模拟电路学过的电路分析方法

合集下载

模拟电路第二章知识点总结

模拟电路第二章知识点总结

2 F
2 F
) 2
5.MOS 电流源
在 MOS 模拟集成电路中,电流源的形式与 BJT 电流源相似。
MOS 镜像电流源:
Ir
IO
T1
T2
图 简单镜像电流源 MOS 镜像电流源的电路和原理、等效电路、电流与输出电阻
ro1 vgs
gm2vgs
ro 2
Ir Io Io Ir ro1gm2 ro1 ro2
(3)甲乙类工作状态:它是介于甲类和乙类之间的一种工作状态,即发射结 处于正向运用的时间超过半个周期,但小于一个周期,即导通角大于 小于 。甲 乙类工作状态又称为 AB 类工作状态。
(4)丙类工作状态:发射结处于正向运用的时间小于半个周期,集电极电流 流通的时间还不到半个周期,即导通角小于 90º。丙类工作状态又称为 C 类工作 状态。
IB
VBB
RB
I BQ
Q
O
VBEQ
交流分析:
VCC IC RL
ICQ 1 arctan RB
VBB VBE
O
iB
Q
iB ib
I BQ
VCC iC RC
o o VBEQ t
VBB VIN VBB
vBE vbe
vBE VBB VIN o
v
t
O
O
Q IB IBQ
VCEQ
arctan 1 RL
VCC
VDD
八、推挽输出级放大电路
功率放大器根据功放管导通时间的长短(或集电极电流流通时间的长短或导 通角大小),分为以下 4 个工组状态:
(1)甲类工作状态:在整个周期内晶体管的发射结都处于正向运用,集电极 电流始终是流通的,即导通角等于 180º。甲类工作状态又称为 A 类工作状态。

《模拟电路》课件

《模拟电路》课件
详细描述
模拟电路是处理模拟信号的电子电路,这些信号在时间和幅 度上都是连续变化的。在模拟电路中,电路元件的参数通常 是连续变化的,这使得模拟电路的分析方法与数字电路有所 不同。
模拟电路的应用
总结词
模拟电路广泛应用于通信、音频处理、图像处理、控制系统等领域。
详细描述
模拟电路在许多领域都有广泛的应用,包括通信、音频处理、图像处理、控制系统等。在通信领域,模拟电路用 于信号的传输和处理;在音频处理领域,模拟电路用于音频信号的放大和处理;在图像处理领域,模拟电路用于 图像信号的处理和传输;在控制系统中,模拟电路用于控制信号的生成和传输。
准备必要的调试工具和测试设备,搭 建调试环境。
功能调试
对电路的功能进行测试和验证,确保 各功能正常工作。
性能优化
根据测试结果,对电路的性能进行优 化,提高各项技术指标。
问题分析与解决
针对调试过程中发现的问题,进行深 入分析并采取有效措施解决。
05
模拟电路实验与实践
实验设备与器材
信号发生器
产生各种频率和幅 度的正弦波、方波 和三角波等信号。
电路的性能也不断提高。
02
模拟电路基础知识
电阻
总结词
电阻是模拟电路中最重要的元件之一 ,用于限制电流的流动。
详细描述
电阻由导电材料制成,其阻值取决于 材料、长度和横截面积。在电路中, 电阻用于控制电流的大小,从而实现 电压的调节和信号的处理。
电容
总结词
电容是存储电荷的元件,具有隔直流通交流的特性。
详细描述
交流分析是模拟电路分析的重要环节,主要 研究电路在交流信号下的响应。通过交流分 析,可以了解电路的动态性能,如增益、带 宽、失真等。交流分析通常采用小信号模型 进行分析,以简化计算过程。

模拟电路调试方法及故障分析

模拟电路调试方法及故障分析

2011 9OCCUPATION126模拟电路调试方法及故障分析文/张晓虎模拟电路是技校电类专业课中很重要的一门课程,但以前的教育模式重于理论教学,所以,改为一体化教学模式后,很多学生包括老师在内都很不适应。

特别是对模拟电路的调试方法、故障分析检修方面,有很大的分歧。

下面笔者就针对自己上课过程中的体会,总结一下经验。

模拟电路的调试在整个《模拟电路》模块中占有重要地位,它是把理论付诸于实践的过程,是对设计的电路能否正常工作、是否达到性能指标的检验和测量。

调试过程是利用符合指标要求的各种仪器,如万用表、信号发生器、示波器等各种测量仪器,对安装好的电路进行调整和测量,判断性能好坏、各种指标是否符合设计要求。

因此,调整和测试必须遵守一定的测试方法,并按一定的步骤进行。

一般的测试步骤和方法如下。

一、不通电检查检查连线电路安装完毕后,不要急于通电,首先认真检查接线是否正确,包括错线、少线、多线。

多线一般是因接线时看错引脚,或者改接线时忘记去掉原来的旧线造成的,这是在操作过程中最容易发生的情况。

查线时又不易发现,调试时往往会给人造成错觉,以为问题是由元器件造成的。

为了避免做出错误判断,通常采用两种查线方法:一种方法是按照原理图检查,逐一排查连线,这种方法比较容易找出错线和少线;另一种方法是按实际安装线路检查,检查每个元器件引脚的连线是否在原理图上存在,这种方法不但能查出错线和少线,还能检查出是否多线。

