九年级数学期中考试试卷
江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)
江西省2025届九年级期中综合评估数学▶上册◀说明:共有六个大题,23个小题,满分120分,考试时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内错选、多选或未选均不得分.1.若关于的函数是二次函数,则的值为( )A.1B.2C.0D.32.以下是几种化学物质的结构式,其中文字上方的结构式图案属于中心对称图形的是( )A.甲醛B.甲烷 C.水 D.乙酸3.已知关于的一元二次方程有一个根为,则另一根为( )A.7B.3C.D.4.如图,四边形是的内接四边形,连接,,若,则的度数是( )A. B. C. D.5.在平面直角坐标系中,将抛物线绕顶点旋转得到新抛物线,再将新抛物线沿轴翻折得到抛物线,则,,的值分别是( )A.2,,11B.2,,5C.,,11D.,8,56.某校计划举办劳动之星颁奖典礼,想在颁奖现场设计一个如图1所示的抛物线型拱门入口.要在拱门上顺次粘贴“劳”“动”“之”“保”(分别记作点,,,)四个大字,要求与地面平行,且,抛物线最高点的五角星(点)到的距离为,,,如图2所示,则点到的距离为( )图1 图221.124.1~x 31my x x =-+m x 2520x x m -+=2-7-3-ABCD O OA OC 86AOC ∠=︒ADC ∠94︒127︒136︒137︒285y ax x =-+P 180︒x22y x bx c =++a b c 8-8-2-8-2-A B C D BC BC AD ∥E BC 0.6m 2m BC =4m AD =C ADA. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程的解为______.8.在平面直角坐标系中,点关于原点对称的点的坐标是______.9.如图,是半圆的直径,,为的中点,连接,,则的度数为______.10.《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲每单位时间走7步,乙每单位时间走3步.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?设甲走了步(步为古代长度单位,类似于现在的米),根据题意可列方程:____________.(结果化为一般式)11.在平面直角坐标系中,若抛物线向左平移2个单位长度后经过点,则的最大值为______.12.如图,在矩形中,连接,,,将线段绕点顺时针旋转,得到线段,连接,,当时,的周长为______三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程:.(2)如图,将绕点逆时针旋转得到,若,且于点,求的度数.14.某件夏天T 恤的售价为100元,因换季促销,在经过连续两次降价后,现售价为81元,求平均每次降价的百分率.15.自古以来,景德镇就是中国陶瓷文化的象征,生产的瓷器闻名四方,远销世界各地.如图,这是景德镇2m 1.8m 2.4m 1.5m290x -=()2,4-BC OAB AC =D AC OD BD BDO ∠x ()()220y a x c a =-+≠()1,6-ac ABCD AC 1AB =60BAC ∠=︒AB B ()0180a α︒<≤︒BP CP DP 12PCB BAC ∠=∠DPC △()()()2131x x x x +=++ABC △A 28︒AB C ''△40C ∠'=︒AB BC '⊥E BAC ∠生产的某种瓷碗正面的形状示意图,是的一部分,是的中点,连接,与弦交于点,连接,.已知,碗深,求的长.16.如图,是的直径,点,点在上,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)如图1,在上作一点,使得是以为底边的等腰三角形.(2)如图2,在上方作一点,使得为等边三角形.图1图217.在平面直角坐标系中,已知抛物线与轴没有交点.(1)求的取值范围.(2)请直接写出抛物线顶点所在的象限.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,在平面直角坐标系中,抛物线经过点.(1)求的值,并求出此抛物线的顶点坐标.(2)当时,请利用图象,直接写出的取值范围.(3)当时,请利用图象,直接写出的取值范围.19.如图,在中,,将绕点顺时针旋转,得到,连接,.(1)求证:点,,在同一条直线上.(2)若,,求的面积.AB O D AB OD AB C OA OB 18cm AB =6cm CD =OA AB O C D O 60COA ∠=︒OD AB ⊥OD E OCE △OC AB F ABF △214y x x c =-++x c 222y x xc c c =-+-24y x mx =-++()3,4A -m 20x -≤≤y 0y ≤x ABC △135BCA ︒∠=ACB △A 90︒ADE △CD CE B C D 2BC=AC =CDE △20.某主播销售一种商品,已知这种商品的成本价为20元/个,规定销售价格不低于成本价,且不高于成本价的2倍,通过前几天的销售发现,该商品每天的销售量(单位:个)与销售价格(单位:元/个)之间满足一次函数关系,部分对应数据如下表:/(元/个) (23252811)/个…540500440…(1)求出关于的函数关系式,并直接写出的取值范围.(2)求销售该商品每天的最大利润.五、解答题(本大题共2小题,每小题9分,共18分)21.追本溯源题(1)来自课本中的习题,请你完成解答,提炼方法并解答题(2).(1)如图1,,比较与的长度,并证明你的结论.方法应用(2)如图2,,是的两条弦,点,分别在,上,连接,,且,是的中点.①求证:.②若圆心到的距离为3,的半径是6,求的长.图1 图222.如图,在平面直角坐标系中,抛物线与轴相交于点和点(点在点的左侧),与轴相交于点,点与点关于轴对称,为该抛物线上一点,连接,,,.(1)求该抛物线的解析式.(2)若的面积与的面积相等,请直接写出点的横坐标.y x x y y x x AD BC = AB CDMB MD O A C MBMD AB CD AB CD =M AC BM DM =O DM O DM 25y x bx =-++x A ()5,0B A B y C D A y E AC CD DE BE BDE △ACD △E(3)当点在第一象限时,连接,设的面积为,求的最大值.六、解答题(本大题共12分)23.综合与实践如图,是等边内一点,,连接,将线段绕点顺时针旋转得到,连接.初步感知(1)如图1,的延长线与交于点,求的度数.特例应用(2)如图2,作点关于的对称点,若点在的角平分线上.①当点与点重合时,的长为______;②当点与点不重合时,判断四边形的形状,并证明.拓展延伸(3)如图2,在(2)的条件下,取的中点,记为,当点从点运动到点时,请直接写出点运动的路径长.图1图2E CE ECD △S S P ABC △2AB =CP CP C 60︒CE AE BP AE Q AQB ∠E ACF P ABC △BD P F BP P F BPEF FPG P B D G江西省2025届九年级期中综合评估数学参考答案1.B2.C3.A4.D5.A 提示:由旋转和翻折可知,,抛物线的顶点的坐标为.点关于轴的对称点的坐标为,最后得到的抛物线的解析式为,.故选A.6.B 提示:建立如图所示的平面直角坐标系.由题意易知点的坐标为,点的坐标为,则点的坐标为,故设抛物线的解析式为,将点的坐标代入上式,得,抛物线的解析式为.点的横坐标为2,点的纵坐标为,点到的距离为.故选B.7.8.9.10.11.912.3或或 提示:,,,,,.如图1,当时,此时.易证得为等边三角形,的周长为;2a =8b =-∴2285y x x =-+P ()2,3- ()2,3P -x ()2,3∴()222232811y x x x =-+=-+11c ∴=C ()1,0B ()1,0-E ()0,0.6()()11y a x x =+-E 0.6a =-∴()()0.611y x x =-+- D ∴D ()()0.62121 1.8-⨯+⨯-=-∴C AD 1.8m 3x =±()2,4-22.5︒24020049x x -=2+3+1AB = 90ABC ∠=︒60BAC ∠=︒1CD ∴=22AC AB ==BC ∴==60α=︒1302PCB BAC ∠=︒=∠DPC △DPC ∴△33CD =如图2,当时,此时,,.易证得,,的周长为;如图3,当时,此时,,,.的周长为.综上所述,的周长为3或或.图1 图2 图313.(1)(解法不唯一)解:,,,.(2)解:将绕点逆时针旋转得到.,.又,,.14.解:设平均每次降价的百分率为.由题意得,解得,(舍去).答:平均每次降价的百分率为.15.解:是的中点,,.设,则.在中,由勾股定理得,120α=︒1302PCB BAC ∠=︒=∠30PBC PCB ∴∠=∠=︒1PC BP ∴==DCP BPC ≌△△DP BC ∴==DPC ∴△2CD PC DP ++=+180a =︒1302PCB BAC ∠=︒=∠2PC AC ∴==22AP AB ==DP ∴===DPC ∴△123CD PC DP ++=+=+DPC △2+3+()()()2131x x x x +=++ ()()1230x x x ∴+--=11x ∴=-23x = ABC △A 28︒AB C ''△28BAE ∴∠=︒40C C ∠'=∠=︒AB BC '⊥ 9050EAC C ∴∠=︒-∠=︒285078BAC BAE EAC ∴∠=∠+∠=︒+︒=︒x ()2100181x -=10.110%x ==2 1.9x =10%DAB OD AB ∴⊥19cm 2AC BC AB ∴===cm OA r =()6cm OC r =-Rt OAC △222OC AC OA +=即,解得,的长为.16.解:(1)如图1,即所求.(2)如图2,即所求.图1 图217.解:(1)抛物线与轴没有交点,,即,解得.(2)第二象限.提示:,该抛物线的顶点坐标为.,,点在第二象限.18.解:(1)把代入,得,解得.,抛物线的顶点坐标为.(2)当时,的取值范围是.(3)当时,的取值范围是或.19.解:(1)证明:是由绕点顺时针旋转得到的,,,,.()22269r r -+=394r =OA ∴39cm 4OCE △ABF △ x 240b ac ∴∆=-<10c +<1c <-()2222y x xc c c x c c =-+-=-- ∴(),c c -1c <- 1c ∴->∴(),c c -()3,4A -24y x mx =-++9344m --+=3m =-223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭∴325,24⎛⎫- ⎪⎝⎭20x -≤≤y 2544y ≤≤0y ≤x 4x ≤-1x ≥ADE△ACB △A 90︒ACB ADE ∴≌△△90CAD ∠=︒AC AD ∴=()1180452ACD ADC CAD ∴∠=∠=︒-∠=︒又,,点,,在同一条直线上.(2)由(1)可知,,.,.,.20.解:(1)设关于的函数关系式为.将,代入上式.得解得.(2)设销售该商品每天的利润为元.由题意得.,,当时,取得最大值,且最大值为4500.答:销售该商品每天的最大利润为4500元.21.解:(1).证明:,,,即.(2)①证明:是的中点,.,,,,.②如图,过点作,是垂足,连接.135BCA ∠=︒ 13545180BCA ACD ∴∠+∠=︒+︒=︒∴B C D 90CAD ∠=︒AC AD=6CD ∴===135ADE BCA ︒∠=∠= 90CDE ADE ADC ︒∴∠=∠-∠=2DE BC == 1162622CDE S CD DE ∴=⋅=⨯⨯=△y x y kx b =+()23,540()25,50023540,25500,k b k b +=⎧⎨+=⎩20,1000,k b =-⎧⎨=⎩()2010002040y x x ∴=-+≤≤W ()()()22202010002014002000020354500W x x x x x =--+=-+-=--+200-< 203540<<∴35x =W AB CD=AD BC = AD BC∴= AD AC BC AC ∴+=+ AB CD=M AC AM CM∴=AB CD = AB CD∴= AB AM CMCD ∴+=+ BMDM ∴=BM DM ∴=O ON MD ⊥N OM在中,,,22.解:(1)∵抛物线与轴相交于点和点,,解得,该抛物线的解析式为.(2.(3),令,即,解得,,点的坐标为.点与点关于轴对称,点的坐标为.设点的坐标为.设直线的解析式为.由点,的坐标可知,解得直线的解析式为.如图,过点作轴,交于点.当时,,点的坐标为,, Rt OMN △3ON =6OM =MN ∴==2DM MN ∴==25y x bx =-++x A ()5,0B 25550b ∴-++=4b =∴245y x x =-++245y x x =-++ ∴0y =2450x x -++=11x =-25x =∴A ()1,0- D A y ∴D ()1,0-E ()2,45m m m -++CE y kx t =+()0,5C ()2,45E m m m -++25,45,t mk t m m =⎧⎨+=-++⎩4,5,k m t =-+⎧⎨=⎩∴CE ()45y m x =-++D DF y ∥CE F 1x =()459y m m =-++=-+∴F ()1,9m -+9DF m ∴=-则,当时,的值最大,且最大值为,故的最大值为.23.解:(1),,即.又,,(SAS ),.,.(2②四边形为平行四边形.证明:如图1,连接.图1在等边中,平分,.又,关于对称,,,,.在等边中,,,.在等边中,,,,,,,.平分,,,,为等边三角形,()2111981922228E S DF x m m m ⎛⎫=⋅⋅=-=--+ ⎪⎝⎭∴92m =S 818S 81860ACB PCE ∠=∠=︒ ACB ACP PCE ACP ∴∠-∠=∠-∠BCP ACE ∠=∠BC AC = CP CE =BCP ACE ∴≌△△CBP CAE ∴∠=∠CBP ACB CAE AQB ∠+∠=∠+∠ 60AQB ACB ︒∴∠=∠=BPEF CF ABC △BD ABC ∠BD AC ∴⊥E F AC AF AE ∴=CF CE =AC EF ∴⊥EF BP ∴∥ PCE △60PCE ∠=︒PC CE PE ==CF PC ∴= ABC △AC BC =60ACB ∠=︒ACB PCE ∴∠=∠PCB ACE ∴∠=∠()SAS BCP ACE ∴≌△△CAE CBP ∴∠=∠BP AE =BD ABC ∠30CBP ︒∴∠=30CAE FAC CBP ∴∠=∠=∠=︒60FAE ∴∠=︒AFE ∴△,.,,四边形为平行四边形.(3.提示:将图1中与的交点记为.由(2)易知.,,,即,易求得,,.如图2,当点从点运动到点时.图2,点的运动路径为图2中的长,为的中点,连接,.,同理可得,是等边三角形.是的中点,,易求得.AE EF ∴=BP EF ∴=BP EF ∥BP EF =∴BPEF AF BP M BP AF =30FAB ABP ∠=∠=︒ AM BM∴=BP BM AF AM ∴-=-PM FM =∴30MPF ∠=︒MPF ABP ∴∠=∠PF AB ∴∥P B D PF AB ∥∴G GH H AB DH HF 112DF AB == 1DH HF ==DFH ∴△G DF 1DH DF ==∴GH =。
2024-2025学年江苏盐城盐都区九年级五校联考11月期中数学试题及答案
2024年秋学期九年级数学期中考试试卷一、选择题(每题3分,计24分)1.下列方程,属于一元二次方程的是()A.x2﹣xy=1 B.x2﹣2x+3=0 C.D.2(x+1)=x2.一元二次方程x2﹣3=2x的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3 B.1,﹣2,3 C.1,2,3 D.1,2,﹣33.若m、n是关于x的方程2x2﹣4x+1=0的两个根,则的值为()A.4 B.﹣4 C.D.4.电影《志愿军》不仅讲述了中国人民志愿军抗美援朝的故事,更是通过鲜活生动的人物塑造,让观众体会到历史事件背后的人性和情感,一上映就获得全国人民的追捧.某地第一天票房约3亿元,若以后每天票房按相同的增长率增长,三天后票房收入累计达18亿元,若把增长率记作x,则方程可以列为()A.3(1+x)=18 B.3(1+x)2=18 C.3+3(1+x)2=18 D.3+3(1+x)+3(1+x)2=185.下列说法正确的是()A.三点确定一个圆B.平分弦的直径垂直于弦C.相等的圆心角所对的弦相等D.三角形的外心到三角形三个顶点的距离相等.6.如图,AB是⊙O的直径,弦CD交AB于点E,∠ACD=60°,∠ADC=40°,则∠AED的度数为()A.110°B.115°C.120°D.105°7.如图,圆O的半径是4,BC是弦,∠B=30°且A是弧BC的中点,则弦AB的长为()A.B.C.4 D.68.如图,⊙M的半径为4,圆心M的坐标为(6,8),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最大值为()A .13B .14C .12D .28二、填空题(每题3分,计30分)9.写一个一元二次方程,使它有两个相等的实数根: (写出一个即可).10.关于x 的方程x 2+kx +1=0有两个相等的实数根,则k 值为 .11.若m 是方程2x 2﹣3x ﹣1=0的一个根,则4m 2﹣6m +2022的值为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =8,EB =2,则⊙O 的半径为 . 13.任意抛掷一枚均匀的骰子,骰子各个面的点数分别为1,2,3,4,5,6,则朝上的点数是奇数的概率是 .14.为迎接全市的禁毒知识竞赛,某校进行了相关知识测试,经过层层预赛,小洋和小亮进入了最后的决赛,如图,是他们6次的测试成绩,若要从中选一名测试成绩稳定的同学去参加竞赛,则应选 .(填“小洋”或“小亮”).第12题 第14题15. 如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=°,则ABI ∠=.16.如图,60BAC ∠=°,45ABC ∠=°,AB =,D 是线段BC 上的一个动点,以AD 为直径画O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值为______.17.如图有一个三角形点阵,从上向下有无数多行,其中第一行有1个点,第二行有2个点,…,第n 行有n 个点,容易发现,10是三角点阵中前4行的点数之和.当三角点阵中点数之和是300时,则三角点阵点的行数为 .18.如图,在矩形ABCD 中,12AB =,16BC =,点E F 、分别是边AB BC 、上的动点,且10EF =,点G 是EF 的中点,连接AG CG 、,则四边形AGCD 面积的最小值为 .第15题 第16题 第17题 第18题三、解答题(共9题,计96分)19.解方程:(1)36x 2﹣1=0;(2)x 2+10x +21=0;20.初一某班16名男生在体检时测量了身高.以160cm 为基准,记录男生们的身高,超过160cm 记为正,不足160cm 记为负.前15名男生的相对身高(单位:cm )记录如表,第16名男生身高为171cm . 序号1 2 3 4 5 6 7 8 相对身高7− 4+ 0 16+ 2+ 3− 1+ 5− 序号9 10 11 12 13 14 15 16 相对身高 9− 3+ 4− 7+ 1+ 2− 1+ m(1)表格中m = ;(2)该班最高的男生与最矮的男生身高相差 cm ;(3)计算该班男生的平均身高.21.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃.为了方便出人,建造时,在BC 上用其它材料做了宽为2米的两扇小门,在EF 上用其它材料做了宽为1米的一扇小门.(1)设花圃的一边AB 长为x 米,请你用含x 的代数式表示另一边AD 的长为___________米;(2)若此时花圃的面积刚好为254m ,求此时花圃的长与宽.22.如图,在四边形ABCD 中,,AC BD 相交于点E ,且AB AC AD ==,经过A ,C ,D 三点的O 交BD 于点F ,连接CF .(1)求证:CF BF =;(2)若CD CB =,求证:CB 是O 的切线.23.已知x 1,x 2是关于x 的一元二次方程x 2﹣2(m +1)x +m 2+10=0的两实数根.(1)求m 的取值范围;(2)已知等腰△ABC 的一边长为7,若x 1,x 2恰好是△ABC 另外两边的边长,求m 的值和△ABC 的周长.24.定义:一元二次方程()200ax bx c a ++=≠,若根的判别式24b ac −是一个完全平方数(式),则此方程叫“完美方程”.(1)判断下列方程一定是“完美方程”的是 ;(直接填序号)①2430x x −−=;②220x mx m ++−=;③()210x b x b +++=;(2)若关于x 的一元二次方程222(1)20x m x m m −−+−=①证明:此方程一定是“完美方程”;②设方程的两个实数根分别为1x ,()212x x x <,是否存在实数k ,使得()12,P x x 始终在函数3y kx k =−+的图像上?若存在,求出k 的值;若不存在,请说明理由.25.某电商销售一款秋季时装,进价40元/件,售价110元/件,每天销售20件.为了庆祝二十大的胜利召开,未来30天,这款时装将开展“喜迎二十大,每天降1元”的促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.(1)这30天内该电商第几天的利润最大?最大利润是多少?(2)为了回馈社会,在这30天内,该电商决定每销售一件时装,向希望工程捐a 元(0,a >).要使每天捐款后的利润随天数t (t 为正整数)的增大而增大,求a 的取值范围.26.