。
导电胶有三种配方: (1)各向同性材料,能沿所有方向导电。 (2)导电硅橡胶,能起到使器件与环境隔 绝,防止水、汽对芯片的影响,同时还可 以屏蔽电磁干扰。 (3)各向异性导电聚合物,电流只能在一 个方向流动。在倒装芯片封装中应用较多。 无应力影响。
2.3.1共晶粘贴法 共晶反应 指在一定的温度下,一定成分的液体同时结晶出两种一定
成分的固相反应。例如,含碳量为2.11%-6.69%的铁碳合 金,在1148摄氏度的恆温下发生共晶反应,产物是奥氏体 (固态)和渗碳体(固态)的机械混合物,称为“莱氏体 ”。
一般工艺方法 陶瓷基板芯片座上镀金膜-将芯片放置在芯片座上-热氮气
第二章 封装工艺流程
2.4 芯片互连 芯片互连是将芯片焊区与电子封装外壳的I/O引线或基
硅片背面减技术主要有: 磨削、研磨、化学抛光 干式抛光、电化学腐蚀、湿法腐蚀 等离子增强化学腐蚀、常压等离子腐蚀等
减薄厚硅片粘在一个带有金属环或塑料框架的薄膜 (常称为蓝膜)上,送到划片机进行划片。现在划片机都 是自动的,机器上配备激光或金钢石的划片刀具。切割分 部分划片(不划到底,留有残留厚度)和完全分割划片。 对于部分划片,用顶针顶力使芯片完全分离。划片时,边 缘或多或少会存在微裂纹和凹槽这取决于刀具的刃度。这 样会严重影响芯片的碎裂强度。
2.3.3 导电胶粘贴法 导电胶是银粉与高分子聚合物(环氧树脂)的混合物。银
粉起导电作用,而环氧树脂起粘接作用。
导电胶有三种配方: (1)各向同性材料,能沿所有方向导电。 (2)导电硅橡胶,能起到使器件与环境隔 绝,防止水、汽对芯片的影响,同时还可 以屏蔽电磁干扰。 (3)各向异性导电聚合物,电流只能在一 个方向流动。在倒装芯片封装中应用较多。 无应力影响。
2.3.1共晶粘贴法 共晶反应 指在一定的温度下,一定成分的液体同时结晶出两种一定
成分的固相反应。例如,含碳量为2.11%-6.69%的铁碳合 金,在1148摄氏度的恆温下发生共晶反应,产物是奥氏体 (固态)和渗碳体(固态)的机械混合物,称为“莱氏体 ”。
一般工艺方法 陶瓷基板芯片座上镀金膜-将芯片放置在芯片座上-热氮气
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氮化硅的化学汽相淀积:中等温度(780~ 820℃)的LPCVD或低温(300℃) PECVD方 法淀积
物理气相淀积(PVD)
蒸发:在真空系统中,金属原子获得 足够的能量后便可以脱离金属表面的 束缚成为蒸汽原子,淀积在晶片上。 按照能量来源的不同,有灯丝加热蒸 发和电子束蒸发两种
溅射:真空系统中充入惰性气体,在 高压电场作用下,气体放电形成的离 子被强电场加速,轰击靶材料,使靶 原子逸出并被溅射到晶片上
光刻胶受到特定波长光线的作用后,导致其 化学结构发生变化,使光刻胶在某种特定溶 液中的溶解特性改变
正胶:分辨率高,在超大规模集成电路
工艺中,一般只采用正胶
负胶:分辨率差,适于加工线宽≥3m的
线条
正胶:曝光 后可溶
负胶:曝光 后不可溶
图形转换:光刻
几种常见的光刻方法
接触式光刻:分辨率较高,但是容易造 成掩膜版和光刻胶膜的损伤。
集成电路制造工艺
北京大学
集成电路设计与制造的主要流程框架
系 统 需 求 设计
掩膜版
芯片制 造过程
芯片检测 封装 测试
单晶、外 延材料
设计创意
+ 仿真验证
集成电路的设计过程:
