基本蚁群优化算法及其改进共63页文档
基本蚁群优化算法及其改进
5、蚂蚁的初始分布
为了测试蚂蚁的初始分布对AS算法性能的影响,M.Dorigo分别对随机 分布的16城市的TSP问题,4×4网格问题和Oliver30问题进行了测试。分 两种情况,(i)所有蚂蚁初始时刻放在同一个城市;(ii)蚂蚁分布在不同的 城市中。结果发现第(ii)种情况可获得较高的性能。同时也测试了随机分布 与统一分布的性能差异,结果发现其差别不大。
图2.1ant-cycle求解CCA0问题时信息素分布的进化过程 (a)初始时刻信息素迹的分布; (b)算法迭代100次后信息素迹的分布
2、参数α、β对AS算法性能的影响
定义2.1在蚂蚁搜索解的过程中,所有蚂蚁都选择同样的路径,即系统不再 搜索较好的解,称为停滞现象(Stagnation behavior)。 当参数设置为某些值时,算法迭代到一定代数后将出现停滞现象。其原因是 因为较好路径上的信息素远大于其它边上的,从而使所有蚂蚁都选择相同的路径。 定义3.2设τmin(r,s) 、 τmax(r,s) 分别为与节点r相连的边上最大、最小信息 素值,令δ (r) =τmax (r,s )-τmin (r,s) ,对某个给定的λ(0<λ<1),则在所有与 节点r相连的边中,信息素量大于等于λδ(r) +τmin (r,s) 的边的数量称为节点r的 节点分支数(node branching)。其中λ可根据实际需要确定。 定义3.3设θ(r)为节点r(r=1,2,…,n) 的节点分支数,n为节点数,则平均节 点分支数(Average Node Branching,简称ANB)为 。
图2.2是ant-cycle求解Oliver30问题时ANB的进化情况。在某些参数 设置下,当算法迭代2500次后,ANB到达2。就对称TSP问题而言,这意味 着所有的蚂蚁都选择同样的路径,即算法出现停滞现象。
蚁群优化算法课件
05
蚁群优化算法的改进与优 化
信息素更新策略的改进
动态更新策略
根据解的质量实时调整信息素浓度,以提高算法的搜 索效率。
自适应更新策略
根据蚂蚁移动过程中信息素挥发的情况,动态调整信 息素更新规则,以保持信息素浓度的平衡。
局部与全局更新结合
在蚂蚁移动过程中,既进行局部更新又进行全局更新 ,以增强算法的全局搜索能力。
该算法利用了蚂蚁之间信息素传递的 机制,通过不断迭代更新,最终找到 最优路径或解决方案。
蚁群优化算法的起源与发展
蚁群优化算法最初起源于对自然界中蚂蚁觅食行为的研究, 发现蚂蚁能够通过信息素传递找到从巢穴到食物源的最短路 径。
随着研究的深入,蚁群优化算法逐渐发展成为一种通用的优 化算法,广泛应用于各种组合优化问题,如旅行商问题、车 辆路径问题等。
任务调度问题
总结词
蚁群优化算法在任务调度问题中能够实现高效的任务调度,提高系统整体性能。
详细描述
任务调度问题是指在一个多任务环境中,根据任务的优先级、资源需求等因素,合理分配任务到不同 的处理单元,以实现系统整体性能的最优。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传递机制 ,能够实现高效的任务调度,提高系统整体性能。
利用已知领域知识
将领域专家的经验或启发式信息融入算法中,以提高算法的搜索 效率和准确性。
利用问题特性
根据问题的特性,引入与问题相关的启发式信息,以引导蚂蚁的移 动方向和选择行为。
自适应调整启发式信息
根据算法的搜索过程和结果,动态调整启发式信息的权重或规则, 以平衡算法的全局搜索和局部搜索能力。
06
蚂蚁行为规则的改进
引入变异行为
01
在蚂蚁移动过程中,随机选择某些蚂蚁进行变异操作,以增强
蚁群优化算法
– 每次循环之后给予最优解以额外的信息素量 – 这样的解被称为全局最优解(global-best solution) – 找出这个解的蚂蚁被称为精英蚂蚁(elitist ants)
16 16
带精英策略的蚂蚁系统
➢信息素根据下式进行更新
其中
ij (t 1) ij (t) ij i*j
实现过程
33 33
实现过程
34 34
实现过程
35 35
中国旅行商问题
ACATSP(C,100,10,1,5,0.1,100) 1.5602e+04
36 36
遗传算法和蚁群算法在 求解TSP问题上的对比分析
37 37
开始
细菌觅食机理
i=i+1
趋向性操作
设细菌种群大小为S,一个细菌所处的位 置表示一个问题的候选解,细菌i的信息 用D维向量表示为
