有机光谱复习总结
光谱有关知识点总结

光谱有关知识点总结一、光的本性光的本性是光谱学研究的基础,它是光学和物理学的重要内容。
光是一种电磁波,它呈现出波动和粒子两重性。
在光的波动性方面,根据维尔伯理论,光是一种以极大物理意义振幅作为振动源的传递,在空间中传播的电磁波。
而在光的粒子性方面,根据爱因斯坦的光量子假说,光是由一束能量为hv的微粒组成的,这种微粒又称为光子。
光子具有能量和动量,它们遵循波动—粒子二重性原理,既可看作电磁波,也可看作微粒。
二、光谱的分析光谱的分析是光谱学的核心内容,它是通过测定物质在不同波长下对光的吸收、发射、散射、透射和反射行为,从而实现对物质的结构和性质的研究。
光的分析可以分为吸收光谱和发射光谱两类。
1. 吸收光谱吸收光谱是指物质对不同波长光的吸收行为所形成的光谱。
当物质受到激发时,它会吸收特定波长的光,吸收的光波长与物质分子结构和能级有关。
吸收光谱可用于研究物质的能级结构、电子跃迁、分子构型和物质类型等。
2. 发射光谱发射光谱是指物质在受到激发后产生的光辐射行为所形成的光谱。
当物质被激发后,它会发射出特定波长的光,这些发射光的波长也与物质的分子结构和能级有关。
发射光谱可用于研究物质的电子能级、分子振动、分子旋转、原子轨道结构和元素组成等。
三、光谱仪的原理及应用光谱仪是用于研究和分析物质的光谱特性、检测光的波长、强度和能量的仪器。
根据不同的光谱性质,光谱仪可以分为多种类型,如紫外可见光谱仪、红外光谱仪、质谱仪等。
1. 紫外可见光谱仪紫外可见光谱仪是一种常见的光谱仪,它主要用于测定物质在紫外和可见光波段的吸收光谱。
紫外可见光谱仪的原理是利用光源产生连续谱光,经过样品后,被检测器检测和记录,从而获得样品的吸收光谱。
紫外可见光谱仪广泛应用于生物化学、医药化工、环境保护和食品安全等领域。
2. 红外光谱仪红外光谱仪是一种用于测定物质在红外光波段的吸收光谱的仪器。
红外光谱仪的原理是利用发射的红外辐射照射样品,样品吸收部分红外辐射,剩余光被检测器探测和记录,从而获得样品的吸收光谱。
光谱技术知识点总结

光谱技术知识点总结一、光谱技术概述光谱技术是一种通过测量物质对光的吸收、发射、散射等现象来分析物质的方法。
它利用物质对光的相互作用所产生的特征光谱信息,从而获得物质的组成、结构、性质等相关信息,是分析化学、物理学、生物学等领域中不可或缺的技术手段之一。
光谱技术主要包括吸收光谱、发射光谱、拉曼光谱、荧光光谱等多种形式,具有高灵敏度、高分辨率、非破坏性等特点,因此被广泛应用于材料分析、环境监测、生命科学等领域。
二、吸收光谱技术吸收光谱是通过测量物质对不同波长的光的吸收程度来获得其特征光谱信息的一种分析方法。
根据不同样品的特性,可以使用紫外可见光谱、红外光谱、拉曼光谱等多种方式进行分析。
紫外可见光谱主要用于分析有机物和无机物的电子跃迁,可以用来测定物质的浓度、结构等信息;红外光谱则能够分析物质的分子振动、转动等信息,可以用来鉴定有机物的功能团、确定分子结构等;拉曼光谱则可以鉴定无水晶样品的结构信息,对显微颗粒或显微颗粒中的成分做非破坏性的、表面特异的、原位的、无需特殊样品处理的分析。
吸收光谱技术具有高灵敏度、高分辨率、简便快捷等特点,在化学、生物、环境等领域有着广泛的应用。
三、发射光谱技术发射光谱是通过测量物质在受激条件下产生的特定波长的发射光谱来获得其特征光谱信息的一种分析方法。
根据受激条件的不同,可以使用原子发射光谱、电火花发射光谱、荧光光谱等多种方式进行分析。
原子发射光谱主要用于分析金属元素和其化合物;电火花发射光谱主要用于分析金属合金和矿石等样品;荧光光谱则能够分析材料的能级结构、电子跃迁等信息。
发射光谱技术具有高灵敏度、高选择性、多元素分析等特点,被广泛应用于金属材料、地质矿物、环境监测等领域。
四、拉曼光谱技术拉曼光谱是利用拉曼散射现象来获得物质特征光谱信息的一种分析方法。
当激发光与物质发生相互作用时,部分光子的能量被物质吸收,而另一部分光子的能量则与物质的分子振动能级相吻合,导致这些光子的能量发生改变,产生拉曼散射光谱。
(一到四章)有机化合物波谱解析复习指导

第一章紫外光谱一、名词解释1、助色团:有n电子的基团,吸收峰向长波方向移动,强度增强.2、发色团:分子中能吸收紫外或可见光的结构系统.3、红移:吸收峰向长波方向移动,强度增加,增色作用.4、蓝移:吸收峰向短波方向移动,减色作用.5、增色作用:使吸收强度增加的作用.6、减色作用:使吸收强度减低的作用.7、吸收带:跃迁类型相同的吸收峰.二、选择题1、不是助色团的是:DA、-OHB、-ClC、-SHD、 CH3CH2-2、所需电子能量最小的电子跃迁是:DA、σ→σ*B、 n →σ*C、π→π*D、 n →π*3、下列说法正确的是:AA、饱和烃类在远紫外区有吸收B、 UV吸收无加和性C、π→π*跃迁的吸收强度比n →σ*跃迁要强10-100倍D、共轭双键数目越多,吸收峰越向蓝移4、紫外光谱的峰强用εmax表示,当εmax=5000~10000时,表示峰带:B很强吸收B、强吸收 C、中强吸收 D、弱吸收5、近紫外区的波长为:CA、 4-200nmB、200-300nmC、200-400nmD、300-400nm6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm的吸收带是:BA、R带B、B带C、K带D、E1带7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了CA、吸收峰的强度B、吸收峰的数目C、吸收峰的位置D、吸收峰的形状8、紫外光谱是带状光谱的原因是由于:DA、紫外光能量大B、波长短C、电子能级差大D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大:AA、水B、乙醇C、甲醇D、正己烷10、下列化合物中,在近紫外区(200~400nm)无吸收的是:AA、 B、 C、 D、11、下列化合物,紫外吸收λmax值最大的是:A(b)A、 B、 C、 D、12、频率(MHz)为4.47×108的辐射,其波长数值为AA、σ→σ*B、π→π*C、n→σ*D、n→π*第二章红外光谱一、名词解释:1、中红外区2、fermi共振3、基频峰4、倍频峰5、合频峰6、振动自由度7、指纹区8、相关峰9、不饱和度10、共轭效应11、诱导效应12、差频二、选择题(只有一个正确答案)1、线性分子的自由度为:AA:3N-5 B: 3N-6 C: 3N+5 D: 3N+62、非线性分子的自由度为:BA:3N-5 B: 3N-6 C: 3N+5 D: 3N+63、下列化合物的νC=C的频率最大的是:( )A B C D答案:CH2CH2CH21651 1657 1678 1680O O1716 1745 1775 1810 OOCH24、下图为某化合物的IR图,其不应含有:DA:苯环 B:甲基 C:-NH2 D:-OH5、下列化合物的νC=C的频率最大的是:A B C D答案:1646 1611 1566 164116506、亚甲二氧基与苯环相连时(1,2亚甲二氧基苯:),其亚甲二氧基的δCH 特征强吸收峰为:AA:925~935cm-1B:800~825cm-1C:955~985cm-1D:1005~1035cm-17、某化合物在3000-2500cm-1有散而宽的峰,其可能为:AA:有机酸 B:醛 C:醇 D:醚8、下列羰基的伸缩振动波数最大的是:C9、中三键的IR区域在:BA ~3300cm-1B 2260~2240cm-1C 2100~2000cm-1D 1475~1300cm-110、偕三甲基(叔丁基)的弯曲振动的双峰的裂距为:DA 10~20 cm-1 B15~30 cm-1 C 20~30cm-1 D 30cm-1以上第三章核磁共振一、名词解释1、化学位移2、磁各向异性效应3、自旋-自旋驰豫和自旋-晶格驰豫4、屏蔽效应5、远程偶合6、自旋裂分7、自旋偶合8、核磁共振CRORACROHBCROFCROClC DC NR9、屏蔽常数10.m+1规律11、杨辉三角12、双共振13、NOE效应14、自旋去偶15、两面角16、磁旋比17、位移试剂二、填空题1、1HNMR化学位移δ值范围约为 0~14 。
有机波谱知识点总结

