闪烁计数器工作原理及应用

合集下载

核医学仪器实验报告

核医学仪器实验报告

一、实验名称核医学仪器原理与应用实验二、实验日期2023年11月10日三、实验目的1. 了解核医学仪器的基本原理和结构。

2. 掌握核医学仪器的主要应用领域。

3. 学习核医学仪器在临床诊断和治疗中的作用。

4. 培养实验操作技能和数据处理能力。

四、实验原理核医学仪器利用放射性同位素发出的射线(如γ射线、β射线等)对人体进行成像或测量,从而实现对疾病的诊断和治疗。

本实验主要涉及以下原理:1. 闪烁探测原理:利用闪烁晶体将γ射线转换为可见光,再由光电倍增管转换为电信号,最终进行计数和成像。

2. 计数器原理:通过测量放射性同位素发出的射线数量,计算放射性活度。

3. 核医学成像原理:利用γ相机或SPECT等设备,对放射性同位素在体内的分布进行成像。

五、主要仪器与试剂1. 仪器:核医学仪器、闪烁晶体、光电倍增管、计数器、γ相机、SPECT等。

2. 试剂:放射性同位素、闪烁液、NaI(Tl)晶体等。

六、实验步骤1. 准备阶段:- 熟悉实验原理和仪器操作方法。

- 检查仪器设备是否正常。

2. 实验操作:- 将放射性同位素溶液注入闪烁晶体中,观察闪烁现象。

- 将闪烁晶体与光电倍增管连接,进行计数实验,测量放射性活度。

- 利用γ相机或SPECT进行成像实验,观察放射性同位素在体内的分布。

3. 数据处理:- 记录实验数据,包括放射性活度、计数率等。

- 对实验数据进行统计分析,计算相关参数。

4. 实验报告撰写:- 总结实验结果,分析实验现象。

- 讨论实验过程中遇到的问题及解决方法。

- 提出实验改进建议。

七、实验结果1. 观察到闪烁晶体在放射性同位素的作用下产生闪烁现象。

2. 通过计数实验,测得放射性活度为X mCi。

3. 利用γ相机或SPECT进行成像实验,观察到放射性同位素在体内的分布情况。

八、讨论1. 本实验验证了核医学仪器的基本原理,证明了闪烁探测和计数器的有效性。

2. 实验过程中,观察到放射性同位素在体内的分布情况,为进一步的临床诊断和治疗提供了依据。

液体闪烁计数器的原理及应用

液体闪烁计数器的原理及应用

液体闪烁计数器的原理及应用1. 引言液体闪烁计数器(Liquid Scintillation Counter,LSC)是一种常用于测定放射性核素活度的仪器。

它基于液闪技术,通过测量闪烁材料中的闪烁光信号来确定样品中放射性物质的存在及其活度。

本文将介绍液体闪烁计数器的原理及其在放射性测量领域的应用。

2. 液体闪烁计数器的原理液体闪烁计数器的原理基于以下几个步骤:2.1 液闪材料液体闪烁计数器使用一种被称为液闪材料的闪烁剂。

液闪材料是一种由溶解在溶剂中的有机闪烁物质和荧光剂组成的混合物。

当放射性粒子通过液闪材料时,它与溶剂中的闪烁物质发生相互作用,产生闪烁光信号。

2.2 能量转移过程放射性粒子与液闪材料中的闪烁物质相互作用后,能量被转移到闪烁物质中的激发态分子上。

通常情况下,闪烁物质中的荧光剂分子被添加到闪烁物质中,起到能量传递的作用。

这些荧光剂分子吸收激发态分子的能量,并发射出发射态荧光,从而使得能量得以测量。

2.3 光电倍增管液体闪烁计数器使用光电倍增管(Photomultiplier Tube,PMT)来测量闪烁材料产生的光信号。

光电倍增管是一种将光转换为电子信号的器件,通过光电效应将光子转换为电子,并经过电子倍增过程,产生放大后的电信号输出。

2.4 测量和计数液体闪烁计数器将光电倍增管输出的电信号计数,以确定样品中的放射性物质的存在及其活度。

计数结果经过数据处理和分析后,可以得到准确的放射性测量结果。

3. 液体闪烁计数器的应用液体闪烁计数器广泛应用于核科学、放射性测量和放射性同位素标记等领域。

以下是液体闪烁计数器的几个重要应用:3.1 放射性物质活度测量液体闪烁计数器可以用于测量各种放射性同位素的活度。

通过测量闪烁材料中的闪烁光信号强度,可以确定样品中放射性物质的活度水平。

3.2 放射性同位素标记液体闪烁计数器可以用于放射性同位素标记的研究和应用。

将放射性同位素标记到分子或样品上,通过液体闪烁计数器可以精确测量标记物的存在和浓度。

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。

由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。

下图是这两类仪器的原理图。

现将两种类型X射线光谱仪的主要部件及工作原理叙述如下:1、 X射线管两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。

上图是X射线管的结构示意图。

灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线.X 射线管产生的一次X射线,作为激发X射线荧光的辐射源。

只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。

大于lmin 的一次X射线其能量不足以使受激元素激发。

X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。

管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。

但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。

X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0。

2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。

2 分光系统分光系统的主要部件是晶体分光器,它的作用是通过晶体衍射现象把不同波长的X射线分开.根据布拉格衍射定律2dsinθ=nλ,当波长为λ的X射线以θ角射到晶体,如果晶面间距为d,则在出射角为θ的方向,可以观测到波长为λ=2dsin θ的一级衍射及波长为λ/2, λ/3---——等高级衍射。