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点E .(1)求证:点D 是边BC 的中点.(2)记的度数为α,∠C 的度数为β.探究α与β的数量关系.27.如图①,在四边形ABCD 中,9086BAD D AD CD AB m ∠=∠=°===,,,.过A B C ,,三点的O 的圆心位置和半径,随着m 的变化而变化.解决下列问题:【特殊情形】(1)如图②,当0m =时,圆心O 在AD 上,求O 的半径.【一般情形】(2)(Ⅰ)当2m =时,求O 的半径;(Ⅱ)当0m >时,随着m 的增大,点O 的运动路径是; (填写序号)①射线;②弧;③双曲线的一部分;④不规则的曲线【深入研究】(3)如图③,连接AC ,以O 为圆心,作出与CD 边相切的圆,记为小O .当小O 与AC 相交且与BC 相离时,直接写出m 的取值范围.参考答案1-4BAAD 5-8DACD9.x 2+2x +1=0(答案不唯一) 10.±2 11.2023 12.5 13.½ 14.小亮 15.50° 16.18.14219.解:(1)36x 2﹣1=0,36x 2=1,,解得,;(2)x 2+10x +21=0,x 2+10x =﹣21,x 2+10x +25=﹣21+25,即(x +5)2=4,x +5=±2,解得x 1=﹣3,x 2=﹣7;20.(1)解:由题意得,17116011m =−=+,故答案为:11+;(2)解:16(9)16925cm +−−=+=,即该班最高的男生与最矮的男生身高相差25cm ,故答案为:25;(3)解:1(740162315934712111)16016×−++++−+−−+−++−+++ 11616016=×+ 161cm =答:该班男生的平均身高为161cm .21.1)()273x −(2)长为9米,宽为6米22.(1)证明:AB AC = ,ACB ABC ∴∠=,AB AD = ,ADB ABD ∴∠=∠,又ADB ACF ∠=∠ , ACF ABD ∴∠=∠,ACB ACF ABC ABD ∴∠−∠=−∠,即:BCF CBF ∠=∠, CF BF ∴=;(2)证明:连接CO 并延长交O 于G 点,再连接GF ,CG 为O 直径,90GFC ∴∠=°,90G GCF ∴∠+∠=°,CDB G ∠=∠ ,90CDB GCF ∴∠+∠=°,CD CB = ,CDB CBD ∴∠=∠,CF BF = ,BCF CBD ∴∠=∠,BCF CDB ∴∠=∠,90BCF GCF ∴∠+∠=°,90BCG ∴∠=°,CG BC ∴⊥,CB ∴是O 的切线.23.解:(1)根据题意得Δ=4(m +1)﹣4(m 2+10)≥0,解得;(2)当腰长为7时,则x =7是一元二次方程x 2﹣2(m +1)x +m 2+10=0的一个解, 把x =7代入方程得49﹣14(m +1)+m 2+10=0,整理得m 2﹣14m +45=0,解得m 1=9,m 2=5,当m =9时,x 1+x 2=2(m +1)=20,解得x 2=13,则三角形周长为13+7+7=27;当m =5时,x 1+x 2=2(m +1)=12,解得x 2=5,则三角形周长为5+7+7=19;当7为等腰三角形的底边时,则x 1=x 2,所以,方程化为4x 2﹣44x +121=0,解得,三边长为, 其周长为, 综上所述,m 的值是9或5或,这个三角形的周长为27或19或18. 24.(1)解:①2430x x −−=,()()224441328b ac −=−−××−= ,不是完全平方数,2430x x ∴−−=不是“完美方程”; ②220x mx m ++−=, ()()22224424824b ac m m m m m −=−−=−+=−+ ,不是完全平方式,220x mx m ∴++−=不是“完美方程”;③()210x b x b +++=, ()()2222414211b ac b b b b b −+−−+− ,是完全平方式,()210x b x b ∴+++=是“完美方程”; 故答案为:③;(2)解:①证明:222(1)20x m x m m −−+−=()()2222242142484484b ac m m m m m m m −=−−−=−+−+= ,且4是完全平方数, ∴此方程一定是“完美方程”;②存在,理由如下:222(1)20x m x m m −−+−= ,()()20x m x m ∴−−−=, 0x m ∴−=或()20x m −−=, x m ∴=或2x m =−,设方程222(1)20x m x m m −−+−=的两个实数根分别为1x 、()212x x x <,12x m ∴=−,2x m =,()12,P x x 始终在函数3y kx k =−+的图像上,()23m k m k ∴=−−+,313m k m −∴==−, 即存在实数k ,使得PP (xx 1,xx 2)始终在函数3y kx k =−+的图像上,k 的值为1 25.解:(1)设销售利润为w 元,销售时间为x 天,由题意可知,(11040)(420),wx x =−−+ 242601400x x =−++24(32.5)5625,x =−−+∵50,a =−< ∴函数有最大值,∴当30x =时,w 取最大值为24302603014005600w =−×+×+=元, ∴第30天的利润最大,最大利润是5600元;(2)设未来30天每天获得的利润为y ,时间为t 天,根据题意,得(11040)(204)(204),y t t t a =−−+−+化简,得24(2604)140020,y t a t a =−+−+− 每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴260429.5,2(4)a −−>×− 解得,6,a又∵0,a >即a 的取值范围是:06a <<.26.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,点D 在圆上,∴∠ADB =90°,即AD ⊥BC ,∵AB =AC ,∴BD =CD ,即点D 是BC 的中点;(2)解:β﹣α=45°; 如图,连接OE ,∵的度数为α,∴∠AOE =α,∵OA =OE ,∴∠OAE =,∵AB =AC ,AD ⊥BC ,∴∠CAD =∠OAE =45°﹣α, ∵∠CAD +∠C =90°,∴45°﹣α+β=90°即β﹣α=45°.27.(1)解:连接OC ,在O 中,设OA O =C r =,则8OD r =−. 在Rt OCD 中,90D ∠=︒,∴222OD CD OC +=,即222(8)6r r −+=.解得254r =. (2)(I )解:过点O 分别作,OF AB OE CD ⊥⊥,连接,OC OB ,∵OF 过圆心,OF AB ⊥, ∴1AF BF ==.∵90A D OFA ∠=∠=∠=°, ∴四边形AFED 是矩形.∴1AF DE ==.∴5CE CD DE =−=.设OE x =,则8OF x =−,在Rt COE 中222OE CE OC +=, 在Rt BOF 中222OF BF OB +=, ∴2222OE CE OF BF +=+,即2225(8)x x +=−21+. 解得52x =,∴2221254OC OE CE =+=,即r OC == (II )过点O 分别作,OF AB OE CD ⊥⊥,连接,OC OB ,如图:由(I )知:1,82BFAF DE m EF AD =====, 16,2CE CD DE m ∴=−=− 设OE x =,则8OF x =−,∵OC OB =,∴2222OE CE OF BF +=+, 即2222116(8)24x m x m +−=−+ , 整理得:1438m x +=, ∵0,m O >到AD 的距离12DEm =, 类比平面直角坐标系内xy 的几何意义, ∴O 的轨迹是一条射线,故答案为:①;(3)过O 作EF CD ⊥,交CD 于E ,交AB 于F ,过O 作OM AC ⊥于M ,作ON BC ⊥于N ,连接O ,C OB ,过B 作BG CD ⊥于G ,如图:由(II )知,1438m OE +=, ()222225420,64OC CE OE m m ∴+−+ 8,6,AD CD ==10,AC ∴= 15,2CM AC ∴== ()22222525420256464OM OC CM m m ∴=−=−+−=()2444,m m −− ,,,BG CD AD CD DG AB ⊥⊥∥ ∴四边形ABGD 是矩形,,8,DG AB m BG AD ∴====6,CG m ∴=−222212100,BC CG BG m m ∴=+=−+()2221112100,24CN BC m m ∴==−+ ()22221992900,64ON OC CN m m ∴=−=+− 小O 与AC 相交且与BC 相离, ,OM OE ON ∴<<222,OM OE ON ∴<< 即()()222251431444992900,64864m m m m m + −−<<+− 解得:1123m <<.。
江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析)
2023—2024学年度第一学期期中九年级数学试题2023.11满分:140分,时间:90分钟)一、选择题(本大题共8小题,每小题3分,共24分.四个选项中只有一个正确选项)1.已知O 的半径为3,点P 在O 内,则OP 的长可能是()A.5B.4 C.3D.2答案:D解析:解:∵O 的半径为3,点P 在O 内,∴3OP <,即OP 的长可能是2.故选:D .2.用配方法解方程2210x x --=,下列配方正确的是()A.2(1)0x -= B.2(1)1x -= C.2(1)2x += D.()212x -=答案:D解析:解:因为2210x x --=所以221x x -=则2212x x -+=即()212x -=故选:D3.给出下列说法:①经过平面内的任意三点都可以确定一个圆;②等弧所对的弦相等;③长度相等的弧是等弧;④相等的弦所对的圆心角相等.其中正确的是()A.①③④B.②C.②④D.①④答案:B解析:解:①经过平面内不共线的三点确定一个圆,故①不符合题意;②等弧所对的弦相等,正确,故②符合题意;③长度相等的弧不一定是等弧,故③不符合题意;④在同圆或等圆中,相等的弦所对的圆心角相等,故④不符合题意,∴其中正确的是②.故选:B .4.函数22y kx =-与()0ky k x=≠在同一平面直角坐标系中的图像大致是()A. B.C. D.答案:C解析:解:A 、二次函数的开口方向向上,即0k >,反比例函数经过第一、三象限,即0k >,因为22y kx =-的对称轴0x =,故该选项是不符合题意;B 、二次函数的开口方向向上,即0k >,反比例函数经过第二、四象限,即0k <,此时k 互相矛盾,故该选项是不符合题意;C 、二次函数的开口方向向下,即0k <,反比例函数经过第二、四象限,即0k <,因为22y kx =-的对称轴0x =,故该选项是符合题意;D 、二次函数的开口方向向下,即0k <,反比例函数经过第一、三象限,即0k >,此时k 互相矛盾,故该选项是不符合题意;故选:C5.有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?经过计算,你的结论是:长比宽多()A.12步B.24步.C.36步D.48步答案:A解析:设矩形田地的长为x 步(30)x >,则宽为(60)x -步,根据题意得,(60)864x x -=,整理得,2608640x x -+=,解得36x =或24x =(舍去),所以(60)12x x --=.故选A .6.如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若25B ∠=︒,则P ∠的度数为()A.40︒B.50︒C.25︒D.65︒答案:A解析:解:如图所示,连接OA ,∵25B ∠=︒,∴222550AOP B ∠=∠=⨯︒=︒,∵PA 是O 的切线,∴90OAP ∠=︒,∴90905040P AOP ∠=︒-∠=︒-︒=︒,∴P ∠的度数为40︒.故选:A .7.以正六边形ABCDEF 的顶点C 为旋转中心,按顺时针方向旋转,使得新正六边形A B CD E F '''''的顶点E '落在直线BC 上,则正六边形ABCDEF 至少旋转的度数为()A.60︒B.90︒C.100︒D.30︒答案:B解析:解:连接CE ,∵正六边形的每个外角360606︒==︒,∴正六边形的每个内角18060120=︒-︒=︒,∴60MCD ∠=︒,120D ∠=︒,∵DC DE =∴()1180120302DCE DEC ∠=∠=⨯︒-︒=︒∴90MCE DCE MCD ∠=∠+∠=︒∴正六边形ABCDEF 至少旋转的度数为90︒故选:B .8.二次函数26y x x =-的图像如图所示,若关于x 的一元二次方程260x x m --=(m 为实数)的解满足15x <<,则m 的取值范围是()A.5m >- B.9m <- C.95m -≤<- D.95m -<<-答案:C解析:解:方程260x x m --=的解相当于26y x x =-与直线y m =的交点的横坐标,∵方程260x x m --=(m 为实数)的解满足15x <<,∴当1x =时,21615y =-⨯=-,当5x =时,25655y =-⨯=-,又∵()22639y x x x =-=--,∴抛物线26y x x =-的对称轴为3x =,最小值为9y =-,∴当15x <<时,则95y -≤<-,∴当95y -≤<-时,直线y m =与抛物线26y x x =-在15x <<的范围内有交点,即当95y -≤<-时,方程260x x m --=在15x <<的范围内有实数解,∴m 的取值范围是95y -≤<-.故选:C .二、填空题(本大题共10小题,每小题4分,共40分)9.已知关于x 的方程20x x m --=的一个根是3,则m =_______.答案:6解析:解:∵关于x 的方程20x x m --=的一个根是3,∴2330m --=,解得:6m =,故答案为:6.10.请在横线上写一个常数,使得关于x 的方程26x x -+_______0=.有两个相等的实数根.答案:9解析:解:1,6a b ==-,224(6)410,b ac c ∆=-=--⨯⨯=Q 9.c ∴=故答案为:9.11.方程2261x x -=的两根为1x 、2x ,则12x x +=_______.答案:3解析:解:移项得:22610x x --=,12632x x -=-+=∴,故答案为:3.12.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.答案:15π解析:解:圆锥的侧面积=12•2π•3•5=15π.故答案为15π.13.某学习机的售价为2000元,因换季促销,在经过连续两次降价后,现售价为1280元,设平均每次降价的百分率为x ,根据题意可列方程为________.答案:()2200011280x -=解析:解:依题意得:()2200011280x -=,故答案为:()2200011280x -=.14.已知拋物线2(1)(0)y a x c a =-+<经过点()11,y -、()24,y ,则1y ________2y (填“>”“<”或“=”).答案:>解析:解:依题意得:抛物线的对称轴为:1x =,()11,y ∴-关于1x =对称点的坐标为:()13,y ,134<< ,且抛物线开口向下,12y y ∴>,故答案为:>.15.已知二次函数243y kx x =--的图象与坐标轴有三个公共点,则k 的取值范围是__.答案:43k >-且0k ≠解析:解:由题意可知:2(4)4(3)0k ∆=--⨯⨯->且0k ≠,解得:43k >-且0k ≠,故答案为:43k >-且0k ≠.16.如图是二次函数2y ax bx c =++的图像,给出下列结论:①240b ac ->;②2b a =;③0a b c -+>;④0abc <.其中正确的是________(填序号)答案:①②④解析:解:∵抛物线与x 轴有两个不同交点,∴240b ac ->,故结论①正确;∵对称轴为直线=1x -,∴12ba-=-,∴2b a =,故结论②正确;由图像知,当=1x -时,0y <,∴<0a b c -+,故结论③不正确;∵抛物线开口向上,∴0a >,∴20b a =>,∵抛物线与y 轴的交点在负半轴,∴0c <,∴0abc <,故结论④正确;∴正确的是①②④.故答案为:①②④.17.如图,在ABC 中,60A ∠=︒,43cm BC =,则能够将ABC 完全覆盖的最小圆形纸片的半径是_______cm .答案:4解析:解:要使能够将ABC 完全覆盖的最小圆形纸片,则这个小圆形纸片是ABC 的外接圆,作ABC 的外接圆O ,连接BO ,CO ,作OD BC ⊥交BC 于D ,如图:60A ∠=︒ ,3cm BC =,120BOC ∴∠=︒,123cm 2BD BC ==,1602BOD BOC ∴∠=∠=︒,在Rt BOD 中,60BOD ∠=︒,90ODB ∠=︒,234cmsin 32BD BO BOD ∴==∠,故答案为:4.18.如图,O 的半径为2,点C 是半圆AB 的中点,点D 是 BC的一个三等分点(靠近点B ),点P 是直径AB 上的动点,则CP DP +的最小值_______.答案:23解析:解:如图,作点D 关于直径AB 的对称点D ¢,则点D ¢在圆上,连接CD ',CD '交直径AB 于点P ,∴CP DP CP D P D C ''+=+=,则CP DP +的最小值是D C '的长,∵点C 是半圆AB 的中点,O 的半径为2,∴ BC等于半圆AB 的一半,∴90BOC ∠=︒,∵点D 是 BC 的一个三等分点(靠近点B ),∴ BD等于 BC 的13,∴11903033BOD BOC ∠=∠=⨯︒=︒,∵点D 与点D ¢关于直径AB 的对称,∴30BOD BOD '∠=∠=︒,∴903060COD D OD '∠=︒-︒=︒=∠,∴OD CD '⊥,6060120COD COD D OD ''∠=∠+∠=︒+︒=︒,∴2D C CM '=,∵OC OD '=,∴1801801203022COD C '︒-∠︒-︒∠===︒,∴112122OM OC ==⨯=,∴CM ===∴2D C CM '==,即CP DP +的最小值是.故答案为:三、解答题(本大题共8小题,共76分.要求写出解答或计算过程)19.解方程:(1)225x x =;(2)233x x +=.答案:(1)10x =或252x =(2)132x -=或232x -=小问1解析:解:225x x=则()250x x -=那么0x =或250x -=即10x =或252x =小问2解析:解:233x x +=则2330x x +-=故2491221b ac ∆=-=+=所以322b x a -±-==即132x -+=或232x -=20.下表是二次函数24y x x c =-++的部分取值情况:x⋯024⋯y⋯c51⋯根据表中信息,回答下列问题:(1)二次函数24y x x c =-++图象的顶点坐标是_______;(2)求c 的值,并在平面直角坐标系中画出该二次函数的图象;(3)观察图象,写出0y >时x 的取值范围:_______.答案:(1)()2,5(2)1c =,作图见解析(3)22x -<<+。
湖北省武汉市硚口区2024-2025学年九年级上学期期中考试数学试卷