功能要求
行为设计(VHDL)
否 行为仿真
是 综合、优化——网表
否 时序仿真
是 布局布线——版图
—设计业—
后仿真 是
Sing off 集成电路芯片设计过程框架
蒸 发 原 理 图
集成电路工艺
图形转换:
光刻:接触光刻、接近光刻、投影光刻、电 子束光刻
刻蚀:干法刻蚀、湿法刻蚀
掺杂:
离子注入
退火
扩散
制膜:
氧化:干氧氧化、湿氧氧化等
CVD:APCVD、LPCVD、PECVD PVD:蒸发、溅射
作业
集成电路工艺主要分为哪 几大类,每一类中包括哪些 主要工艺,并简述各工艺的 主要作用
形成P管源漏区
光刻,利用光刻胶将NMOS区保护起来 离子注入硼,形成P管源漏区
形成接触孔
化学气相淀积磷硅玻璃层 退火和致密 光刻接触孔版 反应离子刻蚀磷硅玻璃,形成接触孔
形成第一层金属
淀积金属钨(W),形成钨塞
形成第一层金属
淀积金属层,如Al-Si、Al-Si-Cu合金等 光刻第一层金属版,定义出连线图形 反应离子刻蚀金属层,形成互连图形
在低温条件下(小于300℃)淀积氮化硅 光刻钝化版 刻蚀氮化硅,形成钝化图形
测试、封装,完成集成电路的制造工艺
CMOS集成电路一般采用(100)晶向的硅材料
双极集成电路 制造工艺
双极集成电路工艺
制作埋层
初始氧化,热生长厚度约为500~1000nm的氧化层 光刻1#版(埋层版),利用反应离子刻蚀技术将光刻窗
接近式曝光:在硅片和掩膜版之间有一 个很小的间隙(10~25m),可以大大减 小掩膜版的损伤,分辨率较低
投影式曝光:利用透镜或反射镜将掩膜 版上的图形投影到衬底上的曝光方法, 目前用的最多的曝光方式
三种光刻方式
图形转换:光刻
超细线条光刻技术
甚远紫外线(EUV) 电子束光刻 X射线 离子束光刻
掺杂的均匀性好 温度低:小于600℃ 可以精确控制杂质分布 可以注入各种各样的元素 横向扩展比扩散要小得多。 可以对化合物半导体进行掺杂
离子注入系统的原理示意图
离子注入到无定形靶中的高斯分布情况
退火
退火:也叫热处理,集成电路工艺中所有 的在氮气等不活泼气氛中进行的热处理过 程都可以称为退火
反应离子刻蚀(Reactive Ion Etching,简称为 RIE):通过活性离子对衬底的物理轰击和化 学反应双重作用刻蚀。具有溅射刻蚀和等离 子刻蚀两者的优点,同时兼有各向异性和选 择性好的优点。目前,RIE已成为VLSI工艺 中应用最广泛的主流刻蚀技术
杂质掺杂
掺杂:将需要的杂质掺入特定的 半导体区域中,以达到改变半导 体电学性质,形成PN结、电阻、 欧姆接触
优点是选择性好、重复性好、生产效率 高、设备简单、成本低
缺点是钻蚀严重、对图形的控制性较差
干法刻蚀
溅射与离子束铣蚀:通过高能惰性气体离子的物
理轰击作用刻蚀,各向异性性好,但选择性较差
等离子刻蚀(Plasma Etching):利用放电产生的
游离基与材料发生化学反应,形成挥发物,实现刻 蚀。选择性好、对衬底损伤较小,但各向异性较差
磷(P)、砷(As) —— N型硅 硼(B) —— P型硅
掺杂工艺:扩散、离子注入
扩散
替位式扩散:杂质离子占据硅原子的位:
Ⅲ、Ⅴ族元素 一般要在很高的温度(950~1280℃)下进行 磷、硼、砷等在二氧化硅层中的扩散系数
均远小于在硅中的扩散系数,可以利用氧 化层作为杂质扩散的掩蔽层
间隙式扩散:杂质离子位于晶格间隙:
