电介质 ppt课件
合集下载
电介质理论(一)课件
击穿的特性
击穿电压是电介质的重要电气性能参数,它反映了电介质在 强电场下的耐受能力。击穿电压的大小与电场强度、电介质 厚度、温度、湿度等因素有关。
击穿的微观机制
电极过程
在强电场的作用下,电介质中的 电子或离子在电极表面附近聚集 形成空间电荷层,形成导电通道
,导致电介质击穿。
热击穿
电介质在强电场作用下,内部热量 积累导致温度升高,当温度达到电 介质的热分解温度或熔点时,电介 质失去绝缘性能。
02
电介质的理论基础
电极化现象
定义
电极化现象是指电介质在电场作 用下发生的极化状态变化,即电 介质内部正负电荷中心发生相对 位移,导致电介质表面出现极化
电荷的现象。
分类
电极化现象可分为电子极化、离 子极化和取向极化等类型。
Байду номын сангаас
影响因素
电极化现象受到电场强度、电介 质种类和温度等因素的影响。
电极化的微观机制
电极化强度
电极化强度是描述电介质极化状态的物理量,表示单位体积内电 介质极化电荷的总量。
电场与电极化强度关系
电场与电极化强度之间存在一定的关系,即电极化强度与电场成正 比,与电介质种类和温度等因素有关。
电极化的能量损耗
电极化的过程中会产生能量损耗,主要表现在电介质内部的摩擦和 热能散失等方面。
03
电子极化
取向极化
电子极化是由于电场作用下电子云相 对于原子核发生位移,导致电子和原 子核之间的相互作用发生变化。
取向极化是由于电场作用下分子或分 子的排列方向发生变化,导致正负电 荷中心相对位移。
离子极化
离子极化是由于电场作用下离子在电 介质中的位移,导致正负离子之间的 相互作用发生变化。
击穿电压是电介质的重要电气性能参数,它反映了电介质在 强电场下的耐受能力。击穿电压的大小与电场强度、电介质 厚度、温度、湿度等因素有关。
击穿的微观机制
电极过程
在强电场的作用下,电介质中的 电子或离子在电极表面附近聚集 形成空间电荷层,形成导电通道
,导致电介质击穿。
热击穿
电介质在强电场作用下,内部热量 积累导致温度升高,当温度达到电 介质的热分解温度或熔点时,电介 质失去绝缘性能。
02
电介质的理论基础
电极化现象
定义
电极化现象是指电介质在电场作 用下发生的极化状态变化,即电 介质内部正负电荷中心发生相对 位移,导致电介质表面出现极化
电荷的现象。
分类
电极化现象可分为电子极化、离 子极化和取向极化等类型。
Байду номын сангаас
影响因素
电极化现象受到电场强度、电介 质种类和温度等因素的影响。
电极化的微观机制
电极化强度
电极化强度是描述电介质极化状态的物理量,表示单位体积内电 介质极化电荷的总量。
电场与电极化强度关系
电场与电极化强度之间存在一定的关系,即电极化强度与电场成正 比,与电介质种类和温度等因素有关。
电极化的能量损耗
电极化的过程中会产生能量损耗,主要表现在电介质内部的摩擦和 热能散失等方面。
03
电子极化
取向极化
电子极化是由于电场作用下电子云相 对于原子核发生位移,导致电子和原 子核之间的相互作用发生变化。
取向极化是由于电场作用下分子或分 子的排列方向发生变化,导致正负电 荷中心相对位移。
离子极化
离子极化是由于电场作用下离子在电 介质中的位移,导致正负离子之间的 相互作用发生变化。
电介质-PPT课件
导体的静电感应过程
E0
加外电场---电子在电场力作用下运动
导体的 ' 外场 E 0
导体的静电感应过程
E0
感应 E ' 外场 E 0
导体的静电感应过程
q2
+ q1
q1 + q1
q 1+ q 2
三、静电平衡导体的表面场强
. dS = E s
=
. + S d E 内
0 +
. + S d E 表
E表 S +
. S d E 侧
0
E
1
0
q
i i
1
0
S
σ
E 0
S
有导体时静电场的分析方法
导体放入静电场中:
导体的电荷 重新分布
导体上的电荷分 布影响电场分布
b a
a、b在导体内部:
b
a
U0 E 0
