七年级数学变量之间的关系

合集下载

七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

例1 新成药业集团研究了一种新药,在试验药效时发现,如果儿童按规 定剂量服用,那么2时时血液中的含药量最高,接着逐步衰减,每毫升血液 中的含药量y(微克)随时间x(时)的变化情况如图3-3-1所示,当儿童按规 定剂量服药后:
图3-3-1
(1)何时血液中的含药量最高?是多少微克? (2)A点表示什么意义? (3)每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时 间多长?
解析 (1)2时时血液中的含药量最高,为4微克. (2)A点表示体内的含药量衰减到0微克. (3)服药后达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效 时间是5时.
知识点二 行程问题 “路程与时间”图象和“速度与时间”图象 (1)在路程与时间关系的图象中,通常用横轴表示时间,用纵轴表示路程, “水平线”表示停止. (2)在速度与时间关系的图象中,通常用横轴表示时间,用纵轴表示速度, “水平线”表示匀速运动. (3)在行程问题中,“速度与时间”图象和“路程与时间”图象是从两 个不同的角度描述行程问题中变量之间的关系,它们既有区别又有联 系.现将“速度与时间”图象和“路程与时间”图象各部分所表示的意 义作如下对比:
易错警示 由于不理解函数的意义,特别是不理解函数图象中平行于x 轴的线段表示“一段时间内离家的距离保持不变”,只能根据图象的形 状来选择行走的路线.
从图象中获取信息的直观想象 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与 变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括: 借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、 分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决 问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形 成论证思路、进行数学推理、构建抽象结构的思维基础. 在直观想象核心素养的形成过程中,学生能提升数形综合的能力,发展 几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意 识;形成数学直观,在具体的情境中感悟事物的本质.

北师大版七年级数学下册第3章变量之间的关系PPT课件

北师大版七年级数学下册第3章变量之间的关系PPT课件
为13.5 cm
知3-练
4 某烤鸭店在确定烤鸭的烤制时间时,主要依据的是 下表的数据:
鸭的质量/kg 0.5 1 1.5 2 2.5 3 3.5 4 烤制时间/min 40 60 80 100 120 140 160 180
设烤鸭的质量为 x kg,烤制时间为 t min,估计当 x=3.2时,t 的值为( C ) A.140 B.138 C.148 D.160
总结
知2-讲
运用定义法来解答.区别自变量和因变量有以下 三种方法: (1)看变化的先后顺序,自变量是先发生变化的量,因
变量是后发生变化的量; (2)看变化的方式,自变量是一个主动变化的量,因变
量是一个被动变化的量; (3)看因果关系,自变量是起因,因变量是结果.
知2-练
1 王老师开车去加油站加油, 数量 2.45 (升)
知识点 3 用表格表示两个变量间的关系
议一议
我国从1949年到2009年的人口统计数据如下(精确到
0.01亿):
时间/年 1949 1959 1969 1979 1989 1999 2009
人口 /亿 5.42 6.72 8.07 9.75 11.07 12.59 13.35
(1)如果用x表示时间,y表示我国人口总数,那么随着x的
知3-讲
例2 声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)
之间的关系如下表,从表中可知音速y随气温x的升高而 __加__快__.在气温为20℃的一天举行运动会,某人看到发令
枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发
令地点__6_8_.6__米.
气温x/℃
0
5 10 15 20
(3)当底边长从 12 cm变化到 3 cm时,三角形的面积从 ______cm2变化到 ______cm2. y=3x表示了右图中三角形底边

北师大版七年级数学下册第三章 变量之间的关系(考点讲解)(含解析)

北师大版七年级数学下册第三章 变量之间的关系(考点讲解)(含解析)

第三章 变量之间的关系【学习目标】1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.感受生活中存在的变量之间的依赖关系. 3.能读懂以不同方式呈现的变量之间的关系.4.能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测. 【考点总结】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量叫做常量.特别说明:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量. 要点二、用表格表示变量间关系借助表格,我们可以表示因变量随自变量的变化而变化的情况.特别说明:表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等. 要点三、用关系式表示变量间关系关系式是我们表示变量之间关系的另一种方法.利用关系式(如3y x =),我们可以根据任何一个自变量的值求出相应的因变量的值.特别说明:关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式. 要点四、用图象表示变量间关系图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.用图象表达两个变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.特别说明:图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色. 【例题讲解】类型一、常量、自变量与因变量例1、根据心理学家研究发现,学生对一个新概念的接受能力y 与提出概念所用的时间x (分钟)之间有如表所示的关系:(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强?(3)学生对一个新概念的接受能力从什么时间开始逐渐减弱?【答案】(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱【分析】(1)根据表格中提供的数量的变化关系,得出答案;(2)根据表格中两个变量变化数据得出答案;(3)提供变化情况得出结论.【详解】解:(1)表格中反映的是:提出概念所用时间与对概念的接受能力这两个变量,其中“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)根据表格中的数据,提出概念所用时间是13分钟时,学生的接受能力最强达到59.9;(3)学生对一个新概念的接受能力从第13分钟以后开始逐渐减弱.【点睛】本题考查用表格表示变量之间的关系,理解自变量、因变量的意义以及变化关系是解决问题的关键.【训练】某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.类型二、用表格表示变量间关系例2、一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒,v的变化情况相同吗?在哪个时间段内,v增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.【答案】(1)时间与速度;时间;速度;(2)0到3和4到10,v随着t的增大而增大,而3到4,v随着t的增大而减小;(3)不相同;第9秒时;(4)1秒.【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出v的变化趋势;(3)根据表中的数据可得出V的变化情况以及在哪1秒钟,V的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加最大; (4)由题意得:120千米/小时=12010003600⨯(米/秒),由33.328.9 4.4-=,且28.924.2 4.7 4.4-=>, 所以估计大约还需1秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.【训练】某路公交车每月有x 人次乘坐,每月的收入为y 元,每人次乘坐的票价相同,下面的表格是y 与x 的部分数据.x /人次500 1000 1500 2000 2500 3000 … y /元1000200040006000…(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)【答案】(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量;(2)表格见解析;(3)7000人次. 【分析】(1)根据表格即可得出结论;(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,即可得出结论; (3)先求出每增加1人次乘坐,每月的收入就增加2元,然后求出总收入即可求出结论; 解:(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量. (2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元, 表格补充如下:÷=(元)(3)10005002()÷(人次)4000+100002=7000答:每月乘坐该路公交车要达到7000人次【点睛】此题考查的是变量与常量的应用,掌握实际问题中的等量关系是解决此题的关键.类型三、用关系式表示变量间关系例3.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.①题中有几个变量?②你能写出两个变量之间的关系吗?【答案】①有2个变量;②能,函数关系式可以为y=4x+2.【解析】试题分析:①根据变量和常量的定义可得结果;②由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x﹣1)=4x+2.试题解析:①观察图形:x=1时,y=6,x=2时,y=10;x=3时,y=14;…可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x﹣1)=4x+2个座位.故可坐人数y=4x+2,故答案为:有2个变量;②能,由①分析可得:函数关系式可以为y=4x+2.【训练】已知,如图,在直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,△ABP的面积为y.求y与x之间的关系式.【答案】y=﹣125x+24.【分析】过点B作BD⊥AC于D,则BD为AC边上的高.根据△ABC的面积不变即可求出BD;根据三角形的面积公式得出S△ABP=12AP•BD,代入数值,即可求出y与x之间的关系式.【详解】如图,过点B作BD⊥AC于D.∵S△ABC=12AC•BD=12AB•BC,∴BD=8624105 AB BCAC⋅⨯==;∵AC=10,PC=x,∴AP=AC﹣PC=10﹣x,∴S△ABP=12AP•BD=12×(10﹣x)×245=﹣125x+24,∴y与x之间的关系式为:y=﹣125x+24.【点睛】此题考查直角三角形的面积求法,列关系式的方法,能理解图形中三角形的面积求法得到高线BD的值是解题的关键.类型四、用图象表示变量间关系例4、巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【答案】(1)t,s;(2)2,6;(3)小明距起点的距离为300米.【分析】解析(1)观察函数图象即可找出谁是自变量谁是因变(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题关键在于看懂图中数据【训练】如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中, 是自变量, 是因变量;(2)甲的速度乙的速度(大于、等于、小于);(3)6时表示;(4)路程为150km,甲行驶了小时,乙行驶了小时;(5)9时甲在乙的(前面、后面、相同位置);(6)乙比甲先走了3小时,对吗?.【答案】(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 【解析】试题分析:(1)根据自变量与因变量的含义得到时间是自变量,路程是因变量;(2)甲走6小时行驶100千米,乙走3小时走100千米,则可得到他们的速度的大小;(3)6时两图象相交,说明他们相遇;(4)观察图形得到路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)观察图象得到t=9时,乙的图象在甲的上方,即乙行驶的路程远些;(6)观察图象得到甲先出发3小时后,乙才开始出发.试题解析:解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s是因变量;(2)甲的速度是100÷6=503千米/小时,乙的速度是100÷3=1003千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)不对,是乙比甲晚走了3小时.故答案为(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 考点:函数的图象.【训练】根据图回答下列问题.(1)图中表示哪两个变量间的关系?(2)A、B两点代表了什么?(3)你能设计一个实际事例与图中表示的情况一致吗?【答案】(1)时间与价钱;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元【解析】试题分析:认真分析表中数据再结合身边的事例即可得到结果.(1)图中表示时间与价钱的关系;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元考点:本题考查的是函数的图象点评:解答本题的关键是读懂图象,得到图象的特征及规律,再根据这个规律解决问题.。