改变θ角,可以观测到另外波长的X射线,因而使不同波长的X射线可以分开.http://www.ieeye。

液体闪烁计数系统

液体闪烁计数系统

闪烁体
• 在液体闪烁计数系统中,闪烁体又称荧光 体,是闪烁液的溶质,它的种类很多,根 据其荧光特性及作用,可分为两类,即第 一闪烁体和第二闪烁体。
• 2,5-二苯恶唑(PPO)是目前普遍使用的闪烁体,能很好 地溶解在常用的溶剂中,在含水的情况下也是如此,在甲 苯中的溶解度达200g/L以上。它的化学性质稳定,价格 也较便宜。
测量数据结果
谢谢!
氧淬灭
• 是闪烁液中溶解氧所引起的计数效率降低。 • 放置一定时间(1h),又可恢复原来的平衡状态。
浓度淬灭
• 是指闪烁液中闪烁剂达到一定浓度后进一步提高 闪烁剂浓度时,计数效率不但不增加,反而逐渐 减少
• 另一方面,当闪烁液中加入试样或增溶剂后,闪 烁剂的浓度低于最佳浓度时使计数效率下降。前 者称浓度淬灭,后者又称稀释淬灭。
6、光致发光(磷光)
7、静电(塑料瓶)
淬灭因素
产生淬灭的几个途径
• 1.样品可以吸收它本身的一部份辐射,或吸收闪烁体发出 的光。 • 2.溶剂不能有效的把能量传递给闪烁体 • 3.闪烁体吸收一些它本身发出的荧光 • 4.闪烁溶液中各成分的化学相互作用使光输出减少。
1、光子淬灭(又称相淬灭)
• 是在非均相测量(如颗粒悬浮法或固体支持法 测量)的情况下,试样中的β射线由于试样颗 粒或固体支持物(如滤纸、滤膜和凝胶等)的吸 收而降低了产生光子的能力,从而导致计数效 率降低,在均相测量的情况下不存在这种淬灭。
2、化学淬灭(又称杂质淬灭)
• 是由于闪烁液中存在的杂质能吸收溶剂的激发能 与闪烁剂相竞争而阻碍向闪烁剂分子的转移,从 而导致光子产额减少,计数效率降低,它是发生 在溶剂分子激发能转移到闪烁剂分子和放出光子 的过程中产生的淬灭作用。

放射性活度计量检定(5)-液体闪烁计数器基础

放射性活度计量检定(5)-液体闪烁计数器基础

3 三、几种常用的猝灭校正方法 原理
淬灭指示参数QIP的测量直接关系到计数 效率的 测量,关系到被测样品的活度的测量,因此,猝灭 校正方法的研究十分重要。世界上大的液闪计数仪 制造厂都采用自己研究的方法,PE 公司的 Packard 子 公 司 生 产 的 液 闪 采 用 谱 指 数 法 SIS 和 tSIE 法 。 Beckman公司采用H数法。下面将介绍几种常用的猝 灭校正方法。
N ( E )dE out)谱的畸变,Packard
E
公司采用了外标准转换谱指数法tSIE。 于是有: 其原理是:133Ba的外标准谱如图5所示。 133Ba转换的外标准谱如图5所示。 纵坐标为:
4、淬灭校正方法-谱指数法和tSIE法
( N(E)dE
E1 E2 E1
Emean
N(E)dE) / (E2 E1) (
放射性活度计量检定
5-液体闪烁计数器基础
一、序言
1. 概述
液闪计数法是直接测量放射性活度的重要方法。所谓直 接测量方法就是不依赖于任何其他测量方法,仅测量计数 率,不需要任何标准,就能测定放射性活度。所谓相对测量 法,也称为间接测量法,就是通过和标准比较,求得放射性 活度。在液闪计数直接测量方法中有4πβ(L.S)液闪计数 法,4πβ(L.S)-γ符合法,液闪符合法和三管符合法等, 直接测量方法比较复杂,测量样品时间长,一般由国家计量 实验室和一些重要的科研单位使用。
4、淬灭校正方法-谱指数法和tSIE法
由于采用样品本身的能谱,不同于外标准法,能谱有畸变问 题,因此SIS法是一种比较好的方法,可测量1000cpm以上的样 品。缺点是测量低本底样品有困难。为了测量低本底样品,还 需要外标准源,Packard公司提出外标准谱指数法SIE。

液体闪烁计数器原理及其应用

液体闪烁计数器原理及其应用

液体闪烁计数器原理及其应用1. 仪器原理简介液体闪烁计数器主要测定发生β核衰变的放射性核素,尤其对低能β更为有效。

其基本原理是依据射线与物质相互作用产生荧光效应。

首先是闪烁溶剂分子吸收射线能量成为激发态,再回到基态时将能量传递给闪烁体分子,闪烁体分子由激发态回到基态时,发出荧光光子。

荧光光子被光电倍增管(PM)接收转换为光电子,再经倍增,在PM阳极上收集到好多光电子,以脉冲信号形式输送出去。

将信号符合、放大、分析、显示,表示出样品液中放射性强弱与大小。

2. 主要功能液体闪烁计数器虽以测定低能β放射性核素为主,但近几年来,随着核技术应用领域的不断拓展,还开发出许多其它领域的测试功能。

该仪器一次可测300个样,自动换样、显示、打印,有三个计数道,对3H计数效率大于60%,14C计数效率大于95%。

2.1 常用放射性核素测定液闪计数器可用于3H、14C、32P、33P、35S、45Ca、55Fe、36Cl、86Rb、65Zn、90Sr、203Hg等含有放射性核素的动植物、微生物和非生物样品测定。