CVD技术特点: 具有淀积温度低、薄膜成分和厚度易于控 制、均匀性和重复性好、台阶覆盖优良、适 用范围广、设备简单等一系列优点 CVD方法几乎可以淀积集成电路工艺中所 需要的各种薄膜,例如掺杂或不掺杂的SiO2、 多晶硅、非晶硅、氮化硅、金属(钨、钼)等
化学汽相淀积(CVD)
常压化学汽相淀积(APCVD) 低压化学汽相淀积(LPCVD) 等离子增强化学汽相淀积
形成接触孔:
光刻4#版(基区接触孔版) 进行大剂量硼离子注入 刻蚀掉接触孔中的氧化层
形成发射区
光刻5#版(发射区版),利用光刻胶将基极接触 孔保护起来,暴露出发射极和集电极接触孔
进行低能量、高剂量的砷离子注入,形成发射 区和集电区
金属化
淀积金属,一般是铝或Al-Si、Pt-Si合金等 光刻6#版(连线版),形成金属互连线
图形转换:刻蚀技术
湿法刻蚀:利用液态化学试剂或
溶液通过化学反应进行刻蚀的方法
干法刻蚀:主要指利用低压放电
产生的等离子体中的离子或游离基 (处于激发态的分子、原子及各种原 子基团等)与材料发生化学反应或通 过轰击等物理作用而达到刻蚀的目的
图形转换:刻蚀技术
湿法腐蚀:
湿法化学刻蚀在半导体工艺中有着广泛 应用:磨片、抛光、清洗、腐蚀
淀积氧化层 反应离子刻蚀氧化层,形成侧壁氧化层 淀积难熔金属Ti或Co等 低温退火,形成C-47相的TiSi2或CoSi 去掉氧化层上的没有发生化学反应的Ti或Co 高温退火,形成低阻稳定的TiSi2或CoSi2
形成N管源漏区
光刻,利用光刻胶将PMOS区保护起来 离子注入磷或砷,形成N管源漏区
料,它的化学性质非常稳定,室 温下它只与氢氟酸发生化学反应
氧化硅层的主要作用
在MOS电路中作为MOS器件的绝缘 栅介质,器件的组成部分
扩散时的掩蔽层,离子注入的(有时 与光刻胶、Si3N4层一起使用)阻挡层
作为集成电路的隔离介质材料 作为电容器的绝缘介质材料 作为多层金属互连层之间的介质材料 作为对器件和电路进行钝化的钝化层
合金:使Al与接触孔中的硅形成良好的欧 姆接触,一般是在450℃、N2-H2气氛下处 理20~30分钟
形成钝化层
在低温条件下(小于300℃)淀积氮化硅 光刻7#版(钝化版) 刻蚀氮化硅,形成钝化图形
集成电路制造工艺
图形转换:将设计在掩膜版(类似于照
相底片)上的图形转移到半导体单晶片上
掺杂:根据设计的需要,将各种杂质掺
杂在需要的位置上,形成晶体管、接触等
制膜:制作各种材料的薄膜
图形转换:光刻
光刻三要素:光刻胶、掩膜版和光刻机
光刻胶又叫光致抗蚀剂,它是由光敏化合物、 基体树脂和有机溶剂等混合而成的胶状液体
形成横向氧化物隔离区
利用反应离子刻蚀技术将光刻窗口中的氮化 硅层-氧化层以及一半的外延硅层刻蚀掉
进行硼离子注入
形成横向氧化物隔离区
去掉光刻胶,把硅片放入氧化炉氧化,形成 厚的场氧化层隔离区
去掉氮化硅层
形成基区
光刻3#版(基区版),利用光刻胶将收集区遮挡 住,暴露出基区
基区离子注入硼
激活杂质:使不在晶格位置上的离子运动到 晶格位置,以便具有电活性,产生自由载流 子,起到杂质的作用
消除损伤
退火方式:
炉退火
快速退火:脉冲激光法、扫描电子束、连续 波激光、非相干宽带频光源(如卤光灯、电弧 灯、石墨加热器、红外设备等)
氧化工艺
氧化:制备SiO2层 SiO2的性质及其作用 SiO2是一种十分理想的电绝缘材
推阱
退火驱入 去掉N阱区的氧化层
形成场隔离区
