小学六年级奥数题50道及答案
小学六年级数学奥数应用题150道及答案(完整版)
小学六年级数学奥数应用题150道及答案(完整版)1. 一个数的30%是15,这个数是多少?答案:15÷30% = 502. 比80 米多25%是多少米?答案:80×(1 + 25%) = 100(米)3. 某工厂五月份生产零件400 个,六月份比五月份增产10%,六月份生产零件多少个?答案:400×(1 + 10%) = 440(个)4. 商店运来一批水果,其中苹果有180 千克,梨比苹果多20%,梨有多少千克?答案:180×(1 + 20%) = 216(千克)5. 一个数的60%比它的40%多20,这个数是多少?答案:20÷(60% - 40%) = 1006. 小明家八月份用电120 度,九月份比八月份节约20%,九月份用电多少度?答案:120×(1 - 20%) = 96(度)7. 一套西服原价800 元,现在打八折出售,现在的价格是多少元?答案:800×80% = 640(元)8. 一条路,已经修了40%,还剩120 米没修,这条路全长多少米?答案:120÷(1 - 40%) = 200(米)9. 某班有男生25 人,女生比男生少20%,女生有多少人?答案:25×(1 - 20%) = 20(人)10. 一本书200 页,第一天看了全书的25%,第二天看了全书的40%,两天共看了多少页?答案:200×(25% + 40%) = 130(页)11. 一个数的80%是16,这个数的20%是多少?答案:16÷80%×20% = 412. 学校图书馆有科技书300 本,故事书比科技书多20%,故事书有多少本?答案:300×(1 + 20%) = 360(本)13. 果园里有苹果树120 棵,梨树比苹果树少25%,梨树有多少棵?答案:120×(1 - 25%) = 90(棵)14. 一辆汽车从甲地开往乙地,已经行驶了全程的30%,再行驶20 千米就正好行驶了全程的一半,甲地到乙地的路程是多少千米?答案:20÷(50% - 30%) = 100(千米)15. 某工厂计划生产零件500 个,实际生产了600 个,超产了百分之几?答案:(600 - 500)÷500×100% = 20%16. 一件衣服原价200 元,现降价40 元出售,降价了百分之几?答案:40÷200×100% = 20%17. 六年级有学生160 人,已达到《国家体育锻炼标准》的有120 人,达标率是多少?答案:120÷160×100% = 75%18. 一种商品原价80 元,现在打七五折出售,现在的价格是多少元?答案:80×75% = 60(元)19. 一个数的75%是30,这个数的40%是多少?答案:30÷75%×40% = 1620. 银行一年期存款的年利率是3.25%,李叔叔存入5 万元,一年后可得利息多少元?答案:50000×3.25% = 1625(元)21. 有含盐率为10%的盐水80 克,加入多少克水就能得到含盐率为8%的盐水?答案:80×10%÷8% - 80 = 20(克)22. 小明读一本200 页的书,第一天读了全书的20%,第二天读了余下的30%,第二天读了多少页?答案:200×(1 - 20%)×30% = 48(页)23. 一个数增加20%后是60,这个数是多少?答案:60÷(1 + 20%) = 5024. 某班今天出勤48 人,有2 人请假,今天的出勤率是多少?答案:48÷(48 + 2)×100% = 96%25. 修一条路,已经修了60%,还剩240 米没修,这条路全长多少米?答案:240÷(1 - 60%) = 600(米)26. 一批货物,第一次运走40%,第二次运走15 吨,两次一共运走这批货物的70%,这批货物原来有多少吨?答案:15÷(70% - 40%) = 50(吨)27. 一种商品,先降价10%,再涨价10%,现在的价格是原价的百分之几?答案:(1 - 10%)×(1 + 10%) = 99%28. 王师傅生产一批零件,经检验合格的有485 个,不合格的有15 个,这批零件的合格率是多少?答案:485÷(485 + 15)×100% = 97%29. 六年级同学植树200 棵,成活率是98%,成活了多少棵?答案:200×98% = 196(棵)30. 某商场五月份的营业额是48 万元,比四月份增加了20%,四月份的营业额是多少万元?答案:48÷(1 + 20%) = 40(万元)31. 一个圆形花坛的周长是18.84 米,它的面积是多少平方米?答案:半径:18.84÷3.14÷2 = 3(米),面积:3.14×3²= 28.26(平方米)32. 