2.2 H number法猝灭校正在测定样品放射性的同时,测出H#数值,可以直观的判断出该样品的猝灭程度。

2.3 两相检测用于检测含水放射性样品与闪烁液的分相问题,以避免由此而引起的计数效率下降。

2.4 自动猝灭补偿(AQC)通过最佳的窗口等条件设置,以期使猝灭样品达到较高的计数效率。

2.5 随机符合监测(RCM)可用于监测制样过程中化学发光引起的单光子事件的假计数,可以从测定结果中扣除。

2.6 能谱寻找与分析此功能对未知核素的β能谱定位与分布做出可靠准确的测量,为道宽设置提供依据。

2.7 单光子监测(SPM)可用于生物发光与生物中单光子事件的测定。

2.8 半衰期校正对于短半衰期核素可校正出放射性强度与时间的关系。

给出现存放射性强度的量。

2.9 双标与三标记测定通过设置不同道宽等条件,测定同一个样品中的双标记或三标记放射性,区分出各个标记的放射性强度。

放射免疫分析

放射免疫分析

放射免疫分析摘要:放射免疫技术(radio immunoassay ,RIA)类型主要包括经典的放射免疫分析(radioimmunoassay, RIA)和免疫放射分析或免疫放射度量分析( immunoradiometric assay,IRMA)。

由于受接触放射性物质,损害操作人员的身体,测定完成后放射性材料的处置等问题的存在,再加上80年代初出现的非同位素标记技术得到了极大的发展和广泛应用,放射免疫技术的应用有下降的趋势。

0引言:放射性核素依衰变方式分α、β、γ三种,用于放射性标记的有β和γ两类;分别用液体闪烁计数器及γ计数器测定。

目前常用的是γ型放射性核素,如125I、131I、51Cr和60Co,以125I最常用;β型放射性核素有3H、14C和32P,以3H最常用。

关键词:结构,原理,临床应用1检测的基本结构原理、结构及其探测原理核射线探测仪器由射线探测器和后续电子学单元两大部分组成。

核射线探测器是个能量转化器,其检测原理是当射线作用于闪烁体,闪烁体吸收了射线的能量而引起闪烁体中的原子或分子激发,当受激的原子或分子退激时,则发出光子进入光电倍增管光阴极,转换为光电子,光电子在光电倍增管电场作用下到达阳极,形成电脉冲。

转换模式是放射能→光能→电能→脉冲。

液体闪烁测量是在闪烁杯内进行的,放射性样品主要被溶剂和闪烁剂分子包围,射线能量先被溶剂分子吸收,受激溶剂分子退激时释放出能量激发闪烁剂,当激发态回到基态时释放出光子到达光阴极,光阴极产生光电子,在光电倍增管的电场作用下,在阳极获得大量电子,形成脉冲信号,输入后读分析电路形成数据信号,最后由计算机数据处理,求出待测抗原含量。

放射性活度测定方法放射免疫分析中经抗原抗体反应和B、F分离后通过检测放射性量来反映待测物的含量。

放射性量的检测需特殊的仪器,放射免疫分析仪实际上就是进行放射性量测定的仪器。

测量仪器有两类,即晶体闪烁计数仪(主要用于检测γ射线,如125I、131I、57Cr等)和液体闪烁计数仪(主要用于检测β射线,如3H、32P、14C等)。

生物中氚和碳-14的测定 液体闪烁计数法-定义说明解析

生物中氚和碳-14的测定 液体闪烁计数法-定义说明解析

生物中氚和碳-14的测定液体闪烁计数法-概述说明以及解释1.引言1.1 概述概述部分:氚(Tritium)和碳-14(Carbon-14)是两种常见的放射性同位素,它们在生物领域中的测定具有重要的意义。