➢较强的鲁棒性 ·➢分布式计算
➢易于与其他方法结合
需要较长的搜索时间 容易出现停滞现
15 15
带精英策略的蚂蚁系统
➢带精英策略的蚂蚁系统(Ant System with elitist strategy,
ASelite)是最早的改进蚂蚁系统。
➢遗传算法中的精英策略
– 传统的遗传算法可能会导致最适应个体的遗传信息丢失 – 精英策略的思想是保留住一代中的最适应个体
ij (t n) ij (t) ij
m
ij
k ij
(2)
k 1
其中,ρ为小于1的常数,表示信息的持久性。
Q
k ij
Lk
ij lk
(3)
0 otherwise
其中,Q为常数;Lk 表示第k只蚂蚁在本次迭代中走过 的路径长度。
蚁群优化算法69893
Pijk(i,
j)
(i,u)(i,u)
uJki
,
jJk i
0,
其他
其中,J i 表示从城市i可以直接到达的且又不在蚂蚁访问过的城市序列
R
k
k
中的城市集合。
i,
j 是一个启发式信息,通常由i, j=1/d 直接计算。 ij
i , j 表示边 i , j 上的信息量
-
2.3 蚂蚁系统理论
四
蚁群优化算法相关应用
-
问题简述:
2.1 TSP问题
已知有 n
个城市的集合
Cc,c,L,c
n
12
n
,任意两个城市之间均有路
径连接,dij i,j1,2,L,n表示城市与之间的距离。旅行商问题就是需要 寻找这样的一中周游方案:周游路线从某个城市出发,经过每个城市
一次且仅一次,最终回到出发城市,使得周游的路线总长度最短。
-
1.1 基本原理
双桥实验
蚁穴
食物源
(a)两个路具有同样的长度
1.起初两条分支上不存在信息 素,蚂蚁以相同的概率进行 选择。
2.随机波动的出现,选择某一 条分支的蚂蚁数量可能比另 外一条多。
3.实验最终结果:所有的蚂蚁 都会选择同一分支。
自身催化(正反馈)过程
-
双桥实验
1.1 基本原理
1.起初两条分支上不存在信息 素,蚂蚁随机选择一条路径。
2.将ACO纳入了基于模型的搜索框架中。
趋势
1.利用ACO算法去解决更为复杂的优化问题,例如:
动态问题、随机问题、多目标问题。 2、ACO算法的高效并行执行。 3.更理论化的理解和刻画ACO算法在求解问题时的行为。 4.与其他算法结合(粒子群算法)。
蚁群算法的基本原理与改进
A
1
蚁群算法
蚁群算法(ant colony alogrithm)是一种模拟进化算法。 蚁群算法(又称为人工蚁群算法)是由意大利学者M.Dorigo,
V.Mahiezzo,A.Colorni等人受到人们对自然界中真是蚁群集体 行为的研究成果的启发而首先提出来的。这个算法的主要目的是在 图中寻找优化路径的机率算法。 蚁群算法最早是为了解决TSP问题(即旅行商问题)。 TSP问题的要求:路径的限制是每个城市只能拜访一次;最后 要回到原来出发的城市。求得的路径路程为所有路径之中的最小 值。
并不要求所有的蚂蚁都找到最优模板,而只需要一只找到最优模板即可。如果 要求所有的蚂蚁都找到最优模板,反而影响了计算效率。 蚁群算法收敛速度慢、易陷入局部最优。蚁群算法中初始信息素匮乏。 蚁群算法一般需要较长的搜索时间,其复杂度可以反映这一点;而且该方法容 易出现停滞现象,即搜索进行到一定程度后,所有个体发现的解完全一致,不 能对解空间进一步进行搜索,不利于发现更好的解。
(4)它是一种全局优化的方法;不仅可用于求解单目标优化问题,而 且可用于求解多目标优化问题;
(5)它是一种启发式算法;计算复杂性为 O(NC*m*n2),其中NC 是 迭代次数,m 是蚂蚁数目,n 是目的节点数目。
A
13
下面是对蚁群算法的进行过程中采用的规则进行的一些说明。
范围
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半 径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且 能移动的距离也在这个范围之内。
最后,经过一段时间运行,就可能会出现一条最短的路径被大 多数蚂蚁重复着。
A
3
基本原理
蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算 法。
第三讲 蚁群优化算法
(2)信息素量大小的取值范围被限制在一个区间内。 (3)信息素初始值为信息素取值区间的上限,并伴随一个