a、b在导体表面:
Ed l 0 即 U 0 E d l
----静电平衡的导体是等势体
静电平衡条件:
用场强来描写: 1、导体内部场强处处为零; 2、表面场强垂直于导体表面。 用电势来描写: 1、导体为一等势体; 2、导体表面是一个等势面。
E0
感应 E ' 外场 E 0
导体的静电感应过程
E0
感应 E ' 外场 E 0
导体的静电感应过程
E0 E ' E E E ' 0 0
电介质的极化课件
电介质分类
总结词
电介质根据其组成和结构可分为离子型、电子型和复合型三 类。
详细描述
离子型电介质由正负离子组成,在电场作用下离子会发生定 向移动形成传导电流。电子型电介质由自由电子组成,其导 电性类似于金属导体。复合型电介质则同时包含离子和电子 两种导电机制。
电介质性质
总结词
电介质的主要性质包括绝缘性、介电常数、介质损耗等。
详细描述
电介质的绝缘性是指其抵抗电流通过的能力,介电常数则反映了电介质在电场 作用下的极化程度,而介质损耗则是指电介质在电场作用下能量损耗的能力。 这些性质在电力系统和电子设备中具有重要的应用价值。
02
电介质极化原理
极化现象
01
02
03
极化现象
电介质在电场的作用下, 正负电荷中心发生相对位 移,从而在电介质中出现 的宏观电荷现象。
压电效应
压电效应是指电介质在受到外力作 用时,会在其内部产生电荷的现象 ,其特点是具有逆压电效应和正压 电效应。
极化机制
电子位移极化
取向极化
电子位移极化是指在外加电场的作用 下,电子受到电场力的作用而发生位 移,从而产生宏观电荷的现象。
取向极化是指在外加电场的作用下, 分子中的正负电荷中心发生相对位移 ,从而产生宏观电荷的现象。
分析不同电介质材料的极化特 性。
实验设备
电极
用于施加电场和测 量电位的电极。
测量仪器
用于测量电介质极 化率的测量仪器。
电介质样品
不同类型和性质的 电介质材料。
电源
用于提供实验所需 电压的电源。
实验装置
包括电容器、绝缘 支架、绝缘棒等组 成的实验装置。
实验步骤
01
电介质材料PPT课件
由于一切电介质材料均由分子、原子或离子组成的。
而它们又都是由原子核及核外电子云组成。当外加电场
时,电子云相对于原子核发生位移,因为产生感应电矩。
最简单的模型是图(a)所示的氢原子的电子极化。无外
电场时,正、负电荷重心重合;当施加电场后,电子云
与核产生相对位移。电子极化的频率响应极快,外加电
场后经
即能1产0生14 极1化01。5s
1、探针法
金刚石探针沿膜表面移动, 触针 而探针在垂直方向上的位移通
过电信号可以被放大1 0 1 6 倍并
被记录下来。从膜的边缘可以 直接通过探针针尖所检测的阶 梯高度确定膜的厚度。
薄膜 基片
优点:简单,测量直观; 缺点:(1)容易划伤较软的薄膜并引起测量误差;
(2)对于表面粗糙的薄膜,并测量误差较大。
第一章 简 介
电介质材料是指电阻率大于1010cm 的材料,是相对于金属材料和半导体材料 而区分的。
金属材料 :共有化电子 半导体材料:载流子 电介质材料:束缚电荷
一、电介质材料的分类及应用
电介质材料的分类
绝缘材料:电阻率很高,能承受很强的电场,不 易被击穿。主要是高分子电介质和无碱玻璃。
电容器材料:主要是陶瓷材料,包括两种,一种 是具有严格温度系数的高频稳定型陶瓷,一种是 介电系数特别大的铁电陶瓷。
(2)离子极化 由异号离子组成的晶体,如Nacl,在外电场作
用下,正、负离子均发生位移,见图(b),以一 维排列的正、负离子原来间隔均等,加了外电场后, 正、负离子的相对距离发生变化,产生了偶极矩。 离子极化的频率响应速度比电子极化略慢,约 为 1012 1。013s
(3)偶极极化 有些电介质分子是由极性较强的离子键构成的,
静电场中电介质(共10张PPT)
自由电荷Q0和介质均呈球对称分
O--
-q
= 讨论: (1) 平板电容器(±Q)中充有均匀介质( r ),求 D与 的关系;
(1)电介质内正负电荷处于束缚状态, 在外电场作用下,束缚电荷只作微观的相对位移