氚通常用于追踪水文循环和生物活动过程,而碳-14则常用于确定生物体的年龄和生态系统的动态变化。

在本文中,我们将主要介绍液体闪烁计数法在氚和碳-14测定中的应用。

液体闪烁技术是一种高灵敏度的测量方法,能够准确快速地检测微量的放射性同位素。

我们将重点探讨液体闪烁计数法的原理、氚和碳-14的测定方法以及其在生物领域中的重要应用。

通过本文的阐述,读者将能够了解液体闪烁计数法在生物中氚和碳-14测定中的优势和特点,以及未来在该领域的应用前景。

1.2 文章结构文章结构部分主要介绍了本文的组织框架和各部分内容的主要内容和逻辑安排。

具体包括引言、正文和结论三部分。

引言部分主要是对本文的主题和背景进行介绍,包括概述研究的主要内容,说明文章的结构和目的,引出文章的主要研究内容。

正文部分包括了氚的测定、碳-14的测定以及液体闪烁计数法的原理。

通过对氚和碳-14的测定方法的介绍,以及液体闪烁计数法在生物中的应用,为读者呈现了本文的主要研究内容和方法。

结论部分总结了液体闪烁计数法在生物中氚和碳-14测定中的应用情况,对实验结果进行了分析,并展望了未来可能的研究方向和发展趋势。

整体结构清晰,逻辑性强,能够使读者很好地理解本文的主题和研究内容。

1.3 目的目的部分:本文旨在介绍液体闪烁计数法在生物样本中氚和碳-14的测定方法,探讨其在生物学研究中的应用前景。

通过深入探讨氚和碳-14的测定原理以及液体闪烁计数法的工作机制,旨在为科研人员提供详尽的实验方法和数据分析手段,促进生物学领域对氚和碳-14的定量分析和研究。

同时,本文还将结合实验结果进行分析和讨论,展望未来液体闪烁计数法在生物学研究中的潜在应用价值,为相关领域的学术研究提供参考和借鉴。

闪烁灯原理

闪烁灯原理

闪烁灯原理
闪烁灯是一种能够在特定的时间间隔内交替闪烁的灯具。

它的工作原理是基于电学原理。

闪烁灯通常由以下几部分组成:灯泡、电路和计时器。

在闪烁灯电路中,计时器起到了关键的作用。

计时器能够控制电路开关的打开和关闭时间。

当计时器关闭电路开关时,电路中的电流无法通过灯泡,导致灯泡处于关闭状态。

当计时器打开电路开关时,电流能够流经灯泡,使灯泡发光。

计时器通过设定打开和关闭的时间间隔,来实现灯泡的闪烁效果。

例如,当计时器设定的闪烁间隔为1秒时,计时器先关闭电路开关,灯泡熄灭;过了1秒后,计时器打开电路开关,灯泡亮起;随后再关闭电路开关,灯泡再次熄灭;如此不断循环,实现了闪烁效果。

闪烁灯的计时器通常使用振荡器来控制时间间隔。

振荡器是一个能够产生稳定的交流电信号的设备。

通过调整振荡器的频率,可以实现不同的闪烁频率。

同时,闪烁灯的电路中还会加入一定的保护电路,以防止过流或过压情况发生。

这些保护电路能够确保闪烁灯的正常工作和寿命。

总结起来,闪烁灯的工作原理是通过控制电路开关的打开和关闭时间,以及调整振荡器的频率,实现灯泡的交替闪烁效果。

这种简单而有效的原理,使得闪烁灯被广泛应用于信号灯、警告灯、节日装饰等领域。

X荧光光谱仪的原理结构及应用

X荧光光谱仪的原理结构及应用

X荧光光谱仪的原理结构及应用【摘要】X荧光分析是一种快速、无损、多元素同时测定的分析技术,已广泛应用于材料、冶金、地质、生物医学、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,可为相关生产企业提供一种可行的、低成本的、及时的检测、筛选和控制有害元素含量的有效途径。

本文就X荧光光谱仪的工作原理及其应用做简单阐述。

【关键词】X荧光;光谱仪;原理;应用一、X荧光的基本原理:当一束高能粒子与原子相互作用时,如果其能量大于或等于原子某一轨道电子的结合能,将该轨道电子逐出,对应的形成一个空穴,使原子处于激发状态。

此后在很短时间内,由于激发态不稳定,外层电子向空穴跃迁使原子恢复到平衡态,以降低原子能级。

当较外层的电子跃迁(符合量子力学理论)至内层空穴所释放的能量以辐射的形式放出,便产生了X荧光。

X荧光的能量与入射的能量无关,它只等于原子两能级之间的能量差。

由于能量差完全由该元素原子的壳层电子能级决定,故称之为该元素的特征X射线,也称荧光X射线或X荧光。

X荧光光谱法就是由X射线光管发生的一次X射线激发样品,试样可以被激发出各种波长的特征X射线荧光,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析的方法。

该方法是一种非破坏性的仪器分析方法,常用的有能量色散型和波长色散型两种类型。

广泛应用于钢铁、铁矿石、炉渣、石灰石、萤石、耐火材料、地质等行业的多种元素的测定。

下面我以波长色散型X射线光谱仪为例讲一下它的原理及构造。

二、X荧光光谱仪的原理与仪器构造:使用X荧光光谱法的仪器叫X射线荧光光谱仪。

X荧光光谱仪是一种相对测量仪器,它是通过测量一定数量已知结果的标准样品,建立相应的正确的数学模型后,才能得到准确分析结果的测量。

建立正确的数学模型必须依靠一组好的标样,代表性好,有一定的跨度范围,有准确的结果。

1、激发光源—X射线管X光管可以分成端窗和侧窗二种,但是近代X光荧光光谱仪几乎都只采用端窗一种类型,因为它能接近试样安放,有利于提高测定灵敏度。

液体闪烁计数系统

液体闪烁计数系统

TritonX-100 (333ml)
10%以下的水 样以及
20%~40%的 水样
切伦科夫计数
当带电粒子如电子,通过介质时,沿 着它的径迹产生了局部极化。在粒子通过 后被极化的分子立即转回其静态,并发射 电磁波。一般情况光脉冲会产生相消干涉, 但如果粒子速度大于介质中的光速时子波 将产生相长干涉。产生的光脉冲叫切伦科 夫辐射,这种光的方向性很强。
一些标准闪烁液配方
溶液 A
B C
D
成分
应用
第一闪烁体
第二闪烁体
溶剂
附加试剂
PPO(5g)或丁 双-MSB(0.5g)或 甲苯或二