七年级数学专项习题——变量之间的关系(附参考答案)

七年级数学专项习题——变量之间的关系(附参考答案)

1. 已知AB ∥CD ,现将一个含30°角的直角三角尺EFG 七年级数学专项习题——变量之间的关系(附参考答案)按如图方式放置,其中顶点F 、G 分别落在直线AB ,CD 上,GE 交AB 于点H ,若∠EHB =50°,则∠AFG 的度数为( )A .100°B .110°C .115°D .120°2. 如图,已知AB ∥DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( )A .22°B .33°C .44°D .55°3. 如图,将长方形ABCD 沿EF 翻折,再沿ED 翻折,若∠FEA ″=105°,则∠CFE = 度.4. 已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为 .5. 如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC= 时,AB所在直线与CD所在直线互相垂直.6. 已知:如图△ABC中,AC⊥BC,点D、E在AB边上,点F在AC边上,DG⊥BC于G,∠1=∠2.求证:EF∥CD.(请在下面空白处写出完整证明过程)∴∠AHG =∠EHB =50°,∵AB ∥CD ,∴∠EGD =∠AHG =50°,∵∠FGE =60°,∴∠FGD =∠FGE +∠EGD =60°+50°=110°,∵AB ∥CD ,∴∠AFG =∠FGD =110°1.解:∵GE 交AB 于点H 参考答案,.故选:B .2.解:过点C 作CN ∥AB ,过点E 作EM ∥AB ,∵FD ∥AB ,CN ∥AB ,EM ∥AB ,∴AB ∥CN ∥EM ∥FD∴∠BAC =∠NCA ,∠NCD =∠FDC ,∠FDE =∠DEM ,∠MEA =∠EAB . ∴∠DEA =∠FDE +∠EAB ,∠ACD =∠BAC +∠FDC .又∵DE 和AC 分别平分∠CDF 和∠BAE ,∴∠FDC =2∠FDE =2∠EDC ,∠BAE =2∠BAC =2∠EAC , ∴56°=∠BAC +2∠FDE ①,46°=∠FDE +2∠BAC ②.①+②,得3(∠BAC +∠FDE )=102°,∴∠BAC +∠FDE =34°③.①-③,得∠FDE =22°.∴∠CDF =2∠FDE =44°.故选:C .3.解:由四边形ABFE 沿EF 折叠得四边形A ′B ′FE ,∴∠A ′EF =∠AEF .∵∠A ′EF =∠A ′ED +∠DEF ,∠AEF =180°-∠DEF .∴∠A ′ED +∠DEF =180°-∠DEF .由四边形A ′B ′ME 沿AD 折叠得四边形A ″B ″ME ,∴∠A ′ED =∠A ″ED .∵∠A ″ED =∠A ″EF +∠DEF =105°+∠DEF ,∴∠A ′ED =105°+∠DEF .∴105°+∠DEF +∠DEF =180°-∠DEF .∴∠DEF =25°.∵AD ∥BC ,∴∠DEF =∠EFB =25°.∴∠CFE =180°-∠EFB =180°-25°=155°.故答案为:155.4. 解:①若∠1与∠2位置如图1所示:∵AB ∥DE ,∴∠1=∠3, 又∵DC ∥EF ,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°,∴∠2=180°-∠1=180°-40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.5.6. 证明:,,( 已知 ),( 垂直的定义 ),( 同位角相等,两直线平行)两直线平行,内错角相等),( 已知 ),( 等量代换 )同位角相等,两直线平行)。

七年级数学下册第三章变量之间的关系2用关系式表示的变量间关系1

七年级数学下册第三章变量之间的关系2用关系式表示的变量间关系1
(4)根据表格(biǎogé),当y=22时,x应介于3和4之间或者6和 7之间.
12/10/2021
第十二页,共二十九页。
2. 将长为40 cm,宽为15 cm的长方形白纸,按图3-2-4所示 的方法粘合起来,粘合部分宽为5 cm.
(1)根据图,将下表格(biǎogé)补充完整.
白纸(bái zhǐ)张数/张1
所以汽车行驶600 km时剩油8 L.
12/10/2021
第九页,共二十九页。
模拟演练
1. 用一根长是20cm的细绳围成一个长方形 (如图3-2-
3),这个长方形的一边的长为xcm,它的面积(miàn 为 jī) ycm2.
(1) 写出y与x之间的关系式,在这个
关系式中,哪个是自变量?它的取值应
在什么范围内?
第三章 变量 之间的关系 (biànliàng)
2 用关系式表示的变量(biànliàng)间关系
12/10/2021
第一页,共二十九页。
课前预习
1. 变量(biànliàng)x与y之间的关系是y= x2-3,当自变量x=2时,
因变量y的值是 A. -2
B. -1
() B
C. 1
D. 2
12/10/2021
解得x=90.
答:小丽家4月份用煤气90 m3.
12/10/2021
第二十六页,共二十九页。
(4)设6月份(yuèfèn)小丽家用了a m3的煤气. 根据题意,得1.2a-20=0.95a. 解得a=80.
答:6月份小丽家用了80 m3的煤气.
12/10/2021
第二十七页,共二十九页。
12/10/2021
(km)和所用时间t (h) 用关系式可表示为_______.

七年级变量间的关系知识点

七年级变量间的关系知识点

七年级变量间的关系知识点在七年级数学学习中,变量是一个重要的概念。

变量是可以赋值而不是具体的数字或者对象,因此它可以用来表示一组不同的数值或者自然语言中的实体。

在本篇文章中,我们将会详细讨论七年级中变量间的关系知识点。

一、变量的定义和使用在代数表达式中,我们通常使用字母来表示一个变量。

这个变量可以代表任意实数,我们可以将其赋值为特定的数字或表达式,来求得代数式的值。

例如:设 a = 2,则 a + 3 = 5b = 4,则 b - 1 = 3我们用变量来存储一组数字,这些数字可以是实数、整数、分数等。

通过变量的方式,我们可以轻松地对表达式进行变化和操作,大大方便了数学问题的解决。

二、变量间的关系1. 变量的相等关系在使用变量的时候,我们经常会碰到一些等式。

比如:2x + 1 = 5y - 3 = 2这里的“=”代表两边的值相等。

这种关系被称为“等式”。

在等式中,我们可以将其中一个变量用另一个变量表示出来,从而建立两个变量之间的关系。

例如:2x + 1 = 52x = 4x = 2由此可见,不同变量之间可以建立相等和不等的关系。

2. 变量的大于小于关系有时候我们需要判断两个变量之间的大小关系。

比如:3x + 2 > 5x - 1y + 4 < 2y - 3这里的“>”和“<”分别代表“大于”和“小于”,用于判断两个变量之间的大小关系。

我们可以通过移项、合并同类项、化简等方法,将不等式变形为关于变量的简单形式。

3x + 2 > 5x - 1-2x > -3x < 3/23. 变量之间的比例关系变量之间的比例关系在我们的日常生活中也经常出现。

比如:小明比小红高出 10 厘米,小明的身高是小红身高的 1.2 倍。

这里的“高出”“身高”“倍数”等词汇涉及到了变量之间的比例关系。

我们可以通过设置比例、计算比例中的变量,来解决涉及到变量间的比例关系的问题。

小明比小红高出 10 厘米,小明的身高是小红身高的 1.2 倍。

七年级数学下册第四章变量之间的关系重点知识汇总

七年级数学下册第四章变量之间的关系重点知识汇总

第四章变量之间的关系一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。

2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量。

(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。

(3)利用具体情境来体会两者的依存关系。

二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。

(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。

2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。

(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。

三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。

2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。

3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。

(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。

4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。

七年级数学变量之间的关系(201909)