较小的信息素蒸发速率。 (4)每当系统进入停滞状态,问题空间内所有边上的信息
素量都会被重新初始化。
3.3 最大最小蚂蚁系统
(3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。
(4)迭代(2),直至算法终止。
2 算法流程
信息素更新
m
(i, j) (1 r) (i, j) k (i, j),
食物
6:我自己走,说不定能探索 出一条更短的路径呢,
到时候你们就都会跟着我了
蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度, 并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物 质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素 的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并 倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的 最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径 上行进。
长度越短、信息素浓度越大的路径被蚂蚁选择的概率越大。和是
两个预先设置的参数,用来控制启发式信息与信息素浓度作用的权
重关系。当=0时,算法演变成传统的随机贪心算法,最邻近城市被 选中的概率最大。当=0时,蚂蚁完全只根据信息素浓度确定路径,
算法将快速收敛,这样构建出的最优路径往往与实际目标有着较大 的差异,算法的性能比较糟糕。
蚁群算法的基本原理与改进
2 当前最优解连续K次相同而停止,其中K是一个给定的整数, 表示算法已经收敛,不再需要继续;
3 目标值控制规则,给定优化问题(目标最小化)的一个下界 和一个误差值,当算法得到的目标值同下界之差小于给定的误 差值时,算法终止。
2021/10/10
E可以随机选择路径 HD = HB = 1 CD = CB = 0.5 备注: D->H D->C B->H B->C 图中数字表示蚂蚁的个数
2021/10/10
7
下面以TSP为例说明基本蚁群算法模型。
首先将m只蚂蚁随机放置在n个城市,位于城市i的第k只蚂蚁选择下 一个城市j的概率为:
3.蚁群系统
蚁群系统已被提出。
2021/10/10
20
4.基于排序的蚂蚁系统( ASrank ) 所有解决方案都根据其长度排名。然后为每个解决方案衡量信
息素的沉积量,最短路径相比较长路径的解沉积了更多的信息素。 5.连续正交蚁群(COAC)
COAC的信息素沉积机制能使蚂蚁协作而有效地寻解。 利用正 交设计方法,在可行域的蚂蚁可以使用增大的全局搜索能力和精度, 快速、高效地探索他们选择的区域。 正交设计方法和自适应半径 调整方法也可推广到其他优化算法中,在解决实际问题施展更大的 威力。
4
假设以下条件: 每个时间单位有30只蚂蚁(A->B) 每个时间单位有30只蚂蚁(E->D) 蚂蚁过后留下的外激素为1 初始时刻,路径无信息存在且位
于B和E可以随机选择路径 HD = HB = 1 CD = CB = 0.5 图中的数字表示距离
2021/10/10
5
假设以下条件: 每个时间单位有30只蚂蚁(A->B) 每个时间单位有30只蚂蚁(E->D) 蚂蚁过后留下的外激素为1 初始时刻,路径无信息存在且位于B和
蚁群优化算法技术介绍
目录
• 蚁群优化算法概述 • 蚁群优化算法的基本原理 • 蚁群优化算法的实现过程 • 蚁群优化算法的改进与优化 • 蚁群优化算法的案例分析
01 蚁群优化算法概述
定义与原理
定义
蚁群优化算法是一种模拟自然界 中蚂蚁觅食行为的仿生优化算法 。
原理
通过模拟蚂蚁的信息素传递过程 ,利用正反馈机制寻找最优解。
算法特点
分布式计算
蚁群算法中的蚂蚁可以并行地搜索解空间,提高了算法的搜索效 率。
鲁棒性
对初始解和参数选择不敏感,能在多变的搜索空间中寻找到最优 解。
易于实现
算法实现简单,可扩展性强,适用于解决复杂优化问题。
应用领域
路径规划
任务调度
用于解决车辆路径规划、 物流配送等问题。
应用于多核处理器任务 调度、云计算资源分配
蚂蚁的移动规则
随机选择
蚂蚁在移动时,会根据当前位置和目标位置之间的路径上信息素浓度随机选择 下一个移动的节点。
避免重复