基-PBD(10g) DMPOPOP(0.25g) 甲苯
所有溶于甲 苯的样品; 吸附于惰性 支撑物上的 不溶性样品
PPO(5g)或丁 双-MSB(0.5g)或 甲苯或二 乙醇或2-乙氧 3%以下的水
液体闪烁计数系统
1. 液体闪烁计数的原理 2. 闪烁液 3. 液闪制样技术 4. 液闪测量中的实际问题 5. 仪器操作
液体闪烁计数原理
液体闪烁计数系统(Beckman LS6500)
为什么要将粒子能量 转换为光能?又为什 么要在溶液里面?
液体闪烁计数原理
闪烁液产生光子的过程是,从放射源发出的射线能 量,首先被溶剂分子吸收,使溶剂分子激发。这种激发 能量在溶剂内传播时,随即传递给溶质(闪烁体),引 起闪烁体分子的激发,当闪烁体分子回到基态时就发射 出光子,产生的光子数与射线能量成正比。该光子透过 透明的闪烁液及样品的瓶壁,被光电倍增管的光阴极接 收,继而产生光电子并通过光电倍增管的倍增极放大, 然后被阳极接收形成电脉冲,完成了放射能→光能→电 能的转换。
闪烁体

第二章液体闪烁测量技术

第二章液体闪烁测量技术

第三章液体闪烁测量技术第一节液体闪烁计数的原理一、液体闪烁测量的特点液体闪烁(液闪)测量(liquid scintillating counting)是借助闪烁液作为射线能量传递的媒介来进行的一种放射性测量技术。

它的技术特点是将待测样品完全溶解或均匀分散在液态闪烁体之中,或悬浮于闪烁液内,或将样品吸附在固体支持物上并浸没于闪烁液中,与闪烁液密切接触;因此射线在样品中的自吸收很少,也不存在探测器壁、窗和空气的吸收等问题,几何条件接近4π。

所以,液闪测量对低能量、射程短的射线具有较高的探测效率,尤其是对样品中的3H和14C探测效率显著提高。

目前商品供应的液体闪烁计数仪对3H的计数效率可达50%~60%,对14C及其他能量较高的β-射线可高达90%以上。

由于β-射线的电离密度大、在闪烁液中的射程短,绝大部分β-粒子的能量在闪烁液中被吸收,又因为闪烁过程中产生的光子数与β-射线的能量成正比,因而液体闪烁法也可用于β-谱测定。

液闪技术还可用于探测α射线、β+射线、低能γ射线,液闪仪也可用于契伦科夫(Cerenkov)辐射、生物发光和化学发光等方面的测量。

液闪测量技术在示踪研究领域中,特别在医学生物学领域已成为最常用的技术之一。

二、液体闪烁测量的原理液闪测量是对分散在闪烁液中的放射性样品进行直接计数,样品所发射的β-粒子的能量绝大部分先被溶剂吸收,引起溶剂分子电离和激发。

大部分受激发分子(约90%)不参与闪烁过程,以热能的形式失去能量;其中部分激发的溶剂分子处于高能态,当其迅速地退激时,便将能量传递给周围的闪烁剂分子[第一闪烁剂(primary scintillator)),使之受激发。

受激发的高能态闪烁剂分子退激复原时,能量发生转移,在瞬间发射出光子。

当光子的光谱与液体闪烁计数器的光电倍增管阴极的响应光谱相匹配时,便通过光收集系统到达光电倍增管的阴极,转换成光电子,在光电倍增管内部电场作用下,形成次级电子,并被逐级倍增放大,阳极收集这些次级电子后,便产生脉冲。

第三章 核医学常用仪器

第三章 核医学常用仪器

(二)应用
各种脏器静态显像,快速连续动态显像,附有特殊装置, 各种脏器静态显像,快速连续动态显像,附有特殊装置,可进行全身显像
二、SPECT
单光子计算机发射断层显像仪 single photon emission computed tomography David Kuhl1959年用 David Kuhl1959 1959年用 双探头的扫描机进行 断层扫描, 断层扫描,并进一步 研制和完善断层显像 仪器,使得SPECT SPECT和 仪器,使得SPECT和 PET成为核医学显像的 PET成为核医学显像的 主要方法 (一)结构与原理 组成: 上增加了支架旋转的机械部分、断层床、 组成:在高性能γ 相机上增加了支架旋转的机械部分、断层床、
(二)应用
各种脏器动静态断层显像及全身显像 。 为核医学最广泛应用的显像仪器, 为核医学最广泛应用的显像仪器,三级甲等医院必 备仪器。 备仪器。
符合线路SPECT 符合线路
一、结构与原理
主要由可变角双或三探头SPECT系统、符合线路探测技术和 系统、 主要由可变角双或三探头 系统 衰减校正装置, 衰减校正装置,可以进行正电子显像
优势
最大限度提高高能灵敏度 提高中能灵敏度 最大限度减少低能探测的散射作用
肺部肿物 前位 1英寸切割晶体符合线路 英寸切割晶体符合线路SPECT 英寸切割晶体符合线路 18F-FDG 显像(冠状面) 显像(冠状面) 后位
1英寸切割晶体符合线路 英寸切割晶体符合线路SPECT 英寸切割晶体符合线路 99mTc-MDP全身骨显像 全身骨显像
图像融合 是指不同图像 是指不同图像(SPECT, PET, CT, MRI)之间的空 之间的空
间配准或结合。利用各种成像方式的特点, 间配准或结合。利用各种成像方式的特点,为不同的影像提供 互补信息,增加图像质量,以期对临床诊断和治疗的定位、 互补信息,增加图像质量,以期对临床诊断和治疗的定位、观 察提供有效的方法。 察提供有效的方法。