生长一层薄氧化层 淀积一层氮化硅 光刻场隔离区,非隔离
区被光刻胶保护起来
反应离子刻蚀氮化硅 场区离子注入 热生长厚的场氧化层 去掉氮化硅层
形成多晶硅栅
生长栅氧化层 淀积多晶硅 光刻多晶硅栅 刻蚀多晶硅栅
形成硅化物
(PECVD)
APCVD反应器的结构示意图
LPCVD反应器的结构示意图
平行板型PECVD反应器的结构示意图
化学汽相淀积(CVD)
单晶硅的化学汽相淀积(外延):一般地,
将在单晶衬底上生长单晶材料的工艺叫做 外延,生长有外延层的晶体片叫做外延片
二氧化硅的化学汽相淀积:可以作为金属 化时的介质层,而且还可以作为离子注入 或扩散的掩蔽膜,甚至还可以将掺磷、硼 或砷的氧化物用作扩散源
简述光刻的工艺过程
集成电路制造工艺
北京大学
CMOS集成电路 制造工艺
形成N阱
初始氧化 淀积氮化硅层 光刻1版,定义出N阱 反应离子刻蚀氮化硅层 N阱离子注入,注磷
形成P阱
去掉光刻胶 在N阱区生长厚氧化层,其它区域被氮化硅
层保护而不会被氧化
去掉氮化硅层 P阱离子注入,注硼
形成穿通接触孔
化学气相淀积PETEOS 通过化学机械抛光进行平坦化 光刻穿通接触孔版 反应离子刻蚀绝缘层,形成穿通接触孔
物理气相淀积(PVD)
蒸发:在真空系统中,金属原子获得 足够的能量后便可以脱离金属表面的 束缚成为蒸汽原子,淀积在晶片上。 按照能量来源的不同,有灯丝加热蒸 发和电子束蒸发两种
溅射:真空系统中充入惰性气体,在 高压电场作用下,气体放电形成的离 子被强电场加速,轰击靶材料,使靶 原子逸出并被溅射到晶片上
光刻胶受到特定波长光线的作用后,导致其 化学结构发生变化,使光刻胶在某种特定溶 液中的溶解特性改变
正胶:分辨率高,在超大规模集成电路
工艺中,一般只采用正胶
负胶:分辨率差,适于加工线宽≥3m的
线条
正胶:曝光 后可溶
负胶:曝光 后不可溶
图形转换:光刻
几种常见的光刻方法
接触式光刻:分辨率较高,但是容易造 成掩膜版和光刻胶膜的损伤。
集成电路制造工艺
北京大学
集成电路设计与制造的主要流程框架
系 统 需 求 设计
掩膜版
芯片制 造过程
芯片检测 封装 测试
单晶、外 延材料
设计创意
+ 仿真验证
集成电路的设计过程:
功能要求
行为设计(VHDL)
否 行为仿真
是 综合、优化——网表
否 时序仿真
是 布局布线——版图
—设计业—
后仿真 是
Sing off 集成电路芯片设计过程框架
蒸 发 原 理 图
集成电路工艺
图形转换:
光刻:接触光刻、接近光刻、投影光刻、电 子束光刻
刻蚀:干法刻蚀、湿法刻蚀
掺杂:
离子注入
退火
扩散
制膜:
氧化:干氧氧化、湿氧氧化等
CVD:APCVD、LPCVD、PECVD PVD:蒸发、溅射
作业
集成电路工艺主要分为哪 几大类,每一类中包括哪些 主要工艺,并简述各工艺的 主要作用
形成P管源漏区
光刻,利用光刻胶将NMOS区保护起来 离子注入硼,形成P管源漏区
形成接触孔
化学气相淀积磷硅玻璃层 退火和致密 光刻接触孔版 反应离子刻蚀磷硅玻璃,形成接触孔
形成第一层金属
淀积金属钨(W),形成钨塞
形成第一层金属
淀积金属层,如Al-Si、Al-Si-Cu合金等 光刻第一层金属版,定义出连线图形 反应离子刻蚀金属层,形成互连图形
在低温条件下(小于300℃)淀积氮化硅 光刻钝化版 刻蚀氮化硅,形成钝化图形
测试、封装,完成集成电路的制造工艺
CMOS集成电路一般采用(100)晶向的硅材料
