蜗杆轴零件的加工工艺
蜗杆加工工艺技术
蜗杆加工工艺技术蜗杆加工工艺技术是指将蜗杆从原始材料加工成最终产品的一系列工艺步骤和技术要点。
蜗杆是一种常用于传动机械的重要零部件,其加工精度和质量直接影响到传动系统的工作效率和寿命。
下面将介绍一些常用的蜗杆加工工艺技术。
首先,蜗杆的加工开始于材料的选择。
常用的材料有钢、铜、铝等,具体的选择要根据实际使用条件和要求来确定。
在选择材料时需要考虑材料的硬度、耐磨性、耐腐蚀性等因素。
其次,蜗杆的加工包括多道工序,其中最主要的是车削和齿切割。
在车削过程中,通过旋转蜗杆,并在刀具上施加一定的切削力,将材料逐渐削除,形成蜗杆的外轮廓。
在齿切割过程中,通过使用专用的齿轮切割机床,将蜗杆的刀具与齿轮进行配合切削,形成蜗杆的蜗杆轮廓。
为了保证蜗杆加工的精度和质量,需要注意以下几个方面。
首先是刀具的选择,要选择合适的刀具类型和刀具参数,以确保切削效果。
其次是刀具的安装调试,要保证切削刀具的位置和角度的精确度。
此外,还需要注意切削速度和进给速度的调节,以防止因切削速度过高或进给速度过快而引起的加工缺陷。
除了车削和齿切割,蜗杆加工还涉及到光磨和热处理等工艺。
在光磨过程中,通过使用磨削工具和磨粒,对蜗杆进行表面处理,以改善其光洁度和精度。
在热处理过程中,通过将蜗杆加热到一定的温度,然后快速冷却,以提高其硬度和韧性。
最后,蜗杆加工还需要进行质量检测和表面处理。
通过使用专用的测量工具和设备,对蜗杆的尺寸、形状和表面质量进行检测,以确保其符合设计要求。
在表面处理中,可以进行镀铬、喷涂等处理,以提高蜗杆的耐磨性和耐腐蚀性。
综上所述,蜗杆加工工艺技术包括材料选择、车削、齿切割、光磨、热处理等一系列步骤和技术要点。
通过合理的选择和应用这些技术,可以提高蜗杆的加工精度和质量,从而提高传动系统的工作效率和寿命。
蜗杆加工工艺技术是一项复杂的机械加工工艺,要求加工过程具有高度的精度和稳定性。
下面将继续介绍相关的技术内容。
在蜗杆的加工过程中,车削是一个关键的工艺步骤。
十字孔蜗杆轴加工工艺流程
十字孔蜗杆轴加工工艺流程The manufacturing process for a cross hole worm shaft involves several key steps to ensure precision and quality. First, the raw material, typically a high-grade steel or alloy, is selected and inspected for any defects or impurities that could affect the final product. This is crucial in ensuring a strong and durable worm shaft that can withstand the stresses of its intended use.十字孔蜗杆轴的加工工艺流程涉及几个关键步骤,以确保精度和质量。
首先,选择并检查原材料,通常是高级钢材或合金,以确保没有任何影响最终产品的缺陷或杂质。
这对于确保一个坚固耐用的蜗杆轴至关重要,以经受其预期用途的应力。
Next, the raw material is machined to the desired dimensions and shape using specialized equipment such as lathes, milling machines, and grinders. This process requires skilled operators who can accurately follow the design specifications to achieve the required tolerances and surface finishes. Any deviations from the design can result in a faulty worm shaft that may not perform as expected.接下来,使用专门设备(如车床、铣床和磨床)对原材料进行加工,使其达到所需的尺寸和形状。
蜗杆的加工与检测
编写数控程序及精度控制
O0009;(第一次精加工) G40G97G99M03S180T11; G00 X50.0 Z5.0; G76 P020130 Q50 R0.03; G76 X39.2 Z-47 P4400 Q2000 F6.283; (G76C2A30X39.2Z-64K4.4U0.03V0.05Q2.0F6.283华中) G00 X150.0; Z200; M05; M30;
2.蜗杆车刀的装夹
(1)水平装刀法 车轴向直廓蜗杆时,用水平装刀法。在装夹车刀时一般用样板找正装夹。 装夹模数较大的蜗杆车刀,容易把车刀装歪。可采用万能量角器来找正车刀 刀尖角位置(见左图)。