不论用什么方法查线,一定要在电路图上对查过的线做出标记,并且还要检查每个元器件的引脚的使用端数是否与图样相符。

查找时,最好用指针式万用表的“R×1”,或用数字万用表的“X挡”。

其次,直观检查电源、地线、信号线、元器件引脚之间有无短路;连线处有无接触不良;二极管、三极管、电解电容等引脚有无错接。

二、通电观察接通电源后,不要急于调试电路,首先要观察电路有无异常现象,包括是否冒烟,是否闻到异常气味,手模元件是否发烫,电源是否有短路现象等。

2模拟部分第2章放大电路的基本原理和分析方法-放大

2模拟部分第2章放大电路的基本原理和分析方法-放大
第2章 放大电路的基本原理 和分析方法
2.1 2.2 2.3 2.4 2.5
BJT
基本共射极放大电路 放大电路的分析方法 放大电路静态工作点的稳定问题 共集电极放大电路和共基极放大电路
2.2 基本共射极放大电路
2.2.0 放大电路概述
2.2.1 基本共射极放大电路的组成 2.2.2 基本共射极放大电路的工作原理

2.2.0 放大电路概述
ii
由于
RS
io
Ri
Ro
+
ui
+
uo

RL
RL uo = Au0ui RL Ro
us −
+

Au 0ui
+

Ri
直流电源
即 Ro越小,输出电压越稳定,电路带载能力越强。
2.2.0 放大电路概述
(4) 全谐波失真度D
D=
2 U n n =2
U1
即谐波电压总有效值与基波电压有效值之比。
RL
uo

使集电极有合适的电流IC
RC
转换集电极电流信号为电压信号, 实现电压放大
2.2.1 基本共射极放大电路的组成
(1)电路的简化 只用一个电源,减 少电源数。考虑经 济实用。 (2)电路的简化画法
RB
VCC
RC
ui


C1

T
C2

RL
uo

不画电源符号, 只写出电源正极 对地的电位。

(一)图解法在放大电路静态分析中的应用 1.输入回路 列写输入回路方程 VCC=IBRB+UBE
VCC
RB
IB

电力电子技术中的电力电子电路的分析方法有哪些

电力电子技术中的电力电子电路的分析方法有哪些

电力电子技术中的电力电子电路的分析方法有哪些电力电子技术在现代电力系统中扮演着重要的角色,它可以实现电力的调节、转换和控制,有效提高能源的利用效率。

而电力电子电路的分析方法是理解和研究电力电子系统运行原理的基础。

本文将介绍几种常见的电力电子电路分析方法。

一、直流电路分析方法直流电路通常由直流电源、电阻、电容、电感以及开关等元件组成。

分析直流电路主要采用基尔霍夫电流定律和基尔霍夫电压定律,以及欧姆定律等基本电路分析法则。

对于非线性的电路元件,还可以采用迭代法进行分析。

二、交流电路分析方法交流电路是由交流电源、电感、电容和电阻等元件组成的电路。

对于交流电路的分析,可以采用复数表示法和相量表示法。

通过对电压和电流进行相量运算,可以求解电路的频率响应、幅频特性和相频特性等参数。

三、模拟电路分析方法模拟电路是由二极管、三极管、运算放大器等模拟元件组成的电路。

模拟电路的分析方法主要包括基于等效电路的小信号分析法、大信号分析法以及频率响应分析法等。

通过这些方法可以对模拟电路的各种性能指标进行分析。

四、开关电路分析方法开关电路是由开关元件如晶体管、MOSFET等组成的电路。

在开关电路中,主要采用开关瞬态分析法和开关稳态分析法。

开关瞬态分析法可以对开关元件的开关过程进行分析,确定开关速度和损耗等参数。

开关稳态分析法则用于确定开关电路的工作状态和各种性能指标。

在电力电子技术中,还有许多其他的电力电子电路分析方法,如状态空间法、小信号分析法以及数值仿真法等。

不同的分析方法适用于不同类型的电力电子电路,可以用来解决不同的问题和优化电路设计。

总结起来,电力电子电路的分析方法包括直流电路分析方法、交流电路分析方法、模拟电路分析方法以及开关电路分析方法等,通过这些方法可以深入理解电力电子电路的工作原理和性能指标,为电力电子技术的研究和应用提供支持。

《模拟电子技术》第5讲放大电路的分析方法I

《模拟电子技术》第5讲放大电路的分析方法I

例题一
2. 从输出电压上看,哪个Q点下最易产生截止失真? 哪个Q点下最易产生饱和失真?哪个Q点下Uom最大?
(1) Q2靠近截止区,最容易出现截止失真;
(2) Q3靠近饱和区,最容易出现饱和失真; (3) Q4距离饱和区和截止区最远,最大不失真电压Uom 最大;
例题二:已知放大电路如下图所示,电路参数都标 在电路中,并且已知三极管的输入特性曲线, 80 rbb' 200 求解放大电路的静态工作点Q。
解答:空载时Uom=5.3/2^1/2=3.75V,容易出现饱和 失真;带载时Uom=3/2^1/2=2.12V,容易出现截止 失真。
作业:
P138 2.2(a),(b) P138 2.4
饱和失真
饱和失真产生于晶体管的输出回路! 集电极电流ic顶部失真,输出电压uo底部失真!
消除饱和失真的方法
Rc↓或VCC↑
Q '''
Q''
Rb↑或 VBB ↓或 β↓
• 消除方法:增大Rb,减小VBB,减小β • 消除方法:减小Rc,增大VCC
一般不采 用!
4、图解法的特点
• 形象直观; • 适应于Q点分析、失真分析、最大不失真输出 电压的分析; • 能够用于大信号分析; • 不易准确求解; • 不能求解输入电阻、输出电阻、通频带等参数。
I BQ
VBB U BEQ Rb
分析静态工作点
ICQ I BQ
UCEQ VCC ICQ Rc
直流通路
基本共射放大电路的交流通路
交流通路绘制原则: VBB=0(短路),VCC=0(短路)
交流通路
阻容耦合单管共射放大电路的直流通路直流Biblioteka 路绘制原则:C1开路,C2开路