有机波谱知识点总结波谱是化学分析中常用的一种手段,通过测定分子在电磁波中的吸收、散射或发射,可以了解分子的结构和性质。
有机波谱是指在有机化合物中应用的波谱分析方法,主要包括红外光谱、紫外-可见光谱、质谱和核磁共振谱等。
本文将针对有机波谱的各种知识点进行总结,包括波谱的基本原理、各种波谱的特点和应用、波谱分析中需要注意的问题等内容。
一、红外光谱1.基本原理红外光谱是利用物质对红外辐射的吸收和散射的规律来研究物质结构和性质的一种分析方法。
红外光谱的基本原理是在物质中分子或原子的振动和转动会产生特定的频率的红外光吸收,这样可以用红外光谱来检验物质的结构和成分。
2.特点和应用红外光谱对于分析有机化合物的结构和功能团具有非常重要的作用。
红外光谱具有分辨率高、灵敏度强、操作简便等特点,广泛应用于聚合物材料、药物分析、食品检测等领域。
3.需要注意的问题在进行红外光谱分析时,需要注意样品的处理、仪器的校准和数据的解释等问题。
此外,还需要对不同功能团的吸收峰进行了解,进行光谱图谱的解读。
二、紫外-可见光谱1.基本原理紫外-可见光谱是利用物质对紫外光和可见光的吸收的规律来研究物质结构和特性的一种分析方法。
紫外-可见光谱的基本原理是分子在吸收紫外-可见光时,电子跃迁至较高的能级,产生吸收峰,可以由此推测分子的结构和键合的性质。
2.特点和应用紫外-可见光谱对于分析有机化合物的共轭结构和电子转移能力有很大的作用。
紫外-可见光谱具有快速、敏感、定量等特点,广泛应用于有机合成、药物分析、环境监测等领域。
3.需要注意的问题在进行紫外-可见光谱分析时,需要注意样品的准备、仪器的校准和光谱图谱的解释。
此外,还需要了解分子在吸收紫外-可见光时的机理和特性,进行光谱图谱的解读。
三、质谱1.基本原理质谱是利用物质在电子轰击下的离子化和质子转移等规律来研究物质结构和成分的一种分析方法。
质谱的基本原理是将物质离子化后,通过质子转移和碎裂等反应产生一系列离子,再根据其质荷比来推测物质的结构和成分。
有机波谱期末复习.

A、1种B、2种C、3种D、4种
2、下列各组化合物按13C化学位移值从大到小排列的顺序为:C
(sp3<sp<sp2)(苯环<脂酰胺<醛酮)
A、a>b>c>d B、d>c>b>a C、c>d> b > a D、b>c>a>d
3、下述化合物碳谱中的甲基碳的化学位移范围为:A
21、当采用60MHz频率照射时,对羟苯乙羟酸分子中苯环上的四个氢呈现两组峰,分别为6.84和7.88ppm,偶合常数为8 Hz,试问该两组氢核组成何种系统?D
(位移》J用AX(7.88-6.84)*60=62.4>>J)
A、A2B2B、A2X2C、AA`BB`D、AA`XX`
22、在刚性六元环中,相邻两个氢核的偶合常数Jaa值范围为A
A、0-1Hz B、1-3Hz C、6-10Hz D、12-18Hz
16.没有自旋的核为C
A、1H B、2H C、12CD、13C
17、当采用60MHz频率照射时,某被测氢核的共振峰与TMS间的频率差(△ν)为430Hz,问该峰化学位移(δ)是多少ppm?C
A、4.3 B、43 C、7.17 D、6.0
(苯3个吸收带K(>200),B(230-270),E2(200-204))
A、R带B、B带C、K带D、E1带
7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了C
(决定了电子跃迁的类型,决定了吸收峰位置)
A、吸收峰的强度B、吸收峰的数目
C、吸收峰的位置D、吸收峰的形状
8、紫外光谱是带状光谱的原因是由于:D
有机波谱分析要点例题和知识点总结

有机波谱分析要点例题和知识点总结一、有机波谱分析概述有机波谱分析是研究有机化合物结构的重要手段,它主要包括红外光谱(IR)、紫外可见光谱(UVVis)、核磁共振(NMR)和质谱(MS)等技术。
通过对这些波谱数据的解析,可以确定有机化合物的分子结构、官能团种类、化学键的性质等信息。
二、红外光谱(IR)(一)原理红外光谱是基于分子振动和转动能级的跃迁而产生的吸收光谱。
不同的官能团在特定的波数范围内会产生特征吸收峰。
(二)要点1、官能团的特征吸收峰例如,羰基(C=O)在 1700 1750 cm⁻¹有强吸收峰;羟基(OH)在 3200 3600 cm⁻¹有宽而强的吸收峰。
2、影响吸收峰位置的因素包括诱导效应、共轭效应、氢键等。
(三)例题例 1:某化合物的红外光谱在 1720 cm⁻¹有强吸收峰,可能含有什么官能团?答案:羰基(C=O)。
例 2:一个化合物在 3400 cm⁻¹有宽而强的吸收峰,在 1050 1100 cm⁻¹有吸收峰,推测其结构。
答案:可能含有羟基(OH)和醚键(COC)。
三、紫外可见光谱(UVVis)(一)原理基于分子中价电子的跃迁而产生的吸收光谱。
(二)要点1、生色团和助色团生色团如羰基、双键等能在紫外可见区域产生吸收;助色团如羟基、氨基等能增强生色团的吸收。
2、影响吸收波长的因素包括共轭体系的大小、取代基的性质等。
(三)例题例 1:某化合物在 250 nm 处有强吸收,可能的结构是什么?答案:可能含有共轭双键。
例 2:比较两个化合物的紫外吸收波长,一个有苯环,一个有苯环和一个羟基取代。
答案:含羟基取代的化合物吸收波长可能更长。
四、核磁共振(NMR)(一)原理利用原子核在磁场中的自旋能级跃迁产生的吸收信号。
(二)要点1、化学位移不同环境的氢原子或碳原子具有不同的化学位移值,可用于判断官能团的位置。
2、耦合常数相邻氢原子之间的相互作用导致峰的分裂,耦合常数可提供关于分子结构的信息。
光谱有关知识点总结大全