H 自由电荷Q0和介质均呈球对+称分
布, 故 也为球对称分布
+
H+
+q
H O 布, 故 也为球对称分布
2、有极分子的取向极化
有极分子在外场中发生偏转而 产生的极化称为取向极化。
F
- + Eo
+
F
- p Eo
第六页,共10页。
三、静电场中的电介质
小结: (1)电介质极化现象∶在外电场作用下,介质表面 产生极化(束缚)电荷的现象。 (2)不论是有极分子还是无极分子的极化,微观 机理虽然不相同,但在宏观上表现相同。
在外电场的作用下,介质表面产生电荷的2现象称为电介质的极化。
(3)电介质内的电场强度。
(2)、无极分子: + + + + +
-----------
分子的正、负电荷中心在无外场时重
及
与各种因素均有关
合。不存在固有分子电偶极矩。 在外电场的作用下,介质表面产生电荷的现象称为电介质的极化。
+++++++++++
静电场中电介质
第一页,共10页。
电介质对电场的影响
B
+ + + + +
在平板电容器之间插 入一块介质板
E0
-- ---
实验发现:
《导体,电介质》课件
通过电容器的充电和放电过程,测定电介质的介电 常数。
2
电介质的性质
电介质的密度通常比导体大,并且可以在电场中存储电荷。
3
导体和电介质的相互作用
导体和电介质在一定条件下可以互相作用,例如电容器。
导体和电介质的应用
电动机
电容器
电动机利用导体在磁场中的运动 产生动力,如电风扇、电动车等。
电容器是利用导体和电介质的相 互作用存储电荷的装置。
电子器件
导体和电介质在电子器件中有着 广泛的应用,如灯泡、集成电路 等。
导体和电介质的示例
1 导体示例
你身边的许多物品都是导 体,如金属勺子、电线、 手机等。
2 电介质示例
你身边也有很多电介质, 如空气、玻璃、塑料等。
3 导体和电介质的区别
区别导体和电介质的最简 单的方法是看是否能传导 电流。
导体和电介质的实验方法
电导实验
通过电压和电流的关系,测定导体的电导率。
电介质实验
《导体, 电介质》PPT课 件
欢迎来学习导体和电介质,这门课程将会涵盖物理,化学,电ቤተ መጻሕፍቲ ባይዱ和电子等领 域的知识。
导体的介绍
金属导体
金属导体是指具有良好导电性的 金属材料,如铜和银。
非金属导体
非金属导体是指除金属以外的材 料,如石墨、某些半导体等。
导体在自然界中的应用
导体在自然界中有着广泛的应用, 如闪电的传导、大地的导电层等。
电介质的介绍
电介质的定义
电介质是指电场中能够储存电荷的材料,如空气、玻璃等。
电介质的应用
电介质在电力,电子器件,地球物理探测等领域有广泛使用。
导体和电介质的区别
导体和电介质最大的区别是导电性,导体具有良好的导电性,电介质通常没有。
2
电介质的性质
电介质的密度通常比导体大,并且可以在电场中存储电荷。
3
导体和电介质的相互作用
导体和电介质在一定条件下可以互相作用,例如电容器。
导体和电介质的应用
电动机
电容器
电动机利用导体在磁场中的运动 产生动力,如电风扇、电动车等。
电容器是利用导体和电介质的相 互作用存储电荷的装置。
电子器件
导体和电介质在电子器件中有着 广泛的应用,如灯泡、集成电路 等。
导体和电介质的示例
1 导体示例
你身边的许多物品都是导 体,如金属勺子、电线、 手机等。
2 电介质示例
你身边也有很多电介质, 如空气、玻璃、塑料等。
3 导体和电介质的区别
区别导体和电介质的最简 单的方法是看是否能传导 电流。
导体和电介质的实验方法
电导实验
通过电压和电流的关系,测定导体的电导率。
电介质实验
《导体, 电介质》PPT课 件
欢迎来学习导体和电介质,这门课程将会涵盖物理,化学,电ቤተ መጻሕፍቲ ባይዱ和电子等领 域的知识。
导体的介绍
金属导体
金属导体是指具有良好导电性的 金属材料,如铜和银。
非金属导体
非金属导体是指除金属以外的材 料,如石墨、某些半导体等。
导体在自然界中的应用
导体在自然界中有着广泛的应用, 如闪电的传导、大地的导电层等。