大学模拟电路基础教案

大学模拟电路基础教案

大学模拟电路基础教案大学模拟电路基础教案一、课程简介本课程“模拟电路基础”是大学电子信息专业的必修课程,主要介绍线性电路分析的基础理论、基本方法、基本技能和电路设计过程中的基本规律、标准化方法、软件工具及其应用。

通过该课程的学习,可以夯实学生的电路基础理论和设计能力,为日后开展电子电路设计方面的科研和实践活动做好准备。

二、教学内容本课程主要包括以下内容:1、简单电路分析方法:如基尔霍夫定律、欧姆定律、电流分压法、等效源、戴维南等效电路、超级节点法和超级网格法;2、稳态响应分析:如响应度、稳态输出电压、输入电压、反馈系数、性能指标等分析;3、交流电路分析:如复数表示、图形表示、阻抗和复功率、相位、功率、功率因数等;4、放大电路与运算放大器:如小信号模型、放大系数、通频带、输入和输出阻抗等;5、振荡器与谐振电路:如概念、分类、组成、转移函数、谐振曲线、稳态频率等;6、滤波器:如概念、分类、通带、截止频率、滤波函数、设计条件等。

三、教学方法本课程的教学方法主要包括以下三方面:1、理论授课:讲解基础的理论知识和分析方法,以便学生掌握相关理论基础;2、实验演示:通过实验演示,让学生对理论知识有更直观的体验感受、技能运用可视化体验、在线测量理论验证并获得自我检查、调试及优化的能力;3、综合实验:本课程将以综合实验为主,通过基于实际问题的独立设计,培养学生的综合能力和创新意识。

注:具体教学方法可以根据学生水平和课程进展情况选择或适当调整。

四、教学安排1、授课时间:共三个学期,第一学期16周,第二学期16周,第三学期8周。

每周2—3个课时,每次2小时至3小时不等。

2、授课对象:大学二年级及以上学生。

授课人数视学校实际情况而调整。

3、考试方式:本课程分级考试,包括期末考试和平时考试两部分。

期末考试占总分的60%左右,平时考试占40%左右。

期末考试采用笔试方式,主要考核学生的理论知识和分析能力;平时考核包括课堂表现、作业和实验实习,主要考核学生的理论水平和实际能力。

《模拟电路教案》

《模拟电路教案》

《模拟电路教案》word版教案章节:一、模拟电路概述1.1 模拟电路的定义1.2 模拟电路的特点1.3 模拟电路的应用二、模拟电路基本元件2.1 电阻元件2.2 电容元件2.3 电感元件2.4 电压源和电流源三、模拟电路基本分析方法3.1 节点分析法3.2 回路分析法3.3 叠加分析法3.4 戴维南-诺顿定理四、模拟电路常见电路模块4.1 放大器4.2 滤波器4.3 振荡器4.4 模拟信号发生器五、模拟电路设计与仿真5.1 模拟电路设计流程5.2 仿真软件的选择与使用5.3 电路仿真的一般步骤5.4 仿真结果分析与优化《模拟电路教案》word版教案章节:六、放大器的设计与分析6.1 放大器的作用与分类6.2 放大器的特性指标6.3 晶体管放大器的设计与分析6.4 运算放大器的设计与分析七、滤波器的设计与分析7.1 滤波器的作用与分类7.2 滤波器的特性指标7.3 低通滤波器的设计与分析7.4 高通滤波器的设计与分析八、振荡器的设计与分析8.1 振荡器的作用与分类8.2 振荡器的特性指标8.3 晶体振荡器的设计与分析8.4 RC振荡器的设计与分析九、模拟信号发生器的设计与分析9.1 模拟信号发生器的作用与分类9.2 模拟信号发生器的特性指标9.3 正弦波发生器的设计与分析9.4 方波发生器的设计与分析十、模拟电路的测试与调试10.1 测试与调试的目的与方法10.2 测试仪器与设备的选择10.3 电路测试的一般步骤10.4 测试结果分析与调试《模拟电路教案》word版教案章节:十一、模拟电路在实际应用中的案例分析11.1 通信系统中的模拟电路应用11.2 音频设备中的模拟电路应用11.3 医疗设备中的模拟电路应用11.4 工业控制中的模拟电路应用十二、模拟电路的可靠性与稳定性12.1 影响模拟电路可靠性的因素12.2 提高模拟电路稳定性的方法12.3 电路保护与故障处理12.4 电路的长期维护与保养十三、模拟电路的现代设计方法13.1 集成电路设计基础13.2 数字模拟混合信号电路设计13.3 射频电路设计简介13.4 基于计算机辅助设计(CAD)的工具与应用十四、模拟电路教学实验与实践14.1 实验目的与要求14.2 实验设备与材料14.3 实验内容与步骤14.4 实验结果与分析十五、模拟电路课程设计15.1 课程设计的要求与流程15.2 课程设计选题与指导15.4 课程设计的评价与反馈重点和难点解析一、模拟电路概述:理解模拟电路的基本概念和特点,掌握模拟电路与数字电路的区别。