光谱有关知识点总结大全一、光谱基本原理1.1 原子的能级结构光谱的产生与原子和分子的能级结构有关。
原子的能级结构决定了原子在吸收或发射光线时的波长和强度。
原子和分子存在离散的能级,当它们受到外部能量的激发时,会跃迁到更高的能级,然后再返回到低能级时发射出光子,形成特定的波长光谱线。
1.2 光谱的种类光谱可分为发射光谱和吸收光谱两大类,它们分别对应着物质发射光线和吸收光线的过程。
发射光谱是指物质在激发状态下发射出的光线,其波长和强度可以提供物质的结构和组成信息;吸收光谱是指物质在受到外部光线照射时吸收特定波长的光线,其谱线图可用于分析物质的种类和浓度。
1.3 光谱分析技术光谱分析技术是一种基于物质对光的吸收和发射规律进行物质分析的手段。
常见的光谱分析技术包括原子吸收光谱(AAS)、原子发射光谱(AES)、紫外-可见吸收光谱(UV-Vis)、荧光光谱、红外光谱(IR)、拉曼光谱等,它们可以用于分析各种不同形态和结构的物质。
1.4 光谱仪器的结构和原理光谱仪器主要由光源、样品室、光栅、检测器等部分组成。
光源用于产生光线,样品室用于容纳待测试样品,光栅用于分散光线,检测器用于测量光线的强度。
其中,光栅是光谱仪中最重要的部分,它可以将光线分散成不同波长,并根据不同波长的光线进行检测。
二、光谱的应用2.1 天文学中的光谱在天文学中,光谱是研究星体组成和运动状态的重要手段。
天体发出的光线经过光谱仪测量后,能够得到代表其元素组成和运动速度的信息。
例如,星体的光谱可以揭示其表面温度、元素组成、磁场和运动速度等重要参数。
2.2 化学分析中的光谱光谱在化学分析中有着广泛的应用,可用于物质的成分分析、浓度测定、质量检验等方面。
例如,原子吸收光谱可以用于金属元素的浓度分析,紫外-可见吸收光谱可用于有机化合物的定性和定量分析,红外光谱可以用于标识物质的官能团和分子结构。
2.3 医学诊断中的光谱光谱技术在医学诊断中也有着广泛的应用。
有机化学基础知识点整理红外光谱和紫外可见光谱的应用

有机化学基础知识点整理红外光谱和紫外可见光谱的应用概述:有机化学是研究有机物的组成、结构、性质及其变化规律的学科。
在有机化学中,红外光谱和紫外可见光谱是常用的分析技术。
本文将整理红外光谱和紫外可见光谱的应用,并分析其在有机化学中的重要性。
一、红外光谱的应用红外光谱是以物质吸收或产生红外辐射(波长范围为780-2500nm)的方式来研究物质的技术方法。
它的应用非常广泛,包括但不限于以下几个方面:1. 结构鉴定:红外光谱可以用于有机物的结构鉴定。
有机物在特定的波数处吸收红外辐射,其谱图能够提供有关分子结构的信息,如有机物中存在的官能团、官能团之间的连接方式等。
通过与已知化合物的对比,可以确定有机物的结构。
2. 官能团的鉴定:红外光谱能够识别有机物中存在的官能团。
不同的官能团具有不同的吸收特点,通过观察红外光谱中的吸收峰,可以判断有机物中是否存在特定官能团,如羟基、羰基、胺基等。
3. 反应过程的监测:红外光谱可以用于反应过程的实时监测。
通过连续测量反应物和产物的红外吸收峰强度的变化,可以了解反应的进行情况,研究反应的速率、平衡等动力学参数。
4. 质谱联用:红外光谱与质谱的联用能够提供更丰富的化学信息。
红外光谱可以用于初步分析,质谱可以提供分子离子的详细信息,两者联用可以更准确地确定分子的结构。
二、紫外可见光谱的应用紫外可见光谱是研究物质吸收或产生紫外可见辐射(波长范围为200-800nm)的方法。
它可以用于以下几个方面:1. 定量分析:紫外可见光谱可以用于物质的定量分析。
物质在特定波长处吸光度与其浓度呈线性关系,通过测量样品的吸光度,可以计算出样品的浓度。
这种方法被广泛应用于药物分析、环境监测等领域。
2. 官能团的鉴定:紫外可见光谱可以识别有机物中存在的某些官能团。
不同的官能团在紫外可见光谱中有特定的吸收峰,通过观察吸收峰的位置和强度,可以判断有机物中是否存在特定官能团。
3. 反应过程的监测:紫外可见光谱可以用于反应过程的实时监测。
有机化学波谱分析知识要点

波谱分析第一章紫外光谱1、为什么紫外光谱可以用于有机化合物的结构解析?紫外光谱可以提供:谱峰的位置(波长)、谱峰的强度、谱峰的形状。
反映了有机分子中发色团的特征,可以提供物质的结构信息。
2、紫外-可见区内(波长范围为100-800 nm )的吸收光谱。
3、Lamber-Beer 定律适用于单色光吸光度:A= lg(I 0/I) = lc透光度:-lgT = bcA :吸光度;l :光在溶液中经过的距离;:摩尔吸光系数,为浓度在1mol/L 的溶液中在1 cm 的吸收池中,在一定波长下测得的吸光度;c :浓度。
4、有机物分子中含有π键的不饱和基团称为生色团;有一些含有n 电子的基团(如—OH 、—OR 、—NH 2、—NHR 、—X 等),它们本身没有生色功能(不能吸收λ>200 nm 的光),但当它们与生色团相连时,就会发生n —π共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。
5、λmax 向长波方向移动称为红移,向短波方向移动称为蓝移(或紫移)。
吸收强度即摩尔吸光系数增大或减小的现象分别称为增色效应或减色效应。
6、电子跃迁的类型:1. σ→σ*跃迁:饱和烃(甲烷,乙烷);E 很高,λ<150 nm (远紫外区)。
2. n →σ*跃迁:含杂原子饱和基团(-OH ,-NH 2);E 较大,λ150~250 nm (真空紫外区)。
3. π→π*跃迁:不饱和基团(-C=C-,-C=O );E 较小,λ~ 200 nm ,体系共轭,E 更小,λ更大;该吸收带称为K 带。
4. n →π*跃迁:含杂原子不饱和基团(-C ≡N,C=O ):E 最小,λ 200~400 nm (近紫外区)该吸收带称为R 带。
7、λmax 的主要影响因素:1. 共轭体系的形成使吸收红移;2. pH 值对光谱的影响:碱性介质中,↑,吸收峰红移,↑3. 极性的影响:π→π*跃迁:极性↑,红移,↑;↓。
有机化学基础知识点有机化合物的光谱分析

有机化学基础知识点有机化合物的光谱分析有机化合物的光谱分析光谱分析是有机化学中一种重要的实验方法,它通过测量物质与电磁波的相互作用来获取有关分子结构和化学环境的信息。
在有机化学中,常用的光谱技术有红外光谱、质谱和核磁共振光谱等。
本文将介绍有机化合物的光谱分析方法及其基础知识点。
一、红外光谱(Infrared Spectroscopy)红外光谱是一种常用的有机化合物结构分析方法。
它通过测量物质在红外辐射下吸收光的波长和强度来研究有机分子的化学键和官能团。
在红外光谱中,最常见的峰位分别对应于C-H、C=O和O-H等功能团。
例如,红外光谱中出现在3000-2850 cm^-1的峰位通常表示有机分子中存在C-H键。
二、质谱(Mass Spectrometry)质谱是一种用来确定有机化合物分子结构和分子量的技术。
它通过测量物质中离子的质量和相对丰度来分析化合物的化学成分。
质谱的主要步骤包括样品的蒸发、离子化、质谱分析以及数据处理等。
质谱通常可以提供有机分子的分子式、分子量和结构等信息。
三、核磁共振光谱(Nuclear Magnetic Resonance Spectroscopy)核磁共振光谱是一种用来研究原子核之间相互作用以及有机分子结构的技术。
它利用核磁共振现象来测量物质中核自旋的能级差和能级的相对强度。
核磁共振光谱常用于确定有机分子的结构、官能团以及它们之间的化学键。
常见的核磁共振光谱包括^1H核磁共振和^13C核磁共振。
四、其他光谱分析方法除了红外光谱、质谱和核磁共振光谱之外,还有一些其他的光谱分析方法在有机化学中得到广泛应用。
例如,紫外-可见吸收光谱可以用于测量有机分子的电子跃迁能级,从而分析其共振结构和电子吸收性质。
拉曼光谱可以提供有机分子的振动和转动信息。
电子自旋共振光谱则用于研究物质中的自由基和电子结构等。
总结:有机化合物的光谱分析方法在有机化学中发挥着重要的作用。
通过红外光谱、质谱和核磁共振光谱等技术,我们可以获得有机分子的结构、官能团和化学键等信息,从而更好地理解和研究有机化学反应和反应机理。
有机化学波谱分析知识要点