武汉市硚口区2024~2025学年度第一学期期中质量检测九年级数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.我国民间建筑装饰图案中,蕴含着丰富的数学之美.下列图案中既是轴对称图形又是中心对称图形的是2.已知m,n是一元二次方程x2-4x-2=0的两个实数根,则m+n的值是A.-4B.-2C.2D.43.如图,点A,B,C,D,O都在方格纸的格点上,若△COD可以由△AOB旋转得到,则正确的旋转方式是A.绕点D逆时针旋转135°B.绕点O顺时针旋转45°C.绕点O逆时针旋转90°D.绕点B逆时针旋转135°4.将抛物线y=-2(x-3)2+1平移后得到抛物线y=-2x2,正确的平移方式是A.向右移动3个单位长度,向上移动1个单位长度B.向左移动3个单位长度,向上移动1个单位长度C.向右移动3个单位长度,向下移动1个单位长度D.向左移动3个单位长度,向下移动1个单位长度8.关于x的一元二次方程x2+4x+m=0有两个不相等的实数根,则m的取值范围是A.m<4B.m≤4C.m<-4D.m>46.如图,⊙P经过点O(0,0),交y轴于点B,若P(-5,-3),则点B的纵坐标是A.-10B.-8C.-6D.-47.《九章算术》是中国传统数学最重要的著作,其中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,那之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x 尺,则下列正确的方程是A.(x-4)2+(x-2)2=x 2B.(x+4)2=x 2+(x-2)2C.(x-4)2=x 2+(x+2)2D.(x+4)2=x 2+(x+2)28.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管OA ,在水管的顶端A 安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m 处达到最高,且最高高度为92m ,水柱落地处离池中心5m ,则水管OA 的长是A.94m B.198m C.52m D.218m 9.如图,将△ABC 绕点A 顺时针旋转,得到△ADE ,连接BD ,BE.若∠BED =80°,∠ADB =60°,则∠CBE 的大小是A.10°B.15°C.20°D.25°10.已知A (x 1,y 1),B (x 2,y 2)两点在抛物线y =ax 2-2a 2x 上(常数a ≠0),若对于x 1=3a , 3≤x 2≤4,都有y 1<y 2,则a 的值不可能是A.-92B.-72C.23D.12二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解题过程,请将结果直接填写在答题卡指定位置.11.已知点P (2025,m )与点Q (n ,-2024)关于原点O 中心对称,则m 的值是.12.将一元二次方程2x 2+1=5x 化为一般形式后,常数项是1,则一次项系数是.13.点P (4,5)绕点O (0,0)顺时针旋转90°后,得到对应点的坐标是_____.14.某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,设每个商品降价x (元),每天获得利润y (元),则y 与x 的函数关系式是_____15.如图,正方形ABCD 的边长为2,BE =AB,BF 平分∠EBC 交AE 的延长线于F ,交CD 于M.当M 为CD 的中点时,AE 的长是_____.16.抛物线y =ax 2+bx+c (a ,b ,c 为常数)经过点(-2,0),且c<0.下列四个结论:① 4a-2b+c =0;② 当x <-2时,y >0;③ 若点(1,1),(2,t )均在抛物线上,则t >83;④ 不等式t (at+b )≥a+b 对任意的实数t 都成立,则4a +b +c 4c -5a <16.其中正确的结论是______(填写序号).三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(木题满分8分)解方程:x 2+3x+1=0.18.(本题满分8分)如图,在Rt △ABC 中,∠C =90°,将△ABC 绕点A 逆时针旋转得到△ADE ,点C 的对应点E 落在AB 上.(1)若AC =6,BC =8,求BE 的长.(2)连接BD ,在△ABC 中,添加与角相关的一个条件,使△ABD 是等边三角形.(不需要说明理由)19.(本题满分8分)如图,在等腰△ABC 中,AB =AC,⊙A 交BC 于D,E 两点,半径AF ⊥BC 于H.(1)求证:BD =CE;(2)若DE =8,FH =2,求⊙A 的半径.如图,某植物园有一块足够大的空地,用一段长为30米的篱笆围成一个一边利用一堵墙的矩形ABCD花圃,墙长为6米,其中边AD大于或等于墙长,中间用篱笆隔开.设BC的长为x米, AB的长为y米,矩形ABCD花圃的面积为s米2.(1)直接写出y关于x,s关于x的函数关系式以及自变量x的取值范围;(2)当BC的长为多少时,矩形ABCD花圃的面积最大?最大面积为多少?21.(本题满分8分)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点,仅用无刻度的直尺在给定网格中完成画图.(1)在图1中,D在线段BC上,先画@ABCE,再在AB上画点F,使DF∥AC;(2)在图2中,先画△ABC的高CH,再在射线CH上画点P,使∠APC=∠ABC.图1展示的发石车是古代一种攻城器械,据《三国志》记载:曹操创制发石车,攻破袁绍军壁楼.如图2,发石车位于点O处,其前方有一堵壁楼,其防御墙的竖直截面为矩形ABCD,墙宽BC为2米,点B与点O的水平距离为23米,垂直距离为6米.以点O为原点,水平方向为x轴方向,建立平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线y=a(x-15)2+k的一部分.(1)若发射石块在空中飞行的最大高度为9米.①求抛物线的解析式(不用写出x的取值范围);②石块能否飞越防御墙.(2)若要使石块恰好落在防御墙顶部BC上(不包括端点B,C),直接写出a的取值范围.23.(本题满分10分)问题情境CD是等边△ABC的中线,点P在线段CD上运动(不包括端点C,D),将线段PA绕点P顺时针旋转,点A的对应点E落在射线BC上,探究∠APE的大小.记∠CAP=α.问题探究(1)如图1,将问题特殊化,当a=30°时,直接写出∠APE的大小;是定值.(2)如图2,将问题一般化,当0°<α<30°时,求证:AC-CECF(3)问题拓展当30°<α<60°时,若PC=23EC,直接写出AP的值.AC图2x2+c交x轴于A(-4,0),B两点,交y轴于点C.如图1,抛物线y=-14(1)直接写出直线BC和抛物线的解析式;(2)设直线y=m与抛物线交于D,E两点(D在E左边),与射线CB交于点F,若DF=3EF,求m的值;(3)如图2,点M在第四象限的抛物线上运动,点N与点M关于y轴对称,直线x=t(t≠4)分别交直线BM,BN,x轴于P,Q,G三点,若PG-QG=2,求t的值.。
河南省郑州外国语中学2024-2025学年九年级上学期期中考试数学试卷(含答案)
2024--2025学年上期九年级期中考试数学试题考试范围:九年级上册考试时间:100分钟试卷满分:120分一、选择题(共10小题,每小题3分,共30分)1. 公元前5世纪,古希腊数学家毕达哥拉斯首次提出了关于一元二次方程的概念.下列关于x 的方程中,是一元二次方程的为( )A. x2+1xB.x²-xy=0C.x²+2x=1D.ax²+bx=0(a、b为常数)2.“斗”是我国古代称量粮食的量器,它无盖,其示意图如图所示,下列图形是“斗”的俯视图()3. 已知线段a 、b 、c, 作线段x, 使b:a=x:c, 则正确的作法是( )A B C D4.将标有“最”“美”“河”“南”的四个小球装在一个不透明的口袋中(每个小球上仅标一个汉字),这些小球除所标汉字不同外,其余均相同.从中随机摸出一个球,放回后再随机摸出一个球,则摸到的球上的汉字可以组成“河南”的概率是( )A. B. C. D5. 若把方程x²-4x-1=0 化为(x+m)²=n 的形式,则n的值是( )A.5B.2C.-2D.-56. 如图,已知矩形ABCD中,E 为BC 边上一点,DF⊥AE 于点F, 且AB=6,AD=12, AE=10, 则DF的长为( )A.5B.113 C.365D.8数学试卷第1页(共6页)7.如图是某地下停车场的平面示意图,停车场的长为40 m,宽 为22m. 停车场内车道的 宽都相等,若停车位的占地面积为520m ².求车道的宽度(单位:m). 设停车场内车道 的宽度为xm, 根据题意所列方程为( )A.(40-2x)(22-x)=520B.(40-x)(22-x)=520C.(40-x)(22-2x)=520D.(40x)(22+x)=520 8.下列给出的条件不能得出△ABD O △ACB 的是( )A.ADAB =BDBC B.∠ADB=∠ACB C.AB 2=AD.AC D.∠ADB=∠ABC9.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比13, 点A 、B 、E 在x 轴上,若正方形BEFG 的边长为6,则点D 的坐标为( )A. (12,2) B. (13,1) C. (14,2)D.(1,2)图一 图二第9题 第10题10.如图(1).正方形ABCD 的对角线相交于点O. 点 P 为OC 的中点,点M 为边BC 上的一个动点,连接OM,过 点O 作OM 的亚线交CD 于点N, 点 M 从点B 出发匀速 运动到点C, 设BM=x.PN=y.y 随 x 变化的图象如图(2)所示,图中m 的值为( )A.22B.1C.2D.2数学试卷第2页(共6页)二、填空题(共5小题,每小题3分,共15分)11.已 知x=1 是关于x 的一元二次方程x+kx-6=0 的一个根,则k 的值为12.工人师傅做铝合金窗框分下面三个步骤进行:先截出两对符合规格的铝合金窗料(如 图①),使AB=CD 、EF=GH:然后摆放成如图②四边形;将直角尺紧靠窗框的一 个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是 形,根据的数学原理是:13.如图,四边形ABCD 是菱形,∠DAB=46°, 对角线AC,BD 于点O ,DH ⊥AB 于H, 连接OH, 则∠DHO= 度.14.如图,在平行四边形ABCD 中 ,E 是线段AB 上一点,连接AC,DE,A C 与 DE 相交于点F,若AE EB=23则S △ADFS△AEF=15.如图,在矩形纸片ABCD 中,AD=22,AB=2, 点P 是AB 的中点,点Q 是BC边上的一个动点,将△PBQ 沿PQ 所在直线翻折,得到△PE Q,连 接DE,CE, 则当 △DEC 是以DE 为腰的等腰三角形时,BQ 的长是 三、解答题(共8小题,共75分) 16. (8分)解方程:(1)x ²-6x+3=0; (2)3x ²-2x-1=0.数学试卷第3页(共6页)17. (8分)在一个不透明的袋子里装了只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n1002003005008001000摸到黑球的次数m65118189310482602摸到黑球的频m0.590.630.620.6030.602n a(1)当n 很大时,摸到黑球的频率将会趋近(精确到0.1);(2)某小组成员从袋中拿出1个黑球,3个白球放入一个新的不透明袋子中,随机摸出两个球,请你用列表或树状图的方法求出随机摸出的两个球颜色不同的概率.18. (9分)一张矩形纸ABCD, 将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E. 将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F, 折叠出四边形AECF.(1)求证;AF//CE;(2)当∠BAC= _度时,四边形AECF是菱形.数学试卷第4页(共6页)19 . (9分)已知关于x 的一元二次方程x²-ax+a-1=0.(1)求证:该方程总有两个实数根;(2)若方程的两个实数根x1、x₂满足| x1-x₂|=3, 求a 的值;20 . (8分)2024年巴黎奥运会顺利闭幕,吉祥物“弗里热”深受奥运迷的喜爱,一商场以20元的进价进一批“弗里热”纪念品,以30元每个的价格售出,每周可以卖出500 个,经过市场调查发现,价格每涨10元,就少卖100个.若商场计划一周的利润达到 8000元,并且更大优惠让利消费者,售价应定为多少钱?21. (11分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A'B',∠A'(∠A'=∠A), 以线段A'B'为一边,在给出的图形上用尺规作出△AB'C, 使得△A'B'C'心△ABC, 不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线(不用尺规作图),并据此写出已知、求证和证明过程.数学试卷第5页(共6页)22. (10分)一数学兴趣小组为了测量校园内灯柱AB 的高度,设计了以下三个方案:方案一:在操场上点C 处放一面平面镜,从点C 处后退1m 到点D 处,恰好在平面镜中看到灯柱的顶部A 点的像;再将平面镜向后移动4m ( 即FC=4m)放 在F 处 . 从 点 F 处向后退1.8m 到 点H 处,恰好再次在平面镜中看到灯柱的顶部A 点的像,测得 的眼睛距地面的高度ED 、GH 为1.5m, 已 知 点B,C,D,F,H 在同一水平线上,且GH ⊥FH,ED ⊥CD,AB ⊥BH. (平面镜的大小忽略不计)方案二:利用标杆CD 测量灯柱的高度,已知标杆CD 高1.5m, 测 得DE=2m,CE= 2.5m.方案三:利用自制三角板的边CE 保持水平,并且边CE 与点M 在同一直线上,已知 两条边CE=0.4m,EF=0.2m,测得边CE 离地面距离DC=0.3m.三种方案中,方案 不可行,请根据可行的方案求出灯柱的高度.23 . (12分)在△ABC 中 ,AB=AC,∠BAC=α,点 D 为线段CA 延长线上一动点,连接 DB, 将线段DB 绕点D 逆时针旋转,旋转角为α,得到线段DE, 连 接 BE,CE.(1)如图1,当α=60°时, ADCE 的值是 ;∠DCE 的度数为 ;(2)如图2,当α=90°时,请写出 ADCE的值和∠DCE 的度数,并就图2的情形说明 理由;(3)如图3,当α=120°时,若AB=8,BD=7,请直接写出点E 到 CD 的距离.数学试卷第6页(共6页)参考答案1--10DCBDCBACB11.5 12.矩形 有一个角是90度的平行四边形是矩形 13.23度 14.5/2 15.1或216.x1=3+ 6 x2=3-617. (1)0.25 (2)略18.(1)【证明】∵四边形ABCD为矩形,∴AD//BC,∴∠DAC=∠BCA.由翻折知,, ∠BCE =∴∠HAF=∠MCE,∴AF//CE.(2)【解】当∠BAC=30° 时,四边形 A E CF 为菱形.理由如下:∵四边形AB CD是矩形,∴∠D=∠BAD=90°,AB// CD,由(1)得AF//CE,∴四边形A ECF 是平行四边形.∵当四边形AECF 是菱形时,CF=AF,∴∠FCA=∠FAC.∵FC//AE, ∴∠FCA=∠CAB.又∵∠DAF=∠FAC,∴∠DAF=∠FAC=∠CAB.∵∠DAB=90°,∴∠BAC=30° .(2)30度19.(1)证明:∵△=(-a)²-4(a- 1)=a²-4a+4=(a-2)²≥0,∴该方程总有两个实数根;……………(2)解:由根与系数的关系得x₁+x₂=a,x₁x₂= a-1,∵Ix₁-x₂I=√(x₁-x₂)²=√a²-4(a-1)=√(a-2)²=3, ∴a-2=3 或a-2=-3,解得a=5 或a=-1.20.(1)设售价应定为x元,由题意可得:c²-100x+2400=0,解得:x₁=40,X₂=60,更大优惠让利消费者,∴x=40,答:售价应定为40元;(2)设这两周的平均增长率为y,由题意:解得:y₁=0.1=10%,y2=-2.1 (不合题意舍去),答:这两周的平均增长率为10%.21.(1)如图所示,△A'B'C '即为所求;(2)已知,如图,△A B C∽△A'B'C',D 是AB 的中点,D'是A'B'的中点,求证:证明:∵·D是A B的中点,D'是A'B'的中点,△ABC∽△A'B'C',△A'C'D'△ACD,22. 方案二、三不可行选方案一,∵∠ECD=∠ACB,∠EDC=∠ABC, ∴△ABC∽△EDC,设BC=xm,则AB=1.5xm,同理可得△ABF∽△GHF,·AB=1.5cm,BF=BC+CF=(4+x)m,GH=1.5m ,FH=1.5m,解得:x=8,∴AB=1.5x=12(m).23.∴△ABC 是等边三角形,∴∠ACB=∠ABC=60°,AB=BC,同理可得:△BDE 是等边三角形,∴∠BDE=60°,BD=BE, ∴∠BDE=∠ABC,∴∠BDA=∠EBC,∴△ABD≌△CBE(SAS), ∴AD=CE,∠BCE=∠BAD=180°—∠BAC=120°,∠DCE=∠BCE一∠ACB=60°,故答案为:1,60;(2))∵AB=AC,∠BAC=90°, ∴∠ACB=∠ABC=45°,同理可得:∠BDE=40°,∴∠BDA=∠EBC, ∴△ABD∽△CBE,∠BCE=∠BAD=180°-∠BAC=90°, ∴∠DCE=∠BCE-∠ACB=45°;(3)如图1,图1作BF⊥CD于F,作EG⊥CD于G,作DHLCE, 交CE 的延长线于H,在Rt△AEF 中,AB=8,∠EAF=180°—∠BAC=60°, ∴AF=8·cos 60°=4,BF=8 sin 60°=4√3,在Rt△BDF 中,BD=7,BF=4√3,∵DF=√7²-(4√3)²=1,∴AD=AF 一DF=3, ∴CD=AD+AC=11,同理(2)可得:∠BCE=∠BAD=60°, ∴CE=√3AD=3√3,∠DCE=∠BCE—∠ACB=30°,在Rt△CDH 中,CD=11,∠DCE=30°,如图2,图2由上知:DF=1, AF=4,∴CD=13,AD=5,CE=√3AD=5√3,综上所述:点E 到CD 的距离为:。
江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)
2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。
2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。
3.答案全部涂、写在答题卡上,写在本卷上无效。
考试结束后,将答题卡交回。
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。
福建省福州市长乐区2024-2025学年九年级上学期期中考试数学试卷(含答案)
2024—2025学年第一学期期中适应性练习九年级数学(全卷满分:150分,考试时间:120分钟)友情提示:请将答案写在答题卡规定位置上,不得错位、越界答题.一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代典籍《周易》用“卦”描述万物的变化.如图为部分“卦”的符号,其中不是中心对称图形的是()A .B .C .D .2.将抛物线向右平移2个单位,然后向上平移3个单位,则平移后得到的抛物线解析式是( )A .B .C .D .3.如图,是的直径,点在上.若,.则的半径长为( )第3题A .1B .2CD4.下列一元二次方程中,根是的方程是()A .B.C .D .5.已知一个圆心角为120°,半径为3的扇形,则这个扇形的弧长是( )A .B .C .D .6.对于二次函数,下列判断正确的是( )A .当时,取得最大值B .当时,取得最小值2y x =()223y x =--()223y x =+-()223y x =-+()223y x =++AB O e C O e 2AC =BC =O e x =23210x x +-=23210x x --=23410x x +-=2230x x --+=π2π3π4π()226y x =--+2x =y 2x =yC .当时,取得最大值D .当时,取得最小值7.一根排水管的截面如图所示,截面水深是4dm ,水面宽是16dm ,则排水管的截面圆的半径是()第7题A .6dmB .10dmC .D .20dm8.将点绕原点逆时针旋转90°得到点,则点的坐标为( )A .B .C .D .9.如图,,分别切于,两点,点在优弧上,,则的度数为()第9题A .40°B .50°C .80°D .100°10.已知二次函数的图象上有两点和(其中),则下列判断正确的是()A .若时,B .若时,C .若,时,D .若,时,二、填空题:本题共6小题,每小题4分,共24分.11.若一元二次方程的一个根为,则的值为______.12.一元二次方程根的判别式的值是______.13.已知的半径是5cm ,若圆心到直线的距离是4cm ,则直线与的位置关系是______.(填“相交”、“相切”或“相离”)14.如图,在等边三角形中,为的中点,,与关于点中心对称,连接,则的长为______.2x =-y 2x =-y CD ABOB ()2,3A O B B ()2,3-()2,3-()3,2-()3,2-PA PB O e A B C ACB 80P ∠=︒C ∠()220y ax ax c a =-+≠()11,A x y ()22,B x y 12x x <122x x +<120y y ->122x x +>120y y ->0a >122x x +>120y y ->0a <122x x +<120y y -<210x ax +-=1x =a 2310x x --=O e O AB AB O e ABC O BC 2AB =BPQ △BAO △B CP CP第14题15.某品牌汽车刹车后行驶的距离(单位:m )与滑行时间(单位:s )的函数关系式是.汽车刹车后到停下来前进了______m .16.我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.如图,的半径为1,如用的内接正十二边形面积来近似估计圆的面积,则可得的近似值为3.若用半径为1的圆的内接正八边形面积作近似估计,可得的近似值为______.(参考数据:,结果精确到0.1)第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解方程.18.(8分)已知二次函数.(1)完成下表:…0123……__________________…(2)根据(1)的结果在如图所示的平面直角坐标系中,利用描点法画出这个二次函数的图象;(3)结合函数图象,当时,的取值范围是______19.(8分)已知二次函数.求证:不论取何值,该函数图象与轴总有两个交点.s t 2156s t t =-O e O e ππ1.414≈ 1.732≈2410x x --=223y x x =--x 1-223y x x =--0y <x ()2221y x m x m =-++-m x20.(8分)如图,,是的直径,点在上,,求证:.21.(8分)如图,在中,,,,以点为圆心,2.4为半径作.求证:是的切线.22.(10分)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.(1)求二次函数的解析式;(2)若是二次函数图象上的一点,且点在第一象限,线段交轴于点,,求点的坐标.23.(10分)如图,在矩形中,,.将绕点顺时针旋转一个角度得到,点,的对应点分别为点,.图1图2(1)如图1,若点落在边上,求旋转角的度数;(2)如图2,若点落在线段上,与交于点,求的长.24.(12分)长乐栽培龙眼历史悠久,据文献记载宋光宗皇帝曾赐匾青山龙眼为“黄龙”.请你运用数学知识,根据素材,帮果农解决问题.信息及素材AB CD O e E »BC»»BD BE =CE AB ∥Rt OAB △90AOB ∠=︒3OA =4OB =O O e AB O e 2y x bx c =++x A B y C ()1,0A -()3,0B P P PC x D PAD CAD S S =△△PABCD AB =2BC =ABC △C αFEC △A B F E E AD αE AF CE AD G AG素材一在专业种植技术人员的正确指导下,果农对龙眼种植技术进行了研究与改进,使产量得到了增长,根据果农们的记录,2021年龙眼平均年产量是2.8万吨,2023年达到了3.2万吨,每年的增长率基本相同.素材二龙眼一般用长方体包装盒包装后进行售卖.素材三果农们通过调查发现,顾客们也很愿意购买用美观漂亮的其它造型的纸盒包装的龙眼.任务1:设龙眼产量的年平均增长率为,根据素材一列方程得______;任务2:现有长80cm ,宽75cm 的长方形纸板,将四角各裁掉一个正方形(如图1),折成无盖长方体纸盒(如图2).