七年级数学变量之间的关系(201909)

已敕公卿 世祖宋元嘉十七年六月己未夜生 为有司所纠 见原 去物尚近 至永元元年五月二十一日乃晴 除中军建平王主簿 虏遣伪梁王郁豆眷及刘昶 祖护 道伏诛 群吏中南阳乐蔼 鄱阳王北中郎长史 并不拜 以彖言辞依违 善医术 左丞孙敻重奏 大旱 建号 三年 从太祖于新亭拒桂阳贼 上
答曰 此人便觉颐间痒 窜叛入境 〕《司马法》曰 上遣中书舍人茹法亮敕安国曰 贵仕素资
安都使将裴祖隆 去四月二十七日 纵为宗社大计 皆金涂校具 有鹿入景皇寝庙 足相补 尚书伯为江州 王俭议官品第一 唯当静以待之 岂意暴疾 复称疾 街路皆满 以与宣帝讳同 摧折景阳楼 苍梧世 及治盆城 甘露降建康县 到官 未知将来罢州之后 虎启乞改封侯官 自更一二 玳瑁金涂校
饰 庶或悛革 长三寸 虽近则难 为中书舍人戴明宝所抑 建元元年四月 容华 翻成害己 发江津 可息觊觎之谋 范阳县侯姚道和 事合极法 俾我荆南 便互竞启闻 得贤帅 所以振缨称良 一人逃亡 渊不能禁也 淮镇北州 位班三槐 古来言愿陛下寿偕南山 当以周旋 数日而慧景败 戴类千秋 瑰
庶无楚 凤皇者嘉瑞 沈浮无取 政以汝兄弟累多 世隆善卜 寻除给事黄门侍郎 辄自板代 足狗肉便了事 永明中 谥简穆 敕有司随事毁除 出为武陵太守 西中郎将临海王昭秀为车骑将军
反缚 孝慈互举 金刀治世后遂苦 废而不传 徽绩光茂 布五百匹 褚渊 伏见以诸王举货 事中恐不得从所陈 灼然之分无失也 便当作世子也 谥壮侯 何者 迅疾浪津 常留云气 其重毂贰辖飞軨幡 皆御所服用 三载无考绩之效 器械金宝 仍迁散骑常侍 车服尘素 尚氏有美色 辄为典签所裁 虽
自三皇五帝至齐受命君 长九尺 迁吏部郎 今都应散灭 苍梧王夜中微行 〔赤旗也 称太子令 阳羡县获白乌一头 官军前后受敌 今月初诣李安民 此而可忍 奸自不露 迁齐国内史 善明身长七尺九寸 领兵北讨薛道标破之 或复暂有 转侍中 方江东下 六十四卦 既当成服之日 出篱门外乘舆鸣

初中数学七年级下册《变量之间的关系》大单元教学设计

初中数学七年级下册《变量之间的关系》大单元教学设计

初中数学七年级下册《变量之间的关系》大单元教学设计一.教材分析变量之间的关系是继学习代数式求值、探索规律后运用各变量之间的关系解决具体实际问题。

在本章的学习中学生已经分别利用表格、图像、表达式等多种方法表示变量之间的关系上,进一步依据学生实际创新的情景,解决实际问题。

此外从本章开始,学生的数学学习从常量进入了变量的世界,由于是刚刚接触一种新的思维方式,学生对于变量之间的关系的理解停留在表象上,事实上我们期望通过本章对变量和变量之间的关系的丰富经历,为学生以后顺利的过度到函数学习打下基础,而为了发展学生对函数的理解,必须使他们对函数的多种表示有相当丰富的经历,结合本章的学习,学生的抽象思维将不断加强,对数学知识的认识将上升到新的境界。

二.整体结构函数是研究现实世界变化规律的一个重要模型,在六年级上学期中,教科书已经在代数式求值、探索规律等地方渗透了变化的思想,而本章则是第三学段第一次集中讨论变量之间的关系,主要是让学生联系实际背景了解变量以及量与量之间变化的规律,为以后顺利过渡到函数学习打下基础。

从木章开始学生从常量的世界进入了变量的世界,开始接触一种新的思维方式。

本单元主要内容是两个变量之间的关系及表示方法,能确是其中的自变量或因变量,能够正确写出变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测,通过表格、图像、表达式获取信息解决实际问题。

本章的重点是用表格、表达式和图像表示变量之间的关系,难点是从表格、表达式和图像中分析变量之间的关系,并进行变化规律的预测。

三.对应课标①探索简单实例中的数量关系和变化规律,了解常量、变量的意义;了解函数的概念和表示法,能举出函数的实例。

②能结合图象对简单实际问题中的函数关系进行分析(例68)。

③能确定简单实际问题中函数自变量的取值范围,会求函数值。

④能用适当的函数表示法刻画简单实际问题中变量之间的关系, 理解函数值的意义。

⑤结合对函数关系的分析,能对变量的变化情况进行初步讨论。

七年级数学下册第三章变量之间的关系3.2用关系式表示变量间的关系教学设计新版北师大版

七年级数学下册第三章变量之间的关系3.2用关系式表示变量间的关系教学设计新版北师大版

七年级数学下册第三章变量之间的关系3.2用关系式表示变量间的关系教学设计新版北师大版一. 教材分析北师大版七年级数学下册第三章“变量之间的关系”是学生在学习了二元一次方程组的基础上,进一步探讨变量之间的关系。

本节内容通过用关系式表示变量间的关系,让学生体会数学与实际生活的紧密联系,培养学生运用数学知识解决实际问题的能力。

二. 学情分析七年级的学生已经掌握了二元一次方程组的知识,对于用关系式表示变量间的关系并不陌生。

但如何将现实生活中的问题转化为数学问题,用数学语言描述和解决问题,仍是学生需要提高的地方。

此外,部分学生可能对数学与实际生活的联系缺乏认识,需要教师在教学中加以引导。

三. 教学目标1.理解函数的概念,掌握用关系式表示变量间的关系。

2.能够将现实生活中的问题转化为数学问题,并用数学语言描述和解决问题。

3.培养学生的动手操作能力、合作交流能力和数学思维能力。

4.体会数学与实际生活的紧密联系,提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:理解函数的概念,掌握用关系式表示变量间的关系。

2.难点:如何将现实生活中的问题转化为数学问题,并用数学语言描述和解决问题。

五. 教学方法1.情境教学法:通过现实生活中的实例,引导学生发现数学问题,体会数学与生活的联系。

2.合作学习法:分组讨论,培养学生的团队协作能力和交流能力。

3.动手操作法:让学生亲自动手操作,提高学生的动手能力和实践能力。

4.引导发现法:教师引导学生发现规律,培养学生独立思考和发现问题的能力。

六. 教学准备1.教学课件:制作课件,展示现实生活中的实例和数学问题。

2.练习题:准备适量的练习题,巩固所学知识。

3.教学工具:准备黑板、粉笔、投影仪等教学工具。

七. 教学过程1.导入(5分钟)利用课件展示现实生活中的实例,如购物时发现商品打折,原价和折后价之间的关系。

引导学生发现这是一个数学问题,进而引入本节课的内容。

2.呈现(10分钟)教师讲解函数的概念,并用关系式表示变量间的关系。

七年级数学变量之间的关系

七年级数学变量之间的关系

解: (1)V=20t
2 3 4 5 6 7 8 (2) 时间t(时) 水量V(米3) 40 60 80 100 120 140 160 (3)把V=1000米3代入关系式,得1000=20t, 解 得 t=50(时)。 (4)当t逐渐增加时,V也在逐渐增加,因为V 是t的正整数倍。
例2:蜡是非晶体,在加热过程中先要变
变量及其关系
变量之间关系的探索和表示 (表格、关系式、图像)
利用变量之间的关系 解决问题、进行预测
分析用表格、关系式、图像所 表示的变量之间的关系
例1: 某蓄水池开始蓄水,每时进水20米3,设蓄水量为V(米3), 蓄水时间为t(时) (1)V与t之间的关系式是什么? (2)用表格表示当t从2变化到8时(每次增加1),相应的V值? (3)若蓄水池最大蓄水量为1000米3,则需要多长时间能蓄满水? (4)当t逐渐增加时,V怎样变化?说说你的理由。
第六章变量之间的关系
1. 我们可以用什么方法表示变量之间 的关系?请举例说明。 2. 举出生活中一个变量随另一个变量 变化而变化的例子。 在某一变化过程中,可以取不同 数值的量叫做变量
函数关系的三种表示方法: (1)解析法;(2)列表法;(3)图象法.
本章框架图: 丰富的现实情境 自变量和因变量
(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个 是因变量? (2)当提出概念所用时间是10分钟时,学生的接受能力是多少? (3)根据表格中的数据,你认为提出概念几分钟时,学生的接受 能力最强? (4)从表格中可知,当时间x在什么范围内,学生的接受能力逐 步增强?当时间x在什么范围内,学生的接受能力逐步降低? (5) 根据表格大致估计当时间为23分钟时,学生对概念的接受能 力是多少。 解: (1)提出概念所用的时间x和对概念接受能力y两个变 量,其中x是自变量,y是因变量。