为了避免重复访问同一个节点,蚂蚁会根据一定的概率选择新的节点,这个概 率与路径上的信息素浓度成正比。
蚂蚁之间的协作机制
共享信息
蚂蚁通过释放和感知信息素来共享彼此的路径信息和状态,从而在群体中形成一 种协作效应。
网络路由问题求解
总结词
蚁群优化算法在网络路由问题求解中具有较好的应用 效果,能够优化网络路由和提高网络性能。
详细描述
网络路由问题是一个重要的网络通信问题,旨在根据 网络拓扑结构和通信需求,选择最优的路由路径和转 发策略,以实现数据包的可靠传输和网络性能的提升 。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传 递机制来指导搜索过程,能够有效地解决网络路由问 题,优化网络路由和提高网络性能。
蚁群优化算法课件
在基于聚类分析的蚁群优化算法中,算 法首先利用聚类分析技术将问题空间划 分为多个子空间,然后将蚂蚁分配到不
同的子空间中进行搜索。
这种算法通过聚类分析技术将问题空间 划分为多个子空间,可以减少蚂蚁搜索
范围,提高算法的寻优效率。
基于粒子群的蚁群优化算法
基于粒子群的蚁群优化算法是 一种将粒子群优化算法与蚁群 优化算法相结合的改进算法。
THANKS
感谢观看
蚁群优化算法课件
目录
• 蚁群优化算法简介 • 蚁群优化算法的基本原理 • 蚁群优化算法的实现细节 • 蚁群优化算法的改进版本 • 蚁群优化算法的实验与分析 • 么是蚁群优化算法
蚁群优化算法是一种启发式优化算法,通过模拟 01 自然界中蚂蚁寻找食物的行为来求解优化问题。
在基于粒子群的蚁群优化算法 中,每只蚂蚁被视为一个粒子 ,每个粒子都有一个位置和一 个速度。
该算法通过粒子的位置和速度 来描述蚂蚁的状态,并利用粒 子群优化算法的优点来指导蚂 蚁的搜索行为。
05
蚁群优化算法的实验与分析
在TSP问题上的应用
总结词
高效、稳定
详细描述
蚁群优化算法在TSP问题上具有高效、稳定的性能表现。通过模拟蚂蚁觅食行为 ,该算法能够在较短的时间内寻找到一条最短路径,并且具有较好的鲁棒性。
果的质量。
02
蚁群优化算法的基本原理
蚂蚁的行为特征
01 蚂蚁具有记忆能力
蚂蚁能够记住之前走过的路径和相关的信息,如 食物的来源、路径的长度等。
02 蚂蚁具有协作能力
在寻找食物的过程中,蚂蚁之间会相互协作,通 过信息素的传递来共享信息。
03 蚂蚁具有适应性
蚂蚁能够根据环境的变化来调整自己的行为和策 略,以适应不同的环境条件。
第5章 蚁群优化算法
2.1.3
蚁群优化算法研究背景
13
1/3
群智能理论研究领域有两种主要的算法:蚁 群算法(Ant Colony Optimization, ACO) 和微粒群算法(Particle Swarm Optimization, PSO)。 前者是对蚂蚁群落食物采集过程的模拟,已成功 应用于许多离散优化问题。 微粒群算法也是起源于对简单社会系统的模拟, 最初是模拟鸟群觅食的过程,但后来发现它是 一种很好的优化工具。
5
LC=2LB
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路 线ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个 时间单位行走一步,本图为经过9个时间单位时的情形:走 ABD的蚂蚁到达终点,而走ACD的蚂蚁刚好走到C点,为一 半路程。
6
LC=2LB
本图为从开始算起,经过18个时间单位时的情形:走 ABD的蚂蚁到达终点后得到食物又返回了起点A,而走 ACD的蚂蚁刚好走到D点。
10
1.1.1 蚁群优化算法起源
11
20世纪50年代中期创立了仿生学,人们从生物进化的机理中 受到启发。提出了许多用以解决复杂优化问题的新方法,如进 化规划、进化策略、遗传算法等,这些算法成功地解决了一些 实际问题。 20世纪90年代意大利学者M.Dorigo,V.Maniezzo, A.Colorni等从生物进化的机制中受到启发,通过模拟自然界 蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法—— 蚁 群算法,是群智能理论研究领域的一种主要算法。 用该方法求解TSP问题、分配问题、job-shop调度问题,取得了 较好的试验结果.虽然研究时间不长,但是现在的研究显示出, 蚁群算法在求解复杂优化问题(特别是离散优化问题)方面有 一定优势,表明它是一种有发展前景的算法.