(2)垂直装刀法 车削法向直廓蜗杆时,必须把车刀两侧切削刃组成的平面装得与蜗杆齿侧 垂直。 由于蜗杆的导程角比较大,为了改善切削条件和达到垂直装刀要求, 可采用可回转刀杆(见右图)。刀头可相对刀杆回转一个所需的导程角,然后用 螺钉紧固。这种刀杆开有弹性槽,车削时不易产生扎刀。 用水平装刀法车削蜗杆时,由于其中一侧切削刃的前角变得很小,切削不 顺利,所以在粗车轴向直廓蜗杆时,也常采用垂直装刀法。
六、蜗杆的测量方法
蜗杆的主要测量参数有齿距、齿顶圆直径、分度圆直径、法向齿厚。其中 齿顶圆直径可用千分尺测量,齿距由机床传动链保证。 1.分度圆直径的测量 分度圆直径的测量用三针或单针测量,方法与测量梯形螺纹相同(公式不同)。 M=d1+3.924dD-4.316mX d1-分度圆直径,dD=量针直径 dD=1.672 mx 2.法向齿厚的测量 法向齿厚使用齿轮游标卡尺测量(见下图)。适用于精度要求不高的蜗杆。 因图样上一般注明的是轴向齿厚,所以先要把轴向齿厚换算成法向齿厚。
五、蜗杆的车削方法 蜗杆的车削方法和车削梯形螺纹相似。有斜向进刀切削 法、左右切削法、车直槽法和车阶梯槽法。 由于蜗杆的齿距大,齿型深,切削面积大,车削时比梯 形螺纹困难些。一般粗车后留精车余量0.2~0.4mm,在精车 时,采用均匀的单面车削。切削深度不宜过深,否则会发生 “啃刀”现象。所以在车削过程中,必须注意观察切削情况, 控制切削用量,防止“扎刀”。最后再用刀尖角略小于齿型 角的车刀,精车蜗杆底径,把齿型修整清晰,以便保证蜗杆 齿面的表面粗糙度和精度要求。
蜗杆加工工艺路线和论证
蜗杆加工工艺路线和论证蜗杆加工工艺路线:1. 材料选择:蜗杆材料通常选择高强度、高硬度的合金钢、不锈钢、铜合金等材料。
2. 切削加工:蜗杆是通过切削工艺来制造的,常见的切削方式有车削、铣削、磨削、拉削等。
3. 热处理:为了提高蜗杆的强度和耐磨性,通常需要对其进行热处理。
常见的热处理工艺有淬火、回火、渗碳等。
4. 精密加工:蜗杆是精密零件,需要进行精密加工处理。
常见的精密加工方式有磨齿、研磨等。
5. 表面处理:蜗杆表面处理通常采用镀铬、喷涂、阳极氧化等方式,提高其表面硬度和耐磨性。
6. 装配和检验:蜗杆制造完成后,需要进行装配和检验,确保其质量符合要求。
论证:蜗杆是机械传动中常用的零件之一,其加工质量的好坏直接影响到机械传动的稳定性和可靠性。
针对蜗杆的加工工艺路线,需要考虑以下几个方面:1. 材料选择的合理性:蜗杆通常承受较大的负荷,因此需要选择高强度、高硬度的材料。
在选择材料时需要综合考虑其成本、可加工性、耐磨性等因素。
2. 切削加工的精度和表面质量:蜗杆是高精度零件,其几何形状和表面粗糙度直接影响到传动的精度和噪声水平。
因此在切削加工时需要考虑刀具的选择、切削参数的控制、加工过程中的冷却和润滑等因素。
3. 热处理的工艺控制:蜗杆的热处理需要精确控制温度、时间和冷却方式,以保证其组织结构和性能指标符合要求。
4. 精密加工的工艺控制:蜗杆的磨齿和研磨加工需要使用高精密度的设备,并严格控制加工过程中的参数和误差,以确保蜗杆的精度和表面质量符合要求。
5. 表面处理的效果评价:蜗杆表面处理需要注意其基材与涂层之间的黏着度和密合性,以及涂层的厚度和硬度等因素。
需要进行表面质量的评价和质量检查,确保蜗杆表面的质量符合要求。
6. 装配和检验的质量控制:在蜗杆的装配和检验过程中,需要严格控制加工误差和装配偏差,保证蜗杆的传动精度和噪声水平符合要求,并进行可靠性测试。
蜗杆轴加工
4、螺纹车削方法
1)直进法车削螺纹 2)ຫໍສະໝຸດ 进法车螺纹 3)左、右切削法车螺纹
螺纹车刀要求及安装
1、车刀的刀尖角等于螺纹牙型角α=60°; 2、其前角γ。=0°才能保证工件螺纹的牙型角,否 则牙型角将产生误差;只有粗加工时或螺纹精度要 求不高时,其前角可取 γ。=5°~20°; 3、安装螺纹车刀时刀尖对准工件中心,并用样板 对刀,以保证刀尖角的角平分线与工件的轴线相垂 直,车出的牙型角才不会偏斜。
环节三、完成任务
任务:某工厂批量生产下图所示轴零件,请为该工 件选择合适的铣削加工设备及装夹方式。
环节四、课堂小结与任务布置
小结:
铣削加工工艺范围、铣床、铣刀、铣削 加工方式及工艺特点。
课后任务:
P137 题4。
学习任务3
磨削加工认知及其应用
能力目标
能够针对不同的零件特点,正确选择磨削 加工方法
a圆柱平面铣刀 b端铣刀 c立铣刀、 d两面刃 e三面刃铣刀 f锯片铣刀、 gT形槽铣刀 h角度铣刀 I凸半圆 j凹半圆铣刀
加工复杂形成面用铣刀
四、铣削方式
铣削方式按铣刀不同可分为端铣和周铣。 端铣时切削力变化小,铣削过程平稳,加工质量 较周铣高,生产率高,但端铣适应性差,主要用于平 面铣削。 周铣能用多种铣刀铣削各种成形面,适应性广。
按不同的进给方向,又有纵磨法和横磨法之分。
① 纵磨法
原理:
磨削时工件随工作台作直线往复纵向进给运动, 工件每往复一次(或单行程),砂轮横向进给一次 。
特点:
纵磨法每次的切入量少,磨削力小,散热条件 好,但效率较低。
② 横磨法
原理:
工件不作纵向进给运动,砂轮以缓慢的速度连续或断 续地向工件作径向进给运动,直至磨去全部余量为止。
蜗轮蜗杆设计步骤
蜗轮蜗杆设计步骤蜗轮蜗杆是一种常见的传动机构,它可以将高速旋转的电机转换成低速高扭矩的输出,广泛应用于各种机械设备中。
在设计蜗轮蜗杆时,需要遵循一定的步骤,以确保传动系统的可靠性和高效性。