为了放下适当数量的龙眼,需要设计底面积为的纸盒,计算此时纸盒的高;图1 图2任务3:为了增加包装盒的种类,打算将任务2中的纸板通过图3的方式裁剪,得到底面为正六边形的无盖纸盒(如图4),求纸盒的底面边长.(图中实线表示剪切线,虚线表示折痕.板厚度及剪切接缝处损耗忽略,结果取整数)图3 图425.(14分)学习完一元二次方程的知识后,数学兴趣小组对关于的一元二次方程开展探究.(1)当时,该方程的正根称为“黄金分割数”,求“黄金分割数”;(2)若实数,满足,,且,求的值;(3)若两个不相等的实数,满足,,求的值.x 21400cm 1.732≈x 210x mx +-=1m =a b 21a ma -=224b mb +=2b a ≠-ab p q 21p mp q +-=21q mq p +-=pq m -2024—2025学年第一学期期中阶段反馈练习九年级数学参考答案一、选择题:本题共10小题,每小题4分,共40分.1-5 ACDAB6-10 ABDBD二、填空题:本题共6小题,每小题4分,共24分11.0 12.13 13.相交 14.15.9.375 16.2.8三、解答题:本题共9小题,共86分.17.(8分)解:∴另解:∵,,∴∴∴18.(8分)(1)完成下表:…0123………解:(2)描点、连线,如图所示;(3).19.(8分)证明:令,则241x x -=24414x x -+=+()225x -=2x -=12x =22x =1a =4b =-1c =-()()2244411b ac ∆=-=--⨯⨯-200=>x =2=±12x =22x =x 1-223y x x =--3-4-3-13x -<<0y =()22210x m x m -++-=()()224121m m ⎡⎤∆=-+-⨯⨯-⎣⎦()2240m =-+>∴方程总有两个不相等的实数根∴不论取何值,该函数图象与轴总有两个交点.20.(8分)证明:连接∵ ∴ ∴∵ ∴ ∴.21.(8分)证明:过点作,垂足为∵,, ∴∵ ∴∵的半径为2.4 ∴ ∴是的切线.22.(10分)解:(1)∵二次函数的图象过点,∴ 解得∴二次函数的解析式为;(2)设(,)在中,当时,∴m x OE»»BDBE =BOD BOE ∠=∠12BOD DOE ∠=∠12C DOE ∠=∠BOD C ∠=∠CE AB ∥O OC AB ⊥C90AOB ∠=︒3OA =4OB=5AB ===1122OAB S OA OB AB OC =⋅=⋅△342.45OA OB OC AB ⋅⨯===O e r OC r =AB O e 2y x bx c =++()1,0A -()3,0B 10930b c b c -+=⎧⎨++=⎩23b c =-⎧⎨=-⎩223y x x =--(),P m n 0m >0n >223y x x =--0x =3y =-3OC =∵∴∴∵点在二次函数图象上 ∴解得(舍去)∴点的坐标为. 23.(10分)解:(1)∵四边形是矩形图1∴, ∴由旋转,得,在中,∴ ∴∴旋转角的度数为45°;(2)由旋转,得,图2∴ ∵∴ ∴∵四边形是矩形∴,,∴ ∴ ∴设,则,在中, ∴解得 ∴的长为.PAD CAD S S =△△1122AD n AD OC ⋅=⋅3n =(),P m n 2233m m --=11m =21m =P ()1ABCD CD AB ==90D ∠=︒AD BC ∥DEC BCE∠=∠2CE BC ==BCE α∠=Rt CDE △DE ===CD DE =45DEC ∠=︒α90FEC B ∠=∠=︒CE BC=90AEC B ∠=∠=︒AC AC=()Rt Rt HL AEC ABC ≌△△ACE ACB ∠=∠ABCD AD BC ∥2AD BC ==CD AB ==90D ∠=︒GAC ACB ∠=∠GAC ACE ∠=∠AG CG =AG m =CG m =2DG AD AG m =-=-Rt CDG △222CG CD DG =+()2222m m =+-32m =AG 3224.(12分)解:任务1:;任务2:设裁掉正方形的边长为,根据题意,得解得,(不合题意,舍去)答:此时纸盒的高为20cm ;任务3:设底面正六边形为,连接,,,和交于点,和交于点,所在直线交长方形纸板的边于点,设底面正六边形的边长为,纸盒的高为∵正六边形的每条边相等,每个内角都为120°∴为等腰三角形, ∴由正六边形的性质可得平分 ∴ ∴∴, 同理可得∵ ∴①∵左侧小三角形顶点的角度∴左侧小三角形是边长为的等边三角形根据图形的轴对称可得与长方形纸板的左右两边垂直∴为等边三角形的高 ∴ 同理可得∵四边形是矩形 ∴∵ ∴②联立①②式可得答:纸盒的底面边长约为30cm .25.(14分)解:(1)将代入,得解得.()22.813.2x +=cm m ()()7528021400m m --=120m =21152m =ABCDEF AC FD BE AC BE G FD BE H BE M Ncm acmb ABC △120ABC ∠=︒30BAC BCA∠=∠=︒BE ABC ∠60ABE ∠=︒90AGB ∠=︒1122BG AB a ==AG CG==12HE BG a ==75b AG CG b +++=275b +=B 360120909060︒︒︒︒︒=---=b MN BM BM =EN BM ==AGHF GH AF a==80BM BG GH HE EN ++++=280a +=16030a =-≈1m =210x mx +-=210x x +-=x ==;(2)∵ ∴ ∴∵ ∴∵ ∴,是一元二次方程的两个根∴ ∴;(3)①,②①-②,得∴∵ ∴ ∴∴③,④将④代入①,得 ∴将③代入②,得 ∴∴,是一元二次方程的两个根∴ ∴.224b mb +=2240b mb +-=21022b b m ⎛⎫+⋅-= ⎪⎝⎭21a ma -=()()210a m a -+⋅--=2b a ≠-a -2b210x mx +-=12ba -⋅=-2ab =21p mp q +-=21q mq p +-=()22p q m p q q p-+-=-()()()()p q p q m p q p q -++-=--p q ≠()1p q m ++=-1p q m +=--1p m q =---1q m p =---211p mp m p +-=---()210p m p m +++=211q mq m q +-=---()210q m q m +++=p q ()210x m x m +++=pq m =0pq m -=。
辽宁省大连市甘井子区2024-2025学年九年级上学期期中数学试题
2024—2025学年度第一学期期中阶段性学习质量抽测九年级数学(本试卷共23道题 满分120分 考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国古代数学的许多创新与发明都在世界上具有重要影响. 下列图形“杨辉三角”、“赵爽弦图”、“刘徽割圆术”、“中国七巧板”中,属于中心对称图形的是2. 用配方法解方程x²−6x +4=0, 下列配方正确的是A.(x −3)²=5B.(x +3)²=5C.(x −3)²=13D.(x +3)²=13A. 无实根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法确定5. 已知点A (x ₁, y ₁), B (x ₂, y ₂)都在反比例函数y =1x 的图象上.如果 x ₁<x ₂,且 x ₁x ₂>0,则y ₁,y ₂ 的大小关系是A.y ₁=y ₂B.y ₁<y ₂C.y ₁>y ₂D. 无法确定6. 关于二次函数y= (x+1) ²-4,下列结论不正确的是A. 开口向上B. x<0时, y 随x 的增大而减小C. 对称轴是直线x=-1D. 顶点坐标为 (-1, - 4)九年级数学 第1页 (共8页)3. 如图,根据二次函数y =x²+x−2 的图象,一元二次方程 x²+x−2=0的解是A.x₁=−1,x₂=−2B.x₁=−1,x₂=2C.x₁=1,x₂=−2D.x₁=1,x₂=24. 一元二次方程x²−8x +17=0根的情况是7. 如图,已知点A 的坐标为(-23,2),菱形ABCD 的对角线交于坐标原点O ,则点C 的坐标为A.(-2, 23) B.(−2, −23) C.(-23, -2) D.(23, −2)8.利用位似可以设计有立体感的美术字.如图,是某同学以点O 为位似中心,设计“MATH ”中字母“M ”美术字的一种方法.若AB=5,A'B'=3,则C 'D 'CD 的值为9.数学活动课上,小明为了测量学校旗杆的高度,在他脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆顶端C ,此时∠AEB=∠CED ,小明画出如图所示的示意图,并估计他的眼睛与地面的距离为1.5m ,同时测得BE=30cm ,BD=2.3m ,则旗杆的高度为A. 10mB. 11.5mC. 22.5mD. 40m10. 如图,取一根长100 cm 的匀质木杆,用细绳绑在木杆的中点O 并将其吊起来.在中点O 的左侧距离中点O10cm 处悬挂一个重量已知的物体,在中点O 右侧用一个弹簧测力计向下拉,使木杆处于水平状态.改变弹簧测力计与中点O 的距离L (单位:cm) , 观察弹簧测力计的示数F (单位: N)的变化, 发现: F (单位:N)是L(单位:cm) 的函数,部分数据对应如下:L/ cm…4939.224.519.614…F/N …2 2.5457..若弹簧测力计的示数F 为2.8N ,则弹簧测力计与中点O 的距离L 为A. 30.2cmB. 32.6cmC. 35cmD. 36cm 九年级数学 第2页 (共8页)25 B. 35 C. 23D. 53A.第二部分非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11. 方程x²+x=0的根为 .的图象经过第一、三象限,则常数m的取值范围是 .12. 反比例函数y=m−5x13. 如图,在△ABC中,∠ABC=90°,将△ABC绕点A 逆时针旋转90°,得到△ADE,连接BD.若BC=3,AE=5,则线段BD的长为 .14. 小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD. 若物体AB的高为6cm,小孔O到物体和实像的水平距离OE,OF分别为8cm,6cm,则实像CD的高为 cm.15. 如图,在平面直角坐标系中,点A 的坐标是(0,−1),点M是x轴上一动点,连接AM,作线段AM的垂直平分线l₁,过点M作x轴的垂线l₂,记l₁,l₂的交点为P,改变点M的位置,可以得到相应的点P,设点P的坐标是(x,y) ,则y关于x的函数解析式为.三、解答题(本题共8小题,共75分. 解答应写出文字说明、演算步骤或推理过程)16. (每题5分, 共10分)用适当的方法解方程:(1)x²+10x=6;(2)x2−2x−1=0.4九年级数学第3页 (共8页)17. (本小题8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(−1,3),B(−3,4),C(−4,1).(1)以点O为对称中心,画出△ABC关于点O的对称图形△A₁B₁C₁;(2)以点O为旋转中心,将△ABC顺时针旋转90°得到△A₂B₂C₂,画出△A₂B₂C₂,并直接写出A₂的坐标 .蓄电池的电压为定值,使用蓄电池时,电流I(单位:A) 与电阻R (单位:Ω) 之间的函数关系如图所示.(1) 求这个函数的解析式;(2)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围?九年级数学第4页 (共8页)18. (本小题8分)19. (本小题8分)某商场销售一种商品,经市场调查发现,每件盈利20元,每星期可卖出300件.为吸引顾客,商场决定在“双十一”期间进行促销活动.若每件商品降价1元,每星期可多卖出20件.(1)为了实现该商品每星期3000元的销售利润,则每件需降价多少元?(2)该商品每星期的销售利润能否达到6200元? 如果能,求出每件盈利;如果不能,请说明理由.20. (本小题8分)如图,AB⊥BD于点B,CD⊥BD于点D,AB=2,BD=7,CD=6,点P从点 D 出发,沿DB方向以每秒3个单位长度的速度向终点B匀速运动,连接AP,CP,过点A 作AE‖CP 交DB的延长线于点 E,设点P 的运动时间为t秒.(1)当t=1时,求证:△ABP∼△PDC;(2)当t>1时,若△ABE与△ABP相似,求线段BE的长.21. (本小题8分)【发现问题】在2024年巴黎奥运会跳水女子双人10米跳台决赛中,中国选手陈芋汐和全红婵夺得金牌,跳水梦之队实现该项目七连冠.两位选手如同复制粘贴般上演“水花消失术”,令人叹为观止.我们把运动员从跳台上起跳、腾空到入水,近似看成是一条漂亮的抛物线.【提出问题】(1) 请把上表中x ,y 的各组对应值作为点的坐标,在平面直角坐标系中描出相应的点,画出小美运动的抛物线草图,并求出y 关于x 的函数解析式;【解决问题】(2) 双人10米跳台要求两位运动员同步完成动作.从数学的角度分析,至少要满足竖直距离的最大值及入水时入水点距跳台的水平距离分别相等.小美和小丽完成了一次双人10米跳台训练,小美的数据如上表中所示,小丽的竖直高度y 与水平距离x 近似满足函数关系 y =−5x²+35x −50.①用k ₁,k ₂分别表示小美,小丽在空中最高点的竖直距离,则k ₁ k ₂(填“>”“<”或“=”) ;②在距水面高5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则容易失误.小美和小丽在空中调整好入水姿势时,水平距离恰好都是435 米,她们本次训练是否会失误,请通过计算说明理由.在如图所示的平面直角坐标系中,如果将运动员从点A 处起跳后的运动路线看作是抛物线的一部分,从起跳到入水的过程中,她运动的竖直高度y (单位:m) 与水平距离x (单位:m) 之间有怎样的函数关系.【分析问题】小美完成一次试跳,记录仪记录了她运动时的竖直高度y 与水平距离x 的几组数据如下:水平距离x(m)33.64.2 4.85.2竖直高度y(m)1010211121565【问题背景】数学课上,我们以等腰直角三角形为背景,利用旋转的性质研究线段和角的关系.老师给出了下面的已知条件:在△ABC中,∠ABC=90°,B=CB,点D是△ABC边上的一动点,点P是△ABC外任意一点,过点D与点P作射线DP,将射线DP绕点D逆时针旋转90°得到射线DQ.【问题初探】(1) 如图1,点D与直角顶点B 重合,射线DP交边AC于点E,点F在射线 DQ上,且满足DE=DF,连接AF.求证:AF=CE,AF⊥CE.【问题深探】(2) 如图2, 点D在直角边AB上, 射线DP恰巧经过点C, 点F在射线DQ上,且满足DC=DF,连接AF.请直接写出AC,AD,AF之间的数量关系是 .【问题拓展】(3) 点D 在斜边AC上, 且(CD=kAD(0<k≤1), 射线DP 交边AB于点E, 射线DQ 交边CB于点 F.①如图3,当k=1,AE=4,CF=3时,求线段AC的长;2②如图4,连接BD, 请直接写出BE,BD, BF之间的数量关系 (用含k的代数式表示).抛物线y₁=−x²+b₁x+c₁与x轴交于点(−2,0),与y轴交于点 (0, 4) .(1) 求抛物线y₁的解析式;(2) 将抛物线y₁=−x²+b₁x+c₁顶点的横坐标加1,纵坐标不变,得到抛物线y₂=−x²+b₂x+c₂.①请直接写出b₂=,c₂=;②若点A,B为抛物线y₂上的点,横坐标分别为y₂−2,t,点A,B之间(包括端点)的函数图象称为图象M,设图象M的最高点与最低点的纵坐标分别为d₁,d₂,当d₁−d₂=2t+6时,求t的值;③点C为抛物线y₁上的任意一点,其横坐标为m,过点C作(y₁CD⊥x轴交抛物线y₂于点D,过点C作y轴的垂线交抛物线y₁于点E,过点D作y轴的垂线交抛物线y₂于点F,设以C,D,E,F为顶点的图形面积为S,y₂12<S<2当点C 在D的上方,以C,D,E,F为顶点的图形是四边形时,请直接写出此时m的取值范围 .。
福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷
福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷一、单选题1.一抛物线的形状、开口方向与抛物线212y x =相同,顶点为()2,1,则此抛物线的解析式为()A .()21212y x =-+B .()21212y x =+-C .()21212y x =++D .()21122x y --=2.如图将ABC V 绕点A 顺时针旋转90︒到ADE V ,若50DAE ∠=︒,则CAD ∠等于()A .30︒B .40︒C .50︒D .90︒3.我国古代数学的许多创新与发明都在世界上具有重要影响.下列图标是中心对称图形的是()A .B .C .D .4.将抛物线y =x 2平移得到抛物线y =(x -5)2,下列平移方法正确的是()A .向左平移5个单位B .向右平移5个单位C .向上平移5个单位D .向下平移5个单位5.已知关于x 的一元二次方程22590x x k ++-=的常数项为0,则k 的值为()A .9B .3C .3-D .3±6.若2x =是关于x 的一元二次方程220ax bx -+=的解,则代数式20242a b +-的值为().A .2022B .2023C .2024D .20257.平面直角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B (2,-l ),C (-m ,-n ),则点D 的坐标是()A .(-2,l )B .(-2,-l )C .(-1,-2)D .(-1,2)8.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线2459y x =+的一部分,则杯口的口径AC 为()A .7B .8C .9D .109.如图,在ABC V 中,90308C A AC ∠=︒∠=︒=,,,点O 为AC 的中点,将ABC V 绕点O 按逆时针方向旋转得到A B C ''' ,点A ,B ,C 的对应点分别为A B C ''',,.当A '落在AB 边上时,两个三角形重叠部分(阴影部分)的面积为()A .833B .4C .D .10.已知a 、b 、m 、n 为互不相等的实数,且(a +m )(a +n )=2,(b +m )(b +n )=2,则ab-mn 的值为()A .4B .1C .﹣2D .﹣1二、填空题11.已知抛物线()2221y x =--+,当2x >时,y 随x 的增大而.12.请写出一个关于x 的一元二次方程;并且方程有两个相等的实数根.则这个一元二次方程可以是.13.如图,用48m 长的篱笆靠墙(墙足够长)围成一个面积是2300m 的长方形鸡场,鸡场有一个2m 的门,设与墙垂直的边长为m x ,所列方程是.14.若抛物线28y x x k =-+与x 轴只有一个公共点,则k 的值为.15.二次函数²y ax bx c =++自变量和对应函数值的部分对应值如下表所示,则关于x 的不等式.²50ax bx c ++-≤的解集为x 4-3-2-1-012y13854581316.如图,一段抛物线:(3)(03)y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;L ,如此进行下去,直至得2024C ,若(,2)P m -在第2024段抛物线2024C 上,则m =.三、解答题17.解方程:x 2+4x+1=0.18.为了让大家都能用上实惠药,医保局与药商多次谈判,将一种原价每盒100元的药品,经过两次降价后每盒64元,两次降价的百分率相同,求每次降价的百分率.19.如图,在ABC V 中,2AB =, 3.6BC =,=60B ∠︒,将ABC V 绕点A 按顺时针旋转一定角度得到ADE V ,当点B 的对应点D 恰好落在BC 边上时.(1)作出ADE V ;(要求:尺规作图,保留作图痕迹,不写作法)(2)求CD 的长.20.如图,x 轴上依次有A B C D E F ,,,,,六个点,且AB BC CD DE EF =====2,从点A 处向右上方沿抛物线.2412y x x =-++.发出一个带光的点P .(1)求抛物线顶点坐标;并在图中补画出y 轴;(2)若抛物线上点(,)P m n ,若06m <<,直接写出n 的取值范围为.21.已知关于x 的一元二次方程()()220a b x cx b a +++-=,其中a ,b ,c 分别为ABC V 三边的长.(1)如果1x =-是方程的根,试判断ABC V 的形状,并说明理由;(2)如果ABC V 是等腰直角三角形,c 为斜边,解这个一元二次方程.22.综合与实践数学兴趣小组在学习了二次函数之后,对物理学中的探究实验“阻力对物体运动的影响”又有了新的认识.对一个静止的小球从斜坡滚下后,在水平木板上运动的速度、距离与时间的关系进行了深入探究.兴趣小组先设计方案,再进行测量,然后根据所测量的数据进行分析,并进一步应用,请完成下列任务.【实验过程】如图1所示,一个黑球从斜坡顶端由静止滚下沿水平木板直线运动.从黑球运动到A 点处开始,用频闪照相机、测速仪测量并记录黑球在木板上的运动时间t (单位:s )、运动速度v (单位:/s cm )、滑行距离y (单位:cm )的数据.【收集数据】记录的数据如下:运动时间t /s 03691215…运动速度V /(/s cm )108.57 5.54 2.5…运动距离y /cm27.755169.758493.75…【建立模型】根据表格中的数值分别在图2、图3的平面直角坐标系中描点、连线;通过观察图像发现,我们可以用一次函数近似地表示v 与t 的函数关系,用二次函数近似地表示y 与t 的函数关系.请直接写....出v 与t 的函数关系式和y 与t 的函数关系式(不要求写出自变量的取值范围).①当黑球在水平木板上滚动了64cm 时,运动速度是多少?②若黑球到达木板A 点处的同时,在前方70cm 处有一辆电动小车,以2/s cm 的速度匀速向右直线运动,则黑球能否追上小车?请说明理由.23.在平面直角坐标系中,设二次函数()21232y x m m =--+-(m 是实数).(1)当2m =时,若点()8,A n 在该函数图象上,求n 的值.(2)小明说二次函数图象的顶点在直线132y x =-+上,你认为他的说法对吗?为什么?(3)已知点()1,P a c +,()45,Q m a c -+都在该二次函数图象上,是否存在m ,使得c 存在最大值,若存在,求出最大值,若不存在,请说明理由.24.综合与实践:问题情景:如图1、正方形ABCD 与正方形AEFG 的边AB ,()AE AB AE <在一条直线上,正方形AEFG 以点A 为旋转中心逆时针旋转,设旋转角为α,在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE ,DG .(1)操作发现:当正方形AEFG 旋转至如图2所示的位置时,求证:BE DG =;(2)操作发现:如图3,当点E 在BC 延长线上时,连接FC ,求FCE ∠的度数;(3)问题解决:如图4,如果45α=︒,2AB =,AE =G 到BE 的距离.25.已知抛物线22y ax bx =+-的顶点是P ,且交x 轴于()2,0A -,()2,0B 两点.(1)求抛物线的函数表达式;(2)过原点O 的直线与抛物线交于C ,D 两点,其中点C 在y 轴的左侧.①若直线CD 的表达式为y x =,求PCD △的面积;②若C ,E 两点关于y 轴对称,O ,Q 两点关于P 对称,求证:D ,E ,Q 三点共线.。
湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)
2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。
一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。
天津市和平区2024-2025学年九年级上学期期中考试数学试卷
天津市和平区2024-2025学年九年级上学期期中考试数学试卷一、单选题1.中国代表队在第33届巴黎奥运会上取得了40金27银24铜的傲人成绩,并在多个项目上取得了突破,以下奥运比赛项目图标中,是中心对称图形的是()A .B .C .D .2.若1x =是方程210x mx ++=的一个解,则m 的值为()A .1B .2C .1-D .2-3.已知O 的半径为3,平面内有一个点P ,若点P 在O 外,则在OP 的长可能为()A .4B .3C .2D .14.风力发电机可以在风力作用下发电,如图的转子叶片图案绕中心旋转后能与原来的图案重合,则至少要旋转()度.A .60B .120C .180D .2705.若12,x x 是方程22231x x x -+=+的两个根,则()A .122x x +=B .121x x =+C .1212x x =-D .121x x =6.有一个人患了流感,经过两轮传染后共有121人患了流感,设每轮传染中平均一个人传染了x 个人,则下列结论不正确的是()A .第一轮后共有()1x +个人患了流感B .第二轮后又增加()1x x +个人患流感C .依题意可以列方程()11121x x x +++=D .按照这样的传染速度,经过三轮传染后共有1000人患流感7.将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为()A .()213y x =+-B .()=+-2y x 12C .()213y x =--D .()212y x =--8.如图,以40m/s 的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系2205h t t =-,下列说法正确的是()A .小球的飞行高度为15m 时,小球飞行的时间是1sB .小球从飞出到落地要用4sC .小球飞行3s 时飞行高度为15m ,并将继续上升D .小球的飞行高度可以达到25m9.在“探索二次函数()20y ax bx c a =++≠的系数a ,b ,c 与图象的关系”活动中,老师给出了坐标系中的四个点:()()()()01,21,41,32A B C D ,,,,.同学们分别画出了经过这四个点中的三个点的二次函数图象,并得到对应的函数表达式2y ax bx c =++,则a b c ++的最大值等于()A .5-B .23C .2D .510.如图,四边形ABCD 内接于O ,F 是AD 延长线上一点,以点C 为圆心,BC 长为半径作弧与AB 相交于点E ,分别以点B 和点E 为圆心,大于12BE 的长为半径作弧(弧所在圆的半径都相等),两弧相交于点M ,连接CM ,若25ECM ∠=︒,则CDF ∠的度数为()A .50︒B .65︒C .70︒D .75︒11.如图,已知ABC V 中,20CAB ∠=︒,30ABC ∠=︒,将ABC V 绕点A 逆时针旋转50°得到AB C ''△,以下结论中错误的是()A .CB BB '''⊥B .BC B C ''=C .AC C B ''D .ABB ACC ''∠=∠12.已知二次函数2y ax bx c =++(a ,b ,c 为常数,0,1a c ≠>)的图象与x 轴的一个交点坐标为()2,0-,对称轴为直线1x =.有下列结论:①<0a b c -+;②若点()()()1233,,2,,6,y y y -均在该二次函数图象上,则132y y y <<;③方程210ax bx c ++-=的两个实数根为12,x x ,且12x x <,则1224x x -<<<;④若m 为任意实数,则29am bm c a ++≤-.其中,正确结论的个数是()A .1B .2C .3D .4二、填空题13.点()5,1A 与点A '关于原点对称,则点A '的坐标是.14.已知抛物线()2211y x =++,图象的开口向,顶点坐标为,当x 时,y 随x 的增大而减小.15.关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的取值范围是.16.如图,AB 是O 的直径, BCCD DE ==,35COD ∠=︒,则AOE ∠=︒.17.如图,O 是等边ABC V 内一点,6,8,10OA OB OC ===,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',连接AO '.(I )线段AO '的长为;(II )BOC 的面积为.18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C ,D ,E 均在格点上,线段DE 与圆相交于点F .(I )线段DE 是将线段AB 绕点C 顺时针旋转(度)得到的;(II )请用无刻度...的直尺,在如图所示的网格中,在线段A 上画出点P ,使BP EF =,并简要说明点Р的位置是如何找到的(不要求证明).三、解答题19.解下列方程:(1)22x x =﹔(2)()2458x x x-=-20.用一条长40cm 的绳子围成一个矩形.(1)若围成的矩形面积为275cm ,求该矩形的长和宽.(2)能围成一个面积为2101cm 的矩形吗?若能,求出它的长和宽.若不能,请求出能围成矩形的最大面积.21.已知AB 是O 的直径,50CAB ∠=︒,E 是AB 上一点,延长CE 交O 于点D .(1)如图①,当点E 是弦CD 的中点时,求CDO ∠的大小;(2)如图②,当AC AE =时,求CDO ∠的大小.22.如图,四边形ABCD 内接于O ,BC 是O 的直径,OA CD ∥.(1)若65ABC ∠=︒,求BAD ∠的大小;(2)若1,4AB BC ==,求CD 的长.23.如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.24.已知ABC V ,90,3,4C BC AC ∠=︒==,将ABC V 绕点B 旋转得到A BC ''△,点A 的对应点为A ',点C 的对应点为C ',连接AA '.(1)如图,将ABC V 绕点B 逆时针旋转90︒,求AA '的长;(2)当点C '落直线AB 上时,求AA '的长;(3)连接C C ',直线C C '与直线AA '相交于点D ,在旋转过程中,线段C D '的最大值为_____(直接写出结果即可)﹒25.抛物线23y ax bx =++(a ,b 为常数,0a >)的顶点为()2,1P --,与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线上的点M 的横坐标为m (m 是常数).(1)求抛物线的解析式和点A 的坐标;(2)若直线()31x m m =-<<-与AC 相交于点N ,当2MN =时,求点M 的坐标;(3)若将点M 绕着原点O 顺时针旋转45︒得到点M ',点()D ,当ODM ' 面积最小时,求点M 的坐标.。
四川省达州市高级中学校2024届九年级上学期期中考试数学试卷(含解析)
数学试卷本试卷分为第Ⅰ卷(选择题、填空题)和第Ⅱ卷(解答题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至6页.考试时间120分钟,满分150分.第Ⅰ卷一、选择题:(每小题4分,共40分;每小题选出正确答案后,请用2B 铅笔把机读卡上对应题号的答案标号涂黑.否则不得分.)1.下列方程中是关于x 的一元二次方程的是()A.2210x x+= B.20ax bx c ++= C.()()121x x -+= D.223250x xy y --=答案:C 解析:详解:解:A 、2210x x+=是分式方程,选项说法错误,不符合题意;B 、当0a =时,20ax bx c ++=不是一元二次方程,选项说法错误,不符合题意;C 、(1)(2)1x x -+=,即230x x +-=是一元二次方程,选项说法正确,符合题意;D 、223250x xy y --=是二元二次方程,选项说法错误,不符合题意;故选C .2.已知四边形ABCD 是平行四边形,对角线AC 与BD 相交于点O ,下列结论中不正确的是()A.当AB BC =时,四边形ABCD 是菱形B.当AC BD ⊥时,四边形ABCD 是菱形C.当OA OB =时,四边形ABCD 是矩形D.当ABD CBD ∠=∠时,四边形ABCD 是矩形答案:D 解析:详解:解:如图:A 、∵四边形ABCD 是平行四边形,AB BC =,∴四边形ABCD 是菱形;A 选项正确;B 、∵四边形ABCD 是平行四边形,AC BD ⊥,∴四边形ABCD 是菱形;B 选项正确;C 、∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,又∵OA OB =,∴OA OB OC OD ===,∴四边形ABCD 是矩形;C 选项正确;D 、∵四边形ABCD 是平行四边形,∴AB CD ,∴ABD BDC ∠=∠,又∵ABD CBD ∠=∠,∴BDC CBD ∠=∠,∴BC CD =,∴四边形ABCD 是菱形;不能证明四边形ABCD 是矩形,D 选项错误,故选:D .3.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是()A.110B.15C.13D.12答案:B 解析:详解:解:根据概率的定义,一共有10只粽子,其中红豆粽有2个,所以吃到红豆粽的概率是21105=.故选B .4.如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值()A.2B.4C.D.答案:C 解析:详解:作D 关于AE 的对称点D′,再过D′作D′P′⊥AD 于P′,∵DD′⊥AE ,∴∠AFD=∠AFD′,∵AF=AF ,∠DAE=∠CAE ,∴△DAF ≌△D′AF ,∴D′是D 关于AE 的对称点,AD′=AD=4,∴D′P′即为DQ+PQ 的最小值,∵四边形ABCD 是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt △AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴,即DQ+PQ 的最小值为2,故答案为C .5.已知ABC 如图,则下列4个三角形中,与ABC 相似的是()A. B. C. D.答案:D 解析:详解:∵由图可知,675AB AC B ==∠=︒,,∴75C ∠=︒,18030A B C ∠=︒-∠-∠=︒,A .选项中三角形是等边三角形,各角的度数都为60︒,不与ABC 相似;B .选项中三角形各角的度数分别是52.5︒,52.5︒,75︒,不与ABC 相似;C .选项中三角形各角的度数分别为40︒,70︒,70︒,不与ABC 相似;D .选项中三角形各角的度数分别为30,︒75︒,75︒,与ABC 相似;故选:D .6.若578a b ck ===且323a b c -+=,则243a b c +-的值是()A.14 B.42C.7D.143答案:D 解析:详解:解:578a b ck ===,5,7,8a k b k c k ∴===,323a b c -+= ,352783k k k ∴⨯-⨯+=,解,得13k =,578,333a b c ∴===578142432433333a b c ∴+-=⨯+⨯-⨯=,故选:D .7.某市2020年底已有绿化面积300公顷,经过两年绿化、绿化面积逐年增加,到2022年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是()A.()3001363x +=B.()23001363x +=C.()30012363x += D.()23631300x -=答案:B 解析:详解:解:设绿化面积平均每年的增长率为x ,根据题意得,()23001363x +=故选:B .8.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子1x x +(0x >)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x,矩形的周长是12x x ⎛⎫+⎪⎝⎭;当矩形成为正方形时,就有1x x=(0x >),解得1x =,这时矩形的周长124x x ⎛⎫+= ⎪⎝⎭最小,因此1x x +(0x >)的最小值是2.模仿张华的推导,你求得式子225x x+(0x >)的最小值是()A.10B.5C.15D.20答案:A 解析:详解:解:∵0x >,∴在原式中分母分子同除以x ,即22525x x x x+=+;在面积是25的矩形中设矩形的一边长为x ,则另一边长是25x,矩形的周长是252x x ⎛⎫+⎪⎝⎭;当矩形成为正方形时,就有25x x=(0x >),解得:5x =,这时矩形的周长25220x x ⎛⎫+= ⎪⎝⎭最小,因此225x x+(0x >)的最小值是10.故选:A .9.如图,点C 是线段AB 的黄金分割点(AC BC >),下列结论错误的是()A.AC BCAB AC= B.2•BC AC AB =C.12AC AB -= D.0.618≈BCAC答案:B 解析:详解:解:∵AC >BC ,∴AC 是较长的线段,根据黄金分割的定义可知:AB :AC=AC :BC ,故A 正确,不符合题意;AC 2=AB•BC ,故B 错误,12AC AB -=,故C 正确,不符合题意;0.618≈BCAC,故D 正确,不符合题意.故选B .10.如图,在ABC 中60A ∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM PN ,,则下列结论:①PM PN =;②AM ANAB AC=;③PMN 为等边三角形;④当=45ABC ∠︒时,BN =.其中正确个数是()A.1个B.2个C.3个D.4个答案:D 解析:详解:解:①∵BM AC ⊥于点M ,CN AC ⊥于点N ,P 为BC 边的中点,∴点P 是Rt MBC 和Rt NBC 的斜边的中点,∴12MP NP BC ==,故①正确;②∵BM AC ⊥于点M ,CN AC ⊥于点N ,∴90AMB ANC ∠=∠=︒,又∵A A ∠=∠,∴AMB ANC ∽ ,∴AM ANAB AC=,故②正确;③∵BM AC ⊥于点M ,CN AC ⊥于点N ,P 为BC 边的中点,∴点P 是Rt MBC 和Rt NBC 的斜边的中点,∴12MP NP BP CP BC ====,∴点M ,N ,B ,C 共圆,∴2NPM ABM ∠=∠,在Rt ABM 中,60A ∠=︒,∴30ABM ∠=︒,∴60NPM ∠=︒,∵PN PM =,∴PMN 是等边三角形,故③正确;④当=45ABC ∠︒时,BNC 为以BC 为斜边的等腰直角三角形,∴22BN BC =,故④正确;故选:D .二、填空题:(本大题共6小题,每小题4分,满分24分,请把答案填写在答题卷上,否则不得分.)11.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为______.答案:24解析:详解:解:x 2﹣14x +48=0,则有(x -6)(x -8)=0解得:x =6或x =8.所以菱形的面积为:(6×8)÷2=24.菱形的面积为:24.故答案为:24.12.已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m =___,另一个根是___.答案:①.1②.-3解析:详解:根据题意,得4+2m −6=0,即2m −2=0,解得,m =1,由韦达定理,知:12x x m +=-,∴221x +=-,解得:2 3.x =-故答案为:1,−3.13.关于x 的方程kx 2﹣2x +1=0有两个不相等的实数根,则k 的取值范围是_____.答案:k <1且k ≠0.解析:详解:解:∵关于x 的一元二次方程kx 2﹣2x +1=0有两个不相等的实数根,∴k ≠0且△>0,即(﹣2)2﹣4×k ×1>0,解得k <1且k ≠0.∴k 的取值范围为k <1且k ≠0.故答案为:k <1且k ≠0.14.如图,△ABC 中,DE ∥BC ,23DE BC =,△ADE 的面积为8,则△ABC 的面积为______答案:18.解析:详解:∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵23 DEBC=,∴2224()(39 ADEABCS DES BC===,∴9184ABC ADES S==.故选:18.15.将一副三角尺如图所示叠放在一起,则AEED的值是_______.答案:33133解析:详解:解:90BAC ACD∠=∠=︒,∴AB CD,∴30BAE EDC∠=∠=︒,45ABE ECD∠=∠=︒,∴ABE DCE∽,∴AE ABED CD=,∵AC AB=,∴AE ACED CD=,∵3tan 3AC D CD ∠==,∴3AE ED =,故答案为:33.16.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为()1,0,点D 的坐标为()0,2.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C 1…按这样的规律进行下去,第2014个正方形的面积为______答案:4026352⎛⎫⋅ ⎪⎝⎭解析:详解:解:∵正方形ABCD 的点A 的坐标为()1,0,点D 的坐标为()0,2.∴1OA =,2OD =,由勾股定理得,AD =12OA OD =,∵90ADO DAO ∠+=︒,190DAO BAA ∠+=︒,∴1ADO BAA ∠=,由题意得190DOA ABA ∠==︒,则1DOA ABA ∽,∴112A B OA AB OD ==,∵AD AB ==∴152A B =,则第二个正方形的面积为2221153522S A C ⎛⎫===⋅ ⎪⎝⎭⎭,同理可得第三个正方形的面积为2422215135352222S A C ⎛⎫⎛⎫==+⨯=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭,依此类推,第n 个正方形的面积为()21352n n S -⎛⎫=⋅ ⎪⎝⎭,则第2014个正方形的面积为:40262014352S ⎛⎫=⋅ ⎪⎝⎭.故答案为:4026352⎛⎫⋅ ⎪⎝⎭.第Ⅱ卷三、解答题:(本大题4个小题,共86分)解答时每小题需给出必要的演算过程或推理步骤.17.解方程:(1)22210x x --=(2)()()22320x x ---=答案:(1)112x +=,212x =(2)12x =,25x =解析:小问1详解:原方程变形为212x x -=配方得21344x x -+=,即21324x ⎛⎫-= ⎪⎝⎭,∴12x -=,∴1132x +=,2132x =.小问2详解:原方程可以变形为()()2230x x ---=,∴20x -=或230x --=,∴12x =,25x =.18.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (﹣1,2),B (﹣3,4)C (﹣2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.答案:(1)见解析;(2)见解析.解析:详解:(1)如图:△A 1B 1C 1即为所求;(2)如图:△A 2B 2C 2即为所求.19.已知关于x 的一元二次方程()22110x k x k +---=.(1)试判断此一元二次方程根的存在情况;(2)若方程有两个实数根x 1和x 2,且满足12111x x +=,求k 的值.答案:(1)有两个不相等的实数根(2)2k =解析:小问1详解:解:()()222Δ214144144450k k k k k k =----=-+++=+> ,()22110x k x k ∴+---=有两个不相等的实数根;小问2详解:由一元二次方程根与系数的关系可知:1212x x k +=-,121x x k ⋅=--,121212111x x x x x x ++==⋅ ,1211k k -∴=--,解得:2k =.20.第三届亚洲沙滩运动会服务中心要在某校选拔一名志愿者.经笔试、面试,结果小明和小颖并列第一.评委会决定通过抓球来确定人选.抓球规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个绿球,小明先取出一个球,记住颜色后放回,然后小颖再取出一个球.