基本蚁群优化算法及其改进毕业设计
摘要自意大利学者M. Dorigo于1991年提出蚁群算法后,该算法引起了学者们的极大关注,在短短十多年的时间里,已在组合优化、网络路由、函数优化、数据挖掘、机器人路径规划等领域获得了广泛应用,并取得了较好的效果。
本文首先讨论了该算法的基本原理,接着介绍了旅行商问题,然后对蚁群算法及其二种改进算法进行了分析,并通过计算机仿真来说明蚁群算法基本原理,然后分析了聚类算法原理和蚁群聚类算法的数学模型,通过调整传统的蚁群算法构建了求解聚类问题的蚁群聚类算法。
最后,本文还研究了一种依赖信息素解决聚类问题的蚁群聚类算法,并把此蚁群聚类算法应用到对人工数据进行分类,还利用该算法对2005年中国24所高校综合实力进行分类,得到的分类结果与实际情况相符,说明了蚁群算法在聚类分析中能够收到较为理想的结果。
【关键词】蚁群算法;计算机仿真;聚类;蚁群聚类Study on Ant Colony Algorithm and its Application inClusteringAbstract:As the ant colony algorithm was proposed by M. Dorigo in 1991,it bringed a extremely large attention of scholars, in past short more than ten years, optimized, the network route, the function in the combination optimizes, domains and so on data mining, robot way plan has obtained the widespread application, and has obtained the good effect.This acticle discussed the basic principle of it at first, then introduced the TSP,this acticle also analysed the ant colony algorithm and its improved algorithm, and explanated it by the computer simulates, then it analysed the clustering algorithm and the ant clustering algorithm, builded the ant clustering algorith to solution the clustering by the traditioned ant algorithm. At last, this article also proposed the ant clustering algorith to soluted the clustering dependent on pheromon. Carry on the classification to the artificial data using this ant clustering algorithm; Use this algorithm to carry on the classification of the synthesize strength of the 2005 Chinese 24 universities; we can obtain the classified result which matches to the actual situation case. In the next work, we also should do the different cluster algorithm respective good and bad points as well as the classified performance aspect the comparison research; distinguish the different performance of different algorithm in the analysis when the dates are different.Key words:Ant colony algorithm; Computer simulation; clustering; Ant clustering目录1 引言 (3)1.1群智能 (2)1.2蚁群算法 (3)1.3聚类问题 (4)1.4本文研究工作 (5)2 蚁群算法原理及算法描述 (5)2.1蚁群算法原理 (5)2.2蚁群优化的原理分析 (8)2.3算法基本流程 (10)2.4蚁群觅食过程计算机动态模拟 (11)2.5人工蚂蚁与真实蚂蚁的对比 (13)2.6本章小结 (14)3 基本蚁群优化算法及其改进 (15)3.1旅行商问题 (15)3.2基本蚁群算法及其典型改进 (15)3.2.1 蚂蚁系统 (15)3.2.2 蚁群系统 (16)3.2.3 最大-最小蚂蚁系统 (16)3.3基本蚁群算法仿真实验 (16)3.3.1 软硬件环境 (16)3.3.2 重要参数设置 (16)3.3.3仿真试验 (17)3.4本章小结 (19)4 蚁群聚类算法及其应用 (20)4.1聚类问题 (20)4.2蚁群聚类算法的数学模型 (21)4.3蚁群聚类算法 (21)4.3.1 蚁群聚类算法分析 (22)4.3.2 蚁群聚类算法流程 (25)4.4蚁群聚类算法在高校分类中的应用 (25)4.5本章小结 (27)5 结论与展望 (28)参考文献 (29)致谢 (31)附录 (32)1 引言下面将介绍群智能以及蚁群算法和聚类问题。
蚁群优化算法
信息素
1.1 基本原理
双桥实验
蚁穴
食物源
(a)两个路具有同样的长度
自身催化(正反馈)过程
1.起初两条分支上不存在信息 素,蚂蚁以相同的概率进行 选择。 2.随机波动的出现,选择某一 条分支的蚂蚁数量可能比另 外一条多。 3.实验最终结果:所有的蚂蚁 都会选择同一分支。
2
蚂蚁数目过少时,算法的探索能力变差,容易出现早熟现象。特别是当问题的规模很大时,算法的全局寻优能力会十分糟糕
3
在用蚂蚁系统、精华蚂蚁系统、基于排列的蚂蚁系统和最大最小蚂蚁系统求解TSP时,m取值等于城市数目时有较好性能。
蚂蚁数目
2.3 蚂蚁系统理论
参数设置
1
信息素挥发因子较大,信息素挥发速率大,从未被蚂蚁选择过的边上信息素急剧减少到接近0,降低算法的全局探索能力。
2
信息素会不断的蒸发。
3
路径探索也是必需的,否则容易陷入局部最优。
1.1基本理论
蚁群觅食现象
蚁群优化算法
蚁群
搜索空间的一组有效解(种群规模m)
觅食空间
问题的搜索空间(问题的规模、解的维数n)
信息素
信息素浓度变量
蚁巢到食物的一条路径
一个有效解
找到的最短路
问题的最优解
蚁群觅食现象和蚁群优化算法的基本定义对照表
3.3 最大最小蚂蚁系统
最大最小蚂蚁系统
提出背景:
1.对于大规模的TSP,由于搜索蚂蚁的个数有限,而初始化时蚂蚁的 分布是随机的,这会不会造成蚂蚁只搜索了所有路径中的小部分就 以为找到了最好的路径,而真正优秀的路径并没有被探索到呢? 2.当所有蚂蚁都重复构建着同一条路径的时候,意味着算法已经进入 了停滞状态,有没有办法利用算法停滞后的迭代过程进一步搜索以 保证找到更接近真实目标的解呢?