本文将介绍蜗轮蜗杆设计的步骤和注意事项。
一、确定传动比和输出扭矩在设计蜗轮蜗杆传动系统时,首先需要确定传动比和输出扭矩。
传动比是指输入轴转速与输出轴转速的比值,通常用i表示。
输出扭矩是指输出轴所能提供的扭矩大小,通常用T表示。
传动比和输出扭矩的确定需要考虑到传动系统的工作条件和要求,如负载大小、转速范围、传动效率等。
二、选择蜗轮和蜗杆的材料和加工工艺蜗轮和蜗杆是蜗轮蜗杆传动系统的核心部件,其材料和加工工艺的选择对传动系统的性能和寿命有着重要的影响。
一般来说,蜗轮和蜗杆的材料应具有高强度、高硬度、高耐磨性和高耐腐蚀性等特点。
常用的材料有合金钢、不锈钢、铜合金等。
加工工艺方面,蜗轮和蜗杆的加工精度要求较高,通常采用数控加工或磨削加工等高精度加工工艺。
三、确定蜗轮和蜗杆的几何参数蜗轮和蜗杆的几何参数包括蜗轮的齿数、蜗杆的螺旋角、蜗杆的导程等。
这些参数的确定需要考虑到传动比、输出扭矩、传动效率等因素。
一般来说,蜗轮的齿数越多,传动效率越高,但制造难度也越大;蜗杆的螺旋角越小,传动效率越高,但输出扭矩也越小。
四、进行传动系统的设计计算在确定了传动比、输出扭矩、蜗轮和蜗杆的几何参数后,需要进行传动系统的设计计算,以确定各个部件的尺寸和工作参数。
设计计算包括蜗轮和蜗杆的模数、齿宽、轴径、轴承尺寸、传动效率等参数的计算。
设计计算的准确性和合理性对传动系统的性能和寿命有着重要的影响。
五、进行传动系统的结构设计在进行传动系统的结构设计时,需要考虑到传动系统的安装、维修和保养等方面的要求。
传动系统的结构设计应尽可能简单、紧凑、可靠,方便安装和维修。
同时,还需要考虑到传动系统的密封性、散热性等方面的问题,以确保传动系统的正常工作。
六、进行传动系统的试验和验证在完成传动系统的设计和制造后,需要进行试验和验证,以确保传动系统的性能和可靠性。
蜗杆加工工艺与工装设计
蜗杆加工工艺与工装设计一、蜗杆加工工艺蜗杆是一种常用于传动装置中的零件,具有高精度、高可靠性和高耐磨性等特点。
蜗杆的加工工艺是指对蜗杆进行加工的一系列工艺过程。
下面将从材料选择、车削加工、热处理和磨削加工等方面介绍蜗杆的加工工艺。
1.材料选择:蜗杆通常选择高强度、高耐磨性和高韧性的材料,如45号钢、40Cr、42CrMo等。
材料的硬度要保证达到一定的标准,以保证蜗杆的传动性能。
2.车削加工:蜗杆的加工一般采用车削加工的方法。
在车削前,需要根据蜗杆的尺寸要求制定相应的车削工艺,并选择适当的车削刀具和车削参数。
蜗杆的车削一般需要进行多道次的切削,以保证蜗杆的精度和表面质量。
3.热处理:蜗杆在车削加工完成后需要进行热处理,以提高其硬度和耐磨性。
热处理一般包括淬火和回火两个步骤。
淬火后蜗杆的硬度会大幅提高,但其脆性也会增加,因此需进行回火处理以降低其脆性,提高其韧性。
4.磨削加工:磨削是蜗杆加工的最后一个步骤。
蜗杆磨削主要是为了提高其精度和表面质量。
常用的磨削方法有外圆磨削、蜗杆磨削和蜗轮磨削等。
磨削加工时需要选择合适的砂轮和磨削工艺参数,并对蜗杆进行适当的冷却,以避免高温对蜗杆的影响。
二、蜗杆工装设计蜗杆工装设计是指为了保证蜗杆加工质量和效率,设计和制造相应的工装装置。
下面将从工装的结构设计、定位与夹紧和装置制造等方面介绍蜗杆工装设计的重点。
1.结构设计:蜗杆工装的结构设计应根据蜗杆的尺寸和加工工艺要求进行设计。
工装一般由基座、定位夹具、夹紧装置和切削刀具等组成。
基座需要具备足够的刚性和稳定性,以保证工装的稳定性。
夹具和夹紧装置需要根据蜗杆的形状和尺寸进行设计,以确保其在加工过程中的固定和夹紧。
2.定位与夹紧:蜗杆在加工过程中需要进行定位和夹紧。
定位主要是确定蜗杆的加工位置和方向,通常使用定位销、定位块等来实现。
夹紧则是将蜗杆固定在工装上,通常使用夹紧器、夹爪等来实现。
定位和夹紧应根据蜗杆的加工需求和加工精度进行设计和选型。
蜗杆轴零件的加工工艺
蜗杆轴零件的加工工艺1. 简介蜗杆轴是一种常见的传动装置,在机械设备中用于实现传动和变速功能。
蜗杆轴零件的加工工艺对于其质量和性能起着决定性的作用。
本文将介绍蜗杆轴零件的加工工艺流程以及相关注意事项。
2. 加工工艺流程2.1 材料准备蜗杆轴常用的材料有钢、铸铁等,选择合适的材料对于提高蜗杆轴的耐磨性和强度非常重要。
在加工工艺中,需要根据设计要求选择相应的材料,并进行材料预处理。
2.2 切削加工蜗杆轴的加工通常包括车削、铣削、钻削等切削加工过程。
在切削加工中,需要根据蜗杆轴的尺寸和形状要求,采用适当的切削工艺和工具进行加工。
切削加工时,需确保加工精度和表面质量,避免产生划痕和变形等缺陷。
2.3 热处理蜗杆轴常常需要进行热处理,以提高其硬度和耐磨性。
常用的热处理方法包括淬火、回火和表面渗碳等。
在热处理中,需要控制好加热温度和保温时间,以及冷却速度,以确保蜗杆轴在热处理后具有良好的性能。
2.4 修磨和校验蜗杆轴的表面精度和几何形状对于传动的性能有很大影响。
因此,在加工过程中,需要进行修磨和校验工序。
修磨过程中使用砂轮或砂带进行研磨,校验过程中则使用测量工具如千分尺、游标卡尺等对蜗杆轴进行检测和校正。
2.5 表面处理为了提高蜗杆轴的耐腐蚀性和摩擦性能,常常需要对其进行表面处理。