电介质的介绍
电介质的定义
电介质是指电场中能够储存电荷的材料,如空气、玻璃等。
电介质的应用
电介质在电力,电子器件,地球物理探测等领域有广泛使用。
导体和电介质的区别
导体和电介质最大的区别是导电性,导体具有良好的导电性,电介质通常没有。
《电学》课件-第5章静电场中的电介质
ε πQ
=4 0
RB dr
r RA
2
Q
B
ε ++Q +
R+ 1+A
+
0 + ++
R2
=
Q
4π ε0
(
1 RA
1) RB
ε Q
C = UA U B
=
4π
R AR B
R 0 B
RA
讨论: 1. 电容计算之步骤:
E
UA UB
C
2. 电容器之电容和电容器之结构,几何
形状、尺寸有关。
3. 电容器是构成各种电子电路的重要器 件,也是电力工业中的一个重要设备。它的作 用有整流、隔直、延时、滤波、分频及提高
q
U外
=
q1 q
4pe0 r2
外球的电势改变为:
ΔU = U外
U2
=
r1q
4pe0
r2 2
=
(r1 2r2 ) q
4pe0
r2 2
2r2q
4pe0
r2 2
2. 点电荷q =4.0×10-10C,处在导体球 壳的中心,壳的内外半径分别为R1=2.0cm 和R2=3.0cm ,求:
(1)导体球壳的电势; (2)离球心r =1.0cm处的电势;
d
ε = ε0 εr
称ε为介电常数,或电容率。
有介质时电容器的电容不仅和电容器的 结构,几何形状、尺寸有关,还和极板间介 质的介电常数有关。
电介质的相对电容率和击穿场强
电介质
相对电容率 击穿场强
真空 空气 纯水 云母
1 1.00059
80 3.7~7.5
电介质材料ppt课件
烧结型固体电解质片状钽电容器
固体钽电解电容器的构造表示图
它的正极的制造过程为:用非常细的钽金属粉压制成块,在高温及高真空 条件下烧结成多孔形基体,然后再对烧结好的基体进展阳极氧化,在其外 表生成一层Ta2O5膜,构成以Ta2O5膜为绝缘介质的钽粉烧结块正极基体。
其负极的制造过程是:在钽正极基体上浸渍硝酸锰,经高温烧结而构成固 体电解质MnO2再经过工艺处置构成负极石墨层,接着再在石墨层外喷涂 铅锡合金等导电层,便构成了电容器的芯子。可以看出,固体钽电解电容 器的正极是钽粉烧结块,绝缘介质为Ta2O5,负极为MnO2固体电解质。 将电容器的芯子焊上引出线后再装入外壳内,然后用橡胶塞封装,便构成 了固体钽电解电容器。
2. 电容器纸的浸渍
图中,Cc、Cg分别为由纤维素及气隙极化构成的电容量;x为气 隙在纸中所占的体积分数。由此可根据串联等效电路表示出浸渍 液体介质后纸的总介电常数:pl1xxf1f 1xf1f 1
式中,εf、ε1分别为纤维素和液体浸渍料的介电常数;x为纤维素密度系数。
2. 电容器纸的浸渍
当采用固体浸渍料时,由于固化收缩后会留下部分空隙,其等效电路 如图6.1.3(b)所示。这时浸渍纸的总介电常数可表为:
§ 6.1.4 陶瓷电容器介质
陶瓷电容器的用量约占整个电容器的40%左右, 相当于铝电解和钽电解电容器的总和,作为陶瓷 电容器钓介质称为“介电陶瓷〞,其特点有四个:
①、介电系数大,以制造小体积、分量轻的陶瓷电容器,ε↑→电容 器体积↓→整机体积、分量↓ ②、介质损耗小,tgδ=〔1~6〕×10-4,保证回路的高Q值。高介电 容器瓷任务在高频下时ω↑、tgδ↑ 。 ③、陶瓷电介质及高稳定导电电极Ag、Pt、Pd等均经过高温烧 结,具有高强度构造和高可靠性,耐高任务温度。本身不仅作为电 介质,同时作为基体和支承构造。 ④具有高电阻率,高耐电强度。
《静电场中的电介质》课件
详细描述
电介质的极化机制可以分为电子式极化、离子式极化和取向式极化三种。电子式极化是由于电介质中的电子受到 电场作用而产生的位移;离子式极化是由于电介质中的离子受到电场作用而产生的位移;取向式极化是由于电介 质中的分子或分子的取向受到电场作用而产生的改变。
02 静电场中的电介质
电介质在静电场中的表现