双极集成电路 制造工艺
双极集成电路工艺
制作埋层
初始氧化,热生长厚度约为500~1000nm的氧化层 光刻1#版(埋层版),利用反应离子刻蚀技术将光刻窗
接近式曝光:在硅片和掩膜版之间有一 个很小的间隙(10~25m),可以大大减 小掩膜版的损伤,分辨率较低
投影式曝光:利用透镜或反射镜将掩膜 版上的图形投影到衬底上的曝光方法, 目前用的最多的曝光方式
三种光刻方式
图形转换:光刻
超细线条光刻技术
甚远紫外线(EUV) 电子束光刻 X射线 离子束光刻
掺杂的均匀性好 温度低:小于600℃ 可以精确控制杂质分布 可以注入各种各样的元素 横向扩展比扩散要小得多。 可以对化合物半导体进行掺杂
离子注入系统的原理示意图
离子注入到无定形靶中的高斯分布情况
退火
退火:也叫热处理,集成电路工艺中所有 的在氮气等不活泼气氛中进行的热处理过 程都可以称为退火
反应离子刻蚀(Reactive Ion Etching,简称为 RIE):通过活性离子对衬底的物理轰击和化 学反应双重作用刻蚀。具有溅射刻蚀和等离 子刻蚀两者的优点,同时兼有各向异性和选 择性好的优点。目前,RIE已成为VLSI工艺 中应用最广泛的主流刻蚀技术
杂质掺杂
掺杂:将需要的杂质掺入特定的 半导体区域中,以达到改变半导 体电学性质,形成PN结、电阻、 欧姆接触
优点是选择性好、重复性好、生产效率 高、设备简单、成本低
缺点是钻蚀严重、对图形的控制性较差
干法刻蚀
溅射与离子束铣蚀:通过高能惰性气体离子的物
理轰击作用刻蚀,各向异性性好,但选择性较差
等离子刻蚀(Plasma Etching):利用放电产生的
游离基与材料发生化学反应,形成挥发物,实现刻 蚀。选择性好、对衬底损伤较小,但各向异性较差
磷(P)、砷(As) —— N型硅 硼(B) —— P型硅
掺杂工艺:扩散、离子注入
扩散
替位式扩散:杂质离子占据硅原子的位:
Ⅲ、Ⅴ族元素 一般要在很高的温度(950~1280℃)下进行 磷、硼、砷等在二氧化硅层中的扩散系数
均远小于在硅中的扩散系数,可以利用氧 化层作为杂质扩散的掩蔽层
间隙式扩散:杂质离子位于晶格间隙:
CVD技术特点: 具有淀积温度低、薄膜成分和厚度易于控 制、均匀性和重复性好、台阶覆盖优良、适 用范围广、设备简单等一系列优点 CVD方法几乎可以淀积集成电路工艺中所 需要的各种薄膜,例如掺杂或不掺杂的SiO2、 多晶硅、非晶硅、氮化硅、金属(钨、钼)等
化学汽相淀积(CVD)
常压化学汽相淀积(APCVD) 低压化学汽相淀积(LPCVD) 等离子增强化学汽相淀积
形成接触孔:
光刻4#版(基区接触孔版) 进行大剂量硼离子注入 刻蚀掉接触孔中的氧化层
形成发射区
光刻5#版(发射区版),利用光刻胶将基极接触 孔保护起来,暴露出发射极和集电极接触孔
进行低能量、高剂量的砷离子注入,形成发射 区和集电区
金属化
淀积金属,一般是铝或Al-Si、Pt-Si合金等 光刻6#版(连线版),形成金属互连线
图形转换:刻蚀技术
湿法刻蚀:利用液态化学试剂或
溶液通过化学反应进行刻蚀的方法
干法刻蚀:主要指利用低压放电
产生的等离子体中的离子或游离基 (处于激发态的分子、原子及各种原 子基团等)与材料发生化学反应或通 过轰击等物理作用而达到刻蚀的目的
图形转换:刻蚀技术
湿法腐蚀:
湿法化学刻蚀在半导体工艺中有着广泛 应用:磨片、抛光、清洗、腐蚀