常见的表面处理方法有镀铬、电镀、喷涂、氮化等。
选择合适的表面处理方法,可以大幅度提高蜗杆轴的使用寿命和传动效率。
3. 注意事项在蜗杆轴零件的加工过程中,还需要注意以下几点:3.1 安全操作加工过程中,需要严格遵守安全操作规程,使用合适的防护设备,避免事故发生。
同时,要保证加工环境良好,防止灰尘、杂质等对加工质量的影响。
3.2 加工精度蜗杆轴是一种高精度零件,加工过程中需严格控制尺寸公差和表面粗糙度。
需要使用合适的切削工具和设备,保证加工精度符合设计要求。
3.3 耐磨性和润滑性蜗杆轴在工作过程中承受较大的摩擦和磨损,因此在加工过程中要注意提高其耐磨性和润滑性。
蜗杆加工工艺流程
蜗杆加工工艺流程蜗杆加工是一种常用的机械加工工艺,用于制造各种传动装置中的蜗轮和蜗杆。
下面我将介绍一下蜗杆加工的工艺流程。
首先,在进行蜗杆加工之前,需要准备好蜗杆加工所需的原材料。
常用的材料有铸铁、钢等。
选用合适的材料来制造蜗轮和蜗杆,能够确保其强度和耐磨性,使其能够承受较大的负载和长时间的工作。
接下来,进行蜗杆的车削加工。
首先,在车床上进行转车,即将原材料装夹在车床的主轴上,并通过车刀进行切削。
在车削加工中,需要根据蜗杆的要求来选择合适的车刀和车削速度,以确保能够得到尺寸精度高、表面光洁度好的蜗杆。
然后,进行蜗杆的切割加工。
切割加工是将蜗杆的齿轮部分进行切削,以形成蜗轮。
切割加工通常使用齿轮加工机床进行,通过齿轮刀具与蜗杆进行啮合切削,使蜗轮的齿数和齿形满足设计要求。
接下来是蜗杆的磨削加工。
磨削加工是为了进一步提高蜗杆的尺寸精度和表面光洁度。
通常采用磨削机进行磨削加工,通过砂轮与蜗杆进行磨削,使其表面更加光滑、尺寸更加精确。
最后是蜗杆的热处理。
热处理是为了改善蜗杆的材料性能,提高其硬度和耐磨性。
一般采用淬火和回火两个工艺步骤进行热处理。
淬火是将蜗杆加热到临界温度后迅速冷却,使其达到所需的硬度;回火是将淬火后的蜗杆再加热到较低的温度并保持一定时间后冷却,以减轻淬火带来的脆性和应力。
综上所述,蜗杆加工工艺流程包括原材料准备、车削加工、切割加工、磨削加工和热处理。
每个工艺步骤都需要合理选择加工设备和工艺参数,才能够得到质量满足要求的蜗轮和蜗杆。
蜗杆加工工艺流程的优化和改进,能够提高蜗杆的加工效率和质量,满足各种传动装置的使用要求。
机械制造基础课程设计
机械制造基础课程设计题目:设计蜗杆轴(A5)零件的机械加工工艺规程学校:能源工业技师学院班级:设计:辅导:设计时间:2001 年4 月15 日前言课程设计是考察学生全面在掌握基本理论知识的重要环节机械制造工艺学课程设计是在我们学完这学期基础课、技术基础课以及部分专业课之后进行的。
这是我们毕业之前对所学各课程的一次深入的综合性的链接,也是一次性理论联系实际的训练。
在学完机械制造基础的基础上进行这样的设计和练习,我们觉得是很有必要的,它对我们的理论知识有了一定的提高,让我们知道了学习知识的重要性和怎么根据具体的情况设计出实用的零件。
就我个人而言,我希望能通过这次课程设计对自己未来将从事的工作进行一次适应性训练。
从中锻炼自己分析问题、解决问题、提高自己、对此专业课有更深刻的认识和了解,为今后参加社会现代化建设奠定一个良好的基础。
目录前言 (2)课程设计任务书 (4)一.蜗杆轴的分析 (5)1.1蜗杆轴零件图 (5)1.2蜗杆轴的特点 (6)1.3蜗杆轴的应用及技术要求 (6)二.蜗杆轴工艺分析 (6)三.确定毛坯 (7)3.1确定毛坯的制造形式 (8)3.2各表面加工方法的确定 (8)3.3基准的选择 (8)3.4工艺路线的拟定 (9)3.5加工设备及工艺设备的的选择 (10)3.6工序尺寸及公差的确定 (11)3.7刀具的选择 (11)3.8切削用量的选择 (12)四.课程设计心得体会 (14)五.参考文献 (16)附表工艺过程卡、工序卡 (17)机械制造基础课程设计任务书设计题目设计“蜗杆轴”零件的机械加工一、题目1、设计_蜗杆轴(A5)零件的机械加工工艺规程。
2、生产类型:单件、成批(小批、中批、大批)、大量生产。
3、课程设计的具体要求如下。
(1)毛坯图:1张。
(2)机械加工工艺过程卡片:1份。
(3)机械加工工序卡片:1~2份。
(4)课程设计说明书一份。
二、具体内容。
1、确定生产类型,对零件进行工艺分析;2、确定毛坯种类及制造方法,绘制毛坯图;3、确定零件各表面的加工方法及其定位基准;4、拟定零件的机械加工工艺过程,选定各工序的加工内容、加工设备及工艺装备(刀具、夹具、量具和辅具);5、确定工序尺寸及公差,各工序切削用量,计算某一代表工序的工时定额,画出工序简图;6、填写工艺文件,包括工艺过程卡片、工序卡片;7、撰写设计说明书。
车床加工蜗杆的工艺分析
车床加工蜗杆的工艺分析本文简要介绍了车床加工蜗杆的工艺分析。
标签:普通车床;车削蜗杆;工艺分析;多线蜗杆1 车削蜗杆的技术难点通常加工蜗杆习惯在专用车床上进行.这是由于专用车床对刀灵活,车削过程便于控制,加工效率高;尽管在数控车床上加工蜗杆粗车时效率很高,可大大减轻劳动强度,但在精车时也有一定的难度。
对刀没有专用车床快捷,操控性较专用车床差.对一些不可预见性的问题难以控制。