压电材料的研究涉及晶体、陶瓷、复合材料等多个领域,研究者通过优化材料成分、结 构及制备工艺,提高压电材料的性能,如压电常数、机电耦合系数等,以拓展其应用范
围。
新型电介质材料的研究
总结词
新型电介质材料在能源、环保、医疗等领域 具有广阔的应用前景。
详细描述
随着科技的发展,新型电介质材料不断涌现 ,如铁电材料、弛豫铁电体、多铁性材料等 。这些材料在储能、传感、信息处理等方面 展现出独特的优势,为相关领域的技术创新
VS
详细描述
压电材料中的电介质在受到外力作用时, 会发生形变导致分子间的电荷重新分布, 产生电压。这种现象称为压电效应。利用 压电效应可以制作传感器和换能器等器件 ,广泛应用于声学、电子学和物理学等领 域。
05 电介质在静电场中的研究进展
高介电常数材料的研究
总结词
高介电常数材料在静电场中表现出优异的电 学性能,是当前研究的热点之一。
电介质的极化机制包括电子极化、离子极化和取向极化等,这些机制在不同频率和 强度的电场中表现不同。
电介质的极化状态会影响其在静电场中的行为,如介电常数和电导率等,这些性质 在电子设备和电磁波传播等领域有重要应用。
电介质极化对电场的影响
01
电介质的极化状态会改变静电场的分布,因为电介质的存在会 导致电场畸变。
02
电介质在静电场中的行为可以用Maxwell方程组描述,通过求
电介质的极化机制可以分为电子式极化、离子式极化和取向式极化三种。电子式极化是由于电介质中的电子受到 电场作用而产生的位移;离子式极化是由于电介质中的离子受到电场作用而产生的位移;取向式极化是由于电介 质中的分子或分子的取向受到电场作用而产生的改变。
02 静电场中的电介质
电介质在静电场中的表现
压电材料的研究涉及晶体、陶瓷、复合材料等多个领域,研究者通过优化材料成分、结 构及制备工艺,提高压电材料的性能,如压电常数、机电耦合系数等,以拓展其应用范
围。
新型电介质材料的研究
总结词
新型电介质材料在能源、环保、医疗等领域 具有广阔的应用前景。
详细描述
随着科技的发展,新型电介质材料不断涌现 ,如铁电材料、弛豫铁电体、多铁性材料等 。这些材料在储能、传感、信息处理等方面 展现出独特的优势,为相关领域的技术创新
VS
详细描述
压电材料中的电介质在受到外力作用时, 会发生形变导致分子间的电荷重新分布, 产生电压。这种现象称为压电效应。利用 压电效应可以制作传感器和换能器等器件 ,广泛应用于声学、电子学和物理学等领 域。
05 电介质在静电场中的研究进展
高介电常数材料的研究
总结词
高介电常数材料在静电场中表现出优异的电 学性能,是当前研究的热点之一。
电介质的极化机制包括电子极化、离子极化和取向极化等,这些机制在不同频率和 强度的电场中表现不同。
电介质的极化状态会影响其在静电场中的行为,如介电常数和电导率等,这些性质 在电子设备和电磁波传播等领域有重要应用。
电介质极化对电场的影响
01
电介质的极化状态会改变静电场的分布,因为电介质的存在会 导致电场畸变。
02
电介质在静电场中的行为可以用Maxwell方程组描述,通过求
电场中的电介质.ppt
8.0×10-9 8.0×10-2
两球接触后,内球电荷q1全部移至外球 壳,两球为等势体。
σ
ε U A
UB
B
= A
E.dl
=E
B A
d
l
=
E
d
=σ
d
0
ε C
=
Q UA U B
=
σ σ
S d
=
0S d
ε0
2. 圆柱形电容器
sE
. dS
=E
2π
rl
ε= l l 0
E
=
l
2πε
0r
εA O r
B
L l
UA
UB=
B
E
.
d
l
A
l +l
ε =
RB l
π R A 2 0r
dr
RB
RA
= 0+ D1S + 0 =σ S
D 1 =σ
ε ε ε εσ E 1= D1 = D 1 =
0r
0
0
A + + + + + + + + +σ
ε d1
0
C
ε d2 r
B
S
D2
σ
sD . dS =上D . dS +下D . dS +侧D . dS
=
0+
上D
.