有机化学波谱分析知识要点一、红外光谱分析(IR Spectroscopy)红外光谱是利用物质对红外辐射的吸收、散射和透射特性进行分析的方法。
它可以提供关于有机化合物中的官能团、键的类型和官能团的有关信息。
IR光谱仪通常以波数(单位为cm-1)来表示光谱的X轴。
1. 标定标样:红外光谱的波数标定通常以空气中的CO2吸收峰为基准,波数为2349 cm-12.关键峰值:红外光谱中有一些常见的峰值对应着特定的官能团或基团,如OH伸缩振动、C=O伸缩振动等。
3. 官能团特征波数:红外光谱可以通过分析官能团的特征波数,如羧酸(1700-1720 cm-1)、酯(1735-1745 cm-1)等。
二、核磁共振波谱分析(NMR Spectroscopy)核磁共振波谱是通过分析核自旋在外加磁场中的共振吸收来获得有机化合物结构信息的方法。
常见的核磁共振波谱有质子核磁共振(1HNMR)和碳-13核磁共振(13CNMR)。
1.核磁共振吸收峰:核磁共振谱图中出现的各个峰对应着不同核成分的共振吸收。
2.位移:核磁共振谱图中每个峰的信号在横轴上的位置(化学位移)可以提供有关它们所对应原子的环境和化学环境的信息。
3.耦合:在核磁共振谱图中,出现在特定峰附近的小峰是由于核自旋耦合引起的。
耦合的模式和数量可以提供关于分子中不同核之间的相互关系。
三、质谱分析(Mass Spectrometry)质谱分析是通过将有机化合物中的分子离子化,并在电磁场作用下测量其质量/电荷比,从而确定分子的质谱图(mass spectrum)。
质谱技术可提供有机化合物的分子式和分子结构信息。
1.分子离子峰(M+):质谱图中最高峰对应分子的分子离子峰。
它的质荷比等于分子质量除以电子的质量。
2.碎片离子峰:质谱图中其他峰位来自分子断裂后的离子。
通过分析这些峰可推断出有机化合物的结构。
3.分子离子峰和碎片离子峰之间的相对丰度:通过分析质谱图中分子离子峰和碎片离子峰之间的相对丰度的比例,可以推断出有机化合物中不同官能团的相对含量。
有机波谱学 紫外光谱总结

紫外光谱知识点总结一、紫外光谱基本原理1、概述紫外吸收光谱:分子吸收一定波长的紫外光时,电子发生跃迁,所产生的吸收光谱称紫外吸收光谱,简称紫外光谱(属电子光谱)紫外光的范围为4~400nm,200~400nm为近紫外区,4~200nm为远紫外区,一般紫外光谱用来研究近紫外(200~400 nm) 吸收。
2、朗伯比尔定律A=εcL=-㏒(I/I)A:吸光度ε:摩尔消光系数 c:溶液的摩尔浓度 L:液层厚度3、紫外光谱中常用的术语发色团(chromophore):也称生色团,是指在一个分子中产生紫外吸收带的基团,一般为带有π电子的基团。
有机化合物中常见的生色团有:羰基、硝基、双键、三键以及芳环等。
发色团的结构不同,电子跃迁类型也不同,通常为n→ π*、π→π*跃迁,最大吸收波长大于210nm。
助色团(auxochrome):有些基团,本身不是发色团,但当它们与发色团相连时,可以使含有发色团的有机物的颜色加深,这类基团称为助色团。
助色团通常是带有孤电子对的原子或原子团,如:-OH、- NH2、-NR2、-OR、-SH、-SR、-X(卤素)等。
在这些助色团中,由于具有孤电子对的原子或原子团与发色团的π键相连,可以发生p-π共轭效应,结果使电子的活动范围增大,容易被激发,使π→π*跃迁吸收带向长波方向移动,即红移。
红移(red shift):也称向长波移动(bathochromic shift),当有机物的结构发生变化(如取代基的变更)或受到溶剂效应的影响时,其吸收带的最大吸收波长(λmax)向长波方向移动的效应。
蓝移(blue shift):也称向短波移动(hypsochromic shift),与红移相反的效应,即由于某些因素的影响使得吸收带的最大吸收波长(λmax)向短波方向移动的效应。
增色效应(hyperchromic effect):或称浓色效应,使吸收带的吸收强度增加的效应。
减色效应(hypochromic effect):或称浅色效应,使吸收带的吸收强度减小的效应。
(一到四章)有机化合物波谱解析复习指导讲解

第一章紫外光谱一、名词解释1、助色团:有n电子的基团,吸收峰向长波方向移动,强度增强.2、发色团:分子中能吸收紫外或可见光的结构系统.3、红移:吸收峰向长波方向移动,强度增加,增色作用.4、蓝移:吸收峰向短波方向移动,减色作用.5、增色作用:使吸收强度增加的作用.6、减色作用:使吸收强度减低的作用.7、吸收带:跃迁类型相同的吸收峰.二、选择题1、不是助色团的是:DA、-OHB、-ClC、-SHD、 CH3CH2-2、所需电子能量最小的电子跃迁是:DA、σ→σ*B、 n →σ*C、π→π*D、 n →π*3、下列说法正确的是:AA、饱和烃类在远紫外区有吸收B、 UV吸收无加和性C、π→π*跃迁的吸收强度比n →σ*跃迁要强10-100倍D、共轭双键数目越多,吸收峰越向蓝移4、紫外光谱的峰强用εmax表示,当εmax=5000~10000时,表示峰带:B很强吸收B、强吸收 C、中强吸收 D、弱吸收5、近紫外区的波长为:CA、 4-200nmB、200-300nmC、200-400nmD、300-400nm6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm的吸收带是:BA、R带B、B带C、K带D、E1带7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了CA、吸收峰的强度B、吸收峰的数目C、吸收峰的位置D、吸收峰的形状8、紫外光谱是带状光谱的原因是由于:DA、紫外光能量大B、波长短C、电子能级差大D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大:AA、水B、乙醇C、甲醇D、正己烷10、下列化合物中,在近紫外区(200~400nm)无吸收的是:AA、 B、 C、 D、11、下列化合物,紫外吸收λmax值最大的是:A(b)A、 B、 C、 D、12、频率(MHz)为4.47×108的辐射,其波长数值为AA、σ→σ*B、π→π*C、n→σ*D、n→π*第二章红外光谱一、名词解释:1、中红外区2、fermi共振3、基频峰4、倍频峰5、合频峰6、振动自由度7、指纹区8、相关峰9、不饱和度10、共轭效应11、诱导效应12、差频二、选择题(只有一个正确答案)1、线性分子的自由度为:AA:3N-5 B: 3N-6 C: 3N+5 D: 3N+62、非线性分子的自由度为:BA:3N-5 B: 3N-6 C: 3N+5 D: 3N+63、下列化合物的νC=C的频率最大的是:( )A B C D答案:CH2CH2CH21651 1657 1678 1680O O1716 1745 1775 1810 OOCH24、下图为某化合物的IR图,其不应含有:DA:苯环 B:甲基 C:-NH2 D:-OH5、下列化合物的νC=C的频率最大的是:A B C D答案:1646 1611 1566 164116506、亚甲二氧基与苯环相连时(1,2亚甲二氧基苯:),其亚甲二氧基的δCH 特征强吸收峰为:AA:925~935cm-1B:800~825cm-1C:955~985cm-1D:1005~1035cm-17、某化合物在3000-2500cm-1有散而宽的峰,其可能为:AA:有机酸 B:醛 C:醇 D:醚8、下列羰基的伸缩振动波数最大的是:C9、中三键的IR区域在:BA ~3300cm-1B 2260~2240cm-1C 2100~2000cm-1D 1475~1300cm-110、偕三甲基(叔丁基)的弯曲振动的双峰的裂距为:DA 10~20 cm-1 B15~30 cm-1 C 20~30cm-1 D 30cm-1以上第三章核磁共振一、名词解释1、化学位移2、磁各向异性效应3、自旋-自旋驰豫和自旋-晶格驰豫4、屏蔽效应5、远程偶合6、自旋裂分7、自旋偶合8、核磁共振CRORACROHBCROFCROClC DC NR9、屏蔽常数10.m+1规律11、杨辉三角12、双共振13、NOE效应14、自旋去偶15、两面角16、磁旋比17、位移试剂二、填空题1、1HNMR化学位移δ值范围约为 0~14 。
有机化学光谱(考研备考)汇总