一个挂钟的分针长10 厘米,经过1 小时,分针针尖走过的路程是多少厘米?答案:3.14×10×2 = 62.8(厘米)33. 一个圆的直径是8 分米,它的周长和面积各是多少?答案:周长:3.14×8 = 25.12(分米),面积:3.14×(8÷2)²= 50.24(平方分米)34. 在一个边长为6 厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?答案:3.14×(6÷2)²= 28.26(平方厘米)35. 一辆自行车车轮的半径是30 厘米,车轮滚动一周,前进多少米?答案:2×3.14×0.3 = 1.884(米)36. 要在一块直径为2 分米的半圆形钢板上取一个最大的三角形,这个三角形的面积是多少平方分米?答案:2×(2÷2)÷2 = 1(平方分米)37. 一个环形,外圆半径是5 米,内圆半径是3 米,环形的面积是多少平方米?答案:3.14×(5²- 3²) = 50.24(平方米)38. 一个圆的周长是12.56 厘米,它的半径是多少厘米?面积是多少平方厘米?答案:半径:12.56÷3.14÷2 = 2(厘米),面积:3.14×2²= 12.56(平方厘米)39. 一根铁丝可以围成一个半径是3 厘米的圆,如果用它围成一个等边三角形,这个三角形的边长是多少厘米?答案:2×3.14×3÷3 = 6.28(厘米)40. 把一个圆平均分成若干等份,拼成一个近似的长方形,长方形的长是9.42 厘米,这个圆的面积是多少平方厘米?答案:半径:9.42÷3.14 = 3(厘米),面积:3.14×3²= 28.26(平方厘米)41. 一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?答案:2×3.14×2×5 = 62.8(平方厘米)42. 一个圆柱的底面直径是4 厘米,高是3 厘米,它的表面积是多少平方厘米?答案:侧面积:3.14×4×3 = 37.68(平方厘米),底面积:3.14×(4÷2)²×2 = 25.12(平方厘米),表面积:37.68 + 25.12 = 62.8(平方厘米)43. 一个圆柱的体积是125.6 立方厘米,底面半径是2 厘米,它的高是多少厘米?答案:125.6÷(3.14×2²) = 10(厘米)44. 一个圆锥形沙堆,底面半径是3 米,高是1.5 米,这个沙堆的体积是多少立方米?答案:3.14×3²×1.5×1/3 = 14.13(立方米)45. 一个圆锥的体积是314 立方厘米,底面直径是10 厘米,它的高是多少厘米?答案:314×3÷[3.14×(10÷2)²] = 12(厘米)46. 把一个棱长是6 分米的正方体木块削成一个最大的圆锥,这个圆锥的体积是多少立方分米?答案:1/3×3.14×(6÷2)²×6 = 56.52(立方分米)47. 一个圆柱和一个圆锥等底等高,圆柱的体积是90 立方厘米,圆锥的体积是多少立方厘米?答案:90÷3 = 30(立方厘米)48. 一个圆柱的底面周长是18.84 分米,高是5 分米,这个圆柱的体积是多少立方分米?答案:底面半径:18.84÷3.14÷2 = 3(分米),体积:3.14×3²×5 = 141.3(立方分米)49. 一个圆锥形零件,底面半径是4 厘米,高是6 厘米,这个零件的体积是多少立方厘米?答案:3.14×4²×6×1/3 = 100.48(立方厘米)50. 把一个底面半径是2 厘米,高是9 厘米的圆柱削成一个最大的圆锥,削去部分的体积是多少立方厘米?答案:圆柱体积:3.14×2²×9 = 113.04(立方厘米),圆锥体积:113.04÷3 = 37.68(立方厘米),削去部分体积:113.04 - 37.68 = 75.36(立方厘米)51. 一个圆柱的侧面积是188.4 平方厘米,高是10 厘米,它的底面周长是多少厘米?答案:188.4÷10 = 18.84(厘米)52. 一个圆柱的底面半径扩大2 倍,高不变,它的侧面积扩大多少倍?答案:2 倍53. 一个圆锥的底面周长是12.56 分米,高是3 分米,它的体积是多少立方分米?答案:底面半径:12.56÷3.14÷2 = 2(分米),体积:3.14×2²×3×1/3 = 12.56(立方分米)54. 把一个体积是282.6 立方厘米的铁块熔铸成一个底面半径是6 厘米的圆锥形机器零件,这个圆锥的高是多少厘米?答案:282.6×3÷(3.14×6²)= 7.5(厘米)55. 一个圆柱和一个圆锥的体积相等,底面积也相等。
六年级奥数题及答案.