2
dS
cos180 o
L E .dl = 0
此式表明,有介质时,场强环路定律仍然正 确。
二、有介质时的高斯定理
s
E
.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 静电场中的电介质
电介质 (绝缘体):内部没有可以自由移动的电荷, 因而完全不能导电。
电介质在外电场的作用下会发生电极化现象,从而 会反过来影响原电场的分布。
本章主要内容
讨论处于外电场中的电介质的极化现象及其与外 电场之间相互影响的规律。
本章基本要求
1. 了解静电场中电介质的极化现象及其微观本质; 理解有介质时的高斯定理。
qintqo u t SPdS
表明:封闭面内的体束缚电荷等于通过该封闭面 的电极化强度通量的负值。
5. 电介质的击穿 外加电场不强 外加电场很强
电介质被极化 电介质被击穿
分子中的正负电荷被拉开而变成可以自由移动 的电荷。若大量的这种自由电荷的产生,电介 质的绝缘性就会遭到明显的破坏而变成导体。
——电介质的击穿
因此,在宏观上表征电介质的极化程度和讨论有电 介质存在的电场时,就无需把这两类电介质区别开 来,而可统一地进行论述。
三. 电极化强度矢量
1. P:表征电介质的电极化程度的物理量
P pi V
对于非极性分子而言,每个分子的感生电矩都相
同,则
P = np
n:单位体积内的分子数
SI单位:C/m2 (与面电荷密度的单位相同)
2. 当有极分子电介质在有外电场 E0 时,每个分子 的固有电矩都受到力偶矩作用,要转向外电场的方
向。
E
F
p
F
注意:由于分子热运动的干扰, 并不能使各分子电矩都循外电场 的方向整齐排列。外电场愈强, 分子电矩的排列愈趋向于整齐。
◆ 整块的极性电介质
在垂直于外电场方向的两个表面上也出现面束缚 电荷。
2. 理解电容的概念,会计算电容器的电容。
3. 了解有介质时的电场能量的计算。
5.1 电介质对电场的影响
U0
Q
+++++++
-------
Q
U
Q
r
+++++++
-------
Q
U
1
r
U0
U0E0d, UEd
E E0 r
r 1~104
电介质的相对介电
电介质的插入使板间的电场减弱 常量(相对电容率)
◆ 若面碰巧是电介质的面临真空的表面,则得到 面束缚电荷密度:
Pco sPen
讨论
在电场中极化后,介质表面将出现束缚电荷,外法 线与场强夹角小于 90° 的表面带正电;外法线与 场强夹角大于 90° 的表面带负电。
讨论题:
在均匀电场中分别有一个介质球和一个介质中的球形 空腔,问极化电荷的电场是加强还是削弱球心处的电 场?
en -
削弱
- -
-
E’
•
-
-
E0
+ en
+ + + ++
E0
+
++en
+
E’
•
++
-
en--
- - -
增强
讨论题:
电介质在外电场中极化后,两端出现等量异号电荷, 若把它截成两半后分开,再撤去外电场,问这两个半 截的电介质上是否带电?为什么?
不带电
分析:因为电介质极化后所带的电荷是束缚电荷, 不能象导体中的自由电荷那样能用传导的方法引走。 所以当电介质被截成两半后撤去外电场,极化的电 介质又恢复原状,仍保持中性。
介电强度(或击穿场强):一种电介质材料所能 承受的不被击穿的最大电场强度。
5.3 D 的高斯定律
1. 有电介质存在的静电场
有电荷,就会激发电场。因此,不但自由电荷要激 发电场,电介质中的束缚电荷同样也要在它周围空 间(无论电介质内部或外部)激发电场。
按电场强度叠加原理:
EE0E 束缚电荷激发的场强
5.2 电介质的极化
一. 电介质的分类 从分子由正、负电荷重心的分布来看,电介质可分 为两类。
(1) 分子内正、负电荷的重
+
心不相重合,其间有一定距
lp
离——极性分子
如氯化氢(HCl)、水(H2O)、 甲醇(CH3OH)等。
电矩为:p = ql 固有电矩
a. 极性分子
(2) 分子内正、负电荷重心是重合的,这类分子 称为非极性分子。
总场强
自由电荷激 发的场强
2. 有电介质存在的高斯定律,电位移矢量 D
3. 电介质内部的体束缚电荷
在电介质内部作任一封闭曲面 S
en
P
dS
由于极化而越过 dS 面向外移 出封闭面的电荷为:
d q o u tP co d Ss P d S
qint
S
体束缚电荷的产生
通过整个封闭面向外移出的电 荷为:
qo u t Sdqo u t SPdS
电介质是中性的,根据电荷守恒定律,由于电 极化而在封闭面内留下的多余的电荷为:
如氦(He)、氢(H2)、甲烷(CH4)等。
电矩:p = 0
+