红外光谱的八个峰区第三章 核磁共振碳谱图9.11 b 2,2,4-三甲基-1,3-戊二醇的核磁共振碳谱核磁共振碳谱图中谱线的多少,表示有机物分子中碳原子数的种类,即有多少谱线就说明有机物分子至少有多少碳原子组成。
如图9.11a是特丁醇的核磁共振碳谱,特丁醇分子中共有四个碳原子,但三个甲基的碳原子是相同的,这样谱图上只有两个峰。
而图9.11 b是手性分子2,2,4-三甲基-1,3-戊二醇的核磁共振碳谱,2,2,4-三甲基-1,3-戊二醇分子共8个碳原子,但谱图上只有7个峰,这是因为该分子结构中端位的两个甲基是相同的。
事实上,端位的这两个甲基也是有细微差别的,若用高分辨的核磁共振仪器或使用位移试剂也可能将峰c分成两个峰。
综上所述,我们可以看到:核磁共振氢谱和碳谱技术有许多共性,原理基本相同,只是针对测定的原子核对象改变而有一些相应的改变。
如重氢交换技术对碳谱就不适合,但位移试剂和去偶等技术是一样的。
除此之外,除非采用特定技术条件,碳谱峰高与碳原子数无关,只关注化学位移,而氢谱则是峰面积和化学位移具有同等重要的地位。
同时碳谱都是完全去偶的谱线,而氢谱却都是多重分裂能够重叠的峰。
核磁共振碳谱主要关注谱线的化学位移δ值,不同类型的碳原子在有机物分子中的位置不同,则化学位移δ值不同。
反之,根据不同的化学位移可以推断有机物分子中碳原子的类型。
有机物分子中常见类型的碳原子的化学位移列于表9.3中。
表9.3可以看出:核磁共振碳谱的化学位移值,按有机物的官能团有明显的区别,这种区别比红外光谱还要准确可辩,现分述如下:表9.3 不同类型碳原子的化学位移碳原子类型化学位移(ppm)>C=O 酮类188~228醛类185~208酸类165~182酯、酰胺、酰氯、酸酐150~180>C=N-OH 肟155~165>C=N-亚甲胺145~165-N=C=S 异硫氰化物120~140-S-C≡N 硫氰化物110~120-C≡N 氰110~130X115~155X:O S N 芳杂环110~135芳环>C=C< 烯110~150-C≡C-炔70~100C O70~85季碳醚>CH-O-叔碳醚65~75-CH2-O-仲碳醚40~70CH3-O-伯碳醚40~60C N65~75季碳胺CH N叔碳胺50~70CH2N仲碳胺40~60CH3N伯碳胺20~45C S55~70季碳硫醚CH叔碳硫醚40~55S-CH2-S-仲碳硫醚25~45CH3-S-伯碳硫醚10~30C XI 35~75 ClX:Cl,Br,I 季碳卤化物CH X叔碳卤化物I 30~65 Cl-CH2-X 仲碳卤化物I 10~45 ClCH3-X 伯碳卤化物I -35~35 ClC35~70季碳烷烃CH叔碳烷烃30~60-CH2-仲碳烷烃25~45CH3-伯碳烷烃-20~30环丙烷-5~5150-220ppm,这是各类羰基 C=O碳的特征化学位移值,尤其是酮类羰基的化学位移超过188ppm,而酯、酰胺和酰卤等羧酸衍生物中羰基的化学位移又低于180ppm,据此可以非常清楚地区分这几类有机物。
有机波谱学 紫外光谱总结

紫外光谱知识点总结一、紫外光谱基本原理1、概述紫外吸收光谱:分子吸收一定波长的紫外光时,电子发生跃迁,所产生的吸收光谱称紫外吸收光谱,简称紫外光谱(属电子光谱)紫外光的范围为4~400nm,200~400nm为近紫外区,4~200nm为远紫外区,一般紫外光谱用来研究近紫外(200~400 nm) 吸收。
2、朗伯比尔定律A=εcL=-㏒(I/I)A:吸光度ε:摩尔消光系数 c:溶液的摩尔浓度 L:液层厚度3、紫外光谱中常用的术语发色团(chromophore):也称生色团,是指在一个分子中产生紫外吸收带的基团,一般为带有π电子的基团。
有机化合物中常见的生色团有:羰基、硝基、双键、三键以及芳环等。
发色团的结构不同,电子跃迁类型也不同,通常为n→ π*、π→π*跃迁,最大吸收波长大于210nm。
助色团(auxochrome):有些基团,本身不是发色团,但当它们与发色团相连时,可以使含有发色团的有机物的颜色加深,这类基团称为助色团。
助色团通常是带有孤电子对的原子或原子团,如:-OH、- NH2、-NR2、-OR、-SH、-SR、-X(卤素)等。
在这些助色团中,由于具有孤电子对的原子或原子团与发色团的π键相连,可以发生p-π共轭效应,结果使电子的活动范围增大,容易被激发,使π→π*跃迁吸收带向长波方向移动,即红移。
红移(red shift):也称向长波移动(bathochromic shift),当有机物的结构发生变化(如取代基的变更)或受到溶剂效应的影响时,其吸收带的最大吸收波长(λmax)向长波方向移动的效应。
蓝移(blue shift):也称向短波移动(hypsochromic shift),与红移相反的效应,即由于某些因素的影响使得吸收带的最大吸收波长(λmax)向短波方向移动的效应。
增色效应(hyperchromic effect):或称浓色效应,使吸收带的吸收强度增加的效应。
减色效应(hypochromic effect):或称浅色效应,使吸收带的吸收强度减小的效应。
光谱分析复习和思考题