若取出的球都是红球,则小明胜出;若取出的球是一红一绿,则小颖胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析.答案:见解析解析:详解:解:根据题意,用A 表示红球,B 表示绿球,列表如下:A A BAA A A AB A AA A A AB A B A B A B B B由此可知,共有9种等可能的结果,其中,两红球及一红一绿各有4种结果,(P ∴都是红球)=49,(1P 红1绿球)=49.(P 都是红球)(1P =红1绿球),∴这个规则对双方是公平的.21.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)若商场只要求保证每天的盈利为4320元,同时又可使顾客得到实惠,每千克应涨价多少元?(2)若该商场经理想让这种水果每天的盈利为4600元,商场经理的想法能实现吗?如果能请求出每千克应涨价多少元,如果不能请说明理由.答案:(1)2元(2)不能,见解析解析:小问1详解:设每千克应涨价x 元,则()()10400204320x x =+-,解得2x =或8x =,为了使顾客得到实惠,所以2x =,所以每千克应涨价2元.小问2详解:该商场经理想法不能实现.设每千克应涨价x 元,则()()10400204600x x =+-,整理,得210300x x -+=,∵()2104130200∆=--⨯⨯=-<,∴该方程无解,∴不可能.22.如图,△ABC 中,AB =AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE =OD ,连接AE ,BE ,(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.答案:(1)证明见解析;(2)当∠BAC =90°时,矩形AEBD 是正方形.理由见解析.解析:详解:(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE =OD ,∴四边形AEBD 是平行四边形,∵AB =AC ,AD 是∠BAC 的角平分线,∴AD ⊥BC ,∴∠ADB =90°,∴平行四边形AEBD 是矩形;(2)当∠BAC =90°时,理由如下:∵∠BAC =90°,AB =AC ,AD 是∠BAC 的角平分线,∴AD =BD =CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.23.如图,在ABC 中,90C ∠=︒,AD 是CAB ∠的平分线,BE AE ⊥,垂足为点E .求证:2BE DE AE =⋅.答案:见详解解析:详解:证明:∵AD 是CAB ∠的平分线,∴CAD BAD ∠=∠,∵90C ∠=︒,∴90CAD ADC ∠+∠=︒,又∵BE AE ⊥,∴90E ∠=︒,∴90EBD BDE ∠+∠=︒,而ADC BDE ∠=∠,∴CAD DBE BAE ∠=∠=∠,∴BDE ABE ∽△△,∴::BE AE DE BE =,∴2BE DE AE =⋅.24.阅读理解:如图1,在四边形ABCD 的边AB 上任取一点E (点E 不与点A 、点B 重合),分别连接ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,55A B DEC ∠=∠=∠=︒,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图2在矩形ABCD 中,52AB BC ==,,且A ,B ,C ,D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB 上的一个强相似点E ;拓展探究:(3)如图3,将矩形ABCD 沿CM 折叠,使点D 落在AB 边上的点E 处.若点E 恰好是四边形ABCM的边AB 上的一个强相似点,当BC =时,试求出AB 的值.答案:(1)是,理由见解析;(2)见解析;(3)2解析:详解:(1)点E 是四边形ABCD 的边AB 上的相似点.理由:55A ∠=︒ ,125ADE DEA ∴∠∠=︒+,55DEC ∠=︒ ,125BEC DEA ∴∠∠=︒+.ADE BEC ∴∠=∠,A B ∠=∠ ,ADE BEC ∴∽V V ,∴点E 是四边形ABCD 的AB 边上的相似点.(2)作图如下:点E 即为所求(下图中二选其一即可)(3)∵点E 是四边形ABCM 的边AB 上的一个强相似点,AEM BCE ECM ∴∽∽ ,BCE ECM AEM ∴∠=∠=∠,由折叠可知ECM DCM :≌, ECM DCM CE CD ∴∠=∠=,,1303BCE BCD ∴∠=∠=︒,111222BE CE DC AB ∴===.在Rt BCE 中,设BE 为x ,CE 为2x ,根据勾股定理,222BC BE EC +=,可得2234x x +=,解得1x =±,0x >,1x ∴=,2CE =∴,即2AB =.25.如图,在平面直角坐标系内,已知点()0,6A 、点()8,0B ,动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t秒.(1)求直线AB 的解析式;(2)当t 为何值时,APQ △与AOB 相似.(3)当t 为何值时,APQ △的面积为165个平方单位.答案:(1)y =-34x +6(2)3011秒或5013秒(3)1秒或4秒解析:小问1详解:解:设直线AB 的解析式为y kx b=+由题意,得680b k b =⎧⎨+=⎩,解得346k b ⎧=-⎪⎨⎪=⎩所以,直线AB 的解析式为364y x =-+.小问2详解:解:由68AO BO ==,得10AB =,∴102AP t AQ t ==-,,①当APQ AOB ∠=∠时,APQ AOB ∽.∴102610t t -=,解得3011t =②当AQP AOB ∠=∠时,AQP AOB ∽.∴102106t t -=,解得5013t =∴当t 为3011秒或5013秒时,APQ △与AOB 相似;小问3详解:解:过点Q 作QE 垂直AO 于点E .在Rt AOB △中,4sin 5BO BAO AB ∠==在Rt AEQ △中,()48·sin 102855QE AQ BAO t t =∠=-=-,21184168422555APQ S AP QE t t t t ⎛⎫=⋅=⨯-=-+= ⎪⎝⎭ 解得,1t =(秒)或4t =(秒)∴当1t =秒或4t =秒时,APQ △的面积为165个平方单位.。
辽宁省大连市金州区2024-2025学年九年级上学期11月期中数学试题(含答案)
金普新区2024-2025学年度第一学期期中质量检测试卷九年级数学2024.11(本试卷共23道题 满分120分 考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程中,是关于的一元二次方程的是( )A .B .C .D .2.在平面直角坐标系中,点关于原点对称的点的坐标是( )A .B .C .D .3.下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是()A .赵爽弦图B .笛卡尔心形线C .科克曲线D .斐波那契螺旋线4.已知的半径为5,点在外,则的长可能是( )A .3B .4C .5D .65.若关于的一元二次方程有两个不相等的实数根,则的值可以是( )A .B .1C .2D .36.“读万卷书,行万里路.”某校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为,则可列方程为()A .B .C .D .7.如图,为的直径,弦,垂足为点,若的半径为13,,则的长为()x 310x -=23x y +=2210x x +-=410x -=()1,3()1,3--()1,3-()1,3-()3,1O P O OP x 220x x k -+=k 1-x ()21001121x +=()21001%121x +=()10012121x +=()()210010011001121x x ++++=AB O CD AB ⊥E O 24CD =AE(第7题)A .5B .6C .7D .88.抛物线的对称轴是直线,且经过点,则的值为( )A .3B .C .6D .9.如图,在中,,将绕点按逆时针方向旋转得到,点恰好在边上,连接,则的长为( )(第9题)A .8B .C .D .610.如图,在矩形中,,点从点出发以的速度沿向点运动,同时点从点出发以的速度沿向点运动,设经过的时间为的面积为,则下列图象中能大致反映与之间的函数关系的是()(第10题)A .B .C .D .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.一天中,钟表时针从上午6时至上午9时旋转的度数为______.12.若是方程的一个实数根,则代数式的值为______.13.如图,是的切线,为切点,如果,则的长为______.221y x bx =++32x =()1,k k 3-6-Rt ABC △90,60,4ACB A AC ︒︒∠=∠==CAB △C CDE △D AB BEBEABCD 4cm,8cm AB BC ==P A 1cm /s AB B Q B 2cm /s BC C ,x s PBQ △2cm y y x x t =210x x --=22024t t -+,,AB AC BD O ,,P C D 8,5AB AC ==BD(第13题)14.如图是二次函数的部分图象,由图象可知,当时,自变量的取值范围是______.(第14题)15.如图,抛物线:与轴交于两点,点在第四象限的抛物线上,连接,将线段绕点逆时针旋转,得到线段,当点恰好落在轴上时,点的坐标为______.(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明,演算步骤或推理过程)16.(10分)(1)用配方法解方程:;(2)用公式法解方程:.17.(8分)如图所示,在正方形网格中,的顶点均在格点上,请在所给平面直角坐标系中按要求作图.2y ax bx c =++0y >x 223y x x =--x ,A B C BC CB C 90︒CD D y C 269x x -=-22340x x +-=ABC △(第17题)(1)以点为旋转中心,将绕点顺时针旋转得,画出,并写出的坐标;(2)直接写出线段与的关系:______.18.(8分)如图,四边形是的内接四边形,延长相交于点,且.求证:是等腰三角形.(第18题)19.(8分)如图,矩形画框由边框和内衬组成,其中画框的边框宽度相等,画框外框长为,宽为,且边框的面积为整个画框面积的,求这个矩形画框的边框宽度是多少厘米?(第19题)20.(8分)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量(件)与每件售价(元)之间符合一次函数关系,如图所示.(第20题)(1)求与之间的函数关系式,并直接写出自变量的取值范围;(2)设商场销售这种商品每天获利(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?A ABC △A 90︒11ABC △11AB C △11,B C BC 11B C ABCD O ,DC ABE 2ABC E ∠=∠ADE △32cm 20cm 310y x y x x w21.(8分)如图1,是的直径,是弦,是的中点,与交于点,点在延长线上,且.(第21题图1)(1)求证:为的切线;(2)如图2,连接,若,求的长.(第21题图2)22.(12分)如图1,在中,,点是线段上一点(不与点重合),,以为旋转中心,将线段顺时针旋转得到线段,连接.(第22题图1)(1)求(用含的式子表示);(2)求证;;(3)如图2,当时,求的面积.(第22题图2)23.(13分)已知是自变量的函数,当时,称函数为函数的“相关函数”.AB O AC DAB CD AB E F AB CF EF =CF O BD 8,4CF BF ==BD ABC △,90AC BC ACB =∠=︒D AB ,A B ()045ACD αα︒∠=<<︒D DC 90︒DE EB EDB ∠αBE CB⊥2,AD CD ==BCD △1y x 213y xy =+2y 1y例如:函数,当时,则函数是函数的“相关函数”.(1)点在函数的图象上,判断点是否在函数的“相关函数”的图象上,并说明理由;(2)函数的“相关函数”为与的图象交于两点,点在点的左侧,的图象与轴交于点,点在的图象上,其横坐标为.①当点在第一象限时,过点作,垂足为点,当为何值时,线段的长度最大?最大值是多少?②当时,在的图象上,点与点之间部分(含点和点)的最大值与最小值之差为,求关于的函数解析式,并直接写出自变量的取值范围;③在②的条件下,函数图象上的点到直线的距离为时,直接写出自变量的值.(备用图)12y x =22132323y xy x x x =+=⋅+=+2223y x =+12y x =(),A m n 13y x =(),3B m mn +1y 2y 12y x =-+21,y y 2y ,A B A B 2y y C P 2y t P P PQ AB ⊥Q t PQ 0t >2y C P C P h h t t h 4h =72t金普新区2024-2025学年度第一学期期中质量检测九年级数学评分参考(※其他正确解法或证法请参照赋分)一,选择题(本题共10小题,每小题3分,共30分)1.C 2.A 3.C 4.D 5.A 6.A 7.D 8.B 9.C 10.B二、填空题(本题共5小题,每小题3分,共15分)11.;12.2025;13.3;14.;15..三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)解:(2)解:∴方程有两个不相等的实数根∴17.(8分)90︒15x -<<269x x -=-26999x x -+=-+()230x -=30x -=123x x ==22340x x +-=2,3,4a b c ===-()22Δ43424410b ac =-=-⨯⨯-=>x ==12x x ==(1)如图即为所求作.;(2)且18.(8分)证明:∵,,∴,又∵四边形是的内接四边形,∴,又∵,∴,∴,∴,∴是等腰三角形.19.(8分)解:设这个矩形画框的边框宽度是厘米.由题意得,解得,(不符题意,舍去)答:这个矩形画框的边框宽度是2厘米.20.(8分)解:(1)设:与之间的函数关系式为.由图象,把代入得,解得,∴与之间的函数关系式为.(2)∵,∴∵,开口向下,对称轴为直线,∴当随的增大而增大,∴当时,答:当每件商品的售价定为36元时,每天销售利润最大,最大利润是768元.21.(8分)(1)证明:如图1,连接.∵,∴,∵,∴,∵是中点,∴,∴,又∵,∴,()()113,1,2,3B C --11BC B C =11BC B C ⊥2ABC E ∠=∠ABC E BCE ∠=∠+∠E BCE ∠=∠ABCD O 180A DCB ∠+∠=︒180DCB BCE ∠+∠=︒A BCE ∠=∠A E ∠=∠AD ED =ADE △x ()()33222023220110x x ⎛⎫--=⨯⨯- ⎪⎝⎭122,24x x ==y x ()0y kx b k =+≠()()25,70,35,50y kx b =+70255035k b k b =+⎧⎨=+⎩2120k b =-⎧⎨=⎩y x 2120,2036y x x =-+≦≦2x 120y =-+()20w x y=-()()202120x x =--+()2240800x =--+20a =-<40x =2036,x w ≤≤x 36x =()223640800768w =-⨯-+=最大值,OD OC CF EF =ECF CEF ∠=∠OC OD =OCD ODC ∠=∠DAB AD BD =AOD BOD ∠=∠180AOD BOD ∠+∠=︒90BOD ∠=︒∴在中,,又∵,∴,∴,即,∴,又∵是半径,∴是切线.(2)证明:如图2,连接.设,∵,∴,∴,∵由(1)得,,∴在中,根据勾股定理,即,解得,∴,∴在中,根据勾股定理,∴22.(12分)(1)解:∵线段顺时针旋转得到线段,∴,∵,∴,∴,∴,∴,.(2)证明:如图,过点作,交延长线于点.∴,由(1)得,,∴,∴,∴,∵线段顺时针旋转得到线段,Rt EOD △90ODE OED ∠+∠=︒OED CEF ∠=∠90ODE CEF ∠+∠=︒90OCD ECF ∠+∠=︒90OCF ∠=︒OC CF ⊥OC O CF O ,OD OC OE x =8,4CF EF BF ===844EB EF BF =-=-=4,8OC OB OE EB x OF OE EF x ==+=+=+=+90OCF BOD ∠=∠=︒Rt OCF △222OC CF OF +=()()222488x x ++=+2x =46OB OD x ==+=Rt OBD △222OB OD BD +=BD ===DC 90︒DE 90CDE ∠=︒,90AC BC ACB =∠=︒,90A CBA A CBA ∠=∠∠+∠=︒45A CBA ∠=∠=︒45CDB A ACD α∠=∠+∠=+︒()909045EDB CDB α∠=-∠=-︒︒+︒45α=︒-D MD DB ⊥BC M 90MDB ∠=︒45CBA ∠=︒18045M MDB CBA ∠=-∠-=︒∠︒M CBA ∠=∠MD BD =DC 90︒DE∴,∵,∴,即,∴,∴,∴,即.(3)证明:过点作,且使,连接.过点作,垂足为点.∴,∴,即,又∵由(1)得,∴,∴,∴,∵在中,根据勾股定理,∴,∵在中,根据勾股定理,∴,∵,∴是中点,又∵,∴,∴.23.(13分)(1)解:点是在函数的“相关函数”的图象上.∵点在函数的图象上,∴,∵,∴,∴当时,,,90DC DE CDE =∠=︒90MDB CDE ∠=∠=︒MDB CDB CDE CDB ∠-∠=∠-∠MDC BDE ∠=∠()SAS MCD BDE ≌△△45M DBE ∠=∠=︒90CBE CBA DBE ∠=∠+∠=︒BE CB ⊥C CN CD ⊥CN CD =,BN DN C CP AB ⊥P 90DCN ACB ︒∠==∠DCN DCB ACB DCB ∠-∠=∠-∠ACD BCN ∠=∠,AC BC CD CN ===∠45A CBA ∠=∠=︒()SAS ACD BCN ≌△△2,45AD BN A CBN ==∠=∠=︒454590DBN CBA CBN ∠=∠+∠=︒+=︒︒Rt DCN △222CD CN DN +=22220DN =+=Rt DBN △222DB BN DN +=4DB ===,AC BC CP AB =⊥P AB 90ACB ∠=︒()()111243222CP AB AD DB ==+=⨯+=1143622BCD S DB CP =⋅=⨯⨯=△(),3B m mn +1y 2y (),A m n 13y x =3n m =213y xy =+233y x x =⋅+,3x m n m ==2333y m m mn =⋅+=+∴点是在函数的“相关函数”的图象上.(2)解:①∵函数的“相关函数”为,∴,如图,过点作轴,垂足为点,交直线于点.∴,∵把代入得,,把代入得,,∴,∴又∵由题意得,∴,∴,∴,∴,∵,∴,∴,∴,∴,∴在中,根据勾股定理,∴,∴,∵点在的图象上,其横坐标为.∴,∴,∴,∴,∵,开口向下,对称轴为直线,∴当时,(),3B m mn +1y 2y 12y x =-+2y ()21323y xy x x =+=-++223x x =-++()214x =--+P PN x ⊥N AB M 90PNF ∠=︒0x =1y 12y =10y =1y 2x =()()0,2,2,0E F 2OE OF ==90EOF ∠=︒,90OEF OFE OEF OFE ∠=∠∠+∠=︒45OEF OFE ∠=∠=︒18045NMF PNF OFE ∠=-∠-=︒∠︒45PMQ NMF ∠=∠=︒PQ AB ⊥90PQM ∠=︒18045QPM PQM PMQ ∠=-∠-=︒∠︒PMQ QPM ∠=∠PQ QM =Rt DBN △222PQ QM PM +=PM ===PQ PM =P 2y t ()2,23P t t t -++(),2M t t -+231PM t t =-++)223312PQ t t t ⎫=-++=-⎪⎭0a =<3,032t t -<<32t =PQ =最大值②令,∴,∵,抛物线顶点坐标,∴(ⅰ)当时,,∴,(ⅱ)当时,,∴(ⅲ)当时,,∴,综上,.③或.20,3x y ==()0,3C ()2,23P t t t -++()1,401t ≤<22223,3y t t y =-++=最大最小222332h t t t t =-++-=-+12t ≤<224,3y y ==最大最小431h =-=2t ≥2224,23y y t t ==-++最大最小()2242321h t t t t =--++=-+222,011,1221,2t t t h t t t t ⎧-+≤<⎪=≤<⎨⎪-+≥⎩1t =1+。
江苏省江阴市2024—2025学年上学期九年级数学期中考试卷