可见车削蜗杆是车削螺纹中较难的一个课题,因为在车削过程中,不仅要保证蜗杆的尺寸精度和形状精度.而且还要保证螺纹的相互位置精度。
例如,多线蜗杆的分线精度应保证多线蜗杆各螺旋槽在轴向是等距分布,且在端面上螺旋线的起点是等角度分布的。
若螺纹分线出现误差,则会直接影响蜗杆与蜗轮的啮合精度,轻则增加不必要的磨损,降低使用寿命;重则造成无法安装,工件报废。
在以往的工作实践中,加工螺纹普遍采用的是直进法、斜进法、左右切削法.尤其是加工钢件蜗杆、多线蜗杆时,螺距较大,一般加工又不使用弹簧刀杆,加工时间长,质量难以保证。
从加工工艺的角度分析,车削蜗杆的技术难点主要在于螺旋升角对车刀的影响。
1.1螺旋升角对车刀侧刃后角的影响在车削蜗杆时,由于螺旋升角的影响.引起切削平面和基面位置发生变化,使车刀工作时的前角和后角与车刀静止时的前角和后角的角度数值不同,如图1所示。
1.2螺旋升角对车刀两侧前角的影响车削蜗杆时由于螺旋升角的影响,使基面位置发生了变化,从而使车刀两侧的工作前角与静止前角的角度数值不相同。
如果车刀两侧切削刃均为Oo.切削就割顶利(如图2)。
由于蜗杆牙槽较宽、较深,需采用左右分层车削。
如在切削时工作前角是负前角,则切削不顺利,排屑也较困难.尤其是在螺旋升角较大情况下尤为突出。
为了改善上述状况,需在刃磨粗车刀时,考虑左右两侧面的工作前角和排屑,使切削右侧面的车刀工作前角大于等于0,有利于切削和排屑(如图3)。
2 车削蜗杆的工艺分析在普通车床上车削蜗杆.车床要有足够的刚性,刀具要有足够的强度,由于蜗杆牙齿较深,为使在切削过程中工件具有足够的刚性,可采取一端夹一端顶的方式安装工件.工件表面应包有薄铜皮,由三爪自定心卡盘夹紧。
蜗壳加工工艺
蜗壳加工工艺蜗壳加工工艺是一种常见的金属加工方法,用于制造各种蜗轮、蜗杆等零部件。
蜗壳是一种特殊形状的零件,通常用于传动装置中,具有重要的功能和作用。
本文将介绍蜗壳加工工艺的基本原理、加工方法和注意事项。
一、蜗壳加工工艺的基本原理蜗壳加工工艺的基本原理是根据蜗轮的设计要求,通过加工方法将原材料加工成特定形状的蜗壳。
蜗壳的形状复杂,通常具有螺旋状的结构,用于传递和改变动力的方向。
蜗壳加工需要考虑到蜗轮的齿数、齿廓曲线等因素,以确保蜗轮与蜗壳的配合精度和传动效率。
二、蜗壳加工工艺的加工方法蜗壳加工工艺的加工方法主要包括以下几个步骤:1. 设计蜗壳的形状和尺寸。
根据蜗轮的设计要求和传动比例,确定蜗壳的形状和尺寸参数。
2. 制作蜗壳的加工模具。
根据蜗壳的形状和尺寸,制作相应的加工模具,用于加工蜗壳的外形和内部结构。
3. 材料的选择和准备。
选择适合的材料,并进行切割、锻造等工艺处理,以获得符合要求的蜗壳原材料。
4. 加工蜗壳的外形。
使用加工模具和相应的加工设备,对蜗壳的外形进行加工,包括切削、铣削、车削等工艺。
5. 加工蜗壳的内部结构。
根据蜗壳的设计要求,使用加工设备和工具,对蜗壳的内部结构进行加工,包括孔加工、齿加工等工艺。
6. 表面处理和精加工。
对加工完成的蜗壳进行表面处理,如研磨、抛光等,以提高蜗壳的表面质量和光洁度。
7. 检验和调试。
对加工完成的蜗壳进行检验和调试,确保蜗壳的尺寸精度和传动性能符合设计要求。
三、蜗壳加工工艺的注意事项在进行蜗壳加工工艺时,需要注意以下几个方面:1. 加工设备和工具的选择。
根据蜗壳的形状和尺寸要求,选择适合的加工设备和工具,以确保加工质量和效率。
2. 加工工艺的控制。
严格控制加工工艺的各个环节,确保蜗壳的尺寸精度和表面质量符合要求。
3. 加工过程中的润滑和冷却。
在加工过程中,要使用适当的润滑剂和冷却剂,以降低摩擦和热量,保护加工设备和工具。
4. 检验和调试的重要性。
对加工完成的蜗壳进行严格的检验和调试,确保蜗壳的质量和性能符合设计要求。
涡轮蜗杆零件加工工艺流程
涡轮蜗杆零件加工工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!涡轮蜗杆零件加工是一道精细的机械加工过程,涉及到多个步骤和精细的操作。
蜗杆怎么加工-蜗杆的加工工艺
蜗杆怎么加工| 蜗杆的加工工艺内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.在经济全球化的格局下,我国制造业发展越来越迅速,齿轮的使用范围也越来越广泛,齿轮中的蜗轮蜗杆对其传递与转换的作用也是别的齿轮无法代替的。
那么蜗杆是怎么加工?它的加工工艺又是什么?本文,贤集网小编主要就是讲的这些内容!蜗杆的加工工艺1、确定毛坯的材料⑴具有优良的加工性能,能得到良好的表面光洁度和较小的残余内应力,对刀具磨损作用较小。
⑵抗拉极限度一般不低于588MPa。
⑶有良好的热处理工艺性,淬透性好,不易淬裂,组织均匀,热处理变形小,能获得较高的硬度,从而保证蜗杆的耐磨性和尺寸的稳定性。
⑷材料硬度均匀,金相组织符合标准。
常用的材料有:T10A,T12A,45,9Mn2V,CrMn 等。
其中9Mn2V有较好的工艺性和稳定性,但淬透性差;优点是热处理后变形小,适用于制作高精度零件,但其容易开裂,磨削工艺性差,蜗杆的硬度越高越耐磨,但制造时不易磨削。
2、加工定位基面的选择蜗杆定位基面:从结构上分,蜗杆有两种形式,套装蜗杆,整体蜗杆。