模拟电路设计及其性能分析

模拟电路设计及其性能分析

模拟电路设计及其性能分析作为电子科学中的基础学科,模拟电路设计及其性能分析一直是电子工程技术中最重要的领域之一。

它既是了解电子元器件的特性、设计电子电路和系统的基础,又是各种科学仪器、工业自动化和现代通信系统的核心。

在实际工程中,我们需要根据具体的工程需求来设计和实现不同类型的模拟电子电路,然后对其性能进行分析和评估,以确保电路能够满足系统要求。

本文将从模拟电路设计和性能分析两个方面探讨这一领域的基础理论和实际应用。

一、模拟电路设计电子电路的设计需要熟练掌握电路原理、器件特性和电路设计方法等知识。

其中,模拟电路设计的核心是理解和应用模拟电子元器件的特性,例如电阻、电容、电感、二极管、晶体管、集成电路等,以满足电路的功能和性能要求。

具体来说,模拟电路设计通常包括以下几个步骤:1. 电路分析和建模电路分析是模拟电路设计的关键之一,需要根据电路中元器件的特性和连接方式,利用基本电路理论和分析方法,建立电路的数学模型。

例如,对于一个滤波电路,我们可以利用电路理论和网络分析中的频率响应法,建立电路的传输函数,并对其进行仿真分析。

2. 元器件选择和参数调整元器件的选择和参数调整也是模拟电路设计的重要环节。

不同类型的元器件有着各自的特性和限制,需要进行仔细的比较和选择。

例如,在设计放大器电路时,需要选择合适的运放、晶体管等元器件,并根据放大器的增益、带宽、偏置等参数进行调整和优化。

3. 电路布局和绘制电路布局和绘制是电子电路设计中的一项关键技术。

电路布局需要考虑到信号传输、元器件的连接方式、噪声和干扰的抑制等因素,也需要遵循电路设计的规范和标准。

电路绘制则需要对电路的各个部分进行精细绘制,以便于电路的调试和测试。

二、性能分析在完成电路设计之后,我们需要对电路的性能进行评估和分析,以确保电路能够满足系统要求。

模拟电路的性能分析通常包括以下几个方面:1. 常规性能分析常规性能分析包括电压增益、功率增益、带宽、输入输出电阻等参数的测量和分析。

模拟电路基本电路介绍

模拟电路基本电路介绍
构和工作原理的不同,晶体管可分为NPN型和PNP型等类型。
03
基本电路
BIG DATA EMPOWERS TO CREATE A NEW
ERA
电压源与电流源
电压源
提供恒定电压,不受负载变化影响。
电流源
提供恒定电流,不受负载变化影响。
线性电阻电路
要点一
欧姆定律
电压与电流成正比,与电阻成反比。
要点二
滤波器、信号放大器等。
控制系统
模拟电路在控制系统中也发挥 着重要作用,如传感器、调节
器、执行器等。
测量系统
模拟电路在测量系统中也得到 了广泛应用,如电压表、电流
表、温度计等。
02
基本元件
BIG DATA EMPOWERS TO CREATE A NEW
ERA
电阻
总结词
电阻是模拟电路中最基本的元件之一,用于限制电流。
数据记录与分析
认真记录实验数据,分析实验结果,总结实 验经验。
06
模拟电路发展与展望
BIG DATA EMPOWERS TO CREATE A NEW
ERA
模拟电路的发展历程
早期模拟电路
20世纪初,电子管和电阻器、电 容器等基础元件的发明,为模拟
电路的发展奠定了基础。
中期模拟电路
20世纪中叶,晶体管的发明使得模 拟电路的性能得到大幅提升,广泛 应用于信号放大、振荡等领域。
ERA
模拟电路的定义
模拟电路
模拟电路是一种处理模拟信号的电子 电路,其输出信号与输入信号之间存 在一定的比例关系和延迟关系。
模拟信号
模拟信号是一种连续变化的信号,其 幅度和时间均可以连续变化。例如, 声音、光线、温度等自然现象的变化 都可以用模拟信号来表示。

模拟电子技术3-2 模拟系统分析方法

模拟电子技术3-2 模拟系统分析方法
第三章 模拟电路的基本问题
本章目录
3.1 电信号 3.2 模拟电路分析的基本方法 3.3 放大电路
模拟电路的基本分析方法
图解分析方法 图解分析法较简单,前提条件是已知器
件的V -I 特性曲线。
模型分析方法 将非线性器件简化成一个线性模型,然
后采用线性分析法。
模拟电路的基本分析方法
例3.2.1 电路如图所示,已知二极管的V-I特性曲线、电源VDD 和电阻R,求二极管两端电压vD和流过二极管的电流iD 。
放大倍数
ii
Rs
+
+
vi
v_s
_
放大电路
io
+
vo
RL
_
电电互互电压压阻导流放增放放放大益大大大倍倍倍倍数数数数
G 20log A v
AvgAAirVVVIoi oiIVIIoioi
v
输入电阻
对信号源的电 压放大倍数
Ri
Vi Ii
.
.
Avs
Vo
.
Vs
Vi
Ri Rs
Ri
Vs
..
Vo
.
Vi
.
Vi Vs
例3.2.3 图示电路中,VDD = 10V,R = 10k,恒压降模型的VD=0.7V,vs =
0.1sint V。(1)求输出电压vO的交流量和总量;(2)绘出vO的波形。
此电路可以看成静态(直流通路)+动态(交流通路):
静态:VD 0.7 V
ID (VDD VD ) / R 0.93 mA Vo ID R 9.3V
VD 0 V ID VRDDR/ RID ID1 mA
2.恒压模型
VD 0.7 VV(DD硅V二DD 极管典D型D值)V_D V_VDDVDDD