江苏省江阴市2024—2025学年上学期九年级数学期中考试卷一、单选题1.下列方程中,是一元二次方程的是()A .12x x +=B .2251x x =-C .35x y -=D .15x +=-2.已知点A 在半径为2cm 的圆内,则点A 到圆心的距离可能是()A .1cmB .2cmC .3cmD .4cm 3.一元二次方程23120x x +-=的根的情况是()A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断4.某工厂经过两年时间将某种产品的产量从每年14400台提高到16900台,若设平均每年的增长率为x ,则可得方程()A .()214400116900x +=B .()214400116900x +=C .()144001216900x +=D .21440016900x =5.若关于x 的方程2250x mx ++=的一个根为1,则它的另一个根为()A .25B .25-C .52D .52-6.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知8cm EF CD ==,则球的半径长是()A .4cmB .5cmC .6cmD .8cm 7.下列命题:①三点确定一个圆;②正多边形是中心对称图形;③正六边形的半径与边长相等;④三角形的外心到三角形各边的距离相等,其中真命题的个数是()A .4B .3C .2D .18.如图,点A 、B 、C 、D 在O 上,且 AC BD=,若84BOD ∠=︒,则ACO ∠的度数为()A .42︒B .44︒C .46︒D .48︒9.如图,在平面直角坐标系中,O 的半径为1,点P 在经过点−4,0,()0,4B 的直线上,PQ 与O 相切于点Q ,则切线长PQ 的最小值为()A .B C .3D 10.如图,在O 的内接四边形ABCD 中,DB DA =,过点D 作BC 的垂线交BC 延长线于E .则下列结论:①DC 平分ACE ∠;②若点C 是 BD中点,则C 平行于ABD △的某条角平分线;③若12AC BC +=,3DE =,则7=DA ;④若4AC BC -=,3DE =,则DC =,其中正确的有()A .①③B .①②④C .②④D .①②③④二、填空题11.一元二次方程21x =的根是.12.写出一个一元二次方程,使它的两根分别为2-和3:.13.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长为.14.已知圆锥的母线长为6cm ,底面半径为3cm ,则此圆锥的侧面积为cm 2.15.如图,点O 是ABC V 外接圆的圆心,点I 是ABC V 的内心,连接OB ,IA .若35CAI ∠=︒,则OBC ∠的度数为.16.如图,C 为O 上一点,A 是O 的直径,4AB =,30ABC ∠=︒,现将ABC V 绕点B按顺时针方向旋转30°后得到A BC ''△,BC '交O 于点D ,则图中阴影部分的面积为.17.现有三个代数式:222x x ++,2y y -,1x y -,它们的值互不相同,且分别与12-,0,x -中的某一个值对应相等,则x y +的值为.18.如图,正方形ABCD 中,4AB =,点E 、F 分别为A 、BC 上两个动点(E 不与A 重合),且4EF =,将正方形分别沿过点E 和点F 的两条直线翻折,使点A 的对应点A '和点C 的对应点C '都落在线段EF 上,两折痕所在直线交于点P ,则EPF ∠=︒;当1A C ''=时,AE 的长为.三、解答题19.解方程:(1)2410x x --=;(2)()()2323x x x -=-.20.已知:当x=2时,二次三项式x 2﹣2mx+4的值等于﹣4.当x 为何值时,这个二次三项式的值是﹣1?21.一个直角三角形的斜边长为,两直角边长的和是6cm .求这两条直角边的长.22.已知关于x 的一元二次方程()2440x m x m --=+.(1)求证:无论m 取何实数,原方程总有两个实数根;(2)若原方程有一个根大于5,求m 的取值范围.23.如图,在ABC V 中,AB AC =,以AB 为直径的O 交BC 于点D ,过点D 作DH AC ⊥,垂足为点H .(1)求证:DH 是O 的切线;(2)延长CA 交O 于E ,连接DE ,交AB 于点F ,若AE FE =,O 的半径为3,求 AD 的长度(结果保留π).24.在数学活动课上,顾老师提出了一个问题:如图1,已知 AB ,在 AB 上作一点P ,使3AP PB =.小亮同学很快就给出了下列思路:如图2,连接AB ,作AB 的垂直平分线CD 交 AB 于点E ,交AB 于点F ,再作FB 的垂直平分线GH ,交 AB 于P ,交AB 于点Q ,则点P 即为满足3AP PB =的点.结合图2回答下列问题:(1)»AE 与»EB是否相等?请说明理由;(2)小亮的做法是否正确?若正确,请说明理由;若不正确,请用无刻度直尺和圆规在图1中作出所求的点P .25.在丝绸博览会期间,某公司展销一种工艺品,已知该工艺品每件成本是50元.经市场调研,售价为60元,每天可售出800件;售价每提高5元,销量将减少100件,另外每天除工艺品的成本外所需支付的各种费用是2000元,请问这种工艺品把销售单价定为多少元时,当日所获利润为10000元.26.在解一元二次方程()20,0ax bx c a b abc ++=≠≠时,小马同学粗心地将二次项的系数与一次项系数对换了,得到了一个新的方程.他正确地解出了这个新的方程,其中一个根是3,另一根等于原方程的一个根.(1)求这两个方程相同的根.(2)求原方程两根之和.27.如图,点A 、B 、C 、D 在O 上,且 AD BC=,E 是A 延长线上一点,BE AB =且F 是EC 中点.(1)求证:2BD BF =;(2)连接AO 并延长交O 于P ,延长BF 到G 使FG BF =,连接PG 、PD ,试说明PG PD =;(3)在(2)的条件下,若 AB 为84︒,则当ABD ∠=______︒时,四边形PDBG 为菱形.28.如图,在ABCD 中,AD =10AB =,45DAB ∠=︒,G 为DC 上一点(不与D 、C 重合),()010DG m m =<<,动点E 从点B 出发,/秒的速度沿射线BC 运动,设运动时间为t 秒.(1)将ABE 沿着AE 翻折得到AEF △,①当t =______秒时,点F 的运动路径长为5π2;②当点F 到直线CD 的距离等于1时,求t 的值;(2)当06t ≤≤时,有且仅有一个时刻,能使AGE 为直角三角形,直接写出m 的取值范围.。
山西省阳泉市部分学校2024-2025学年上学期期中考试九年级数学试卷(含答案)
2024—2025学年度第一学期期中九年级数学(满分120分,练习时间120分钟)第I 卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.是同类二次根式的是( )2.已知关于x 的一元二次方程,若,则下列各数中是该方程的根的是( )A.1B.C.2D.03.在数学史上,有很多著名的几何图形用来验证数学知识的产生过程.如图所示的图案,是由一连串公共顶点为O 的直角三角形拼接而成,若,则图中直角三角形之间存在的变换关系是( )A.图形的平移B.图形的旋转C.图形的全等D.图形的相似4.利用配方法解方程时,将该方程化为的形式,然后利用直接开平方法求解,这个过程体现的数学思想是( )A.数形结合思想B.转化思想C.整体思想D.公理化思想5.如果,那么下列比例式正确的是( )A. B. C. D.6.若等腰三角形一条边的长为3,另两条边的长分别是关于x 的一元二次方程的两个根,则k 的值是( )A.27B.36C.27或36D.187.我国古代数学《九章算术》中有一道“井深几何”的问题:“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸(1尺等于10寸),问井深几何?”根据题意画出如图示意图,则并深为( )20x bx c ++=10b c ++=1-30AOB BOC COD LOM ∠=∠=∠==∠=︒ 2680x x ++=()231x +=:5:3a b =35a b a -=32b a b =+14a b a b -=+223a b=2120x x k -+=A.56.5尺B.57.5尺C.6.25尺D.1.25尺8.如图,在中,点D 是上一点,且,若,,则与的面积比为( )A. B. C. D.9.对于实数a ,b ,定义运算“( )”:若,例如:.已知关于x 的一元二次方程有实数根,则m 的取值范围为( )A. B. C. D.10.如图,在中,,,点D ,E 分别是,边上的动点,连结,F ,M 分别是,的中点,则的最小值为( )A.12B.10C.9.6D.4.8第II 卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.的结果是________.ABC △AC ABD C ∠=∠2AD =3AB =ABD △BCD△4:54:92:32:1()*a b a a b =-()2*32232=-=-211*(2)724x m m m -=-13m ≥-13m ≤-16m ≤-16m ≥-ABC △10AB BC ==12AC =AB BC DE AD DE FM12.如图,直线,若,,,那么的长为________.13.某种小家电在两年内提价两次后每个的价格比两年前增加了44%,则平均每次提价的百分率为________.14.如图,小明在A 时测得某树的影长为3m ,B 时又测得该树的影长为2m ,若两次日照的光线互相垂直,则树的高度为________m.15.如图,在中,,,,点D 是边上的一点,过点D 作,交于点F ,作的平分线交于点E ,连接.若的面积是2,则的值是________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题5分,共10分)(1(2)解方程:17.(本题10分)图①、图②、图③都是的网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.点A ,B ,C 均在格点上.在图①、图②、图③给定的网格中,仅用无刻度的直尺,按下列要求完成作图,并保留作图痕迹.AB CD EF ∥∥12AD =4DF =15BE =CE Rt ABC △90C ∠=︒3AC =4BC =AC DF AB ∥BC BAC ∠DF BE ABE △DE EF221)(2)--+-()()325211x x x -+=+66⨯图① 图② 图③(1)在图①中,以点C 为位似中心,将放大到原来的2倍;(2)在图②中,在线段上作点D ,使得;(3)在图③中,作,且相似比为.18.(本题8分)玉米俗称玉米棒子、苞米,是我国第一大粮食作物,也是全世界公认的“黄金作物”.政府鼓励农民种植玉米,一亩地每年补贴300元.经调查:我省玉米实验田平均亩产量约1300千克,市场销售价为每千克1.2元,除购买种子、播种、施肥、浇水、收割等成本费用外(随种植亩数的变化而变化),种植一亩玉米的净利润达到1360元.(1)求种植一亩玉米的成本需要多少元;(2)某农场现有15亩实验田,计划种植玉米和蔬菜,根据经验调查发现:按2023年种植一亩玉米的成本来计算,以后每多种植1亩,平均每亩的成本会减少20元,2024年农场计划投入3200元的成本种植玉米,问:该农场计划种植几亩玉米?19.(本题7分)如图,在中,点D 在边上,,点E 在边上,.(1)求证:.(2)若,,求的长.20.(本题8分)项目化学习项目主题:测量树的高度.分析探究:树的高度不能直接测量,需要借助一些工具,比如小镜子,标杆,皮尺,小木棒,自制的直角三角形硬纸板,确定方案后,还要画出测量示意图,并实地进行测量,得到具体数据,从而计算出树的高ABC △BC 3CD BD =BEF BAC △∽△3:4ABC △BC DAC B ∠=∠AD CD CE =ABD CAE △△∽9AB =6AC BD ==AE度.成果展示:下面是某小组进行交流展示时的部分测量方案及测量数据:测量工具标杆,皮尺测量方案选一名同学作为观测者,在观测者与树之间的地面直立一根标杆,使树的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上.这时再测出观测者的脚到树底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段表示树,标杆,观测者的眼睛到地面的距离,观测者的脚到树底端的距离,观测者的脚到标杆底端的距离.……请同学们继续完善上述成果展示:任务一:根据测量数据,求出树的高度;任务二:写出求树的高度时所利用的数学知识________________________________________.(写出一个即可)21.(本题8分)阅读下列材料,并按要求完成相应的任务.两千多年前,古希腊数学家欧多克索斯(Eudoxus ,约前400-前347)发现:如图1,将一条线段分割成长、短两条线段,,若较短线段与较长线段的比等于较长线段与原线段的比,即(此时线段叫做线段,的比例中项)比值为黄金比,P 为线段的黄金分割点. 图1采用如下方法可以得到黄金分割点:如图2,设是已知线段,经过点B 作,且,连接,在上截取,在上截取,则C 就是线段的黄金分割点.任务:AB 3.2m EF = 1.7m CD =14m DB =2m DF =AB AB AP BP BP AP AP AB =AP BP AB AB AB BD AB ⊥12BD AB =AD AD DE DB =AB AC AE =AB图2(1)求证:C 是线段的黄金分割点.(2)若,则的长为________.22.(本题12分)综合与实践(1)如图①,在中,,,点D 在边上,点E 在边上.若,求证:.图①(2)如图②,在矩形中,,,点E 在边上,连接,过点E 作,交于点F .图②i )若,求的长;ii )若点F 恰好与点D 重合,求的长.23.(本题12分)综合与探究如图1,在矩形中,,,点E 是对角线上任意一点,交于点G ,交于点F .(1)当点E 为的中点时,________. 图1(2)如图2,将四边形绕点B 逆时针旋转,连结,.在旋转过程中,是否发生变化,若不变化,求出的值,若发生变化,请说明理由.AB 1BD =BC Rt ABC △90ACB ∠=︒AC BC =AB BC 45CDE ∠=︒ACD BDE △∽△ABCD 4cm AB =10cm BC =BC AE EF AE ⊥CD :1:9BE EC =CF BE ABCD 6cm AB =4cm AD =BD EG CD ∥BC EF AD ∥AB BD DE CG=BFEG CG DE DE CG DE CG图2(3)如图3,将四边形绕点B 逆时针旋转,连结,.请直接写出旋转过程中的值. 图3BFEG AF DE DE AF九年级数学答案一、1、C2、A3、D4、B5、C6、B7、B8、A9、D10、D二、11、412、13、20%1415、三、16、解:(1(2),,,,,.17、(1)如图,即为所求(2)如图,点D 即为所求(3)如图,即为所求18、(1)设种植一亩玉米的成本需要x 元,154372211111)(2)(21)21444---+-=--+=-+-+=-2315210211x x x x +--=+238110x x --=14∆==81423x ±=⨯1113x =21x =-11A B C △BEF △依题意得:,解得.答:种植一亩玉米的成本最高需要500元.(2)设该农场计划种植y 亩玉米,则每亩的成本为依题意得:,整理得:,解得:,(不合题意,舍去)。
江苏省盐城市盐城经济技术开发区2024-2025学年九年级上学期11月期中考试数学试题(含答案)
2024年秋学期九年级数学期中考试试卷一、选择题(每题3分,计24分)1. 下列方程是一元二次方程的是( )A. 3x 2-6x +2B. ax 2-bx +c =0C.D. x 2=02. 用配方法解方程,配方正确是()A. B. C. D. 3. 如图,已知四边形是的内接四边形,且,那么等于( )A B. C. D. 4. 一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A. 12B. 9C. 15D. 12或155.如图,小球从口往下落,在每个交叉口都有向左或向右两种可能,且可能性相同,则小球最终从口落出的概率为( )A. B. C. D.6.电影(长津湖》讲述了一段波澜壮阔的历史,一上映就获得全国人民的追捧,某地第一天票房约亿元,三天后票房收入累计达亿元,若把增长率记作( )A .;B .;C .;D .7.如图,是的直径,圆上的点D 与点C ,E 分布在直线的两侧,,则( )的.212x x +=2240x x --=()213x -=()214x -=()215x -=()213x +=ABCD O e 120ABC ∠=︒AOC ∠125︒120︒110︒100︒A G 18161412310x ()3110x +=()23110x +=()233110x ++=()()23313110x x ++++=AB O e 50BCD ∠=︒AED =∠A .B .C .D .8.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的弧与弧的长都为,且与闸机侧立面夹角.当双翼收起时,可以通过闸机的物体的最大宽度为( )A .B .C .D .二、填空题(每题3分,计30分)9.一组数据19,15,10,x ,4,它的中位数是13,则这组数据的平均数是 .10.已知一元二次方程的其中一个根为,则的值为 .11.关于的一元二次方程有两个实数根,那么的取值范围是 .12.已知,如图,是的弦,,点在弦上,连结并延长交于点,,则的度数是 .14.设m 、n 为关于x 的方程x 2+4x ﹣2023=0的两个实数根,则m 2+5m +n = .60︒50︒45︒40︒A B 10cm AP BQ 12π30PCA BDQ ︒∠=∠=72cm 10cm 10cm 82cm 250ax bx +-=2x =1632a b +-x ()22114x m x m +-=-m AB AD O e 30B ∠=︒C AB CO O e D 35D ∠=︒BAD ∠15.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为170cm ,方差为acm 2.第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是170cm ,此时全班同学身高的方差为bcm 2,那么a 与b 的大小关系是a b .(填“<”,“>”或“=”)D=_______°.18.如图,在矩形ABCD 中,AB=3,⊙O 与边BC ,CD 相切,现有一条过点B 的直线与⊙O 相切于点E ,连接BE ,△ABE 恰为等边三角形,则⊙O 的半径为.第17题 第18题三、解答题(共9题,计96分)19.解方程:(1);(2);20.“秋风响,蟹脚痒”,正是食蟹好时节.某蟹农在今年五月中旬向自家蟹塘投放蟹苗1200只,为赶在食蟹旺季前上市销售,该蟹农于九月中旬在蟹塘中随机试捕了4次,获得如下数据:(1)、四次试捕中平均每只蟹的质量为____________;(2)、若蟹苗的成活率为,试估计蟹塘中蟹的总质量为_______;(3)、若第3次试捕的蟹的质量(单位:g )分别为:166,170,172,a ,169,167.①____________;②求第3次试捕所得蟹的质量数据的方差.21.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船数量/只平均每只蟹的质量/g 第1次试捕4166第2次试捕4167第3次试捕6168第4次试捕6170()24190x --=2250x x --=g 75%kg =a的轮子被水面截得的弦AB 长8m ,设圆心为O ,OC ⊥AB 交水面AB 于点D ,轮子的吃水深度CD 为2m ,求该桨轮船的轮子直径.22.已知,内接于,为的直径,点为优弧的中点.(1)如图1,连接,求证:;(2)如图2,过点作,垂足为.若,求的半径.23.已知关于的一元二次方程.求证:无论取何值,方程总有两个不相等的实数根.ABC V O e AC O e D BC OD DO BC ⊥D DE AC ⊥E 38AE BC ==,O e x 22(3)10x m x m ++-+=m(2)已知关于 x 的方程﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求 m 的值;(3)若关于 x 的方程 a +bx+1=0(a 、b 是常数,a >0)是“邻根方程”,令 t =8a-,试求 t 的最大值.25.小明大学毕业后和同学创业,合伙开了一家网店,暑期销售原创设计的手绘图案T 恤衫.已知每件T 恤衫的成本价为60元,当销售价为100元时,每天能售出20件;经过一段时间销售发现,当销售价每降低1元时,每天就能多售出2件.(1)若降价8元,则每天销售T 恤衫的利润为多少元?(2)小明希望每天获得的利润达到1050元并且优惠最大,则每件T 恤衫的销售价应该定为多少?26.如图,是直角三角形的外接圆,直径,过C 点作的切线,与延长线交于点D ,M 为的中点,连接,,且与相交于点N .(1)求证:与相切;(2)当时,在的圆上取点F ,使,补全图形,并求点F 到直线的距离.27.(1)如图1,四边形ABCD 为⊙O 的内接四边形,AC 为⊙O 的直径,则∠B =∠D = 度,∠BAD +∠BCD = 度.(2)如果⊙O 的内接四边形ABCD 的对角线AC 不是⊙O 的直径,如图2,求证:圆内接四边形的对角互补.知识运用(3)如图3,等腰三角形ABC 的腰AB 是⊙O 的直径,底边和另一条腰分别与⊙O 交于点 D ,E ,F 是线段CE 的中点,连接DF ,求证:DF 是⊙O 的切线.2x 2x 2b O e ABC 4AC =O e AB CD BM OM BC OM BM O e 60A ∠=︒O e 15ABF ∠=︒AB参考答案1-4DCBC 5-8CDDD9.12.2 10.7 11.12. 13.86 14.2019 15.>16.b>-3 17.3018.19.(1),(2),20.(1)168(2)(3)①164 ②721.解:设半径为rm,则OA =OC =rm ,∴OD =(r ﹣2)m .∵AB =8m ,OC ⊥AB ,∴AD =4m .在Rt △ODA 中有OA 2=OD 2+AD 2,即r 2=(r ﹣2)2+4,解得r =5m则该桨轮船的轮子直径为10m .22.(1)(1)证明:如下图,延长交于,∵点为优弧的中点,∴,12m ≤65︒112x =-252x =11x =21x =151200DO BC F D BC »»BD CD =∴,即;(2)23.证明:一元二次方程中,a =2,,,,一元二次方程总有两个不相等的实数根.24.(1)不是邻根方程;是邻根方程(2)或(3)25.(1)解:由题意得,每天销售T 恤衫的利润为:(元).答:降价8元,则每天销售T 恤衫的利润为1152元.(2)解:设此时每件T 恤衫降价x 元,由题意得,,整理得,解得或.又∵优惠最大,∴.∴此时售价为(元).答:小明希望每天获得的利润达到1050元并且优惠最大,则每件T 恤衫的销售价应该定为75元.26.(1)根据题意可得,根据直径所对的圆周角是直角,得出,进而得出,证明,得出,即可得证;(2)DF BC ⊥DO BC ⊥256()22310x m x m ++-+=3b m =+1c m =-+24b ac∴∆=-()()23421m m =+-⨯⨯-+26988m m m=+++-2217m m =-+()22116m m =-++()21160m =-+>∴()22310x m x m ++-+=260x x --=2210x -=0m =2m =-4t =最大值()()10086020281152--⨯+⨯=()()100602021050x x --+=2301250x x -+=5x =25x =25x =1002575-=OM AD ∥90ABC ∠=︒OM BC ⊥OBM OCM V V ≌90OBM ∠=︒21-27.(1)∵四边形ABCD为⊙O的内接四边形,AC为⊙O的直径,∴∠B=∠D=90度,∵∠BAD+∠BCD+∠B+∠D=360°∴∠BAD+∠BCD=360°−∠B−∠D=180°故答案为:90,180(2)证明:如图,连接AO并延长,交⊙O于点E,连接BE,DE.由(1)可知,∠ABE=90°,∠ADE=90°,∴∠ABE+∠ADE=180°∴∠BAD+∠BED=180°∵∠BED=∠C,∠CDE=∠CBE∴∠BAD+∠C=180°,∠ABC+∠ADC=180°即圆内接四边形的对角互补(3)证明:连接OD,DE,如图所示.∵OB=OD,∴∠B=∠ODB∵AB=AC,∴∠B=∠C∴∠ODB=∠C∴OD∥AC∵四边形ABDE是圆内接四边形,∴∠B+∠AED=180°∵∠DEC+∠AED=180°,∴∠B=∠DEC∴∠C=∠DEC∴DC=DE∵F是线段CE的中点,∴DF⊥AC∴DF⊥OD∵OD是⊙O的半径,∴DF是⊙O的切线。