现代优化算法-蚁群算法
蚁群优化算法—改进
蚁群算法的各种改进: 1)MAX-MIN ANT SYSTEM (MMAS)算法
2)自适应蚁群优化算法
3)自适应调整信息素的蚁群算法
4)自适应调整 (残留信息的保留部分)的蚁群算法 5)带杂交算子的蚁群算法 6)在解决TSP问题——分段算法Section_MMMAS 7)在解决TSP问题——相遇算法MMMAS
— ij t 。
2)由城市 i 转移到城市 j 的启发信息,该启发信息是由要
解决的问题给出的——
ij ,在TSP问题中一般取
ij
1,
d ij
其中, d ij 表示城市 i,j 间的距离, ij 在这里可以称为先
验知识。
蚁群优化算法—算法流程
选择机制, 那么,t 时刻位于城市 i 的蚂蚁 k 选择城市 j 为目标城市的概率是:
这个解满足以上四个约束 条件。
蚁群优化算法—算法提出
NP问题:至今为止,还没有一个有能求得最优解的多项式时间算法 的组合优化问题称为NP问题。
TSP问题就是一个著名的NP问题。在如何解决这个问题方面已 经有了大量的研究。这其中包括遗传算法,退火算法,动态规 划等等。
蚁群优化算法—算法提出
TSP问题与蚁群寻径行为比较:
个城市推销商品,每个两个城市 i 和 j 之间的距离为 dij ,如何选择 一条道路使得商人每个城市走一遍后回到起点且所走路径最短。
蚁群优化算法—算法提出
一般旅行商问题TSP,数学模型描述:
min dij xij i j
n
s.t. xij 1, i 1, 2 ,, n j1
蚁群算法的基本原理与改进
蚁群算法的基本原理与改进蚁群算法是一种模拟蚂蚁群体行为的启发式算法,通过模拟蚂蚁在寻找食物和归巢过程中的行为,来解决优化问题。
蚂蚁在移动的过程中,通过信息素的释放和感知,实现了全局信息传递和局部信息更新。
蚁群算法基于这种行为特性,通过模拟蚂蚁在解空间中的过程,找到问题的最优解。
1.初始化一群蚂蚁在问题的解空间中随机选择一个起点。
2.每只蚂蚁根据问题的特性和上一次的行走经验,利用概率选择下一步要行走的方向。
3.每只蚂蚁根据选择的方向进行移动,并释放一定量的信息素到路径上。
4.蚁群中的每只蚂蚁根据选择的方向和移动的结果,更新自己的经验和信息素矩阵。
5.重复步骤2-4,直到达到停止条件。
1.路径选择策略的改进:蚂蚁选择下一步行走方向的概率通常根据路径上的信息素浓度和启发式信息来计算,可以根据具体问题的特性,采用不同的路径选择策略,如轮盘赌选择、最大值选择等,来提升算法的能力。
2.信息素更新策略的改进:信息素释放和更新对算法的性能起到重要影响。
可以通过引入一定的衰减因子,控制信息素的挥发速率,降低过快的信息素挥发过程;同时,可以通过引入信息素增强/衰减机制,根据蚂蚁经验和当前信息素浓度调整信息素的更新速率,以提升算法的收敛速度和稳定性。
3.多种启发式信息的融合:在算法中,蚂蚁根据启发信息来选择下一步行走方向。
可以采用多种启发式信息,并将它们进行适当的融合,以增加算法对问题的能力。
4.并行计算和局部:蚁群算法由于全局信息传递的特性,容易陷入局部最优解。
可以通过引入并行计算和局部机制,增加算法的广度和多样性,提升算法的全局能力。
5.参数的自适应调节:蚁群算法中存在一些参数,如信息素释放量、信息素衰减因子等,合理的参数设置对算法的性能至关重要。
可以考虑通过自适应调节参数的方法,如基于概率或规则的自适应机制,自适应地调节参数值,以提高算法的效果。
总而言之,蚁群算法通过模拟蚂蚁的行为特性,实现了全局信息传递和局部信息更新,并通过适当的改进措施,提升了算法的能力和收敛速度。
基本蚁群算法及其改进
第!卷第"期北华大学学报(自然科学版)#$%&!’$&"())*年+(月,-./’01-23456.0.’5#4/7589(’:;<=:%7>?@A >@)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!B @>&())*文章编号:+))C D *E (((())*))"D )!F (D )G 基本蚁群算法及其改进孔令军+,张兴华(,陈建国G(!"北华大学教育技术中心,吉林吉林!#$%$!;$"北华大学电气信息工程学院,吉林吉林!#$%$!;#"北华大学后勤服务总公司,吉林吉林!#$%$!)摘要:给出了群体智能的一个分支———蚁群算法的一个改进算法,充分利用了算法的并行特点,提高了算法的效率&关键词:蚁群算法;信息矩阵;组合优化中图分类号:8H G )+&"文献标识码:0收稿日期:())*D )*D +F 作者简介:孔令军(+C "F I ),男,工程师,主要从事计算机应用研究&近年来,计算机网络得到了飞速的发展,网络已成为社会生活不可缺少的部分&同时,人们对网络信息传输的质量和效率的要求也越来越高&为了进一步提高网络的效率,更多新算法被引入这个领域,蚁群算法就是其中之一&!