淀积氧化层 反应离子刻蚀氧化层,形成侧壁氧化层 淀积难熔金属Ti或Co等 低温退火,形成C-47相的TiSi2或CoSi 去掉氧化层上的没有发生化学反应的Ti或Co 高温退火,形成低阻稳定的TiSi2或CoSi2
形成N管源漏区
光刻,利用光刻胶将PMOS区保护起来 离子注入磷或砷,形成N管源漏区
料,它的化学性质非常稳定,室 温下它只与氢氟酸发生化学反应
氧化硅层的主要作用
在MOS电路中作为MOS器件的绝缘 栅介质,器件的组成部分
扩散时的掩蔽层,离子注入的(有时 与光刻胶、Si3N4层一起使用)阻挡层
作为集成电路的隔离介质材料 作为电容器的绝缘介质材料 作为多层金属互连层之间的介质材料 作为对器件和电路进行钝化的钝化层
合金:使Al与接触孔中的硅形成良好的欧 姆接触,一般是在450℃、N2-H2气氛下处 理20~30分钟
形成钝化层
在低温条件下(小于300℃)淀积氮化硅 光刻7#版(钝化版) 刻蚀氮化硅,形成钝化图形
集成电路制造工艺
图形转换:将设计在掩膜版(类似于照
相底片)上的图形转移到半导体单晶片上
掺杂:根据设计的需要,将各种杂质掺
杂在需要的位置上,形成晶体管、接触等
制膜:制作各种材料的薄膜
图形转换:光刻
光刻三要素:光刻胶、掩膜版和光刻机
光刻胶又叫光致抗蚀剂,它是由光敏化合物、 基体树脂和有机溶剂等混合而成的胶状液体
形成横向氧化物隔离区
利用反应离子刻蚀技术将光刻窗口中的氮化 硅层-氧化层以及一半的外延硅层刻蚀掉
进行硼离子注入
形成横向氧化物隔离区
去掉光刻胶,把硅片放入氧化炉氧化,形成 厚的场氧化层隔离区
去掉氮化硅层
形成基区
光刻3#版(基区版),利用光刻胶将收集区遮挡 住,暴露出基区
基区离子注入硼
激活杂质:使不在晶格位置上的离子运动到 晶格位置,以便具有电活性,产生自由载流 子,起到杂质的作用
消除损伤
退火方式:
炉退火
快速退火:脉冲激光法、扫描电子束、连续 波激光、非相干宽带频光源(如卤光灯、电弧 灯、石墨加热器、红外设备等)
氧化工艺
氧化:制备SiO2层 SiO2的性质及其作用 SiO2是一种十分理想的电绝缘材
推阱
退火驱入 去掉N阱区的氧化层
形成场隔离区
生长一层薄氧化层 淀积一层氮化硅 光刻场隔离区,非隔离
区被光刻胶保护起来
反应离子刻蚀氮化硅 场区离子注入 热生长厚的场氧化层 去掉氮化硅层
形成多晶硅栅
生长栅氧化层 淀积多晶硅 光刻多晶硅栅 刻蚀多晶硅栅
形成硅化物
(PECVD)
APCVD反应器的结构示意图
LPCVD反应器的结构示意图
平行板型PECVD反应器的结构示意图
化学汽相淀积(CVD)
单晶硅的化学汽相淀积(外延):一般地,
将在单晶衬底上生长单晶材料的工艺叫做 外延,生长有外延层的晶体片叫做外延片
二氧化硅的化学汽相淀积:可以作为金属 化时的介质层,而且还可以作为离子注入 或扩散的掩蔽膜,甚至还可以将掺磷、硼 或砷的氧化物用作扩散源
简述光刻的工艺过程
集成电路制造工艺
北京大学
CMOS集成电路 制造工艺
形成N阱
初始氧化 淀积氮化硅层 光刻1版,定义出N阱 反应离子刻蚀氮化硅层 N阱离子注入,注磷
形成P阱
去掉光刻胶 在N阱区生长厚氧化层,其它区域被氮化硅
层保护而不会被氧化
去掉氮化硅层 P阱离子注入,注硼
形成穿通接触孔
化学气相淀积PETEOS 通过化学机械抛光进行平坦化 光刻穿通接触孔版 反应离子刻蚀绝缘层,形成穿通接触孔