六年级奥数题及答案.题目一:数字问题小明在计算一个数加上5,再减去3,最后乘以4的结果时,得到了48。
请问这个数是多少?解答:设这个数为x。
根据题意,我们有:4x = 48x = 48 ÷ 4x = 12所以这个数是12。
题目二:几何问题一个长方形的长是宽的两倍,如果将这个长方形的长和宽都增加5厘米,那么面积增加了85平方厘米。
求原来长方形的长和宽。
解答:设原来长方形的宽为w,那么长为2w。
根据题意,我们有:(2w + 5)(w + 5) - 2w * w = 852w^2 + 5w + 10w + 25 - 2w^2 = 8515w + 25 = 8515w = 60w = 4所以原来的宽是4厘米,长是2 * 4 = 8厘米。
题目三:逻辑问题有5个盒子,每个盒子里分别装有1个、2个、3个、8个和13个乒乓球。
现在需要将这些盒子重新组合,使得每个盒子里的乒乓球数都是奇数,且每个盒子里的乒乓球数都不相同。
请问如何组合?解答:首先,我们知道奇数加奇数等于偶数,奇数加偶数等于奇数。
由于1、3、8、13都是奇数,2是偶数,我们需要将2个乒乓球与另一个奇数组合,以保持总数为奇数。
我们可以尝试以下组合:- 第一个盒子:1个乒乓球(奇数)- 第二个盒子:2 + 3 = 5个乒乓球(奇数)- 第三个盒子:8个乒乓球(奇数)- 第四个盒子:13个乒乓球(奇数)这样每个盒子里的乒乓球数都是奇数,并且各不相同。
题目四:时间问题小华从家到学校需要30分钟,如果他加快速度,每分钟走的距离增加25%,那么他需要多少时间到达学校?解答:设原来每分钟走的距离为d,那么30分钟内走的总距离为30d。
加快速度后,每分钟走的距离为1.25d。
由于总距离不变,我们有:30d = 时间 * 1.25d解这个方程,我们得到:时间 = 30 / 1.25时间 = 24分钟所以,加快速度后,小华需要24分钟到达学校。
题目五:比例问题一个班级有男生和女生,男生人数是女生人数的1.5倍。
六年级能学的奥数题及答案
六年级能学的奥数题及答案奥数,即奥林匹克数学竞赛,是一种旨在培养学生数学思维和解决问题能力的竞赛形式。
六年级学生学习奥数,不仅可以锻炼他们的数学能力,还能提高逻辑推理和创新思维。
以下是一些适合六年级学生的奥数题目及答案:题目1:小明有3个红球和2个蓝球,他随机从袋子里拿出一个球,然后放回袋子里再拿一次。
请问小明两次都拿到红球的概率是多少?答案:第一次拿到红球的概率是3/5,因为总共有5个球,其中3个是红球。
由于每次拿球后都放回,第二次拿到红球的概率也是3/5。
两次都拿到红球的概率是两个独立事件同时发生的概率,所以是(3/5) * (3/5) = 9/25。
题目2:一个数字钟的时针和分针在12点整重合。
请问在接下来的12小时内,时针和分针会再次重合多少次?答案:在12小时内,时针和分针会重合11次。
因为时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟)。
每小时分针都会超过时针,除了12点整之外,它们会在每个小时的某个时刻再次重合。
题目3:一个长方形的长是宽的两倍,如果长和宽都增加10厘米,新的长方形的面积比原来的长方形面积大300平方厘米,求原来的长方形的长和宽。
答案:设原来的长方形宽为x厘米,那么长就是2x厘米。
原来的面积是x * 2x = 2x^2平方厘米。
增加后的长为2x + 10厘米,宽为x +10厘米,面积为(2x + 10) * (x + 10)平方厘米。
根据题意,我们有方程:(2x + 10) * (x + 10) - 2x^2 = 300。
解这个方程,我们可以得到x = 5厘米,所以原来的长方形的长是10厘米,宽是5厘米。
题目4:一个数字序列如下:2, 4, 7, 11, ...。
这个序列的第20项是多少?答案:这个序列是一个等差数列,第一项a1=2,公差d=2。
根据等差数列的通项公式an = a1 + (n - 1) * d,我们可以计算出第20项的值:a20 = 2 + (20 - 1) * 2 = 2 + 19 * 2 = 2 + 38 = 40。
小学六年级奥数题大全
工程问题1.甲乙两个水管单独开,注满一池水,分别需要 20 小时,16 小时. 丙水管单独开,排一池水要 10 小时,若水池没水,同时打开甲乙两水管, 5 小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80 表示甲乙的工作效率9/80×5=45/80 表示 5 小时后进水量1 -45/80=35/80 表示还要的进水量35/80÷ ( 9/80 -1/10) =35 表示还要 35 小时注满答:5 小时后还要 35 小时就能将水池注满。
2.修一条水渠,单独修,甲队需要 20 天完成,乙队需要 30 天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划 16 天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为 1/20,乙的工效为 1/30,甲乙的合作工效为 1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效> 乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16 天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x 天,则甲独做时间为 ( 16 -x) 天1/20* ( 16 -x) +7/100*x=1x=10答:甲乙最短合作 10 天3.一件工作,甲、乙合做需 4 小时完成,乙、丙合做需 5 小时完成。
现在先请甲、丙合做 2 小时后,余下的乙还需做 6 小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4 表示甲乙合作 1 小时的工作量,1/5 表示乙丙合作 1 小时的工作量( 1/4+1/5) ×2=9/10 表示甲做了 2 小时、乙做了 4 小时、丙做了2 小时的工作量。
根据“甲、丙合做 2 小时后,余下的乙还需做 6 小时完成”可知甲做 2 小时、乙做 6 小时、丙做 2 小时一共的工作量为 1。
小学六年级分数奥数题100道及答案(完整版)
小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。
思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。
2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。
思路:5×6=30(米)。
3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。