光谱分析复习和思考题一、光谱法基础知识1、光谱法定义或者原理答:光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射电磁辐射的波长和强度进行分析的方法。
2、光谱法的分类二、原子发射光谱1、原子发射光谱是怎样产生的为什么各种元素的原子都有其特征的谱线答:(1)当气态原子或离子的核外层电子获取足够的能量后,就会从基态跃迁到各种激发态,处于各种激发态不稳定的电子(寿命<10-8s)迅速回到低能态时,就要释放出能量,若以光辐射的形式释放能量,即得到原子发射光谱。
(2)因为各种元素原子的核外电子能级不同,所跃迁产生光谱线的波长也不同,所以各种元素的原子都有其特征的谱线。
2、影响原子发射光谱的谱线强度的因素是什么产生谱线自吸及自蚀的原因是什么答:(1)谱线强度的基本公式:i i KT Ei i h A e g g N I i υ-=00, N 0—单位体积的基态原子数;gi ,g0 —激发态和基态的统计权重;Ei —激发电位; K —Boltzmann 常数;T —温度/K ;Ai —为跃迁几率;υi —为发射谱线的频率。
主要影响因素为统计权重、跃迁几率;激发电位、激发温度;电离度、蒸发速率常数、逸出速率常数。
(2)谱线自吸:某元素发射出的特征光由光源中心向外辐射过程中,会被处于光源边缘部分的低能级的同种原子所吸收,使谱线中心发射强度减弱,这种现象叫自吸。
(3)自蚀:在自吸严重情况下,会使谱线中心强度减弱很多,使表现为一条的谱线变成双线形状,这种严重的自吸称自蚀。
3、解释下列名词:(1)激发电位和电离电位。
激发电位:低能态电子被激发到高能态时所需要的能量。
电离电位:每个气体化合物被离子化的能量称为电离电位。
(2)共振线、原子线、离子线、灵敏线、最后线。
共振线:由激发态直接跃迁至基态时辐射的谱线称为共振线。
原子线:原子核外激发态电子跃迁回基态所发射出的谱线。
M * M离子线:离子核外激发态电子跃迁回基态所发射出的谱线。
有机化学基础知识点整理红外光谱的基本原理与应用

有机化学基础知识点整理红外光谱的基本原理与应用红外光谱是一种常用的有机化学分析技术,通过测量样品在红外辐射作用下吸收的光的特征来获取有关有机物的结构和功能基团信息。
本文将对红外光谱的基本原理和应用进行整理。
一、红外光谱的基本原理红外光谱是在红外区域(波长为0.78-1000微米)的电磁波谱。
有机物分子具有众多振动模式,其中主要有拉伸振动和弯曲振动两种。
当红外辐射作用于有机物时,分子中的化学键因振动而产生变化,吸收电磁辐射的能量,使光谱图产生吸收峰,用于表示化学键的类型和特定的功能基团。
二、红外光谱的应用1. 结构表征红外光谱被广泛应用于有机化合物的结构表征,能够确定分子中的官能团和它们的位置。
通过与已知标准物质进行比较,可以对未知有机物进行鉴定和确认。
2. 官能团分析红外光谱还可以用于官能团分析。
不同官能团在红外区域具有特定的吸收峰,通过观察和解析红外光谱图上的吸收峰,可以确定有机化合物中存在的官能团。
3. 质谱联用红外光谱可以与质谱等其他分析方法联用,提高分析的准确性和灵敏度。
质谱结合红外光谱可用于鉴定复杂有机物的分子结构和组成。
4. 药物分析红外光谱在药物分析中有着广泛的应用。
通过红外光谱的分析可以确定药物中的特定官能团,帮助药物研发和质量控制。
5. 环境监测红外光谱可以用于环境监测。
通过分析空气、水、土壤等样品的红外光谱,可以确定其中的污染物种类和浓度,提供有关环境质量的信息。
6. 食品质量检测红外光谱可以应用于食品质量检测。
通过对食品样品的红外光谱进行分析,可以判断其成分和质量,检测其中是否存在污染物或添加剂。
7. 化学反应跟踪红外光谱也可以用于化学反应的跟踪。
通过在反应过程中测量红外光谱的变化,可以了解反应物的转化和产物的生成情况,为反应的优化提供依据。
三、红外光谱的实验技术红外光谱分析需要使用红外光谱仪。
常见的红外光谱仪有傅里叶红外光谱仪(FT-IR)和单波长红外光谱仪。
傅里叶红外光谱仪具有较高的分辨率和灵敏度,可以获取更精细的光谱信息。
有机化学基础知识点有机物的红外光谱和拉曼光谱

有机化学基础知识点有机物的红外光谱和拉曼光谱有机化学基础知识点——有机物的红外光谱和拉曼光谱有机化学是研究有机物质结构、性质和变化的科学。
在有机化学研究中,红外光谱和拉曼光谱是两种重要的分析方法。
本文将介绍有机物的红外光谱和拉曼光谱的基本原理、应用场景以及分析流程。
一、红外光谱红外光谱是一种常用的谱学方法,通过检测有机物质与红外辐射的相互作用来研究其分子结构。
红外光谱的原理基于有机物质分子中的共振和非共振振动。
1. 基本原理红外辐射的频率范围通常为1到300 THz,对应的波长范围为0.78到300 μm。
它可以使分子内部的键振动和分子整体的转动、振动产生共振。
当有机物质与红外辐射发生共振时,分子的振动状态会发生变化,产生吸收峰。
2. 应用场景红外光谱广泛应用于有机物质的结构鉴定、反应监测和纯度检验等方面。
通过红外光谱分析,可以确定有机物分子中的官能团类型、键的性质以及取代基的位置等信息。
3. 分析流程红外光谱分析的流程一般包括样品制备、仪器调节和数据处理等步骤。
首先,需要将待测有机物制备成适当的样品,例如片剂、液体薄膜或气体。
然后,根据仪器的要求进行调节,选择合适的光源、检测器和波数范围等参数。
最后,通过数据处理软件对测量结果进行峰识别和谱图解析。
二、拉曼光谱拉曼光谱是一种非常灵敏和具有高分辨率的分析方法,能够提供关于分子结构和化学键的详细信息。
拉曼光谱的测量原理基于拉曼散射效应。
1. 基本原理当光线通过物质时,一部分光被散射,其中一小部分经历拉曼散射。
拉曼散射是指入射光子与物质分子相互作用,并相对于入射光产生能量的增减。
拉曼光谱测量的是样品与散射光之间的相对频率差异,通过分析产生的拉曼散射光,可以获得物质的结构和键信息。
2. 应用场景拉曼光谱广泛应用于有机物的鉴定、反应动力学研究和药物分析等领域。
与红外光谱相比,拉曼光谱对样品准备的要求更低,对水和其他溶剂的干扰也较小。
3. 分析流程拉曼光谱的分析流程一般包括样品制备、仪器调节和数据处理等步骤。
光谱有关知识点归纳总结