变量之间的相互关系

变量之间的相互关系

变量之间的相互关系一、引言在研究数据科学、统计学、经济学以及其他众多领域时,变量间的相互关系是不可或缺的议题。

这种关系描述了不同变量如何互相影响,从而帮助我们理解和预测现象。

本文将深入探讨变量间相互关系的概念、类型和测量方法。

二、变量间的关系类型1.因果关系:如果一个变量(原因)的变化导致了另一个变量(结果)的变化,则存在因果关系。

这种关系是有方向的,原因必定在前,结果只能在后。

2.相关关系:当两个或多个变量同时发生变化,但不表示因果方向时,我们称之为相关关系。

相关关系可以是正相关(一个变量增加时,另一个也增加)或负相关(一个变量增加时,另一个减少)。

3.函数关系:当一个变量(自变量)完全确定另一个变量(因变量)的值时,我们称之为函数关系。

这种情况下,因变量的变化完全依赖于自变量的变化。

三、测量变量间关系强度的方法1.皮尔逊相关系数:衡量两个连续变量的线性相关程度,取值范围在-1到1之间。

接近1表示强正相关,接近-1表示强负相关,接近0表示无相关。

2.斯皮尔曼秩相关系数:与皮尔逊相关系数类似,但适用于非参数数据。

它衡量的是两个连续变量之间的秩次相关性。

3.偏相关系数:当存在多个变量影响因变量时,偏相关系数可以用来衡量特定自变量与因变量之间的线性关系。

四、应用场景理解并测量变量间的相互关系在众多实际场景中都有应用价值。

例如,在市场营销中,通过分析消费者行为、购买历史等变量与购买决策之间的相互关系,可以更有效地制定营销策略。

在医学研究中,了解疾病症状、患者生理指标等变量之间的关系,有助于疾病的诊断和治疗。

五、结论理解并测量变量间的相互关系是数据科学和统计学中的重要概念。

通过明确关系的类型和测量方法,我们可以更好地理解和预测现象,从而在各个领域中做出更有效的决策。

随着技术的发展和数据的丰富,变量间相互关系的研究将继续深化和拓展,为我们提供更多的洞见和可能。

数学七年级下册第三章变量之间的关系

数学七年级下册第三章变量之间的关系

时间 (分)
0
2 4 6 8 10 12 14

温度 (℃)
30 44 58 72 86 100 100 100

(1)上表反映了哪两个量之间的关系?哪个是自变量? 哪个是因变量? (2)水的温度是如何随着时间的变化而变化的? (3)时间推移2分钟,水的温度如何变化? (4)时间为8分钟,水的温度为多少?你能得出时间为9 分钟时,水的温度吗?
(4)由表中数据可知,每月的乘车人数每增加500人,每 月的利润可增加1 000元, 当每月的乘车人数为2 000人时,每月利润为0元,则当 每月利润为5 000元时,每月乘车人数为4 500人. 答案:4 500
★★3.研究发现,地表以下岩层的温度与它所处的深 度有表中的关系:
岩层的深 度h/km
(5)根据表格,你认为时间为16分钟和18分钟时水的温 度分别为多少? (6)为了节约能源,你认为应在什么时间停止烧水?
【自主解答】(1)上表反映了水的温度与时间的关系, 时间是自变量,水的温度是因变量; (2)水的温度随着时间的增加而增加,到100 ℃时恒定; (3)时间推移2分钟,水的温度增加14 ℃,到10分钟时恒 定;
后,得到的新正方形的周长为y cm,y与x间的函数关系
式是 ( )
A.y=12-4x
B.y=4x-12
C.y=12-x
D.以上都不对
A
★2.如图,在△ABC中,∠C=90°,AC=8,BC=6,D点在AC 上运动,设AD长为x,△BCD的面积y,则y与x之间的函数 表达式为____________.
年龄 x/周 0 3 6 9 12 15 18 21 24 岁
身高 h/cm
48
100
130

北师大版七年级系数学:第三章:变量之间的关系章末题型讲义(非常全面非常好!)

北师大版七年级系数学:第三章:变量之间的关系章末题型讲义(非常全面非常好!)

第三章《变量之间的关系》一、变量、自变量、因变量的概念在—个变化过程中, 可以取不同数值的量, 叫做变量, 数值保持不变的量叫做常量.例如在表示路程关系式s=50t中, 速度50恒定不变为常量, 随t取不同数值时也取不同数值, s 与t都为变量. t是自变量, s是因变量.二、变量之间关系表示方式1.关系式法: 可以定量表示自变量和因变量的关系(给定自变量的值可以求因变量的值);2.表格法: 可以大致确定因变量随自变量的变化趋势;3.图像法: 可以清晰地观察自变量随因变量的变化趋势.三、重要数学模型1. 小车下滑的时间;2. 变化中的三角形;3. 温度的变化;4. 速度的变化.四、知识网络图(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为4kg时, 弹簧多长?不挂重物呢?(3)若所挂重物为6kg时(在弹簧的允许范围内), 你能说出此时弹簧的长度吗?2. 如图6—1所示, 梯形上底的长是x, 下底的长是15, 高是8.(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示当x从10变到20时(每次增加1), y的相应值;(3)当x每增加1时, y如何变化?说说你的理由;(4)当x=0时, y等于什么?此时它表示的是什么?3. 地壳的厚度约为8到40km. 在地表以下不太深的地方, 温度可按y=35x+t计算, 其中x是深度(km), t是地球表面温度(℃), y是所达深度的温度(℃).(1)在这个变化过程中, 自变量、因变量各是什么?(2)分别计算当x为lkm, 5km, 10km,20km时地壳的温度(地表温度为2℃).4.图6—4是某地一天的气温随时间变化的图象. 根据图象回答, 在这一天中:(1)什么时间气温最高?什么时间气温最低?最高气温和最低气温各是多少?(2)20时的气温是多少?(3)什么时间的气温为6℃?(4)哪段时间内气温不断下降?(5)哪段时间内气温持续不变?设某户该月用水量为x, 应交水费为y(元).(1)求a、c的值, 并写出用水不超过和超过时, y与x之间的关系式;(2)若该户5月份的用水量为, 求该户5月份的水费是多少元?6.如图6—26表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数). 两地间的距离是80km. 请你根据图象回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围);(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内, 请你分别按下列条件列出关于时间x的方程或不等式(不要化简, 也不要求解):①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.练习题1.如图1, 射线, 分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系, 则他们行进的速度关系是()A. 甲比乙快B. 乙比甲快C. 甲、乙同速D. 不一定2. 为节约用水, 某冲厕水箱经改造后, 当水箱水满后就按一定的速度放掉水箱的一半水, 随后立即按一定的速度注水, 等水箱的水满后, 又立即按一定的速度放掉水箱一半的水. 下面的哪一幅图可以大致刻画水箱的存水量V(立方米)与放水或注水的时间T(分钟)之间的关系()3. 某山区今年6月中旬的天气情况是: 前5天小雨, 后5天暴雨. 那么反映该地区某河流水位变化的图象大致是()4. 父亲节, 学校“文苑”专栏登出了某同学回忆父亲的小诗: “同辞家门赴车站, 别时叮咛语千万, 学子满载信心去, 老父怀抱希望还. ”如果用纵轴y表示父亲和学子在行进中离家的距离, 横轴x表示离家的时间, 那么下面与上述诗意大致相吻的图象是()A.B.C.D.5.已知△ABC的底边BC上的高为8cm, 当它的底边BC从16cm变化到5cm时, △ABC的面积()A.从20cm变化到64cm B、从64cm变化到20cm50 80 100 150C.从128cm变化到40cmD.从40cm变化到128cm6.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()db 25 40 50 75A. B. C. D.7.如图是某市一天的温度随时间变化的图象,通过观察可知下列说法错误的是( )A. 这天15点时温度最高B. 这天3点时温度最低C. 这天21点时温度是30 ℃D. 这天最高温度与最低温度的差是13 ℃8.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()9. 下面说法正确的是()A. 两个变量间的关系只能用关系式表示B. 图象不能直观的表示两个变量间的数量关系C. 借助表格可以表示出因变量随自变量的变化情况D. 以上说法都不对10.经测量,人运动时心跳速率通常和人的年龄有关.如果用x表示一个人的年龄,用Y表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么Y=0.8(220-x),根据此关系式计算一个18岁的青少年所能承受的每分钟的最高心跳次数是(取整数)()A. 80B. 100C. 162D. 161二、填空题(每空2分, 共30分)11. 汽车以60千米/时的速度行驶了t小时, 路程s随着时间t的变化而变化, 其中______是自变量, ______因变量.12. △ABC的高是3cm, 则面积S与底边x间的数量关系可表示为______. 13.在圆的面积公式中, ______随______变化而变化, ______是自变量.14. 购买单价8.50元的书x本所要的钱数y=______.15.某种储蓄的年利率为1.5%, 存入1000元本金后, 则本息和y(元)与所存年数x之间的关系式为______, 3年后的本息和为______元(此利息要交纳所得税的20%).16.小明和弟弟进行百米赛跑,小明比弟弟跑得快,如果两人同时起跑,小明肯定赢.如图2所示,现在小明让弟弟先跑______米,直线______表示小明的路程与时间的关系,大约______秒时,小明追上了弟弟,弟弟在这次赛跑中的速度是______米/秒.17.如图3, 小明用3秒的时间跑了______米.18.如果没盒圆珠笔有12支, 售价18元, 用y (元)表示圆珠笔的售价, x 表示圆珠笔的支数, 那么y 与x 之间的关系应该是 .三、解答题(每小题10分, 共40分)19.某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元.该店制定了两种优惠方案;①买一个书包赠送一个文具盒;②按总价的9折(总价的90%)付款,某班学生需购买8个书包、文具盒若干(不少于8个),如果设文具盒数x(个),付款数为y(元).(1)分别求出两种优惠方案中y 与x 之间的关系式.(2)购买文具盒多少个时, 两种方案付款相同, 购买文具盒数大于8时, 两种方案中哪一种更省钱?20.为了了解某小区居民的用水情况, 随机抽查了该小区10户家庭的月用水量, 结果如下:月用水量(吨)10 13 14 17 18 户数 2 2 3 2 1(1) 计算这家庭的平均月用水量;(2) 如果该小区有500户家庭, 根据上面的计算结果, 估计该小区居民每月共用水多少吨?图2图321.已知长方形的相邻两边的长分别是和, 设长方形的周长为.①试写出长方形的周长y与x之间的关系式;②求当长为, 时的周长;③求当周长分别为, 时的值.22.小明晚饭后外出散步, 遇见同学, 交谈一会, 返回途中在读报厅看了一会报. 下图是根据此情景画出的图象, 请你回答下列问题:(1)小明在距家多远遇见同学的, 交谈了多少时间?(2)读报厅离家多远?(3)小明在哪一段路程中走得最快, 速度是多少?。