模拟电路知识点总结

模拟电路知识点总结

模拟电路知识点总结一、模拟电路的基本概念模拟电路是处理连续变化的电信号的电子电路。

与数字电路处理离散的数字信号不同,模拟电路中的信号在时间和幅度上都是连续的。

这些信号可以是电压、电流或者其他物理量,如声音、光线等。

在模拟电路中,常见的元件包括电阻、电容、电感、二极管、三极管等。

电阻用于限制电流和分压;电容用于存储电荷和滤波;电感用于储存能量和滤波;二极管具有单向导电性,常用于整流和稳压;三极管则可以作为放大器或开关使用。

二、放大器放大器是模拟电路中的重要组成部分,其作用是将输入的小信号放大到所需的幅度。

常见的放大器有共射极放大器、共集电极放大器和共基极放大器。

共射极放大器具有较大的电压增益和电流增益,但输入电阻较小,输出电阻较大。

共集电极放大器的输入电阻较大,输出电阻较小,电压增益接近于 1 但具有电流放大作用。

共基极放大器具有较高的频率响应和较小的输入电容,常用于高频放大电路。

放大器的性能指标包括增益、输入电阻、输出电阻、带宽等。

增益表示放大的倍数,输入电阻影响信号源的负载,输出电阻影响放大器对负载的驱动能力,带宽则决定了放大器能够有效放大的信号频率范围。

三、反馈反馈在模拟电路中用于改善放大器的性能。

反馈分为正反馈和负反馈。

正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会被使用。

负反馈则可以减小增益的波动、提高线性度、扩展带宽、降低噪声等。

负反馈的类型有电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈。

通过选择不同类型的负反馈,可以根据具体需求调整放大器的性能。

四、集成运算放大器集成运算放大器(简称运放)是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。

它通常由差分输入级、中间放大级和输出级组成。

运放可以构成各种功能的电路,如比例放大器、加法器、减法器、积分器、微分器等。

在使用运放时,需要考虑其电源、输入输出范围、失调电压和失调电流等参数。

五、滤波器滤波器用于选择或抑制特定频率范围内的信号。

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。

在模拟电路中,电压和电流可以在一定范围内取任意值。

这是理解模拟电路的关键起点。

二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。

当正向偏置时,电流容易通过;反向偏置时,电流极小。

二极管常用于整流电路,将交流转换为直流。

2、三极管三极管分为 NPN 型和 PNP 型。

它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。

三极管在放大电路中应用广泛。

3、场效应管场效应管分为结型和绝缘栅型。

它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。

三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。

2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。

3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。

四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。

1、理想运算放大器特性具有“虚短”和“虚断”的特点。

“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。

2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。

五、反馈电路反馈可以改善放大器的性能。

1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。

负反馈能稳定放大倍数、改善频率特性等。

2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。

六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。

1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。

模拟电路知识点总结资料

模拟电路知识点总结资料

模拟电路知识点总结资料一、基本概念1. 电路:由电阻、电容、电感等基本元件组成的系统。

根据信号类型,电路可分为模拟电路和数字电路。

2. 模拟电路:能够处理连续变化的信号的电路。

模拟电路中的信号是连续的模拟波形,可以以任意时间间隔改变其数值。

3. 数字电路:只能处理离散的信号的电路。

数字电路中的信号是由0和1组成的脉冲波形,只在规定的时间点改变其数值。

二、基本元件1. 电阻:用于限制电流的流动,常用于控制信号的幅度和输出阻抗。

2. 电容:用于存储电荷,通常用于滤波、隔直、积分等功能。

3. 电感:用于存储磁能,通常用于滤波、隔交、微分等功能。

4. 二极管:用于实现电流的单向导通,可以作为整流器、开关等。

5. 晶体管:用于放大和控制电流,可以作为放大器、开关等。

三、基本电路1. 放大器:用于放大输入信号的幅度,常见的有运放放大器、晶体管放大器等。

2. 滤波器:用于滤除不需要的频率成分,常见的有低通滤波器、高通滤波器、带通滤波器等。

3. 比较器:用于比较两个信号的大小,常见的有比较器、振荡器等。

四、基本分析方法1. 直流分析:分析电路在稳态直流条件下的性能,通常用节点法、网孔法等进行分析。

2. 交流分析:分析电路在交流条件下的性能,通常用复数分析、频域分析等进行分析。

3. 时域分析:分析电路在时间域内的性能,通常用微分方程、积分方程等进行分析。

4. 非线性分析:分析电路中的非线性元件对性能的影响,通常需要用仿真软件进行分析。

五、常用工具和软件1. 万用表:用于测量电路中的电压、电流、电阻等参数。

2. 示波器:用于观测电路中的信号波形,可以分析信号的频率、幅度、相位等。

3. 信号发生器:用于产生各种形式的信号,可以用于测试电路的响应特性。

4. 仿真软件:如Multisim、Protues等,用于构建电路模型,进行电路仿真分析。

六、常见电路应用1. 放大器:用于音频放大、射频放大等。

2. 滤波器:用于音频滤波、射频滤波等。

模拟电子线路(模电)基本放大器静态动态分析

模拟电子线路(模电)基本放大器静态动态分析


输入正弦信号时,画各极电压与电流的波形。
iC C1 iB + vCE RC + V - CC RL C2
vi
iB
Q 0 0
+
-
RB + VBB -
+
vBE -
iB
IBQ
iC
ICQ t
iC
Q t 0 0
ib
-1/RL
vBE vBE
VCEQ
vCE vCE
t
t
Q点波动对输出波形的影响:
iC iC
rb ' e
dub ' e 26mV 26mV (1 ) dib IB IE 26mV rbb ' (1 ) IE
rbe rbb ' rb ' e
2. 输出端等效 互相平行、间隔均匀,且与uCE轴线平行。当 uCE为常数时,从输出端c、e极看,三极管就成
直流通路画法:C断开
IBQ、ICQ和UCEQ这些 量代表的工作状态称 为静态工作点,用Q表 示。
U CEQ VCC I CQ RC
二、图解法
VCC U BE IB uBE f (iB , uCE ) Rb IC β IB iC f (iB , uCE ) U V I R CC C c CE 直流负载线
电压放大倍数 Au U o
电流放大倍数 Ai I o 功率放大倍数
Ap Po