套装蜗杆以内孔加工基面,因此应先精加工内孔,然后以内孔为基面加工外圆及支承轴颈,螺纹的加工同样以内孔为基面,因此需要心轴。
一般精密分度蜗杆的内孔精度要求是很高的,有的需要进行研磨老保证精度。
一般精度分度蜗杆内孔应不低于1级精度,表面粗糙度不低于0.12,内孔的端面振摆应不小于0.005mm。
蜗杆装在心轴上加工时,应首先检查两端轴肩的径向跳动是否在规定允差之内,以后每道工序均应校验,在蜗杆装配时,同样要校验两端轴肩的径向跳动,心轴精度必须等于或高于与套装蜗杆相配的轴精度。
整体蜗杆以中心孔为加工基面,对中心孔的要求很高,应该有保锥,保证光洁度和接触面积,每道工序前要检查和修正中心孔,对支承轴颈应保证与中心孔同轴度和本身的几何精度,在半精加工和精加工工序前,都应检查支承轴颈的径向,跳径和端面的轴向振摆是否在公差以内。
锥齿蜗杆轴车削加工工艺
削 ,在对 刀前把小滑板 归位 ,防止第二把 刀分线时
超过小滑板量程 。对刀完成进行车削 ,每次单边背 吃刀量不要超过0 . 2 mm,直至单边深度约为2 mm; 再次利用小滑板进 行分线 ,转动小滑板使刀架向前 移 动约为9 . 4 2 mm,车 削第 二条线 ,过程与第二把
两条线的左面全部修好 ,转换右单刃蜗杆 刀进行精
修 ,直 到 测量 时 符 合尺 寸 要 求 。
( 5 )精 车外 圆
精车按 照一 定的顺序 由右至
手柄是 否处在正确的位置,尤其要注意的是加工的
蜗杆是2 头 的 ,那 么模 数 就 是 6 mm;另 外 调 整 转 速
左依次加 工,每个外圆都先是车 ̄ O 3 mm左右的长度 用于测量。为 了防止测量时的测量误差 ,加 工精度 要比下偏差大0 . O l mm左右 ,然后根据剩余量进行一 次性加 工好 。首先精 加工右 端面 的外 圆,尺 寸到
0 . O 0 5 mm左右 ,具 体情 况要根据 刀杆 的刚性来决
定。
面 ,后修左面 ;为了保证蜗杆的精度 ,利用小转盘 分线时 ,每次旋转的刻度必须保持一致 。当蜗杆大
( 4 )车削蜗杆
第一 ,刀架 上的车 刀全部换
致形状 出来时 ,用齿厚卡尺测量法 向齿厚 ,当法向
齿厚为4 . 8 0 am时 ,换 左 单 刃蜗 杆 刀进 行 精 加 工 , r 每 条线 只需 车 0 . 5 mm左右 ,以 左 面 为测 量 基 准 。等
T n 。
( 3 )内孔的加工与测量 首先用 1 9 mm的麻
速 度 车 削 且 单 边 背 吃 刀 量尽 可 能 小 约 为 0 . 2 5 mm ;
转向蜗杆箱机械加工工艺与夹具设计
转向蜗杆箱机械加工工艺与夹具设计1 工艺规程转向蜗杆箱体的作用主要是用来支撑和固定内部的主轴和齿轮,主要任务是将主轴的旋转通过内部的齿轮转换为需要的正反两種转向的不同转速。
零件在加工之前需要确定毛坯的生产方式,在确定生产方式之前,需要知道零件的生产纲领,可按下式计算:N零=N·n(1+α+β)式中:N零:机器零件的生产纲领;N:机器产品在计划期内的产量;n:每台机器产品中该零件的数量;α:备品率;β:平均废品率。
通过上边的公式可以计算出,箱体零件是属于大批量生产的零件,所以该零件箱体的毛坯采用的是铸造的方法,铸造的加工方法可以得到批量的零件毛坯,同时铸造的质量稳定,本零件通过砂型铸造的方法获得毛坯。
转向蜗杆箱在加工之前需要确定加工基准,首先确定粗基准,粗基准是去除毛坯的余量,从而得到零件的外形尺寸,该零件选取底面作为粗加工的基准面。
精基准的选择是零件机械加工的基准,根据基准重合原则选择零件的上下平面作为精基准。
该箱体的机械加工工序,可以指定成两种方案,如下表。
两种方案进行对比可以发现,不同的位置是镗孔和加工中心孔的前后顺序不同,方案1的加工路线先把孔加工完成,然后在加工面,这种方法不可行,会影响零件的装夹,方案二中,是先加工底面,然后加工侧面,先把镗孔加工完成后在进行钻孔,通过精加工的孔作为基准,可以保证其他孔的位置精度,所以选取方案二。
对转向蜗杆箱的加工,需要进行设备的选择,机床的选择需要符合加工工艺的要求,要能满足零件的加工需求,在大批大量生产中,箱体零件是固定不变的,所以可以选择组合机床,多工位机床,专用机床进行加工。
该零件的洗削加工时可以选择选取X60型号的铣床作为加工设备。
该机床的主要工作参数为主轴孔锥度7:24,加工刀柄的直径分别为Φ16、22、27、32mm,主轴转数范围是50~2240r/min。
车床选取最常见的CA6140。
镗孔时选取的加工设备为T68,机床的主要技术参数为主轴直径85毫米,主轴内孔锥度莫氏5号,主轴最大行程600毫米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蜗杆轴的加工工艺一、概述1 蜗杆轴类零件的功用与结构蜗杆轴是组成机械的重要零件,也是机械加工中常见的典型零件之一。
它支撑着其它转动件回转并传递扭矩,同时又通过轴承与机器的机架连接。
蜗杆轴类零件是旋转零件,其长度大于直径,由外圆柱面、圆锥面、内孔、螺纹及相应端面所组成。
加工表面通常除了内外圆表面、圆锥面、螺纹、端面外,还有花键、键槽、横向孔、沟槽等。
根据功用和结构形状,蜗杆轴类有多种形式,如光轴、空心轴、半轴、阶梯轴、花键轴、偏心轴、曲轴、凸轮轴等。