思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。
4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。
思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。
5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。
思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。
6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。
思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。
7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。
思路:设公路长x 米,1/2x-2/5x=60,解得x=300。
8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。
思路:设全书有x 页,1/5x+25=3/10x,解得x=125。
小学六年级奥数难题100道及答案(完整版)
小学六年级奥数难题100道及答案(完整版)1. 一个数的2/3加上4等于这个数的1/2,求这个数。
解:设这个数为x,根据题意可得方程:(2/3)x + 4 = (1/2)x。
解得x = -24。
2. 一个水池,第一天放水1/3,第二天放水1/4,第三天放水1/5,第四天放水1/6,最后剩下15立方米的水,求水池原来有多少立方米的水。
解:设水池原来有x立方米的水,根据题意可得方程:x * (1 - 1/3 - 1/4 - 1/5 - 1/6) = 15。
解得x = 60。
3. 一个长方形的长比宽多4厘米,周长是32厘米,求长方形的长和宽。
解:设长方形的长为x厘米,宽为y厘米。
根据题意可得方程组:x - y = 4;2x + 2y = 32。
解得x = 10,y = 6。
所以长方形的长为10厘米,宽为6厘米。
4. 一个数的3倍减去5等于这个数的2倍加上7,求这个数。
解:设这个数为x,根据题意可得方程:3x - 5 = 2x + 7。
解得x = 12。
5. 一个三角形的三边长分别为a、b、c,已知a + b > c,a + c > b,b + c > a,求三角形的面积。
解:根据海伦公式,三角形的面积S = sqrt[p * (p - a) * (p - b) * (p - c)],其中p = (a + b + c) / 2。
将已知的三边长代入公式即可求得三角形的面积。
6. 一个数的5倍减去8等于这个数的3倍加上12,求这个数。
解:设这个数为x,根据题意可得方程:5x - 8 = 3x + 12。
解得x = 10。
7. 一个正方形的边长增加2厘米,面积增加20平方厘米,求原来正方形的边长。
解:设原来正方形的边长为x厘米,根据题意可得方程:(x + 2)^2 - x^2 = 20。
解得x = 4。
所以原来正方形的边长为4厘米。
8. 一个数的4倍加上6等于这个数的3倍加上18,求这个数。
小学六年级奥数题100道及答案
小学六年级奥数题100道及答案1. 有两组数列,第一组数列是:2, 4, 6, 8, ..., 100;第二组数列是:1, 3, 5, 7, ..., 99。
问两组数列中所有数的和是多少?答案:第一组数列是一个等差数列,首项为2,公差为2,共有50项。
第二组数列也是一个等差数列,首项为1,公差为2,共有50项。
两组数列的和可以通过求和公式计算得出:\[ S_1 = 2 \times 50 + 50 \times 49 / 2 = 2550 \];\[ S_2 = 1 \times 50 + 50 \times 49/ 2 = 1225 \]。
所以,两组数列的和是:\[ S_1 + S_2 = 2550 + 1225 = 3775 \]。
2. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米。
如果把这个长方体切割成两个大小相等的正方体,那么切割后的每个正方体的体积是多少?答案:首先计算长方体的体积,\[ V_{长方体} = 10 \times 8\times 6 = 480 \] 立方厘米。
切割成两个正方体后,每个正方体的体积是原长方体体积的一半,即\[ V_{正方体} = 480 / 2 = 240 \]立方厘米。
3. 一个数列的前5项是:1, 1, 2, 3, 5。
这个数列的第6项是多少?答案:这是一个斐波那契数列,每一项都是前两项的和。
所以第6项是\[ 3 + 5 = 8 \]。
4. 有一个数字,如果把它乘以3然后加上10,得到的结果是这个数字的5倍。
这个数字是多少?答案:设这个数字为x,根据题意,我们有\[ 3x + 10 = 5x \]。
解这个方程,我们得到\[ 2x = 10 \],所以\[ x = 5 \]。
5. 一个班级有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,那么选择到男生的概率是多少?答案:从40名学生中随机选择一名,选择到男生的概率是男生人数除以总人数,即\[ P(男生) = 20 / 40 = 1 / 2 \]。
六年级奥数题及答案(五篇)
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
六年级奥数题100道及答案
六年级奥数题100道及答案题目1计算 2+3 的结果。
答案:5题目2计算 6-2 的结果。
答案:4题目3计算 4*5 的结果。
答案:20题目4计算 10/2 的结果。
答案:5题目5计算 8+2*4 的结果。
答案:16题目6计算 (6+2)*3 的结果。
答案:24题目7计算 12/3-2 的结果。
答案:2题目8计算 4*5+6 的结果。
答案:26题目9计算 18/3/2 的结果。
答案:3题目10计算 10-3+5 的结果。
答案:12计算 2^3 的结果。
答案:8题目12计算 5^2 的结果。
答案:25题目13计算 4^0 的结果。
答案:1题目14计算 16^(1/2) 的结果。
答案:4题目15将 3/8 化成小数。
答案:0.375题目16将 0.75 化成分数。
答案:3/4题目17计算 1/4+2/3 的结果。
答案:11/12题目18计算 2/3-1/6 的结果。
答案:1/2题目19计算 1/3*2/5 的结果。
答案:2/15题目20计算 3/4÷1/2 的结果。
答案:3/2题目21计算 \(\sqrt{9} - \sqrt{4}\) 的结果。