PLC实训08---灯光闪烁的PLC控制

PLC实训08---灯光闪烁的PLC控制

图1-8-6 计数器与定时器的组合应用
PLC原理及应用
模块1 入门应用模块
项目知识准备
项目8 灯光闪烁的PLC控制
2.通用计数器的应用
④计数器与闪烁电路的组合应用 图1-8-7是计数器与闪烁电 路组合实现闪烁3次的程序。
图1-8-7 计数器与闪烁电路的组合应用
PLC原理及应用
模块1 入门应用模块
模块1 入门应用模块
项目八 灯光闪烁的PLC控制
PLC原理及应用
模块1 入门应用模块
目标与要求
项目8 灯光闪烁的PLC控制
● 掌握通用计数器的使用。 ● 掌握用PLC编制灯光闪烁的程序。
PLC原理及应用
模块1 入门应用模块
项目描述
项目8 灯光闪烁的PLC控制
灯光的闪烁广泛应用于我们的日常生活,如霓虹灯、 舞台灯光的闪烁、居家的彩灯、节日彩灯、广告彩灯、报 警器等。
项目知识准备
1、计数器C的类型
项目8 灯光闪烁的PLC控制
FX2N系列计数器分为通用计数器和高速计数器两类。 通用计数器用于对变化缓慢的内部信号(如X、Y、M、S、 T等)进行计数,该信号的接通和断开时间应比PLC的扫 描周期稍长。当信号变化比较快时,应使用高速计数器 进行计数。
PLC原理及应用
模块1 入门应用模块
项目实施
(一)确定PLC的I/O分配表
输入端(I)
外接元件
输入端子
启动按钮SB1
X0
停止按钮SB2
X1
项目8 灯光闪烁的PLC控制
输出端(O)
外接元件 输出端子
彩灯L1
Y1
彩灯L2
Y2
彩灯L3
ห้องสมุดไป่ตู้Y3

(完整word版)第五章X射线衍射实验方法

(完整word版)第五章X射线衍射实验方法

第五章 X射线衍射实验方法常用的实验方法1.按成相原理分:单晶劳埃法、多晶粉末法、周转晶体法2.按记录方式分:照相法:用照相底片记录衍射花样衍射仪法:用各种辐射探测器和电子仪表记录。

、第一节粉末照相法1.粉末照相法是用单色X射线照射转动(或固定)多晶体试样,并用照相底片记录衍射花样的一种实验方法。

试样可为块、板、丝等形状,但最常用粉末,故称粉末法。

2.粉末法成相原理:粉末试样是由数目极多的小晶粒组成,且晶粒取向完全无规则,各晶粒中d值相同的晶面取向随机分布于空间任意方向,这些晶面对应的倒易矢量也分布于整个倒易空间的各个方向,它们的倒易阵点则布满在以倒易矢量的长度为半径的倒易球面上.由于等同晶面族{HKL}的面间距相等,所以,等同晶面族的倒易阵点都分布在同一个倒易球面上,各等同晶面族的倒易阵点分别分布图5-1 粉末法成相原理图在以倒易点阵原点为中心的同心倒易球面上.在满足衍射条件时,根据厄瓦尔德原理,反射球与倒易球相交,其交线为一毓垂直于入射线的圆,从反射球中心向这些圆周连线级成数个以入射线为公共轴的共顶圆锥,圆锥的母线就是衍射线的方向,锥顶角等于4θ.这样的圆锥称为衍射圆锥。

1。

1 德拜照相法(1)德拜照相法(2)圆筒底片摄照示意图1。

2 聚焦照相法o是利用发散度较大的入射线,照射到试样的较大区域,由这个区域发射的衍射线又能重新聚焦,这种衍射方法称为聚焦法.聚焦相机的基本特征是狭缝光阑、试样和条状底片三者位于同一个聚焦圆上。

它所依据的几何原理是同一圆周上的同弧圆周角相等,并等于同弧圆心角的一半。

按照这样的几何原理,让狭缝光阑、试样和条状底片三者采取不同的布置,便可设计出各种不同类型的聚焦相机。

塞曼—波林相机的内壁圆周为聚焦圆,狭缝光阑s、试样表面AB和条状底片MN三者准确地安置在同一个聚焦圆上。

狭缝光阑相当X射线的虚光源,实际光源为x射线管的焦点。

图5—2 塞曼—波林相机的衍射几何1。

3 平面底片照相法2.利用单色(标识)X射线、多晶体试样、平面底片和针孔光阑,故也称之为针孔法。

闪烁计数器的使用指南

闪烁计数器的使用指南

闪烁计数器的使用指南闪烁计数器作为一种常见的计数器设备,被广泛应用于各种场合,无论是工业生产中的生产计数,还是家庭中的物品清点,都能够通过闪烁计数器高效准确地完成。