如图1图1 蜗杆轴2 蜗杆轴类零件的技术要求2.1 加工精度1)尺寸精度蜗杆轴类零件的尺寸精度主要指轴的直径尺寸精度和轴长尺寸精度。
按使用要求,主要轴颈直径尺寸精度通常为IT6-IT9级,精密的轴颈也可达IT5级。
轴长尺寸通常规定为公称尺寸,对于阶梯轴的各台阶长度按使用要求可相应给定公差。
2)几何精度蜗杆轴类零件一般是用两个轴颈支撑在轴承上,这两个轴颈称为支撑轴颈,也是轴的装配基准。
除了尺寸精度外,一般还对支撑轴颈的几何精度(圆度、圆柱度)提出要求。
对于一般精度的轴颈,几何形状误差应限制在直径公差X围内,要求高时,应在零件图样上另行规定其允许的公差值。
3)相互位置精度蜗杆轴类零件中的配合轴颈(装配传动件的轴颈)相对于支撑轴颈间的同轴度是其相互位置精度的普遍要求。
通常普通精度的轴,配合精度对支撑轴颈的径向圆跳动一般为0.01-0.03mm,高精度轴为0.001-0.005mm。
此外,相互位置精度还有内外圆柱面的同轴度,轴向定位端面与轴心线的垂直度要求等。
2.2 表面粗糙度根据机械的精密程度,运转速度的高低,轴类零件表面粗糙度要求也不相同。
一般情况下,支撑轴颈的表面粗糙度Ra值为0.63-0.16 μm ;配合轴颈的表面粗糙度Ra值为2.5-0.63μm3 蜗杆轴类零件的材料和毛坯3.1蜗杆轴类零件的材料蜗杆轴类零件材料的选取,主要根据轴的强度、刚度、耐磨性以及制造工艺性而决定,力求经济合理。
常用的蜗杆轴类零件材料有35、45、50优质碳素钢,以45钢应用最为广泛。
对于受载荷较小或不太重要的轴也可用Q235、Q255等普通碳素钢。
对于受力较大,轴向尺寸、重量受限制或者某些有特殊要求的可采用合金钢。
如40Cr 合金钢可用于中等精度,转速较高的工作场合,该材料经调质处理后具有较好的综合力学性能;选用Cr15、65Mn等合金钢可用于精度较高,工作条件较差的情况,这些材料经调质和表面淬火后其耐磨性、耐疲劳强度性能都较好;若是在高速、重载条件下工作的蜗杆轴类零件,选用20Cr、20CrMnTi、20Mn2B等低碳钢或38CrMoA1A渗碳钢,这些港经渗碳淬火或渗氮处理后,不仅有很高的表面硬度,而且其心部强度也大大提高,因此具有良好的耐磨性、抗冲击韧性和耐疲劳强度的性能。
球墨铸铁、高强度铸铁由于铸造性能好,且具有减振性能,常在制造外形结构复杂的轴中采用。
特别是我国研制的稀土——镁球墨铸铁,抗冲击韧性好,同时还具有减摩、吸振,对应力集中敏感性小等优点,已被应用于制造汽车、拖拉机、机床上的重要轴类零件。
3.2蜗杆轴类零件的毛坯蜗杆轴类零件的毛坯常见的有型材(圆棒料)和锻件。
大型的,外形结构复杂的轴也可采用铸件。
内燃机中的曲轴一般均采用铸件毛坯。
型材毛坯分热轧或冷拉棒料,均适合于光滑轴或直径相差不大的阶梯轴。
锻件毛坯经加热锻打后,金属内部纤维组织沿表面分布,因而有较高的抗拉、抗弯及抗扭转强度,一般用于重要的轴。
二、蜗杆轴加工的工艺分析实例,图2所示为一蜗杆轴,材料选用40Cr 钢。
产品属于小批量生产。
图2 蜗杆轴该蜗杆轴φ20j6,φ17k5两外圆表面为支撑轴颈;锥体部分是装配离合器的表面;M18 ×1处装配圆螺母来固定轴承的轴向位置。
根据外形结构其毛坯选用φ50mm的圆钢(棒料),在锯床上按240mm长度下料。
1、蜗杆轴加工的工艺路线1.1基本加工路线外圆加工的方法很多,基本加工路线可归纳为四条。
①粗车—半精车—精车对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。
②粗车—半精车—粗磨—精磨对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。
③粗车—半精车—精车—金刚石车对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。
④粗车—半精—粗磨—精磨—光整加工对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。
1.2 典型加工工艺路线蜗杆轴的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。
对普通精度的蜗杆轴加工,其典型的工艺路线如下:毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽、沟槽)—热处理—磨削—终检。
1)蜗杆轴的预加工轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。
校直毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校直。
2)蜗杆轴加工的定位基准和装夹①以工件的中心孔定位在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。
中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。
当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面。