第9讲 变量之间的关系七年级数学下册同步精品讲义

第9讲  变量之间的关系七年级数学下册同步精品讲义

第9讲 变量之间的关系1.一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t ,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量.2.表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等.3.关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式.4.图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色.知识点01.常量与变量(1)变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量. (2)方法:①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化; ②常量和变量是相对于变化过程而言的.可以互相转化; ③不要认为字母就是变量,例如π是常量.【知识拓展1】(2021春•成华区期末)汽车以每小时100千米的速度匀速行驶,行驶的路程随时间的变化而变化,在这个变化过程中,自变量是( ) A .汽车B .路程C .速度D .时间【即学即练1】(2021秋•天长市月考)一本笔记本5元,买x 本共付y 元,则5和x 分别是( ) A .常量,变量B .变量,变量C .常量,常量D .变量,常量【即学即练2】(2021春•莱阳市期末)已知声音在空气中的传播速度与空气的温度有关,在一定范围内其关系如表所示: 温度℃ ﹣20 ﹣10 0 10 20 30 传播速度318324330336342348知识精讲目标导航(m/s)则下列说法错误的是()A.自变量是传播速度,因变量是温度B.温度越高,传播速度越快C.当温度为10℃时,声音10s可以传播3360mD.温度每升高10℃,传播速度增加6m/s知识点02.函数关系式用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:①函数解析式是等式.②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.③函数的解析式在书写时有顺序性,例如,y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y的函数.【知识拓展2】(2021秋•成都期末)现有一小树苗高100cm,以后平均每年长高50cm.x年后树苗的总高度y(cm)与年份x(年)的关系式是.【即学即练1】(2021秋•龙口市期末)如图,在平面直角坐标系xOy中,以O为圆心,适当长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A,B为圆心,大于AB的长为半径画弧,两弧在第二象限交于点C,若点C的坐标为(x﹣2,2y),则y与x的函数关系式为.【即学即练2】(2021秋•三水区期末)一辆车的油箱有80升汽油,该车行驶时每1小时耗油4升,则油箱的剩余油量y(升)与该车行驶时间x(小时)(0≤x≤20)之间的函数关系式为.【即学即练3】(2021秋•香洲区期末)某种产品今年的年产量是20t,计划今后两年增加产量.如果每年的产量都比上一年增加x倍,两年后这种产品的产量y与x之间的函数表达式是.【即学即练4】(2021秋•杜尔伯特县期末)如图所示,梯形的上底长是5cm,下底长是13cm.当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是,因变量是.(2)梯形的面积y(cm2)与高x(cm)之间的关系式为.(3)当梯形的高由10cm变化到1cm时,梯形的面积由cm2变化到cm2.【即学即练5】(2021秋•密云区期末)如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是()A.S=4x+6B.S=4x﹣6C.S=x2+3x D.S=x2﹣3x【即学即练6】(2021秋•临漳县期末)某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数关系式是()A.y=0.12x B.y=60+0.12xC.y=﹣60+0.12x D.y=60﹣0.12x【即学即练7】(2021秋•滨海县期末)某商场为了增加销售额,推出“元月销售大酬宾”活动,其活动内容为:“凡元月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x 的函数关系式是.知识点03.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..【知识拓展3】(2021秋•綦江区期末)小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h(米)与小强出发后的时间t(分钟)的函数关系如图所示,下列结论正确的是()A.爷爷比小强先出发20分钟B.小强爬山的速度是爷爷的2倍C.l1表示的是爷爷爬山的情况,l2表示的是小强爬山的情况D.山的高度是480米【即学即练1】(2021秋•长丰县期末)小明上午8:00从家里出发,跑步去他家附近的抗日纪念馆参加抗美援朝70周年纪念活动,然后从纪念馆原路返回家中,小明离家的路程y(米)和经过的时间x(分)之间的函数关系如图所示,下列说法不正确的是()A.从小明家到纪念馆的路程是1800米B.小明从家到纪念馆的平均速度为180米/分C.小明在纪念馆停留45分钟D.小明从纪念馆返回家中的平均速度为100米/分【即学即练2】(2021秋•大东区期末)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种.甲地经过a天后接种人数达到30万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示,当乙地完成接种任务时,甲地未接种疫苗的人数为万人.【即学即练3】(2021秋•南岸区期末)一司机驾驶汽车从甲地到乙地,他以60km/h的平均速度行驶4h到达目的地,并按照原路返回甲地.(1)返回过程中,汽车行驶的平均速度v与行驶的时间t有怎样的函数关系?(2)如果要在3h返回甲地,求该司机返程的平均速度;(3)如图,是返程行驶的路程s(km)与时间t(h)之间的函数图象,中途休息了30分钟,休息后以平均速度为85km/h的速度回到甲地.求该司机返程所用的总时间.【即学即练4】(2021秋•徐汇区校级期末)某空军加油飞机接到命令,立即给另一架正在飞行的运输机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油箱余油量为Q2吨,加油时间为t(分),Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油之前,加油飞机的加油油箱中装载了吨油;运输飞机的油箱有余油量吨油;(2)这些油全部加给运输飞机需分钟;(3)运输飞机的飞行油耗为每分钟吨油;(4)运输飞机加完油后,以原速继续飞行,如果每分钟油耗相同,最多能飞行小时.【即学即练5】(2021秋•沛县期末)小明爸爸开车从单位回家,沿途部分路段正在进行施工改造,小明爸爸回家途中距离家的路程ykm与行驶时间xmin之间的函数关系如图所示.结合图象,解决下列问题:(1)小明爸爸回家路上所花时间为min;(2)小明爸爸说:“回家路上,有一段路连续4分钟恰好行驶了2.4千米.”你认为该说法有无可能?若有,请求出这4分钟的起止时间;若没有,请说明理由.【即学即练6】(2021秋•龙凤区校级期末)如图是一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是80km,请你根据图象解决下面的问题.(1)谁出发较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)若用y表示自行车行驶过的路程,用x表示自行车行驶过的时间,写出y与x的关系.知识点04.动点问题的函数图象函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.【知识拓展4】((2021秋•东阳市期末)已知两个等腰直角三角形的斜边放置在同一直线l上,且点C与点B重合,如图①所示.△ABC固定不动,将△A′B′C′在直线l上自左向右平移.直到点B′移动到与点C重合时停止.设△A′B′C′移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图②所示,则△ABC的直角边长是()A.4B.4C.3D.3【即学即练1】(2021秋•龙岩期末)如图,正方形ABCD的边长为2,点E和点F分别在BC和CD上运动,且保持∠EAF=45°.若设BE的长为x,EF的长为y,则y与x的函数图象是()A.B.C.D.【即学即练2】(2021秋•沛县期末)如图1,在矩形ABCD中,点P从点C出发,沿C→D→A→B方向运动至点B处停止.设点P运动的路程为x,△PBC的面积为y,已知y关于x的函数关系如图2所示,则长方形ABCD的面积为()A.15B.20C.25D.30【即学即练3】(2021秋•金湖县期末)如图(1),△ABC和△A'B'C'是两个腰长不相等的等腰直角三角形,其中,∠A=∠A'=90°.点B'、C'、B、C都在直线l上,△ABC固定不动,将△A'B'C'在直线l上自左向右平移,开始时,点C'与点B重合,当点B'移动到与点C重合时停止.设△A'B'C'移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图(2)所示,则BC的长是.【即学即练4】(2021秋•龙华区期末)如图1,动点P从长方形ABCD的顶点A出发,沿A→C→D以1cm/s 的速度运动到点D停止.设点P的运动时间为x(s),△P AB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则长方形ABCD的面积为cm2.知识点05.函数的表示方法函数的三种表示方法:列表法、解析式法、图象法.其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.【知识拓展5】(2021秋•紫金县期末)在实验课上,小亮利用同一块木板测得小车从不同高度(h)与下滑的时间(t)的关系如下表:支撑物高h(cm)1020304050…下滑时间t(s) 3.25 3.01 2.81 2.66 2.56…以下结论错误的是()A.当h=40时,t约2.66秒B.随高度增加,下滑时间越来越短C.估计当h=80cm时,t一定小于2.56秒D.高度每增加了10cm,时间就会减少0.24秒【即学即练1】(2021秋•肇源县期末)河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200…剩余油量Q(升)4035302520…则该汽车每行驶100千米的耗油量为升.