源电压放大倍数 Aus U o
源电流放大倍数 Ais I o



Ui
Us
Ii
Pi
Is
(2) 输入电阻 Ri

模拟电路设计与分析方法

模拟电路设计与分析方法

模拟电路设计与分析方法一、引言模拟电路设计是电子工程领域非常重要的一部分,在各种电子设备中起着关键作用。

而模拟电路的设计与分析方法的选择和应用直接影响着电路的性能和稳定性。

本文将介绍几种常用的模拟电路设计与分析方法,帮助读者更好地理解和应用这些方法。

二、传统模拟电路设计方法在传统的模拟电路设计过程中,电路设计师通常会遵循以下步骤:1. 了解电路需求:明确电路的功能和性能要求,包括电压范围、功耗、带宽等参数。

2. 选择元器件:根据电路需求选择合适的电子元器件,包括电阻、电容、二极管、晶体管等。

3. 确定电路拓扑结构:根据电路功能和性能要求,选择合适的电路拓扑结构,如放大器、滤波器、振荡器等。

4. 进行电路参数计算:根据电路的拓扑结构和元器件的参数,计算电路的增益、频率响应、稳定性等参数。

5. 进行模拟电路仿真:使用SPICE等仿真工具,对电路进行模拟并验证电路性能是否符合需求。

6. 优化和调整电路:根据仿真结果,对电路进行优化和调整,改进电路的性能和稳定性。

传统模拟电路设计方法在实践中应用广泛,但存在一些问题,如设计周期较长、设计复杂度高等。

三、基于模型的模拟电路设计方法基于模型的模拟电路设计方法是一种较新的设计方法,它利用现有的电路模型和模拟算法来辅助电路设计。

1. 高层次模型设计:利用较高层次的模型,如模拟系统级模型或行为级模型,来设计电路。

这种方法可以大大缩短设计周期和简化设计过程。

2. 参数化建模:建立电路元器件的参数化模型,通过参数调整来达到不同的设计目标。

这种方法可以灵活地控制电路的性能,快速满足不同的需求。

3. 混合信号设计:将模拟电路和数字信号处理技术相结合,利用数字信号处理方法来提高模拟电路的性能和稳定性。

基于模型的模拟电路设计方法在设计过程中充分利用了模型和算法的优势,能够提高设计效率和设计品质。

四、仿真与分析方法仿真与分析在模拟电路设计中起着至关重要的作用,它可以帮助设计师在实际搭建电路之前,通过计算机模拟来评估电路的性能和稳定性。

模拟电路实验报告

模拟电路实验报告

模拟电路实验报告本次实验是针对模拟电路的搭建与分析。

在实验过程中,我们主要学习了基本的电子元器件,掌握了电路分析的基本方法,理解了不同元器件的工作原理,以及如何在实际电路中应用所学知识。

1. 实验一:直流电路在直流电路实验中,我们学习了电阻的基本特性以及如何计算电路中的电流和电压。

首先,我们使用万用表测量了几个不同电阻的电阻值,以了解电阻器的工作原理和阻值的计算方式。

随后,我们在电路板上搭建了一个简单的电路,包括一块电池、若干个电阻、开关和一个小灯泡。

通过测量电路中的电流和电压,我们能够计算出每个电阻元件所承载的电压和电流,并且成功点亮了小灯泡。

2. 实验二:交流电路在交流电路实验中,我们学习了正弦波信号的基本特性以及如何使用电容和电感元器件搭建交流电路。

首先,我们需要了解正弦波信号的周期、频率、幅值等基本特性,并且学习如何使用示波器观察正弦波信号。

随后,我们在电路板上搭建了一个RLC电路,包括一个信号发生器、一个电容、一个电感和一个电阻。

通过测量电路中的电流和电压,我们能够计算出电阻、电感及电容元件对电路的影响,理解了物理系统中的振动和共振现象。

3. 实验三:放大电路在放大电路实验中,我们学习了放大器的基本概念、工作原理以及放大器的分类方法,并利用运算放大器搭建了一个基本的放大电路。

首先,我们需要了解放大器的工作原理,即如何将输入信号进行放大并输出。

我们还学习了放大器的分类方法,如按输入输出信号类型分类、按工作模式分类等。

随后,我们在电路板上搭建了一个简单的非反向运算放大器电路,并使用函数发生器产生了不同幅值的输入信号,成功放大了输出信号。

通过这三个实验,我们深入理解了模拟电路的基本原理和相关知识点,掌握了搭建电路和分析电路的技能。

我们相信本次实验能够帮助我们更好地理解电子原理,为以后的学习和实践打下良好的基础。

模拟电路期末知识总结

模拟电路期末知识总结

模拟电路期末知识总结一、模拟电路的基本理论1. 电压、电流和功率在模拟电路中,电压是指两个点之间的电势差,用符号V表示,单位是伏特(V)。