初期的蚁群算法基本的蚁群算法07可以简单表述如下:在)时刻进行初始化过程,蚂蚁放置在不同的城市,每一条边都有一个初始外激素强度值!&’())"每一只蚂蚁禁忌表的第一个元素置为它的开始城市"然后,每一只蚂蚁从城市&移动到城市’,依据两个变量的概率函数选择移动城市(包括参数"和#,见公式(+"*))"在(次循环后,所有蚂蚁都完成了一次周游,同时他们的禁忌表将满,这时,计算每一只蚂蚁)的路径长度*),!!)&’依据公式(+"G )更新"而且,保存由蚂蚁找到的最短路径(即J ?A *),)++,…,,),置空所有禁忌表"重复这一过程直到周游计数器达到最大(用户定义)周游数J :K -.,或者所有蚂蚁都走同一路线"后一种情况被称为停滞状态"如果算法在-.次循环后结束,蚂蚁算法的复杂度为/(-.·((·,)"信息素更新公式:!&’(01()+$·!&’(0)1!!&’,(+"+)其中,$是一个参数,+2$表示在时刻0和01(之间外激素的蒸发,!!&’+",)++!!)&’,(+"()!!)&’是单位长度上在时刻0和01(之间第)只蚂蚁在边3(&,’)留下的外激素的数量,其中!!)&’+4,*)如果在时刻0和01(之间第)只蚂蚁使用边3(&,’),),其他#$%"(+"G)4是一个常数,*)是第)只蚂蚁周游的路程长度&第)只蚂蚁从城市&到城市’的跃迁概率为5)&’(0)+[!&’(0)]"[%&’]#")&&)[!&)(0)]"[%&)]#,’&&);),’’&)#$%"(+"G)其中&)+{-2;:L <)},-为一组城市,;:L <)表示第)只蚂蚁的禁忌表,"和#都是控制外激素与可见度的相对重要性的参数!跃迁概率是可见度和"时刻外激素强度的权衡!综合以上所述,图"给出用基本蚁群算法原理解决路由选择优化问题的流程图!图!基本蚁群算法解决问题流程"#$%!"&’(’)*+,#-+./-’&’.01基本蚁群算法的不足之处从上面针对路由选择优化问题的分析可以看出,虽然蚁群算法已经被证明是一种有效的解决组合优化问题的方法,但是由于问世的时间比较短,还存在如下不足:(")限于局部最优解!从算法解的性质而言,蚁群算法也是在寻找一个比较好的局部最优解,而不是强求是全局最优解!(#)工作过程的中间停滞问题!和算法开始时收敛速度快一样,在算法工作过程当中,迭代到一定次数后,蚂蚁也可能在某个或某些局部最优解的邻域附近发生停滞!($)较长的搜索时间!尽管和其他算法相比,蚁群算法在迭代次数和解的质量上都有一定的优势,但对于目前计算机网络的实际情况,还是需要较长的搜索时间!虽然计算机计算速度的提高和蚁群算法的并行性在一定程度上可以缓解这一问题,但是对于大规模复杂的计算机网络,这还是一个很大的障碍!2加强信息利用率的蚁群算法下面从实际应用的角度提出一个改进的算法———加强信息利用率的蚁群算法,其主要改进思想是蚂蚁在网络图中转移的同时在信息矩阵中转移,让寻找不同路径的蚂蚁可以协同工作!根据这个思想建立了新的信息矩阵(略),使蚂蚁遗留下的信息可以对多次工作产生影响!这充分利用了算法的并行特点,减少了算法的循环次数和计算时间,提高了算法在解决这一问题时的效率!下面通过仿真结果进行分析!图1建立信息矩阵流程图2路径优化情况"#$%1"&’(’)3’45&#.$’)#.)’63+/#’.3+/6#7"#$%289+6/’)’:/#3#;#.$6’</5$%&第’期孔令军,等:基本蚁群算法及其改进图!网络模型拓扑连接图"基本蚁群算法仿真结果#$%&!’()(*(%$+,**$-.(/-012(3.4(50*#$%&"6$47*,1$(-3087*1(/9,8$+,-1+(*(-:图!是系统的仿真结果即路径优化结果,横坐标代表循环次数,纵坐标代表蚂蚁经过节点的数目"仿真过程中,初始信息量定为#"$%,衰减系数定为#"&%,循环次数为’#次"和图%基本蚁群算法基于图’的仿真结果相比,可以看出,引入了改进思想后,算法的性能有了比较明显的改善,一般在(%!!#次循环后就可以稳定在最优路径上"在用基本算法进行仿真时,干扰路径较多的路径很容易停滞在不是最优的结果上,在改进算法中,一样很快达到了最优"!