答案:1计算 \(\sqrt{16} + \sqrt{25}\) 的结果。
答案:9题目23计算 \(\sqrt{144}\) 的结果。
答案:12题目24计算 \(\sqrt{81} \times \sqrt{49}\) 的结果。
答案:63题目25已知一个正方形的面积为64平方厘米,求其边长。
答案:8厘米题目26已知一个长方形的长为10厘米,宽为5厘米,求其面积。
答案:50平方厘米题目27已知一个长方体的底面积为20平方厘米,高为5厘米,求其体积。
答案:100立方厘米题目28已知一个圆的半径为6厘米,求其周长。
答案:12π厘米题目29已知三角形的底边长为8厘米,高为4厘米,求其面积。
答案:16平方厘米题目30已知一个正方体的边长为5厘米,求其表面积。
小学六年级数学奥数题100题附答案(完整版)
小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。
A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。
第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。
此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。
题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。
两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。
完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。
题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。
分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。
题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。
小学六年级奥数题100道及答案
小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。
这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。
总路程就是=100×30=3000米。
3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?解答:从最不利的情形考虑。
【经典】小学六年级数学经典奥数题训练50(含答案)
【经典】小学六年级数学经典奥数题训练50(含答案)一、拓展提优试题1.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.2.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.3.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.4.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.5.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.6.已知自然数N的个位数字是0,且有8个约数,则N最小是.7.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.8.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.9.如图,一个长方形的长和宽的比是5:3.如果长方形的长减少5厘米,宽增加3厘米,那么这个长方形边长一个正方形.原长方形的面积是平方厘米.10.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.11.已知A是B的,B是C的,若A+C=55,则A=.12.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.13.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.14.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.15.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.【参考答案】一、拓展提优试题1.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.2.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.3.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.4.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,60=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.5.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.6.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.7.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=18答:四边形AEDF的面积是18.故答案为:18.8.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.9.解:先求出一份的长:(5+3)÷(5﹣3)=8÷2=4(厘米)长是:4×5=20(厘米)宽是:4×3=12(厘米)原来的面积是:20×12=240(平方厘米);答:原来长方形的面积是240平方厘米.故答案为:240.10.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.11.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.12.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.13.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.14.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.15.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.。