②以外圆和中心孔作为定位基准(一夹一顶)用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。
粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。
这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。
③以两外圆表面作为定位基准在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准。
当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差。
④以带有中心孔的锥堵作为定位基准在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准。
2、蜗杆轴的加工工艺过程2.1 外圆表面的加工方法和加工精度轴类、套类和盘类零件是具有外圆表面的典型零件。
外圆表面常用的机械加工方法有车削、磨削和各种光整加工方法。
车削加工是外圆表面最经济有效的加工方法,但就其经济精度来说,一般适于作为外圆表面粗加工和半精加工方法;磨削加工是外圆表面主要精加工方法,特别适用于各种高硬度和淬火后的零件精加工;光整加工是精加工后进行的超精密加工方法(如滚压、抛光、研磨等),适用于某些精度和表面质量要求很高的零件。
由于各种加工方法所能达到的经济加工精度、表面粗糙度、生产率和生产成本各不相同,因此必须根据具体情况,选用合理的加工方法,从而加工出满足零件图纸上要求的合格零件。
表1为外圆表面各种加工方案和经济加工精度。
2.2外圆表面的车削加工(1)外圆车削的形式轴类零件外圆表面的主要加工方法是车削加工。
主要的加工形式有:1)荒车自由锻件和大型铸件的毛坯,加工余量很大,为了减少毛坯外圆形状误差和位置偏差,使后续工序加工余量均匀,以去除外表面的氧化皮为主的外圆加工,一般切除余量为单面1-3mm。
2)粗车中小型锻、铸件毛坯一般直接进行粗车。
粗车主要切去毛坯大部分余量(一般车出阶梯轮廓),在工艺系统刚度容许的情况下,应选用较大的切削用量以提高生产效率。
3)半精车一般作为中等精度表面的最终加工工序,也可作为磨削和其它加工工序的预加工。
对于精度较高的毛坯,可不经粗车,直接半精车。
4)精车外圆表面加工的最终加工工序和光整加工前的预加工。
5)精细车高精度、细粗糙度表面的最终加工工序。
适用于有色金属零件的外圆表面加工,但由于有色金属不宜磨削,所以可采用精细车代替磨削加工。
但是,精细车要求机床精度高,刚性好,传动平稳,能微量进给,无爬行现象。
车削中采用金刚石或硬质合金刀具,刀具主偏角选大些(45 o -90 o ),刀具的刀尖圆弧半径小于0.1-1.0mm,以减少工艺系统中弹性变形及振动。
(2)车削方法的应用1)普通车削适用于各种批量的轴类零件外圆加工,应用十分广泛。
单件小批量常采用卧室车床完成车削加工;中批、大批生产则采用自动、半自动车床和专用车床完成车削加工。
2)数控车削适用于单件小批和中批生产。
近年来应用愈来愈普遍,其主要优点为柔性好,更换加工零件时设备调整和准备时间短;加工时辅助时间少,可通过优化切削参数和适应控制等提高效率;加工质量好,专用工夹具少,相应生产准备成本低;机床操作技术要求低,不受操作工人的技能、视觉、精神、体力等因素的影响。
对于轴类零件,具有以下特征适宜选用数控车削。
结构或形状复杂,普通加工操作难度大,工时长,加工效率低的零件。
加工精度一致性要求较高的零件。
切削条件多变的零件,如零件由于形状特点需要切槽,车孔,车螺纹等,加工中要多次改变切削用量。
批量不大,但每批品种多变并有一定复杂程度的零件。
对带有键槽,径向孔(含螺钉孔)、端面有分布的孔(含螺钉孔)系的蜗杆轴类零件,如带法兰的轴,带键槽或方头的轴,还可以在车削加工中心上加工,除了能进行普通数控车削外,零件上的各种槽、孔(含螺钉孔)、面等加工表面也可一并能加工完毕。
工序高度集中,其加工效率较普通数控车削更高,加工精度也更为稳定可靠。
2.3 外圆表面的磨削加工(1)外圆表面磨削的工艺X围用磨具以较高的线速度对工件表面进行加工的方法称为磨削。
磨削加工是一种多刀多刃的高速切削方法,它使用于零件精加工和硬表面的加工。
磨削的工艺X围很广,可以划分为粗磨、精磨、细磨及镜面磨。
磨削加工采用的磨具(或磨料)具有颗粒小,硬度高,耐热性好等特点,因此可以加工较硬的金属材料和非金属材料,如淬硬钢、硬质合金道具、陶瓷等;加工过程中同时参与切削运动的颗粒多,能切除极薄极细的切屑,因而加工精度高,表面粗糙度值小。
磨削加工作为一种精加工方法,在生产中得到广泛的应用。
目前,由于强力磨削的发展,也可直接将毛坯磨削到所需要的尺寸和精度,从而获得了较高的生产率。
(2)外圆表面磨削的常用方法1)纵磨法砂轮高速旋转起切削作用,工件旋转作圆周进给运动,并和工作台一起作纵向往复直线进给运动。
工作台每往复一次,砂轮沿磨削深度方向完成一次横向进给,每次进给(吃刀深度)都很小,全部磨削余量是在多次往复行程中完成的。
当工件磨削接近最终尺寸时(尚有余量0.005-0.01mm),应无横向进给光磨几次,直到火花消失为止。