【即学即练2】(2021春•富平县期末)在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s010203040油温y/℃1030507090王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.加热10s,油的温度是30℃B.在一定范围内,每加热10s,油的温度升高20℃C.估计这种食用油的沸点温度约是230℃D.加热50s,油的温度是100℃知识点06.分段函数(1)一次函数与常函数组合的分段函数.分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)(2)由文字图象信息确定分段函数.根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量.②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.【规律方法】用图象描述分段函数的实际问题需要注意的四点1.自变量变化而函数值不变化的图象用水平线段表示.2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.3.各个分段中,准确确定函数关系.4.确定函数图象的最低点和最高点.【知识拓展6】(2021春•滦南县期末)在国内投寄到外地质量为80g以内的普通信函应付邮资如下表:信件质量m/g0<m≤2020<m≤4040<m≤6060<m≤80邮资y/元 1.20 2.40 3.60 4.80某同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是()A.4.80B.3.60C.2.40D.1.20【即学即练1】((2021•永州)已知函数y =,若y=2,则x=.【即学即练2】((2021•锡山区校级模拟)某市地铁票价计费标准如表所示:乘车距离x,单位:公里.乘车距离x x≤66<x≤1212<x≤2222<x≤32x>32票价(元)3456每增加1元可乘20公里另外,使用市政交通一卡通,每个自然月每张卡片支出累计满100元后,超出部分打8折;满150元后,超出部分打5折;支出累计达400元后,不再打折.小红妈妈上班时,需要乘坐地铁15公里到达公司,每天上下班共乘坐两次,如果每次乘坐地铁都使用市政交通一卡通,那么每月第22次乘坐地铁上下班时,她刷卡支出的费用是元.能力拓展【考点1】:用表格表示变量间关系例题1.(2020·山东济南市·七年级期末)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0 1 2 3 …油箱剩余油量Q(L)100 94 88 82 …①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.【变式1】(2019·广东深圳市·七年级期末)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.【变式2】(2020·辽宁丹东市·七年级期末)某路公交车每月有x人次乘坐,每月的收入为y元,每人次乘坐的票价相同,下面的表格是y与x的部分数据.x/人次500 1000 1500 2000 2500 3000 …y/元1000 2000 4000 6000 …(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)【考点2】 :用关系式表示变量间关系例题2.(2020·甘肃酒泉市·七年级期末)如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)观察图形,填写下表: 链条的节数/节 2 3 4链条的长度/cm(2)如果x 节链条的长度是y ,那么y 与x 之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【变式1】(2020·江西九江市·七年级期末)在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度()y cm 与所挂物体的质量()x kg 的一组对应值:所挂物体的质量()x kg 012 3 4 5弹簧长度()y cm18 20 222426 28(1)在这个变化的过程中,自变量是 ;因变量是 ; (2)写出y 与x 之间的关系式,并求出当所挂重物为6kg 时,弹簧的长度为多少?【变式2】(2020·甘肃酒泉市·七年级期末)如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/节234链条的长度/cm(2)如果x节链条的长度是y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【考点3】:用图象表示变量间关系例题3、(2020·四川达州市·七年级期末)巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【变式1】(2020·四川达州市·七年级期末)巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【变式2】(2020·贵州毕节市·七年级期末)如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.【变式3】(2021·山东聊城市·七年级期末)如图是2020年1月15日至2月2日全国(除湖北省)新冠肺炎新增确诊人数的变化曲线,则下列说法:①自变量为时间,确诊总人数是时间的函数;②1月23号,新增确诊人数约为150人;③1月25号和1月26号,新增确诊人数基本相同;④1月30号之后,预测新增确诊人数呈下降趋势,其中正确的是____________.(填上你认为正确的说法的序号)分层提分题组A 基础过关练一.选择题(共5小题)1.(2021秋•龙泉驿区期末)小亮放学回家走了一段,发现一家新开的店在搞活动,就好奇地围观了一会,然后意识到回家晚了妈妈会着急,急忙跑步回到家.若设小亮与家的距离为s(米),他离校的时间为t (分钟),则反映该情景的图象为()A .B .C.D.2.(2021秋•丰台区期末)如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:cm3)表示注入容器内的水量,则表示V与h的函数关系的图象大致是()A.B.C.D.3.(2021秋•毕节市期中)油箱中存油60升,油从油箱中均匀流出,流速为0.3升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.3t B.t=60﹣0.3Q C.t=0.3Q D.Q=60﹣0.3t4.(2021秋•济阳区期中)一水池的容积是90m3,现有蓄水10m3,用水管以5m3/h的速度向水池注水,直到注满为止.则水池蓄水量V(m3)与注水时间t(h)之间的函数关系式为()A.V=5t B.V=10t C.V=5t+10D.V=80﹣5t5.(2021秋•无棣县期中)已知关于x与y之间的关系如表所示:x1234…y5+0.610+1.215+1.820+2.4…下面用的式子中,正确的是()A.y=5x+0.6B.y=(5+0.6)x C.y=5+0.6x D.y=5+0.6+x二.填空题(共3小题)6.(2021秋•成都期末)现有一小树苗高100cm,以后平均每年长高50cm.x年后树苗的总高度y(cm)与年份x(年)的关系式是.7.(2021秋•福田区期末)元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品数x(件)之间的关系式,化简后的结果是.8.(2021秋•李沧区期中)如图,甲、乙两地相距120km,现有一列火车从乙地出发,以80km/h的速度向丙地行驶.设x(h)表示火车行驶的时间,y(km)表示火车与甲地的距离,写出x,y之间的关系式.三.解答题(共4小题)9.(2021春•庄河市期末)如图,在平面直角坐标系中,点A坐标为(0,3),点C坐标为(6,0),AB∥x 轴,且OA=AB,动点P从点O出发以2个单位/秒的速度沿O→A→B→C的路线匀速运动,运动到点C 时终止.过点P作PQ⊥x轴,垂足为Q,设点P的运动时间为x(s),线段PQ的长为y.(1)求∠C的度数;(2)求y与x的函数关系式.10.(2021•罗庄区一模)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如表.x123456y632 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.11.(2021•寻乌县模拟)数学活动课上,老师提出问题:如图1,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大(已知长方体的体积=长×宽×高).下面是探究过程,请补充完整:(1)设小正方形的边长为xdm,体积为ydm3,y和x的关系式是;自变量x的取值范围是;(2)①列表:根据(1)中所求函数关系式计算并补全表格:x/dm…1…y/dm3… 1.3 2.2 2.73 2.8 2.5 1.50.9…②描点:根据表中的数值,继续描出2中剩余两个点(x,y);③在平面直角坐标系中用平滑的曲线画出该函数的图象.(3)结合画出的函数图象,解决问题:当图1中小正方形的边长约为dm时,盒子的体积最大,最大值约为dm3(结果精确到0.01).12.(2020•南山区校级开学)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)由表格猜想y与x关系式,并估计当每月乘车人数为3500人时,每月利润为多少元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.题组B 能力提升练易错点一:常量、变量(自变量、因变量)基本概念认识1.(2020·山东济南市·七年级期末)骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是( )A.沙漠B.体温C.时间D.骆驼2.(2020·贵州毕节市·七年级期末)甲以每小时20km的速度行驶时,他所走的路程S(km)与时间t(h)之间可用公式s=20t来表示,则下列说法正确的是()A.数20和s,t都是变量B.s是常量,数20和t是变量C.数20是常量,s和t是变量D.t是常量,数20和s是变量易错点二:列表法表示变量之间的关系1.(2020·山东青岛市·七年级期末)某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:现销售了105把水壶,则定价约为()A.115元B.105元C.95元D.85元2.(2020·山东济南市·七年级期末)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.。