电流是指单位时间内电荷通过的数量,用符号I表示,单位是安培(A)。

功率是指单位时间内电路中转换或消耗的能量,用符号P表示,单位是瓦特(W)。

2. 电路参数电路参数是指描述电路性质和特性的数值,常见的电路参数有电阻、电容和电感。

电阻是指电路中阻碍电流流动的元件,用符号R表示,单位是欧姆(Ω)。

电容是指电路中能够存储电荷的元件,用符号C表示,单位是法拉(F)。

电感是指电路中能够存储磁能的元件,用符号L表示,单位是亨利(H)。

3. 电路定律欧姆定律是描述电压、电流和电阻之间关系的基本定律,即V=IR,其中V表示电压,I表示电流,R表示电阻。

基尔霍夫定律是描述电路中电压和电流分布的定律。

基尔霍夫电压定律说的是,电路中任意一个环的电压和为零。

基尔霍夫电流定律说的是,电路中任意一个节点的入流和等于出流和。

4. 放大器放大器是模拟电路中常用的电子器件,用于放大信号。

常见的放大器有运放放大器、差分放大器等。

运放放大器是一种集成电路,具有高增益、高输入阻抗、低输出阻抗的特点,被广泛应用于电路设计中。

5. 滤波器滤波器是模拟电路中常用的电子器件,用于滤除或增强信号的特定频率分量。

常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

滤波器的设计需要根据具体的应用需求选择适当的类型和参数。

二、电路分析方法1. 等效电路分析等效电路分析是指将复杂的电路简化为等效电路进行分析。

等效电路是指与原电路在某个方面完全相同的电路,但更简单、更易分析。

常用的等效电路有电压源与电阻的串联等效电路、电流源与电阻的并联等效电路等。

2. 套用公式分析套用公式分析是指根据电路中的元件数值和电路定律,直接套用公式进行计算和分析。

这种方法适用于电路比较简单,元件参数已知的情况。

3. 节点分析法节点分析法是一种基于基尔霍夫电流定律的电路分析方法,通过设置节点电压和节点电流方程,得到电路中各节点的电压和电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟电路的分析方法
一、 集成运放组成模拟运算电路的分析方法
方法一:结点电流法
1)选取结点(一般选取与“+”或“-”相接的结点); 2)任意选取与结点有关支路的电流参考方向; 3)列KCL 方程;
4)利用集成运放的特点:虚短、虚断; 5)确定 V + = V- =? 6)解方程组。

方法二:叠加定理
对于多个信号输入的电路,可以先分别求出每个输入电压单独作用时的输出电压,此时其它输入端应接地,然后将它们相加,所得输出电压就是所有信号同时作用时的输出电压,由此得到输出电压与输入电压的运算关系。

在用叠加定理分析运算电路时,应熟悉同相和反相比例运算电路和其结论。

同相比例运算电路
反相比例运算电路
i
v R R v 1
2
o -=p
v R R v )1(1
2
o +
=
二、集成运放组成模拟运算电路的分析方法
1)求传递函数;
一般都通过拉氏变换,即将电压变成U(S),电流变成I(S),电阻R变成R(S),电容C 变成1/SC,电感L变成LS,然后列结点KCL方程,再利用虚短虚断的概念,解方程求出A V(S)=V0(S)/V i(S)。

对于有源滤波电路的处理:利用“虚短”和“虚断”的特点(在有源滤波电路中,一般均引入负反馈,因而集成运放工作在线性区) ,列关键结点KCL方程(一般选取与同相输入端和反相输入端相接的结点)。

2)将传递函数中的S用jw
S 代入,得到频域表达式,根据传递函数求出通带放大倍数、特征频率、等效品质因数;
3)传递函数取模,根据模画幅频响应曲线。

三、集成运放组成电压比较器的分析方法
(1)确定阈值电压V T
方法:写出集成运放的同相输入端、反相输入端电位v P和v N的表达式,令v P=v N,求解出的v I即为V T;
(2)确定V OH、V OL
输出高低电平取决于集成运放输出电压的最大幅度或输出端限幅电路中的稳压管的稳定电压。

(3)v O在v I过V T时的跃变方向
跃变方向取决于v I作用于集成运放的哪个输入端。

当v I从反相输入端(或通过电阻)输入时,v I<V T,v O=V OH;v I>V T,v O=V OL;v I从同相输入端(或通过电阻)输入时,v I<V T,v O=V OL;v I>V T,v O=V OH。

