高中数学说课稿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数y=Asin(ωx+φ)的图象》说课稿(第一册·下)教材:人教版高级中学课本《代数》上册(必修)P178——186
一、教材分析
1、教学内容
本节课的主要内容是能通过变换和五点法作出函数y=Asin(ωx+φ) ,(A.>0, ω>0)的简图,了解函数y=Asin(ωx+φ) ,(A.>0, ω>0)的性质及它与y=sinx的图象的关系。
2、地位作用
“函数y=Asin(ωx+φ)的图象”是《代数》(上册)§2.10的内容,它是学生学过正弦函数、余弦函数的图象与性质之后的又一个要研究的三角函数形式,这种函数在物理学和工程学中应用比较广泛,特别是在高中物理课程中的“机械波”的内容与之紧密相关,因此它能为实际问题的解决提供良好的理论保证。同时,本课的教材也是培养学生逻辑思维能力、观察、分析、归纳等数学能力的重要素材,可为学生发展发散思维能力,总结变化规律提供一个契机。
3、教学重点、难点
(A.>0, ω>0)的简图及其与函数y=sinx 重点:用五点法作出函数y=Asin(ωx+φ) ,
的图象的关系。
难点:理解并掌握与函数y=Asin(ωx+φ)相关的基本变换。
4、教学目标
知识教育点:①用五点法作出函数y=Asin(ωx+φ) ,(A.>0, ω>0)的简图。
②理解并掌握与函数y=Asin(ωx+φ) 相关的基本变换。
能力训练点:让学生观察并分析函数y=Asin(ωx+φ) ,(A.>0, ω>0)的图象,分
析A、ω、φ的变化对函数图象的形状和位置的影响。总结出图象的
基本变换。培养学生自主地获取知识的能力,并在所学知识的基础上
进行再创新的能力。
德育渗透点:培养学生掌握从特殊到一般,从具体到抽象的思维方法,从而达到从
感性认识到理性认识的飞跃,又从一般到特殊,从抽象到具体,应用
到实践中去。
教学目标确立的依据:(1)由高中数学的教学目的确定的。即进一步培养学生的思维能力、……、解决实际问题的能力,以及创新意识;进一步培养良好的个性品质和辨证唯物主义观点。(2)由学生的知识基础和生理、心理特征确定的。学生继续接受高中数学教育,提高数学素养,特别应注重培养和提高思维能力及创新意识。
二、教学方法
㈠讲授法和发现法
通过对问题的点化,充分调动学生的学习主动性和积极性。利用形象直观的演示,启发引导学生发现问题、联想类比、去猜想验证,从而解决问题。(依据:通过一定的提示和形象直观的演示有利于提高学生的学习兴趣,减轻学习抽象概念的难度。同时它也符合学生认识规律及思维发展规律。)
㈡自学法
通过对问题的点化,引导学生观察、分析图象的变化,自主地总结出变化规律,有利于突破教学难点,并有利于提高学生的分析归纳能力。
三、学法指导
观察分析、联想类比、总结归纳。(形象直观和抽象概括相辅相成,高中应注重培养理论型为主的抽象逻辑思维,,在直观的基础上应使学生抽象的理论知识,以提高学生的思维能力。)
②强调A、ω、φ引起的变换不同的顺序及变化的量的关系。
③教学中采用多媒体的手段,利用几何画版制作的CAI课件,使学生获得丰富的感官刺激,有利于完善学生认知结构及掌握知识的程度。
《反函数》说课稿(第一册·上)
一、说教材
1、地位与重要性
“反函数”一节课是《高中代数》第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。
2、教学目标
(1)使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;
(2)使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;(3)培养学生发现问题、观察问题、解决问题的能力;
(4)使学生树立对立统一的辩证思维观点。
3、教学重难点
重点是反函数的概念及反函数的求法。理解反函数概念并求出函数的反函数是高一代数教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。
难点是反函数概念的接受与理解。学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念并对反函数的存在有正确的认识。教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。
二、说教法
根据本节课的内容及学生的实际水平,我采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。
引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。课堂不再成为“一言堂”,学生也不会变成教师注入知识的“容器”。
电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。
三、说学法
“授人以鱼,不如授人以渔”,在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿“怀疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。
四、说过程
在新课导入、新课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发、引导为教师的责任。
一、新课导入
首先,在导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢?
首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准