北京市海淀区北京大学附属中学2024-2025学年九年级上学期期中考试数学试卷(含答案)
2024~2025学年度第一学期期中练习九年级数学学科试卷2024年11月考生须知:1.本试卷共8页,共三道大题,28道小题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写班级、姓名.3.答案一律填涂或书写在答题卡相应位置上,用黑色字迹签字笔作答.4.考试结束,只交答题卡,并妥善保管试卷.一、选择题(共16分,每题2分)第1~8题均有四个选项,符合题意的选项只有一个.1.下列图形中,既是中心对称图形也是轴对称图形的是( ).A .B .C .D .2.在平面直角坐标系内,点关于原点的对称点Q 的坐标为( ).A .B .C .D .3.一元二次方程的解是( ).A .,B .C .,D .,4.抛物线的顶点坐标是( ).A .B .C .D .5.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是( ).A .B .C .D .6.北京市2021年人均可支配收入为7.5万元,2023年达到8.18万元,若2021年至2023年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是( ).A .B.()3,2P -()3,2-()3,2()2,3-()3,2--20x x +=10x =21x =121x x ==11x =-21x =10x =21x =-()212y x =-+()1,2()1,2-()1,2-()1,2--144︒90︒72︒60︒()28.1817.5x +=()27.518.18x +=C .D .7.如图所示,在4×4的正方形网格中,绕某点旋转一定的角度,得到,则其旋转中心是( ).A .点AB .点BC .点CD .点D8.如图,是边长为4的等边三角形,D 是BC 的中点,E 是直线上的一个动点,连接,将线段绕点C 逆时针旋转得到,连接.下列说法中正确的个数是( ).①;②;③;④点E 的运动过程中,的最小值是1.A .1个B .2个C .3个D .4个二、填空题(共16分,每题2分)9.请写出一个图象开口向上,且与y 轴交于点)的二次函数的解析式__________.10.关于x 的一元二次方程有一个根是,则__________.11.若关于x 的方程有两个相等的实数根,则实数a 的值是__________.12.如图,为的直径,点C 是上的一点,,则__________°.13.点,在抛物线上,则__________(填“>”“<”或“=”).14.如图,在平面直角坐标系中,点,,以点B 为旋转中心,把线段顺时针旋转得到线段,则点C 的坐标为__________.()27.518.18x -=+()28.1817.5x -=MNP △111M N P △ABC △AD EC EC 60︒FC DF 2DC =FCD ECA ∠=∠CE CF =DF ()0,1230x x m -+=1x =m =20x x a -+=AB O e O e 70ABC ∠=︒BAC ∠=()13,A y -()22,B y 22y x =1y 2y xOy ()0,2A ()1,0B BA 90︒BC15.如图,将绕顶点C 逆时针旋转得到,且点B 刚好落在上,若,,则等于__________°.16.已知函数,下列结论:①若该函数图象与x 轴只有一个交点,则;②方程至少有一个整数根;③若,则的函数值都是负数;④不存在实数a ,使得对任意实数x 都成立.所有正确结论的序号是__________.三、解答题(共68分,第17题8分,18~25题每题5分,第26题6分,第27、28题每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:(1);(2).18.如图,在平面直角坐标系中,抛物线的部分图象经过点,.(1)求该抛物线的解析式;(2)结合函数图象,直接写出时,x 的取值范围.19.已知m 是方程的一个根,求代数式的值.20.已知:如图,为锐角三角形,.求作:一点P ,使得.ABC △A B C ''△A B ''25A ∠=︒45BCA =∠'︒A BA '∠()211y ax a x =-++1a =()2110ax a x -++=11x a<<()211y ax a x =-++()2110ax a x -++≤24250x -=2280x x +-=xOy 22y ax x c =++()0,3A -()1,0B 0y <2220x x --=()()()22111m m m -+-+ABC △AB AC =APC BAC ∠=∠作法:①以点A 为圆心,长为半径画圆;②以点B 为圆心,长为半径画弧,交于点C ,D 两点;③连接并延长交于点P .点P 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接,.∵,∴点C 在上.∵,∴∠______=∠______.∴.∵点D ,P 在上,∴.(__________)(填推理的依据)∴.21.如图,是等边三角形,点D 在边上,以为边作等边,连接,.求证:.22.已知关于x 的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程两个根差为1,求此时m 的值.23.学校计划利用一片空地建一个长方形自行车车棚,其中一面靠墙,墙的长度为8米.在与墙平行的一面开一个2米宽的门,已知现有的木板材料可修建的总长为26米,且全部用于除墙外其余三面外墙的修建.(1)长方形车棚与墙垂直的一面至少为__________米;(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路(如图中阴影),若车棚与墙AB BC A e DA A e PC BD AB AC =A e BC BD =12BAC CAD ∠=∠A e 12CPD CAD ∠=∠APC BAC ∠=∠ABC △AC CD CDE △BD AE BD AE =()2320m x x m -+++=垂直的一面长按(1)中的最小长度,则停放电动车的区域面积能否达到54平方米,若能,此时小路的宽度是多少米?若不能,请说明理由.24.如图,是直径,是的一条弦,且于点E ,连接、和.(1)求证:;(2)若,,求的半径.25.有机肥作为一种富含有机质及多样营养元素的优质肥料,对于土壤改良及肥力提升具有显著效果.将其应用于小树施肥,不仅能有效供给必要的养分,还能优化土壤结构,进而促进小树的茁壮成长.在针对金叶女贞和连翘这两种植物的培育过程中,我们统一施用了A 种有机肥,并确保了它们在浇水、松土、除草等抚育管理措施上的一致性.以下表格详细记录了A 种有机肥对这两种植物增长高度的影响:天数t /天1530456090金叶女贞增长的高度 3.3 6.39.612.615.919.3连翘增长的高度 1.14.09.115.636.2(1)通过分析数据,发现与t 之间近似满足正比例函数关系.请在给出的平面直角坐标系中,画出关于t 的函数的图象;(2)观察图象,补全表格(结果保留小数点后一位);(3)实验前,测量金叶女贞的高度为,连翘的高度为,大概在第__________天时,连翘和金叶女贞一样高(结果保留到整数).26.已知关于x 的二次函数上两个不同的点,.(1)求顶点坐标;(2)若且时,总有,求m 的取值范围.27.已知,点D 是直线上一动点(不含B 点),连接,将线段绕点A 逆时针旋转得到线段,连接线段,过点E 作交直线于点F .AB O e CD O e CD AB ⊥AC BD OC ACO D ∠=∠2BE =CD =O e 1cm h 2cmh 1h 2h 43.6cm 31.2cm 221y mx mx m =-+-()11,A x y ()22,B x y 145x <<221x m =-12y y <60ABC ∠=︒BC AD AD 60︒AE ED EF AB ⊥AB图1备用图(1)如图1,点D 在点B 右侧时,①依题意补全图形;②用等式表示与的数量关系,并证明;③用等式表示线段,,之间的数量关系,并证明;(2)当点D 在直线上运动时,请直接写出线段,,之间的数量关系.28.在平面直角坐标系中,点,点为定点,对于点P 作如下变换,将点P 绕点M 逆时针旋转得到点,再将点绕点N 逆时针旋转后得到点Q ,则称点Q 为点P 的“双逆转点”.备用图1 备用图2(1)若点P 为线段上的一点,则在点,,中,点P 的“双逆转点”可能为__________;(2)若点P 的“双逆转点”在x 轴上,请写出一个满足条件的点P 的坐标__________;(3)若点P 坐标为,点Q 为点P 的“双逆转点”,①当长度最短时,求m 的值;②已知半径为2,若存在过点Q 的直线被所截得的弦长为2,则m 的取值范围为__________.EAB ∠EDB ∠BF BD AB BC BF BD AB xOy ()0,2M ()1,0N 90︒1P 1P 90︒MN ()1,1A --()1,0B -()2,1C -(),4m m +PQ N e N e初三第一学期期中练习答案和评分标准数学2024.11一、选择题(本题共6分,每小题2分)题号12345678答案CADACBBD二、填空题(本题共16分,每小题2分)9.(答案不唯一) 10.2 11.12.2013.>14.15.40 16.②④(答对一个给1分,多选或错选不得分)三、解答题(共68分,第17题8分,18~25题每题5分,第26题6分,第27、28题每题7分)17.(1)(一个答案2分,如果只会移项给1分)(2),,.(不限方法,不全对的酌情给分)18.(1)由题意知,(2分)解得,解析式为.(3分)(2).(5分)19.解.原式.(3分)∵,∴,(4分)∴原式.(5分)20.(1)如图所示.(2分)(2),,一条弧所对的圆周角等于它所对圆心角的一半.(5分)21.证明:∵,均为等边三角形,∴,,.21y x =+14()3,152x =±2280x x +-=14x =-22x =3230c a =-⎧⎨+-=⎩31c a =-⎧⎨=⎩223y x x =+-31x -<<()()222212123m m m m m =--++=--2220m m --=222m m -=231=-=-BAC BAD ABC △CDE △AC BC =CD CE =60ACB ACE ∠=∠=︒在与中,,∴≌(SAS ),(4分)∴.(5分)22.(1)∵,∴方程总有两个实数根.(2分)(2)解:∵,∴,∴,.∵方程两个根的差为1,∴或0.∴或.(5分)23.解:(1).(2分)(2)设小路的宽为a 米,根据题意得,.(4分)整理得;,解得:(舍去),.(5分)答:小路的宽为1米.24.(1)证明;∵,∴,∵,∴.(2分)(2)解,设的半轻为r ,则.∵,∴(3分)在中,,解得.( 5分)25.(1)(2分)(2)23~30之间均可.(4分)(3)78~86之间均可.(5分)26.(1)由题意可知:,∵,∴顶点坐标为.(2分)BCD △ACE △60AC BC ACB ACE CD CE =⎧⎪∠=∠=︒⎨⎪=⎩BCD △ACE △BD AE =()()()234210m m m ∆=+-+=+≥()2320x m x m -+++=()()210x m x ---=12x m =+21x =22m +=0m =2-10x ≥()()821054a a --=214130a a -+=13a =1a =OA OC =ACO A ∠=∠A D ∠=∠ACO D ∠=∠O e 2OE r =-CD AB ⊥1122CE DE CD ===⨯=Rt OCE △(()2222r r +-=3r =0m ≠()()2222121111y mx mx m m x x m x =-+-=-+-=--()1,1-法2:对称轴,当时,,∴顶点坐标为.(2分)(2)当时,对称轴是直线,当时,y 随x 的增大而增大;当时,y 随x 的增大而减小.∵,∴点始终在对称轴右侧,若A 、B 在对称轴右侧,,即时,∵,∴,∴,若A 、B 在对称轴异侧,,即时,关于对称轴的对称点是.∵,∴,即,∴(舍) .综上所述:.(4分)当时,对称轴是直线,当时,y 随x 的增大而减小;当时,y 随x 的增大而增大.∵,,∴,,关于对称轴的对称点是 .∵,∴,即,2122b m x a m-=-=-=1x =211y m m m =-+-=-()1,1-0m >1x =1x ≥1x <145x <<()11,A x y 2211x m =->1m >12y y <215m -≥3m ≥2211x m =-<1m <()22,B x y ()222,B x y '-12y y <225x -≥()2215m --≥1m ≤-3m ≥0m <1x =1x ≥1x <221x m =-145x <<2211x m =-<1145x <<<()22,B x y ()222,B x y '-12y y <224x -≤()2214m --≤∴,∴.(6分)综上所述:或.27.(1)①补全图形,如图所示(1分)②,(2分)理由如下:∵线段绕点A 逆时针旋转得到线段,∴,,∴是等边三角形,∴.∵,∴.∵在四边形中,,∴,∴.(3分)③,理由如下:(4分)延长线段至点G 使得,连结,.∵,,∴.∵是等边三角形,∴.在和中,,∴≌(SAS ),(5分),∴.∵,∴.∵,,,∴.(6分)(2)当点D 在点B 右侧时,,当点D 在点B 左侧时,.(7分)12m ≥-102m -≤<102m -≤<3m ≥180EAB BDE ∠+∠=︒AD 60︒AE AE AD =60EAD ∠=︒AED △60AED ∠=︒60ABC ∠=︒180120ABD ABC ∠=︒-∠=︒ABDE 360EAB ABD BDE DEA ∠+∠+∠+∠=︒12060360EAB BDE ∠+︒+∠+︒=︒180EAB BDE ∠+∠=︒2BF AB BD =+BA AG BD =EG EB 180EAG EAB ∠+∠=︒180EAB EDB ∠+∠=︒EAG EDB ∠=∠AED △EA ED =EGA △EBD △EA EDEAG EDB GA BD =⎧⎪∠=∠⎨⎪=⎩EGA △EBD △EG EB =EF BF ⊥GF FB =BG BA GA =+GA BD =2BG BF =2BF BA BD =+2BF AB BD =+2BF AB BD =-28.(1)A ,C .(2分)(2)答案不唯一,纵坐标为1即可.(3分)(3)①(5分)②或(7分)2m =-m≥m ≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(D) 4 个
2. 下列事件:(1)通常加热到 100℃时水沸腾;(2)掷一次骰子点数为 6;(3)三角形内
角和是 180°;(4)经过某一路口正好遇上红灯;(5)一个一元二次方程必有两个实数
解,其必然事件有( )
(A)5 个 (B)4 个 (C)3 个 (D)2 个
3. 某工厂今年产值为 a ,计划今后平均增长 m% ,那么两年后的产值是( )
小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?(3)小球滚动到 5m
时约用了多少时间(精确到 0.1s)?(10 分)
六. 如图,点 A、B、C 在坐标系中的坐标分别为 A(1, 0)、B(3, 0)、C(0,1) ,求 ABC 绕 x
轴旋转一周所围成的几何体的表面积。(10 分) y
C
九年级数学期中考试试卷
考生注意:本试卷共四页,满分 120 分
题号 一 二 三 四
得分
五六
七 总分
一. 填空:(每题 2 分,共 30 分)
1. 实数 x 在数轴上的位置如图所示,则 x 12 x 22
;
x
3 2 1 0 1 2 3
2. 已知 45k 是整数,则正整数 k 的最小值是
;
3. 已知 a x 10 , b x 9 , c x 11,则代数式
(A) a1 m%2
(B) 2a1 m%
(C) a 2a1 m% (C) a a 1 m% a 1 m%2
4. 若一个三角形的三边长均满足方程 x2 6x 8 0 ,则此三角形的周长为( )
(A)6 (B)10 (C)12 (D)以上都有可能
5. 如图,当两个半径为 30 ㎝的转动轮转动 120°角时,
(1)第一次摸到黄球,第二次摸到白球; (2)两次摸到相同颜色的小球。
四. (每题 7 分,共 21 分)
1. 如图 ABC 和 ECD 都是等边三角形,且 B、C、D 三点在一直线上, EBC 可以 看作是 DAC 经过怎样的图形变换得到的?请说明理由;
A
E
B
C
D
2. 如图, O 的直径 AC 为 10 ㎝,弦 AD 为 6 ㎝, ADC 的平分线交 O 于 B ,求 四边形 ABCD 的面积;
OA
B
x
七. (10 分)某电脑公司现有 A、B、C 三种型号的甲品牌电脑,有 D、E 两种型号的乙品 牌电脑,价格如下:A 型 6000 元;B 型 4000 元;C 型 2500 元;D 型 5000 元;E 型 2000 元。某希望中学要从甲乙两种品牌的电脑中各选购一种型号的电脑。 (1) 写出所有的选购方案(利用树形图或列表法表示) (2) 如果(1)中各选购方案被选中的可能性相同,那么 A 型号电脑被选中的概率 是多少?
19
19
19
a2 b2 c2 ab bc ca
;
4. 用长 3 ㎝,宽 2.5 ㎝的邮票 300 枚摆成一个正方形,则这个正方形的边长是
㎝;
5. 有一人掌握了某项新技术,经过两轮帮教后共有 121 人掌握了此项新技术,每轮帮教中
平均一个人帮教
个人;
6. 已知点 Aa,1 与 B5,b 关于原点 o 对称,则 ba
个座位上,则 B 与 D 相邻而坐的概率是
;A
A
A
B
C
O
o
D
B
C
(第 9 题)
(第 11 题)
(第 12 题)
13. 甲、乙按如下规则做游戏,桌子有 5 个乒乓球,每次可取 1 个或 2 个,由甲先取,最后
取完球的获胜。如果甲获胜的概率为 1,那么甲第一次应取 个球;
14. 如果一个正 n 边形的一个外角等于一个内角的 2 ,则 n
;
7. 图(2)是将图(1)中△DCE 经过一次
A
A
A
EE E
E
得到的;(旋转、平移、轴对称)
BB C C D
D BC
D (1)
(2)
8. 如图,要在面积为 400 的三角形广场 ABC
的三个角处各修建一个半径相同的扇形草坪,
要求草坪的总面积为广场面积的一半,那么
扇形的半径是
;
9. 如图 OA BC , AOB 50 ,则 ADC
;
3
15. 观察规律: 9 9 19 10 , 99 99 199 100 , 999 999 1999 1000 ,…
则 99 999 9 199 9
。
n个
n个
n个
二. 选择:(每题 3 分,共 18 分) 1. 如图的汽车标志中,是中心对称图形的有( )
(A) 1 个 (B) 2 个 (C) 3 个
传送带上的物体 A 平移的距离为( )
A
(A)10 ㎝
(B)20 ㎝
(C)25 ㎝ (D)30 ㎝
6. 已知 O1 、 O2 外切,两圆的半径分别为 1 ㎝和 3 ㎝ ,那么半径为 5 ㎝且与 O1 、 O2
都相切的圆一共可以作( )(A)Fra bibliotek 个 (B)5 个
(C)6 个
三. 解下列各题:(每题 7 分,共 21 分)
;
10. 圆锥的底面积直径是 80 ㎝,母线长是 90 ㎝,则它的侧面展开图的圆心角是
11. 如图, O 的半径为 1,圆心 O 在正三角形的边 AB 上沿图示方向移动,当
与 AC 边相切时, OA 的长为
;
度;
O 移到
12. 一张圆桌旁有四个座位, A 先坐在如图所示的座位上, B 、 C 、 D 三人随坐在其他三
D
A
O●
C
B
3. 如图, O 内切 ABC 于点 D、E、F ,且 AB c、BC=a、CA=b ,设 ABC 的 周长 l 为,面积为 s , O 的半径为 r , (1)求证: r 2s l
(2)当 A 90,b 8, c 6 时,求内切圆的半径 r。
A
F
E
O●
B
D
C
五. 一个小球以 5m/s 的速度开始向前滚动,并且均匀减速,滚动 10m 后小球停下来。(1)
1. 当 x 5 1时,求代数式 x2 5x 6 的值;
(D)7 个
2. 关于 x 的一元二次方程 m 1 x2 x m2 2m 3 0 有一根为 0,求 m 的值;
3. 袋中装有黄、白各一个小球,除颜色外,其余都相同,随机摸出 1 个小球后放回,再 随机摸出一个,用树形图或列表分析下列事件的概率