小学六年级奥数应用题100道及答案解析完整版
小学六年级奥数应用题100道及答案解析完整版1. 有一堆苹果,第一次吃了总数的20%,第二次吃了余下的25%,还剩下120 个,这堆苹果原来有多少个?答案:200 个解析:设这堆苹果原来有x 个。
第一次吃了0.2x 个,剩下0.8x 个。
第二次吃了0.25×0.8x = 0.2x 个,所以0.8x - 0.2x = 120,解得x = 200 。
2. 一项工程,甲单独做10 天完成,乙单独做15 天完成,两人合作多少天完成?答案:6 天解析:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要1÷(1/6) = 6 天。
3. 一个长方体的棱长总和是80 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少?答案:384 立方厘米解析:长方体的棱长总和= 4×(长+ 宽+ 高),所以长+ 宽+ 高= 20 厘米。
长= 20×5/(5 + 3 + 2) = 10 厘米,宽= 20×3/(5 + 3 + 2) = 6 厘米,高= 20×2/(5 + 3 + 2) = 4 厘米,体积= 10×6×4 = 384 立方厘米。
4. 学校图书馆有科技书和文艺书共630 本,其中科技书占20%,后来又买进一些科技书,这时科技书占总数的30%,买进了多少本科技书?答案:90 本解析:原来有科技书630×20% = 126 本,设买进x 本科技书,则(126 + x) / (630 + x) = 30%,解得x = 90 。
5. 甲乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇,各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇,A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,甲乙合走一个全程,甲走了60 千米。
小学六年级奥数题100道及答案解析(完整版)
小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。
2. 一个圆的半径扩大3 倍,它的面积扩大()倍。
A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。
3. 甲数的2/3 等于乙数的3/4,甲数()乙数。
A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。
4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。
6. 要反映某地气温变化情况,应绘制()统计图。
A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。
7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。
六年级数学经典奥数题训练50(含答案)
六年级数学经典奥数题训练50(含答案)一、拓展提优试题1.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.2.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.3.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.4.如图所示的“鱼”形图案中共有个三角形.5.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.6.若质数a,b满足5a+b=2027,则a+b=.7.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.8.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.9.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.10.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?11.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)12.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.13.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距千米.14.已知A是B的,B是C的,若A+C=55,则A=.15.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.【参考答案】一、拓展提优试题1.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.2.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.3.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.4.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.5.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.6.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.7.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.8.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.9.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:910.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.11.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.12.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.13.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,相遇地点离A地的距离为AB两地距离的,第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,相遇地点离A地的距离为AB两地距离的2﹣=,所以,AB两地的距离为:50÷()=50÷=100(千米)答:A、B两地相距100千米.故答案为:100.14.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.15.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.。