b. 非极性分子
二.电介质的极化 电介质在外电场中
1. 当非极性分子处在外电场 E0 中时,每个分
子中的正、负电荷将分别受到相反方向的电场力 F+ 、 F- 作用而被拉开,导致正、负电荷重心发 生相对位移 l 而成为一个电偶极子。
E
F
dS e n
EP
l
体积元 dV 内的分子的正 电荷的重心都能越过 dS 面到前侧去。
极化电荷的产生
由于极化而越过 dS 面的总电荷为:
d q qd V nqd n Scl os
dS e n
将 p = ql,P = np 代入得:
dqPcodsSPdS
EP
l
极化电荷的产生
ddqSPcosPen
表示:dS 面上因极化而越 过单位面积的电荷
电介质的电极化强度随外电场的增强而增大。
实验指出,对于各向同性的电介质,其中每一点 的电极化强度 P 大小与该点的总电场强度 E 大 小成正比,且方向相同,即
P0(r1)E
电极化率 r 1 P0E
2. 电极化强度 P 与面束缚电荷的关系
以非极性分子为例考虑电介质内部某一小面元 dS 处 的极化
dV
E
++++++
E
注意:如果撤去外电场,由于分 子热运动,分子电矩的排列又 变得杂乱无序,电介质又恢复电 中性。
小结
两种电介质,其极化的微观过程虽然不同,但却有 同样的宏观效果:
1. 介质极化后,都使得其中所有分子电矩的矢量
和 pi 0,同时在介质上都要出现面束缚电荷;
2. 电场越强,电场对介质的极化作用越剧烈,介质 上出现的束缚电荷也就越多。
感生电矩: p ql
+
pl
其方向都沿着外电场的方向
F
◆ 整块的非极性分子电介质
在外电场作用下,在和外电场垂直的电介质两侧 表面上,分别出现正、负电荷层。
E
++++++
E
注:这两侧表面上分别出现的正
电荷和负电荷是和介质分子连在 一起的,不能在电介质中自由移 动,也不能脱离电介质而独立存 在,故称为面束缚电荷或面极化 电荷。
电介质 (绝缘体):内部没有可以自由移动的电荷, 因而完全不能导电。
电介质在外电场的作用下会发生电极化现象,从而 会反过来影响原电场的分布。
本章主要内容
讨论处于外电场中的电介质的极化现象及其与外 电场之间相互影响的规律。
本章基本要求
1. 了解静电场中电介质的极化现象及其微观本质; 理解有介质时的高斯定理。
qintqo u t SPdS
表明:封闭面内的体束缚电荷等于通过该封闭面 的电极化强度通量的负值。
5. 电介质的击穿 外加电场不强 外加电场很强
电介质被极化 电介质被击穿
分子中的正负电荷被拉开而变成可以自由移动 的电荷。若大量的这种自由电荷的产生,电介 质的绝缘性就会遭到明显的破坏而变成导体。
——电介质的击穿
因此,在宏观上表征电介质的极化程度和讨论有电 介质存在的电场时,就无需把这两类电介质区别开 来,而可统一地进行论述。
三. 电极化强度矢量
1. P:表征电介质的电极化程度的物理量
P pi V
对于非极性分子而言,每个分子的感生电矩都相
同,则
P = np
n:单位体积内的分子数
SI单位:C/m2 (与面电荷密度的单位相同)
2. 当有极分子电介质在有外电场 E0 时,每个分子 的固有电矩都受到力偶矩作用,要转向外电场的方
向。
E
F
p
F
注意:由于分子热运动的干扰, 并不能使各分子电矩都循外电场 的方向整齐排列。外电场愈强, 分子电矩的排列愈趋向于整齐。
◆ 整块的极性电介质
在垂直于外电场方向的两个表面上也出现面束缚 电荷。
2. 理解电容的概念,会计算电容器的电容。
3. 了解有介质时的电场能量的计算。
5.1 电介质对电场的影响
U0
Q
+++++++
-------
Q
U
Q
r
+++++++
-------
Q
U
1
r
U0
U0E0d, UEd
E E0 r
r 1~104
电介质的相对介电
电介质的插入使板间的电场减弱 常量(相对电容率)
◆ 若面碰巧是电介质的面临真空的表面,则得到 面束缚电荷密度:
Pco sPen
讨论
在电场中极化后,介质表面将出现束缚电荷,外法 线与场强夹角小于 90° 的表面带正电;外法线与 场强夹角大于 90° 的表面带负电。
讨论题:
在均匀电场中分别有一个介质球和一个介质中的球形 空腔,问极化电荷的电场是加强还是削弱球心处的电 场?
en -
削弱
- -
-
E’
•
-
-
E0
+ en
+ + + ++
E0
+
++en
+
E’
•
++
-
en--
- - -
增强
讨论题:
电介质在外电场中极化后,两端出现等量异号电荷, 若把它截成两半后分开,再撤去外电场,问这两个半 截的电介质上是否带电?为什么?