本文将为大家介绍闪烁计数器的使用指南,以帮助大家更好地掌握其使用技巧和注意事项。

一、基本原理闪烁计数器是一种基于红外线传感技术的计数器设备。

其基本原理是通过红外线传感器探测物体通过感应区域的次数,然后根据触发计数器进行计数。

这种红外线传感技术的优势在于其灵敏度高、反应快的特点,能够准确地感知物体的通过。

二、使用步骤1. 安装:首先,在使用闪烁计数器之前,需要将其正确地安装在需要计数的区域。

一般来说,应选择一个物体通过频繁的区域进行安装,确保计数的准确性。

2. 设置感应区域:根据具体需求,可以通过调整闪烁计数器的感应区域大小来适应不同的计数场景。

通常情况下,应将感应区域设置为物体通过的有效范围,以避免误计数。

3. 调试校准:在安装完成后,需要进行调试校准,以确保闪烁计数器的正常工作。

校准的目的是调整计数器对物体大小和高度的适应能力,使其能够准确地计数。

4. 使用测试:在校准完成后,可进行简单的使用测试,以验证闪烁计数器的计数准确性。

可以通过手动触发计数器进行测试,或者通过真实场景中物体的通过进行测试。

三、注意事项1. 避免遮挡:使用闪烁计数器时,应避免在其感应区域内设置障碍物,以免影响其正常工作。

同时,也应注意不要将其他物体放置在计数对象附近,以免干扰计数器的计数。

2. 防止光干扰:闪烁计数器的工作原理是通过红外线传感技术实现,因此在使用过程中,应避免直射光源照射到计数器上,以免光干扰影响计数的准确性。

3. 定期维护:为了保证闪烁计数器的长期稳定工作,应定期对其进行维护和清洁。

可以使用软布擦拭计数器表面,以及检查计数器的电池电量是否充足。

4. 故障排除:如果出现计数错误或者计数器无法正常工作的情况,应首先检查是否有物体遮挡或者光源干扰等原因导致。

液闪使用说明书

液闪使用说明书

目录一、概述1.产品说明2.HLSC-20F的基本组成3.HLSC-20F的基本工作过程二、系统原理框图三、主要技术指标性能特点四、HLSC-20F双管符合液体闪烁计数器的外形五、样品测量的简明操作1. 开机2. 加载样品或更换样品3. 启动测量六、系统对测量条件的设置1. 测量周期的设置2. 阈值设置3. 高压设置七、样品制备中的闪烁液和溶剂1. 探测机理2. 闪烁液八、样品测量方法一、概述液体闪烁计数器(liquid scintillation counter)是使用液体闪烁体(闪烁液)接受射线并转换成荧光光子的放射性计量仪。

液体闪烁计数器主要用于探测一些低能β核素示踪原子的放射性样品,尤其对低能β更为有效。

可用于3H、14C、32P、35S、45Ca、55Fe、36Cl、86Rb、65Zn、90Sr、203Hg等含有放射性核素的动植物、微生物和非生物样品测定。

其基本原理是依据射线与物质相互作用产生荧光效应。

首先是闪烁溶剂分子吸收射线能量成为激发态,再回到基态时将能量传递给闪烁体分子。

闪烁体分子由激发态回到基态时发出荧光光子。

荧光光子被光电倍增管(PM)接收转换为光电子,再经倍增在PM阳极上收集到好多光电子,以脉冲信号形式输送出去。

将信号符合、放大、分析、显示,表示出样品液中放射性强弱与大小。

液闪计数器目前已广泛的应用于工业、农业、生物医学、分子生物学、环境科学、考古与地质构造等领域科研工作中的核素示踪与核辐射测量。

主要包括以下几个方面:1 细胞与分子生物学主要利用3H、14C、32P等放射性核素进行体内或体外标记,研究细胞生物体内核酸、蛋白质等生物大分子的合成与降解代谢及其转化途径。