小学六年级奥数题50道题及解答(可直接整理编辑)
,.练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元? 10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?,.答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
(完整word版)小学六年级奥数题50道题及解答(可直接打印)
练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
小学全部奥数题及答案-经典奥数题目
六年级奥数题及答案1、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)3、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗4、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)5、搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运5,丙每小时搬运4三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)6、一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成:5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做:1/3-1/4=1/12那么乙一天做:[1/12-1/72×3]/2=1/48则丙一天做:1/16-1/72-1/48=1/36则余下的由丙做要:[1-5/6]÷1/36=6天答:还需要6天7、股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
小学六年级奥数题及答案[6篇]
小学六年级奥数题及答案[6篇]1.小学六年级奥数题及答案篇一1、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?答案:25%解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/ 5)÷1/5=25%需要多少分钟?2、甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。
甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?答案:432分钟解析:甲行驶2.5小时的路程,乙用了3.5小时。
所以甲乙的速度比为7:5,走相同路程的时间比是5:7。
那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。
2.小学六年级奥数题及答案篇二1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?答案与解析:人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183答:陕西省至少有183人的头发根数一样多。
2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?答案与解析:①做正方形的另一条对角线。
得到四个完全相同的等腰直角三角形。
②一个等腰直角三角形的面积是:8÷2=4(直角边)4×4÷2=8(平方米)③四个等腰直角三角形的面积,即正方形的面积。
8×4=32(平方米)3.小学六年级奥数题及答案篇三1、125×(17×8)×4=125×8×4×17=1000×68=680002、375×480+6250×48=480×(375+625)=4800003、25×16×125=25×2×8×125=500004、13×99=13×(100-1)=1300-13=12875、75000÷125÷15=75×1000÷125÷15=75÷15×1000÷125=5×8=406、7900÷4÷25=7900÷(4×25)=797、150×40÷50=150÷50×40=3×40=1208、5600÷(25×7)=56×100÷25÷7=56÷7×100÷25=329、210÷42×6=210÷7÷6×6=3010、39600÷25=396×100÷25=396×4=15844.小学六年级奥数题及答案篇四有三块草地,面积分别是5,15,24亩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数题50道及答案
1. 三个袋子里放着相同数量的红球,黄球和蓝球,共有 10 粒球。
每袋子里各有几粒?
答案:每袋子 3 粒
2. 某人有 8 支铅笔,4 支钢笔,用它们排成一排,问最多可以排成几排?
答案:两排
3. 小明有 12 元钱,用它买了 6 个橘子,每个 1 元,还剩几块钱?
答案:还剩 6 元
4. 大卫有 3 个朋友,他们共分了 20 个苹果,大卫得到几个?
答案:大卫得到 6 个苹果
5. 一个游乐场有 5 个火车,每辆火车上有 8 个座位,共有多少个座位?
答案:共有 40 个座位
6. 一个餐厅共有 6 个桌子,每个桌子可以坐 4 人,共可以容纳多少人?
答案:共可以容纳 24 人
7. 一共有 10 块砖,每堆 3 块,共有几堆?
答案:共有 4 堆
8. 一共有 8 支铅笔,4 支钢笔,每支铅笔的价格是钢笔的 2 倍,大卫花了 48 元,买了几支钢笔?
答案:买了 4 支钢笔
9. 请问把12 个正方形拼成一个大正方形,大正方形有几条边?
答案:大正方形有 4 条边
10. 一共有 12 个苹果,每袋只能装 4 个,共需要几袋?
答案:共需要 3 袋
11. 一共有 18 个橘子,每篮可以装 6 个,需要几篮?
答案:需要 3 篮
12. 一共有 10 块砖头,每袋装 2 块,需要几袋?
答案:需要 5 袋
13. 一共有 9 张书,每盒可以装 3 张,需要几盒?
答案:需要 3 盒
14. 一共有 5 个小朋友,一共分了 15 块糖,每个小朋友可以得到几块糖?