结论蚁群算法是近年新出现的一种从群体智能思想演变而来的新算法,在解决大规模组合优化问题上显示了强大的实力"本文将蚁群算法引入路由选择优化问题,并做了如下的研究探索:蚁群算法作为一种新兴的群体智能算法,在应用方面有比较突出的成绩,但研究者仅局限于仿真试验和思想的引入;从理论的角度详细的论证了蚁群算法解决此问题的可行性,并结合算法工作的过程,分析了基本蚁群算法的特点,提出了改进的方向;为了改善基本蚁群算法的不足,提出了一种针对解决路由选择优化问题的改进蚁群算法———加强信息利用率的蚁群算法"参考文献:[(]谭跃进,陈英武,易进先"系统工程原理[)]"长沙:国防科技大学出版社,(&&&"*+,-./01,,23/,-1,45.,-161,71+,"*3/*3/89:8;<:=>/?@,41,//91,4[)]"23+,4=3+:A +>18,+B C /;/,D /*/D 3,8B 84:E .F B 1D +>18,,(&&&"[!]*38?+=G ")+.;/9"H E 技术基础———编址和路由[)]"北京:机械工业出版社,!###"*38?+=G ")+.;/9"I +=1D*3/89:8;H E*/D 3,8B 84:———G J J 9/==+,JG D D /==[)]"I /101,4:)/D 3+,1D +B H ,J .=>9:E.F B 1D +>18,,!###"[K ]胡适耕,施保昌"最优化原理[)]"武汉:华中理工大学出版社,!###"L .<314/,4,<31I +8D 3+,4"*3/*3/89:8;M N >1?1O +>18,[)]"P .3+,:E .F B 1D +>18,8;)1J J B /231,+Q ,1R /9=1>:8;*/D 3,8B 84:,!###";,8$+<-1=3(7)(/<*%(3$1>4,-5?18?4)3(@040-1!"#$%&’()*+’(,,-.#$/&’()0+1!,2-3#4&1’)(+5K ((!"#$%&’()*+,(--./*’/0)12/(3$&4*(5/06(’7,8(-(*(K !#!(,.3(*&;!!"-/%’0(%9*1)0:&’()*"*;(*//0(*;.)--/;/)12/(3$&4*(5/06(’7,8(-(*(K !#!(,.3(*&;K !+/05(%/.):<&*7)12/(3$&4*(5/06(’7,8(-(*(K !#!(,.3(*&).67891:8:GF 9+,D 38;D 8B 8,:1,>/B B 14/,D /———1?N 98R /?/,>?/>38J 8;+,>498.N 8;+B 4891>3?,F +=1D +,>498.N8;+B 4891>3?1=1,>98J .D /J +,J +B 4891>3?=/;;/D >1=1?N 98R /J 8F R 18.=B :"!;<=59>7:G ,>D 8B 8,:+B 4891>3?;H ,;89?+>18,?+>917;28?F 1,+>891+B 8N >1?1O +>18,【责任编辑:吕洪斌】’$%北华大学学报(自然科学版)第%卷基本蚁群算法及其改进作者:孔令军, 张兴华, 陈建国作者单位:孔令军(北华大学,教育技术中心,吉林,吉林,132021), 张兴华(北华大学,电气信息工程学院,吉林,吉林,132021), 陈建国(北华大学,后勤服务总公司,吉林,吉林,132021)刊名:北华大学学报(自然科学版)英文刊名:JOURNAL OF BEIHUA UNIVERSITY(NATURAL SCIENCE)年,卷(期):2004,5(6)被引用次数:6次1.谭跃进.陈英武.易进先系统工程原理 19992.Thomas A Maufer IP技术基础--编址和路由 20003.胡适耕.施保昌最优化原理 20001.学位论文李德华配电网络重构的改进模糊遗传算法研究2009在配电网优化的各项措施中,通过网络重构可以在不增加投资的基础上,充分发挥现有配电系统的作用,提高供电的经济性、可靠性和优质性,具有巨大的经济效益和社会效益。
基本蚁群优化算法及其改进共63页
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
基本蚁群优化算法及其改进 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
基本蚁群优化算法及其改进63页文档
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
谢谢!
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢!
基本蚁群优化算法及其改进
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽士 比
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