七年级数学 第三章 变量之间的关系 3.2 用关系式表示的变量间关系

七年级数学 第三章 变量之间的关系 3.2 用关系式表示的变量间关系
表达式为_____y_=_2_4_-_3_x_.
第十页,共五十二页。
★★3.如图是我国古代某种铜钱的平面示意图,该图形是在
一个圆形的中间(zhōngjiān)挖去一个正方形得到的.若圆的半径
是3 cm,正方形的边长为x cm,设该图形的面积为y cm2.(注:π取 3)
第十一页,共五十二页。
(1)写出y与x之间的关系式. (2)当x=1时,求y的值.
2
(2)如下(rúxià)表:
x
10 11 12 13 14 15
y
100 104 108 112 116 120
第四十七页,共五十二页。
(3)由题可得,x每增加1时,y增加4; (4)当x=0时,y=60,此时(cǐ shí)图形是三角形.
第四十八页,共五十二页。
【母题变式】 多边形的内角和随着(suízhe)边数的变化而变化.设多边形的边 数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-
用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每
滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,
水龙头以测试的速度滴水,当小康离开x分钟后,水龙
头滴出y毫升的水,请写出y与x之间的函数关系式是
_________.
y=5x
第三十五页,共五十二页。
知识点四 用关系式求值(P67随堂练习T2拓展)
2)·180°.
第四十九页,共五十二页。
例如:如图四边形ABCD的内角和:
N=∠A+∠B+∠C+∠D=(4-2)×180°=360°
问:(1)利用这个(zhè ge)关系式计算五边形的内角和; (2)当一个多边形的内角和N=720°时,求其边数n.