尤其在核酸分子标记及分子杂交、探针制备等方面应用更为广泛。

2 生物医学利用放射免疫分析技术测定动物或人体内激素等微量活性物质,研究动物和人体体内内分泌和其它生理代谢行为。

3 动植物营养通过对大量或微量元素标记测定,研究动物、植物对营养元素、矿质元素的吸收利用率、生理代谢及其缺素症,为研究防治对策提供依据。

液体闪烁计数器检测血浆肾素活性及醛固酮

液体闪烁计数器检测血浆肾素活性及醛固酮

原发性醛固酮增多症[1 - 2]( primary aldosteronism,PA) 是引 起继发性高血压的一种内分泌性疾病。临床诊断 PA 多通过测 定血浆醛固酮( Aldosterone,ALD) 和血浆肾素活性( Plasma renin activity,PRA) ,高血浆醛固酮、低血浆肾素活性是诊断 PA 的强 有力证据[3]。近年来的研究提示,有些 PA 患者因严重低血钾 而抑制了醛固酮的分泌,而且约 20% ~ 30% 的原发性高血压患 者呈现低血浆肾素活性,尤其是在高钠饮食情况下[4],故近年 来许多研究者推荐使用血浆醛固酮浓度 / 血浆肾素活性( the aldosterone / plasma renin ratio,ARR) 的比值来筛查 PA[5 - 7]。本文 建立了使用液体闪烁计数器检测血浆肾素活性( PRA) 及醛固 酮( ALD) 、计算 ARR 比值,用于临床继发性高血压的诊断。经 实验证明此方法操作简便、准确度高、重复性好,方便临床和科 研推广使用。
【摘 要】 目的 建立使用液体闪烁计数器检测血浆肾素活性( PRA) 及醛固酮( ALD) 的方法及临床应用。方法 应 用竞争机制原理,血浆( 或标准品溶液) 中的醛固酮( ALD) 或血管紧张素 I( AI) 以及加入的放射性免疫试剂125 I-ALD 或125 I-AI,竞争性地与一定量的特异性抗体产生免疫反应。血浆( 或标准品溶液) 中 ALD 或 AI 则优先与特异性抗体结 合,剩余的抗体再与 放 射 性 免 疫 试 剂125 I-ALD 或 125 I-AI 结 合。用 驴 抗 兔 免 疫 分 离 试 剂 沉 淀 被 抗 体 结 合 的125 I-ALD 或 125 I-AI。离心,取上清液,使用 β-液体闪烁计数器,检测未被抗体结合的游离的125 I-ALD 或125 I-AI 的放射性强度。建立相 应的标准曲线方程,求得血浆中 ALD 或 AI 的含量,计算肾素活性( PRA) 及 ALD / PRA 比值。结果 变异系数 RSD( % ) 为6. 18% ~ 10. 79% ,AI、ALD 的回收率分别为 87. 61% ~ 116. 89% 、82. 98% ~ 119. 22% 。结论 本方法操作简便、准确 度高、重复性好,可用于科研及临床。 【关键词】 液体闪烁计数器; 血管紧张素Ⅰ; 肾素活性; 醛固酮 【中图分类号】 R446. 6 R544. 14 【文献标识码】 A 【文章编号】 1674-4152(2012)12-1937-03

液体闪烁测量技术

液体闪烁测量技术

适用于自动化操



计数率低时, 测 外标准道有 很大
量误差大
的计数率

闪烁液体积要求 闪烁液体积要求 闪烁液体积可不等,
相等
相等
且适用于塑料闪烁

+表示与左邻相同
第五节 契伦柯夫计数( Cerenkov Counting )
契伦柯夫计数用于测量 高能β射线
契伦科夫辐射(Cerenkov Radiation ) 高能电子通过折射率较大的透明介质时,若其速度大于光在该介质中的速度, 在粒子经过之处,将沿一定方向发射出接近紫外波长范围的可见光。
1.3
1.4
1.5
1.6 折射率
η>1.559, 可测量14C ( Emax = 0.156MeV ) α-溴化萘η=1.658
三 淬灭 契伦柯夫计数效率较低的原因 (除了阈能因素外): 1.契伦柯夫辐射波长范围 250 ~ 350 nm
而光电倍增管响应在 350 ~ 430 nm 2.契伦柯夫辐射有方向性
影响液闪测量的主 要问题是什么?
淬灭 (Quenching)
广义淬灭:

放射性核素
溶剂分子
第一闪烁剂
第二闪烁剂
1.化学淬灭:(杂质淬灭、浓度淬灭、分子内淬灭)
Impurity
热能
淬灭杂质:R-SH, R -NO2, R -CO -R, R -CHO, R -X(Cl,Br,I ) CCl 4> CHCl 3> CH2Cl2
C1
C2
E1 =
C1
d
C3 ············ C10
E1
E2
E3 ············ E10
6.将外标准源放在闪烁杯旁进行照射,闪烁杯中产生Compton 电子。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

闪烁计数器的工作原理
闪烁计数器是一种利用射线引起闪烁体的发光而进行记录的辐射探测器。

1947年由J.W. 科尔特曼和H.P.卡尔曼所发明。

它由闪烁体、光电倍增管(见光电管)和电子仪器等单元组成。

它是由闪烁体(也称荧光体)和光电倍增管构成。

常用的闪烁体有NaI(TI)[铊激活]、ZnS(Ag)和有机晶体“蒽”等,它们在射线照射下会发光(闪烁)。

它的工作原理是:射线在闪烁体中产生的光子,打到光电倍增管的阴极上产生光电子,光电子的电子流通过倍增管放大并被阳极接收,形成了一个电脉冲,再由仪器的其他部件加以放大记录。

碘化钠晶体常用来测量γ射线,硫化锌晶体常用来测量α射线。

闪烁计数器的优点是,效率高、记录快,可以测定射线的能量。

闪烁计数器的应用
射线同闪烁体相互作用,使其中的原子、分子电离或激发,被激发的原子、分子退激时发出微弱荧光(见固体发光),荧光被收集到光电倍增管,倍增的电子流形成电压脉冲,由电子仪器放大分析和记录。

利用这种现象可探测带电粒子。

可用的闪烁体种类很多,用得较多的有NaI(加微量Tl)、CSI(加微量Tl)、ZnS(加微量Ag )等无机盐晶体和蒽、茋、对联三苯等有机晶体,也有用液体、塑料或气体的闪烁体。

闪烁计数器的优点是效率高,有很好的时间分辨率和空间分辨率,时间分辨率达10^-9秒,空间分辨率达毫米量级。

它不仅能探测各种带电粒子,还能探测各种不带电的核辐射;不仅能探测核辐射是否存在,还能鉴别它们的性质和种类;不但能计数,还能根据脉冲幅度确定辐射粒子的能量。

在核物理和粒子物理实验中应用十分广泛。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城/。

相关文档
最新文档