答案:每个小朋友可以得到 3 块糖
15. 一共有 10 支铅笔,每盒装 3 支,需要几盒?
答案:需要 4 盒
16. 一共有 10 个小球,每篮可以装 4 个,需要几篮?
答案:需要 3 篮
17. 大卫有 6 元钱,用它买了 4 个橘子,每个 1.5 元,还剩几块钱?
答案:还剩 0 元
18. 一共有 12 支钢笔,每盒可以装 4 支,需要几盒?
答案:需要 3 盒
19. 一共有 24 个正方形,每排 6 个,一共有几排?
答案:一共有 4 排
20. 一共有 12 张牌,每人可以得到 3 张,共有几个人?
答案:共有 4 个人
21. 一共有 9 块蛋糕,每人可以分得 3 块,共有几个人?
答案:共有 3 个人
22. 一共有 10 瓶饮料,每袋可以装 5 瓶,需要几袋?
答案:需要 2 袋
23. 一共有 18 个书,每箱可以装 6 个,需要几箱?
答案:需要 3 箱
答案:一共有 12 粒食物,每袋装 4 粒,需要几袋?
答案:需要 3 袋
25. 一共有 5 个孩子,一共分了 15 个糖果,每个孩子可以得到几个糖果?
答案:每个孩子可以得到 3 个糖果
26. 一共有 8 块砖头,每袋装 2 块,需要几袋?
答案:需要 4 袋
27. 一共有 6 条链子,每盒可以装 3 条,需要几盒?
答案:需要 2 盒
28. 一共有 10 把伞,每把伞包一个盒子,一共需要几个盒子?答案:一共需要 10 个盒子
29. 一共有 7 个苹果,每篮可以装 3 个,需要几篮?
答案:需要 3 篮
30. 一共有 14 支钢笔,每筒装 4 支,需要几筒?
答案:需要 4 筒
31. 一共有 12 块橡皮,每盒装 4 块,需要几盒?
答案:需要 3 盒
32. 一共有 10 个棋子,每盒可以装 2 个,需要几盒?
答案:需要 5 盒
33. 一共有 9 块布,每袋装 3 块,需要几袋?
答案:需要 3 袋
34. 一共有 16 小球,每份可以分 4 个,共有几份?
答案:共有 4 份
35. 一共有 11 个小朋友,一共分了 33 块糖,每个小朋友可以得到几块糖?
答案:每个小朋友可以得到 3 块糖
36. 一共有 8 支铅笔,每盒装 2 支,需要几盒?
答案:需要 4 盒
37. 一共有 12 条鱼,每箱可以装 4 条,需要几箱?
答案:需要 3 箱
38. 一共有 6 块橡皮,每袋装 2 块,需要几袋?
答案:需要 3 袋
39. 一共有 9 个正方形,每排 3 个,一共有几排?
答案:一共有 3 排
40. 一共有 12 张牌,每人可以得到 4 张,共有几个人?
答案:共有 3 个人
41. 一共有 10 瓶苹果汁,每箱可以装 5 瓶,需要几箱?
答案:需要 2 箱
42. 一共有 11 条狗,每把笼子可以关住 3 条,需要几个笼子?
答案:需要 4 个笼子
43. 一共有 6 只鸟,每把笼子可以装 2 只,需要几把笼子?
答案:需要 3 把笼子
44. 一共有 14 颗橘子,每篮可以装 4 颗,需要几篮?
答案:需要 4 篮
45. 一共有 8 支毛笔,每筒装 4 支,需要几筒?
答案:需要 2 筒
46. 一共有 9 条鱼,每盒可以装 3 条,需要几盒?
答案:需要 3 盒
47. 一共有 10 个姑娘,一共分了 20 个糖果,每个姑娘可以得到几个糖果?
答案:每个姑娘可以得到 2 个糖果
48. 一共有 12 个龙虾,每袋装 4 个,需要几袋?
答案:需要 3 袋
49. 一共有 7 个箱子,每排可以放下 3 个,一共有几排?
答案:一共有 3 排
50. 一共有 5 个孩子,一共分了 15 块巧克力,每个孩子可以得到几块巧克力?
答案:每个孩子可以得到 3 块巧克力。