四、二极管在组成的电路的分析方法
分析方法:
1)选取参考点;
2)用理想模型、恒压降或折线模型代替二极管;
3)断开理想二极管,求N、P两端的电压。

若VP >VN,则理想二极管导通,用短路代替;
若VN >VP,则理想二极管截止,用开路代替。

4)分析电路中待求量。

二极管的四个模型
1)理想模型,判断二极管通断
a)V-I特性(b)代表符号(c)正向偏置时的电路模型(d)反向偏置时的电路模型
2)恒压降模型,信号幅度远大于二极管压降二极管导通后,其管压降认为是恒定的,且不随电流而变化,典型值是 0.7V。

不过,这只有当二极管的电流iD近似等于或大于1mA时才正
确。

3) 折线模型,信号幅度不能远大于二极管压降二极管的管压降不是恒定的,而是随着通过二管电流的增加而增加。

4)小信号模型,交流分析采用
五、 三极管组成的放大电路的分析方法
(一)、组成放大电路的原则
1. 外加直流电源的极性必须使发射结正偏,集电结反偏。

2. 输入回路的接法应使输入电压 ∆ v i 能够传送到三极管的基极回路,使基极电流产生相应的变化量 ∆ i B 。

3. 输出回路的接法应使变化量 ∆ i C 能够转化为变化量 ∆ v CE ,并传送到放大电路的输出端。

4. 有合适的静态工作点,使三极管工作在放大区(输入信号为双极性信号,如正弦波。

如脉冲波时,工作点可适当靠近截止区或饱和区)。

(二)、静态工作点的图解分析
1)画直流通路 2)列输入回路方程 v BE =V CC -i B R b
3)在输入特性曲线上,作出直线 v BE =V CC -i B R b ,两线的交点即是Q 点,得到I BQ 。

一般手册上不给出输入特性曲线,故这种方法少用,而是常用近似估算法求出I BQ 。

4)列输出回路方程
v CE =V CC -i C R c
5)在输出特性曲线上,作出直流负载线
v CE =V CC - i C R C ,与I BQ 曲线的交点即为Q 点,从而得到V CEQ 和I CQ 。

(三)、近似估算法(求静态工作点Q)
1)画直流通路;
mA
mV 261D D T d d I I V g r =
=

2)设相关电流、电压(一般为I BQ、V BEQ、I CQ、V CEQ);
其中:硅管V BEQ = (0.6 ~ 0.8) V 锗管V BEQ = (0.1 ~ 0.2) V
3)标直流电流的流向;
4)据直流电流的流向,列KVL方程及相关电流方程(一般为I CQ=βI BQ);
5)解方程。

(四)、用H参数小信号模型分析基本共射极放大电路
1)首先利用图解法或近似估算法确定放大电路的静态工作点Q;
2)求出静态工作点处的微变等效电路参数 和r be;
3)画交流通路;
4)用简化的三极管H参数模型代替交流通路中三极管的位置,得到放大电路的小信号模型等效电路;
5)据放大电路的小信号模型等效电路求A V,R i,R o,A VS等交流参数。

六、场效应管组成的放大电路的分析方法
七、多级放大电路的分析方法
八、反馈放大电路的分析方法
(一)、反馈放大电路的判断方法
1直流反馈和交流反馈的判断:
“看通路”,即看反馈是存在于直流通路还是交流通路
2正、负反馈的判断方法:瞬时极性法
即在电路中,从输入端假定输入信号在某一瞬时变化的极性,即斜率为正,(正斜或负斜率,用“+”、“-”号表示)开始,沿着信号流向,从输入到输出逐级标出放大电路中有关点的电压变化的斜率。

以确定从输出回路到输入回路的反馈信号的瞬时极性,最后根据反馈回输入端的信号与输入信号比较,如果削弱了净输入信号,则为负反馈,如果增强了净输入信号为正反馈。

相位关系的说明:
1)极性相反的情况有,共射组态的b与c,变压器的异名端;
2)极性相同的情况有,共射组态的b与e,共c共b组态的各极间,电阻、电容、电感、导通的二极管、变压器的同名端都不改变极性。

比较二
设输入端为(+),如果反馈信号与输入信号接同一端,反馈回的极性为(-),为负反馈,否则为正反馈;如果反馈信号与输入信号不接同一端,反馈回的极性为(+),为负反馈,否则为正反馈。

3串联、并联反馈的判断方法
方法一
在输入端,输入量、反馈量和净输入量以电压的方式叠加,为串联反馈;以电流的方式叠加,为并联反馈
方法二
若电路的输入端与反馈回的信号接在同一端,为并联反馈;而不接在同一端,为串联反馈。

4电压反馈和电流反馈的判断方法
方法一:负载短路法
将负载短路(未接负载时输出对地短路),反馈量为零——电压反馈。

将负载短路,反馈量仍然存在——电流反馈。

方法二:据电路结构判定
一般来说,如果输出电压端与反馈信号端接在器件的同一端上,或通过分压关系将输出电压的一部分引回到输入回路,通常为电压反馈。

如果反馈信号不是从输出电压端直接引出,而是从放大电路中与输出电流有关的其它端子引回到输入端,为电流反馈。

5深度负反馈放大电路的判断
1)判断反馈组态;
2)写出反馈系数的表达式;
3)标出输入量、输出量及反馈量;
4)用虚短、虚断求X f和X o;
串联负反馈 放大电路输入端断开 并联负反馈 放大电路输入端接地 5)求Fx 和Axf; 6)求Axf=1/Fx;
f i v v ≈f i i i ≈
九、功率放大电路的分析方法。

相关文档
最新文档