不带电
分析:因为电介质极化后所带的电荷是束缚电荷, 不能象导体中的自由电荷那样能用传导的方法引走。 所以当电介质被截成两半后撤去外电场,极化的电 介质又恢复原状,仍保持中性。
介电强度(或击穿场强):一种电介质材料所能 承受的不被击穿的最大电场强度。
5.3 D 的高斯定律
1. 有电介质存在的静电场
有电荷,就会激发电场。因此,不但自由电荷要激 发电场,电介质中的束缚电荷同样也要在它周围空 间(无论电介质内部或外部)激发电场。
按电场强度叠加原理:
EE0E 束缚电荷激发的场强
5.2 电介质的极化
一. 电介质的分类 从分子由正、负电荷重心的分布来看,电介质可分 为两类。
(1) 分子内正、负电荷的重
+
心不相重合,其间有一定距
lp
离——极性分子
如氯化氢(HCl)、水(H2O)、 甲醇(CH3OH)等。
电矩为:p = ql 固有电矩
a. 极性分子
(2) 分子内正、负电荷重心是重合的,这类分子 称为非极性分子。
总场强
自由电荷激 发的场强
2. 有电介质存在的高斯定律,电位移矢量 D
3. 电介质内部的体束缚电荷
在电介质内部作任一封闭曲面 S
en
P
dS
由于极化而越过 dS 面向外移 出封闭面的电荷为:
d q o u tP co d Ss P d S
qint
S
体束缚电荷的产生
通过整个封闭面向外移出的电 荷为:
qo u t Sdqo u t SPdS
电介质是中性的,根据电荷守恒定律,由于电 极化而在封闭面内留下的多余的电荷为:
如氦(He)、氢(H2)、甲烷(CH4)等。
电矩:p = 0
+
b. 非极性分子
二.电介质的极化 电介质在外电场中
1. 当非极性分子处在外电场 E0 中时,每个分
子中的正、负电荷将分别受到相反方向的电场力 F+ 、 F- 作用而被拉开,导致正、负电荷重心发 生相对位移 l 而成为一个电偶极子。
E
F
dS e n
EP
l
体积元 dV 内的分子的正 电荷的重心都能越过 dS 面到前侧去。
极化电荷的产生
由于极化而越过 dS 面的总电荷为:
d q qd V nqd n Scl os
dS e n
将 p = ql,P = np 代入得:
dqPcodsSPdS
EP
l
极化电荷的产生
ddqSPcosPen
表示:dS 面上因极化而越 过单位面积的电荷
电介质的电极化强度随外电场的增强而增大。
实验指出,对于各向同性的电介质,其中每一点 的电极化强度 P 大小与该点的总电场强度 E 大 小成正比,且方向相同,即
P0(r1)E
电极化率 r 1 P0E
2. 电极化强度 P 与面束缚电荷的关系
以非极性分子为例考虑电介质内部某一小面元 dS 处 的极化
dV
E
++++++
E
注意:如果撤去外电场,由于分 子热运动,分子电矩的排列又 变得杂乱无序,电介质又恢复电 中性。
小结
两种电介质,其极化的微观过程虽然不同,但却有 同样的宏观效果:
1. 介质极化后,都使得其中所有分子电矩的矢量
和 pi 0,同时在介质上都要出现面束缚电荷;
2. 电场越强,电场对介质的极化作用越剧烈,介质 上出现的束缚电荷也就越多。
感生电矩: p ql
+
pl
其方向都沿着外电场的方向
F
◆ 整块的非极性分子电介质
在外电场作用下,在和外电场垂直的电介质两侧 表面上,分别出现正、负电荷层。
E
++++++
E
注:这两侧表面上分别出现的正
电荷和负电荷是和介质分子连在 一起的,不能在电介质中自由移 动,也不能脱离电介质而独立存 在,故称为面束缚电荷或面极化 电荷。