光谱有关知识点归纳总结一、光谱学的基本原理1. 光的电磁波性质光是一种电磁波,具有波长和频率,可以在真空中传播。
波长和频率之间有一个固定的关系,即光速等于波长乘以频率。
不同波长的光对应于不同的颜色,波长越短,频率越高,对应的颜色就越偏向紫色。
2. 物质的光谱特性不同物质对光的吸收、发射、散射都有特定的规律和特性。
通过观察物质对光的相互作用,可以了解其组成、结构和性质。
3. 光谱的分类根据不同的光谱特性,可以将光谱分为吸收光谱、发射光谱、拉曼光谱、散射光谱等,每种光谱都有自己独特的应用领域。
二、光谱分析的方法1. 吸收光谱分析吸收光谱分析是利用物质对特定波长光的吸收来研究其成分和浓度的方法。
其原理是当物质吸收特定波长光时,会产生吸收峰,吸收峰的强度与物质的浓度成正比。
2. 发射光谱分析发射光谱分析是通过加热或激发物质使其发射特定波长光来研究其成分和结构的方法。
发射光谱可以直接测定物质的元素组成,并用于光谱荧光法、原子发射光谱法等。
3. 拉曼光谱分析拉曼光谱分析是利用激光与样品相互作用产生拉曼散射光的方法,可以用于研究物质的结构和化学键。
4. 散射光谱分析散射光谱分析是通过测定物质对散射光的散射强度和方向来研究其性质和结构的方法,广泛应用于材料、生物等领域。
三、光谱学在不同领域的应用1. 化学分析领域光谱学在化学分析领域有着广泛的应用,可以用于研究物质的成分、浓度、结构和性质,包括红外光谱、紫外可见光谱、质谱等。
2. 生物医学领域在生物医学领域,光谱学可以用于研究生物大分子的结构和功能,包括蛋白质、核酸、多糖等,用于药物分析和诊断。
3. 天文学领域光谱学在天文学领域有重要的应用,可以用于研究星际空间中的物质组成、温度、运动状态等,包括天体光度学、分光测速等。
4. 材料科学领域光谱学在材料科学领域可以用于研究材料的组成、结构和性质,包括材料表面光谱分析、光学薄膜分析等。
研究物质的光谱特性对于深入了解物质性质和结构具有重要意义,光谱学的发展也不断推动着其他学科的进步。
有机光谱复习总结

有机光谱复习总结(有些部分不是重点,有点多余,大家可以删减一下,期待更正补充哈~~~~~~)来源:陆朦辰的日志第一章紫外吸收光谱电子能级跃迁所产生的吸收光谱,主要在近紫外区和可见区,称为可见-紫外光谱;键振动能级跃迁所产生的吸收光谱,主要在中红外区,称为红外光谱;自旋的原子核在外加磁场中可吸收无线电波而引起能级的跃迁,所产生的吸收光谱称为核磁共振谱;c = λ·υ;E = h υ分子吸收光谱的产生:在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。
△E电子>△E振动>△E转动Lambert–Beer定律:A= -lgT=εCL= KCLA:吸光度;T:透光率,T=I/I o(I、I o分别是出射和入射光的强度):物质浓度为1mol/L 时所测得的吸光度,称为摩尔吸光系数;K:物质浓度为1%(g/100ml)时测得的吸光度,称为百分吸光系数;L:通常用1cm 吸收池(比色皿)分子轨道的类型:s-s重叠;s-p重叠;p-p重叠;n轨道电子跃迁类型:1、σ→σ*跃迁:ζ轨道上的电子由基态激发到激发态产生的跃迁。
它需要的能量较高,一般发生在真空紫外光区(≤150nm)。
饱和烃中的—c—c—键属于这类跃迁,例如乙烷的最大吸收波长λmax为135nm。
2、π→π*跃迁轨道上的电子吸收紫外线后产生的跃迁。
它需要的能量低于ζ→ζ*跃迁,吸收峰一般处于近紫外光区,在200 :双键或三键中nm左右,其特征是摩尔吸光系数大,一般εmax≥104,为强吸收带。
如乙烯(蒸气)的最大吸收波长λmax为162 nm。
3、n→π*跃迁:简单的生色团如-CO-、—CHO、-COO H、硝基等中的孤对电子向反键轨道的跃迁。
这类跃迁发生在近紫外光区。
其特点是谱带强度弱,摩尔吸光系数小,通常小于100,属于禁阻跃迁。
4、n→σ*跃迁:含有未用电子对基团中的未用电子对在吸收光能后产生的跃迁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机光谱复习总结第一章紫外吸收光谱电子能级跃迁所产生的吸收光谱,主要在近紫外区和可见区,称为可见-紫外光谱;键振动能级跃迁所产生的吸收光谱,主要在中红外区,称为红外光谱;自旋的原子核在外加磁场中可吸收无线电波而引起能级的跃迁,所产生的吸收光谱称为核磁共振谱;c = λ·υ;E = h υ分子吸收光谱的产生:在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。
△E电子>△E振动>△E转动Lambert–Beer定律:A= -lgT=εCL= KCLA:吸光度;T:透光率,T=I/I o(I、I o分别是出射和入射光的强度):物质浓度为1mol/L 时所测得的吸光度,称为摩尔吸光系数;K:物质浓度为1%(g/100ml)时测得的吸光度,称为百分吸光系数;L:通常用1cm 吸收池(比色皿)分子轨道的类型:s-s重叠;s-p重叠;p-p重叠;n轨道电子跃迁类型:1、σ→σ*跃迁:σ轨道上的电子由基态激发到激发态产生的跃迁。
它需要的能量较高,一般发生在真空紫外光区(≤150nm)。
饱和烃中的—c—c—键属于这类跃迁,例如乙烷的最大吸收波长λmax为135nm。
2、π→π*跃迁:双键或三键中轨道上的电子吸收紫外线后产生的跃迁。
它需要的能量低于σ→σ*跃迁,吸收峰一般处于近紫外光区,在200 nm左右,其特征是摩尔吸光系数大,一般εmax≥104,为强吸收带。
如乙烯(蒸气)的最大吸收波长λmax为162 nm。
3、n→π*跃迁:简单的生色团如-CO-、—CHO、-COO H、硝基等中的孤对电子向反键轨道的跃迁。
这类跃迁发生在近紫外光区。
其特点是谱带强度弱,摩尔吸光系数小,通常小于100,属于禁阻跃迁。
4、n→σ*跃迁:含有未用电子对基团中的未用电子对在吸收光能后产生的跃迁。
如-OH、-SH、-Cl等。
实现这类跃迁所需要的能量较高,其吸收光谱落于远紫外光区和近紫外光区,如CH3OH和CH3NH2的n→σ*跃迁光谱分别为183nm和213nm。
也属于禁阻跃迁。
△E:σ→σ*>n→σ*>π→π*> n →π*电子跃迁的选律:1自旋定律:△S = 0;2轨道选律:△L = 0,±1;3对称性选律允许跃迁:σ→σ*、π→π*禁阻跃迁:π→σ*、σ→π*、n→σ*、n→π*紫外吸收光谱:应用不同波长紫外或可见光依次照射一定浓度的样品溶液,并测出在不同波长处样品的吸收度,然后以波长为横坐标,吸收度为纵坐标作图,所得曲线即紫外吸收曲线。
波长范围:100-400nm, 其中100-200nm 为远紫外区,200-400nm为近紫外区(常指)肩峰(曲折):S,是指当吸收曲线在下降或上升处有停顿或吸收稍有增加的现象,常是由主峰内藏有其他吸收峰造成。
A=-logI/I o=εCL, 摩尔吸收系数ε:指1L溶液中含有1mol溶质,其液层厚度为1cm时,在指定波长和一定条件下所测得的吸收度,单位L/(mol*cm);吸收系数E1cm1%:是指100ml溶液中含有1g溶质,液层厚度为1cm时,在指定波长和一定条件下所测得的吸收度,单位cm2/g吸收系数a= E1cm1%/10=ε/摩尔质量测定吸收系数时的注意事项:所用容量仪器及分析天平应经过校正;被测物质应为经过精制的纯品,并按规定方法干燥;测定所用的溶剂,其空白吸收应符合规定;吸收池应在临用前选择配对;称取样品时应称准至标重的0.2%;样品溶液应配成吸收度读数在0.6-0.8之间,测量完毕后,再用同批溶剂将溶液稀释一倍,再进行测定;样品应同时测定两份,相对偏差若超过1%,应重测;所用分光光度计应经过检定,特别是波长精度要进行校正;测定至少应重复五次以上,所得结果取平均值。
发色基:在可见和紫外光区能产生吸收的基团,即能产生π→π*和n→π*跃迁的基团。
Eg:C=C、C=O、苯环、NO2;助色基:某些基团(如-OH、-OR、—X、-NH2等含有未共用电子对的基团)本身在可见和紫外光区不产生吸收,但当他们被取代在发色基团上时,由于p→π共轭效应,能使发色基吸收峰向长波方向位移,这种基团称之为助色基。
红移:由于助色基的引入或溶剂效应使λmax向长波方向位移的效应;蓝移:由于共轭效应消失(如苯胺在酸性介质中)或溶剂效应使λmax向短波方向位移的效应增色效应:增加吸收强度的效应;减色效应:减少吸收强度的效应常见吸收带:R带,含杂原子的不饱和基团(如—C=O、—N=O等发色基),n→π*跃迁;K带,共轭双键(如C=C-C=C ,C=C-C=O),π→π*跃迁;B带,苯,出现在256nm (εmax = 220),π→π*跃迁;E带,苯(环状共轭系统),π→π*跃迁,E1带出现在184n m(ε= 60,000),E2带出现在204nm(ε= 8,000 )波长位移的影响因素:取代基的影响;共轭效应;超共轭效应(甲基取代双键碳上的H以后,通过甲基的C—H键和π体系电子云重叠引起的共轭作用,使π→π*跃迁红移);立体效应(空间位阻、环张力、跨环效应)、溶剂的影响紫外-可见分光光度计的类型:单光束分光光度计、双光束分光光度计、光多道二极管阵列检测的分光光度计Woodward-Fieser 规则:取代基对共轭双烯λmax的影响具有加和性。
应用范围:非环共轭双烯、环共轭双烯、多烯、共轭烯酮、多烯酮,不适用于较高程度的共轭体系;注意:选择较长共轭体系作为母体;交叉共轭体系只能选取一个共轭键,分叉上的双键不算延长双键;某环烷基位置为两个双键所共有,应计算两次。
紫外可见分光光度计仪器主要部件:1. 光源(钨灯或卤钨灯;氢灯或氘灯);2. 单色器(色散元件:棱镜、光栅;准直镜;狭缝);3.吸收池(玻璃—可见光、石英—紫外光);4.检测器(光电倍增管、二极管阵列检测器);5. 讯号处理与显示器;仪器的重要指标及校正:波长(汞灯中较强谱线or氘灯);透射比(吸光度)准确度(重铬酸钾硫酸溶液);杂散光(碘化钠,亚硝酸钠);光谱带宽;噪声;稳定性、重复性单组分定量分析:吸光系数法、标准曲线法、对照法第二章红外光谱和拉曼光谱红外光谱:分子吸收红外光区的能量,发生分子振动-转动能级跃迁所产生的吸收光谱。
优点:具有“指纹性”,红外光谱法不仅能进行定性和定量分析,而且从分子的特征吸收可以鉴定化合物和分子结构。
除光学异构体和长链烷烃,每个化合物都有特定的IR光谱。
红外与紫外的对比:与紫外-可见吸收光谱不同,产生红外光谱的波长要长的多,因此光子能量低。
物质分子吸收红外光后,只能引起振动和转动能级跃迁,不会引起电子能级跃迁。
所以红外光谱一般称为振动-转动光谱;紫外-可见吸收光谱常用于研究不饱和有机化合物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物;红外光谱分析对气体、液体固体样品都可测定,具有特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。
产生红外吸收的条件:1.ΔV=+1,即跃迁必须在相邻振动能级之间进行;2.Δμ≠0分子振动过程中偶极矩发生变化的振动才有红外吸收,对称性分子的对称伸缩振动没有红外吸收。
偶极矩:µ =qd(Δµ=0,红外非活性振动;Δµ≠0,红外活性振动)影响偶极矩(D)的因素:组成化学键的原子的电负性;振动形式不同;测定状态的影响(氢键);相邻基团的偶极矩极化率:分子振动时电子云形状在振动平衡位置前后起了很大变化,但振动未引起正负电荷中心距离的改变(Δµ=0),这种振动称偶极矩不变、极化率变化的振动。
极化率变化的振动为拉曼活性的振动。
拉曼光谱是研究分子极化率的变化,分子中电子云相对于骨架的移动越大,极化率越大,拉曼散射越强。
分子的基本振动模式:1.伸缩振动ν:对称伸缩振动νs;不对称伸缩振动νas;2. 弯曲振动δ:面内弯曲振动(剪式);面外弯曲振动(平面摇摆式ρ;扭曲式τ;非平面摇摆式ω);3. 环的变形振动(呼吸振动)非线性分子振动自由度= 3N-6;线性分子振动自由度=3N-5绝大多数化合物在红外光谱图上出现的峰数远小于理论上计算的振动数,因为:1没有偶极矩变化的振动,不产生红外吸收;2相同频率的振动吸收重叠,即简并;3仪器不能区别频率十分接近的振动,或吸收带很弱,仪器无法检测;4有些吸收带落在仪器检测范围之外。
基频峰:分子吸收红外辐射后,由基态振动能级(V=0)跃迁至第一振动激发态(V=1)时,所产生的吸收峰。
倍频峰:振动能级由基态(V=0)跃迁至第二激发态(V=2)、第三激发态(V=3),所产生的吸收峰。
结合频峰:基频峰间相互作用,形成频率等于两个基频峰频率之和或之差的结合频峰。
倍频峰、结合频峰统称为泛频峰何谓基团频率? 它有什么重要用途?与一定结构单元相联系的振动频率称为基团频率,大多集中在4000-1350cm-1,基团频率可用于鉴定官能团振动偶合:分子内有近似相同波数且位于相邻部位的振动基团相互作用,产生两种以上基团参加的混合振动。
对称振动偶合:红外吸收在较低波数处,吸收强度亦小;不对称振动偶合:红外吸收在较高波数处,吸收强度亦大。
Fermi共振:由频率相近的泛频峰和基频峰相互作用而产生的,使泛频峰强度大大增加或发生分裂的现象,是振动偶合的一种。
Eg:醛、苯甲酰氯红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程红外对有机化合物的定性具有鲜明的特征性,因为每一化合物都有特征的红外光谱,光谱带的数目、位置、形状、强度均随化合物及其聚集态的不同而不同。
过程:试样的分离和精制;了解试样有关的资料;谱图解析;与标准谱图的对照;联机检索影响峰位变化的主要因素:基团频率主要是由基团中原子的质量及原子间的化学键力常数决定。
影响基团频率位移的因素大致可分为外因和内因:外因(试样状态,测试条件,溶剂效应,制样方法等);内因(1. 电子效应:诱导效应、共轭效应、中介效应;2. 氢键效应:形成氢键后,↓,峰强↑,峰宽↑3. 振动耦合;4. Fermi共振;5.立体障碍;6、环的张力)何谓指纹区?它有什么特点和用途?在IR光谱中,频率位于1350-650 cm-1的低频区称为指纹区。
指纹区主要价值在于表示整个分子的特征,因而适用于与标准谱图或已知物谱图的对照,以得出未知物与已知物是否相同的正确结论,任何两个化合物的指纹区特征都不相同。
氯仿(CHCl3)的红外光谱说明C-H伸缩振动频率为3100cm-1,对于氘代氯仿(CDCl3),其C-2H振动频率是否会改变?如果变化的话,是向高波数还是低波数位移?为什么?答:由于1H和2H的相对原子质量不同,所以其伸缩振动频率会发生变化。