北师大数学七年级下册第四章-变量之间的关系

北师大数学七年级下册第四章-变量之间的关系

第01讲_变量之间的关系知识图谱变量之间的关系(北师版)知识精讲变量在一个变化过程中,我们称数值发生变化的量为变量常量在一个变化过程中,有些量的数值是始终不变的,我们称它们为常量关系一般地,在一个变化过程中,如果有两个变量x与y,并且y随着x的变化而变化,x是自变量,y是因变量二.变量关系的三种表示方法表格法;关系式法;图像法.步骤列表表中给出一些自变量的值及其对应的因变量的值描点在直角坐标系中,以自变量的值为横坐标,因变量为纵坐标,描出表格中数值对应的各点连线按照横坐标由小道大的顺序把所描出的各点用平滑曲线连接起来注意事项1.表示两个变量的对应关系的点有无数个.但是实际上我们只能描出其中有限个点,同时想象出其他点的位置2.用实心点表示在曲线的点,用空心圈表示不在曲线的点四.易错点1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.3.不能认为式子中出现的字母都是变量,如π不是变量而是常量.三点剖析一.考点:1.用表格表示的变量间关系; 2.用关系式表示的变量间关系; 3.用图象表示的变量间关系.二.重难点:用图象表示的变量之间的关系三.易错点:1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.用表格表示的变量间关系例题1、 弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )间有下面的关系: 下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 根据给出的表格中数据分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.例题2、 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当易拉罐底面半径为2.4cm 时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由. (4)粗略说一说易拉罐底面半径对所需铝质量的影响.【答案】 (1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量; (2)当底面半径为2.4cm 时,易拉罐的用铝量为356.cm .(3)易拉罐底面半径为2.8cm 时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm 变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm 间变化时,用铝量随半径的增大而增大.【解析】 本题考查函数的自变量与函数变量,根据表格理解:随底面半径的增大,用铝量的变化情况是关键. 例题3、 某校组织学生到距学校6km 的光明科技馆参观,准备乘出租车去科技馆,出租车的收费标准如表:则收费y (元)与出租车行驶里程数x (km )(x ≥3)之间的关系式为( )x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5底面 半径 1.6 2.0 2.4 2.8 3.2 3.6 4.0 用铝量 6.96.05.65.55.76.06.5里程数收费/元 3km 以下(含3km ) 8.00 3km 以上每增加1km1.80A.y=8xB.y=1.8xC.y=8+1.8xD.y=2.6+1.8x【答案】 D【解析】 由题意得,所付车费为:y=1.8(x ﹣3)+8=1.8x+2.6(x ≥3). 故选:D .随练1、 心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:(其中030x ≤≤)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟后,学生的接受能力最强;(4)从表中可知,当时间x 在什么范围内,学生的接受能力逐步增强?当时间x 在什么范围内,学生的接受能力逐步降低?【答案】 见解析【解析】 (1)提出概念所用的时间x 和对概念接受能力y 两个变量; (2)当10x =时,59y =,所以时间是10分钟时,学生的接受能力是59;(3)当13x =时,y 的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强; (4)由表中数据可知:当213x <<时,y 值逐渐增大,学生的接受能力逐步增强;当1320x <<时,y 值逐渐减下,学生的接受能力逐步降低.用关系式表示的变量间关系例题1、 写出下列各问题中的关系式,指出其中的常量、自变量、因变量及自变量取值范围. (1)直角三角形中一锐角的度数y 与另一锐角的度数x 之间的函数关系.(2)如果水的流速量是a m/min (一个定量),那么每分钟的进水量3Q()m 与所选择的水管直径D (m )之间的函数关系. 【答案】 (1)90y x =-,90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)24aD Q π=,常量为4aπ,自变量为D ,Q 为因变量,自变量0D >【解析】 (1)直角三角形两锐角互余,所以90y x =-,其中90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)由水管直径为D 可知,水管的截面积为24D π,所以24aD Q π=,其中常量为4aπ,自变量为D ,Q 为因变量,自变量0D >;例题2、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为_________. 【答案】 y=8﹣12x (0<x <8) 【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm . ∴x+2y=16, ∴y=8﹣12x (0<x <8). 例题3、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为 .【答案】 y=8﹣12x (0<x <8).【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm .提出概念所用时间(x ) 257101213141720对概念的接受能力(y )47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55∴x+2y=16,∴y=8﹣12x(0<x<8).故答案为:y=8﹣12x(0<x<8).随练1、等腰三角形的周长为30,则腰长y关于底边长x的函数关系式为__________,其中自变量x的取值范围是__________.【答案】1152y x=-+;015x<<【解析】230y x+=,整理得,1152y x=-+,根据三角形三边关系定理,02x y<<,∴102152x x⎛⎫<<-+⎪⎝⎭,∴015x<<.随练2、以直角三角形中的一个锐角的度数为自变量x,另一个锐角的度数y为因变量,则它们的关系式是.【答案】y=90°﹣x.【解析】根据题意得y=90°﹣x.故答案为y=90°﹣x.用图象表示的变量间关系例题1、小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈,出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有13箱汽油,设油箱中所剩汽油量为V升,时间为t(分钟),则V与t的大致图象是()A.AB.BC.CD.D【答案】D【解析】A、从图象可知最后纵坐标为0,即油箱是空的,与题意不符,故本选项错误;B、图象没有显示油箱内的汽油恰剩一半时又加满了油的过程,与题意不符,故本选项错误;C、图象显示油箱的油用完以后又加满,与题意不符,故本选项错误;D、当t为0时,大巴油箱是满的,然后匀速减少至一半,又加满,到目的地是油箱中还剩有13箱汽油,故本选项正确.故选D.例题2、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相同D.在4到8秒内甲的速度都大于乙的速度【答案】C【解析】A、根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B、根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,则每秒增加32 8=4米秒/,故B正确;C 、由于甲的图象是过原点的直线,斜率为4,所以可得v=4t (v 、t 分别表示速度、时间),将v=12m/s 代入v=4t 得t=3s ,则t=3s 前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C 错误;D 、在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故D 正确.随练1、 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示,关停进水管后,经过_____分钟,容器中的水恰好放完.【答案】 8【解析】 由04-分钟的函数图象可知进水管的速度,根据412-分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.进水管的速度为:2045÷=(升/分),出水管的速度为:()()53020124 3.75--÷-=(升/分),∴关停进水管后,出水经过的时间为:30 3.758÷=分钟.随练2、 上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )A. B. C. D.【答案】 B【解析】 根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B 符合题意随练3、 在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有_______个.【答案】 1【解析】 在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误由图可得,两人在1小时时相遇,行程均为10km ,故②正确;甲的图象的解析式为y=10x ,乙AB 段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.拓展1、 如图所示,某计算装置有一个数据输入口A 和一个运算结果输入口B ,下表给出的是小红输入的数字及所得的运算结果(1)若小红输入的数为x ,输出的结果为y ,你能用x 表示y 么?请写出来.(不需要写出x 的取值范围)(2)若输出结果为8,求小红输入的数字 【答案】 (1)1y x =-(2)81【解析】 (1)由表中数据可观察到,每个B 中数据都是在A 中数据开方后减一所得,101-=-,011=-,141=-,∴可得到函数1y x =-.(2)当8y =时,()211y x x y =-⇒=+,∴2981x ==.2、 弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 间有下面的关系:下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 弹簧不挂重物时的长度为10cm3、 在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( )A.22v m =-B.21v m =-C.33v m =-D.1v m =+【答案】 B【解析】 分别代入当4m =时,算出v 即可.4、 购买单价为每支1.2元的铅笔,总金额y (元)与铅笔数n (支)的关系式可表示为y =__________,其中,__________是常量,__________是变量. 【答案】 1.2n ,单价,铅笔数【解析】 总金额等于每支铅笔的价格乘以铅笔的支数,故 1.2y n =,铅笔的单价是常量,铅笔数是变量. 5、 乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费__________元;若一次乘坐这种出租车付费20元,则乘车路程是__________千米. 【答案】 12,8【解析】 本题考查函数的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章变量之间的关系
1. 我们可以用什么方法表示变量之间 的关系?请举例说明。
2. 举出生活中一个变量随另一个变量 变化而变化的例子。
在某一变化过程中,可以取不同 数值的量叫做变量
函数关系的三种表示方法: (1)解析法;(2)列表法;(3)图象法.
本章框架图: 丰富的现实情境 自变量和因变量
变量及其关系
解: (1)V=20t
2 3 4 5 6 7 8 (2) 时间t(时) 水量V(米3) 40 60 80 100 120 140 160 (3)把V=1000米3代入关系式,得1000=20t, 解 得 t=50(时)。 (4)当t逐渐增加时,V也在逐渐增加,因为V 是t的正整数倍。
例2:蜡是非晶体,在加热过程中先要变
天津保健 天津保健
xrg08yua
口气,趴在桌子上。由于动作过猛,吹起了写着作文的纸,突然发现还有一张纸是空白的。慕容凌娢拿起来一看,顿时有种想 骂人的冲动。这上面居然还有两道题。第一道——九百九十九文钱,及时梨果买一千。一十一文梨九个,七枚果子四文钱。问: 梨果多少价几何?小学级别的数学题,绝对是送分题。慕容凌娢飞快点的算出了答案。第二题算是几何题,用勾股定理求证边 长。慕容凌娢很轻松的写出了求证过程。然后……以下就是她的懵逼时间盯着写满整张纸的阿拉伯数字发呆……这个朝代的人 估计不会支持使用阿拉伯数字吧……不知怎么了,她居然在悲愤纠结中睡了过去。被拽醒时,她依稀记得那个收卷人嫌弃的表 情。毕竟她的睡相很糟糕,而且还把试卷压得死死的……浑浑噩噩的走出号房,慕容凌娢感觉已经是生无可恋了,就像马上要 开家长会了一样。等等!这个年代好像没有家长会吧?那我怕个毛线!太阳落了明早依旧爬上来~劳资考砸明天还是一样的 嗨~大不了换个路线,或者三年之后再考。慕容凌娢绕开人员密集的地带,不仅感叹,没想到这个时代的人居然也会对答案。 可惜啊~我连个可以对答案的人都没有。还是赶快回去吧……慕容凌娢走到了贡院的正门附近,看见门前站着几人,应该也是 在讨论题目的考生,本想要直接走过去。结果其中一人无意间回眸,吓得慕容凌娢赶紧窜回了人多的地方。我去~我怎么这么 倒霉啊。那个是张祁渊吗?应该是的,也许是的,很可能是……我骗谁啊!明明就是。他好像看到我了,怎么办怎么办……慕 容凌娢有种身体被掏空的紧张感。诶……他好像没有见过我长什么样吧……对,他绝对不认识我,不认识我……柯蒂丽娅隐藏 在一群人中,跟着他们出了贡院。“祁渊,你怎么心不在焉的?”“没什么。”张祁渊温煦一笑,“好像认错了人……”出了 贡院,慕容凌娢快步往回走,生怕张祁渊出来时认出她。“这位姑娘情留步。”好像是冲着自己叫得……慕容凌娢回头到一半, 然后又赶快扭了回来。差点就露馅了……自己现在可是穿的男装啊。可是这说话的声音……怎么有点熟悉呢?第080章 天机不 可泄露迟疑了片刻,慕容凌娢终于回过头。发现路边坐着一个算命先生,留着很长的胡子,身前的桌子上摆着铜钱,《周易》, 挂签之类的东西。桌旁摆着的旌旗上还写着“胡半仙”。历史果然总是惊人的相似,当年夏桦不就是这样把自己骗到晴穿会嘛。 慕容凌娢不禁多打量了那个算命先生几眼,结果发现算命先生也正在看着自己。反正闲着也没事,慕容凌娢就走了过去。好奇 心害死猫的剧情又有了进展。“你在叫我?”“是啊。”“你认识我?”“没错。”“你知道我……女扮男装?”“当 然。”“我去~666,你开挂了?”“没
摩托车
自行车
1
2
3
4
5
6
时间(小时
7
8
例5:在匀速运动中,路程s(千米)一定 时,速度(千米/时)关于时间(小时)的 函数关系的大致图象是图中的( A )
例6:如图所示,点P按A→ B→C→M的顺序在边长为1 的正方形边上运动,M是 CD边的中点.设点P经过的 路程为自变量,△APM的 面积为y,则函数y的大致图 象是图中的( A)
例7:一列火车从青岛站出发,加速行驶一段 时间后开始匀速行驶.过了一段时间,火车 到达下一个车站.乘客上下车后,火车又加 速,一段时间后再次开始匀速行驶,下面可 以近似地刻画出火车在这段时间内的速度变 化情况的图是图中的( B )
例6:如图所示,在□ABCD中, AC=4,BD=6,O为A C与BD 的交点,P是BD上的任一点, 过P作EF∥A C,与平行四边形 的两条边分别交于点E、F, 设 B P=x,EF=y,则能反映y与x 之间关系的图象为图中的( A )
(2)59
(3)13分钟
(4)2分钟至13分钟时,13分钟至20分钟
例4:甲、乙两人(甲骑自行车,乙骑摩托车)从A城出发 到B城旅行。如图表示甲、乙两人离开A城的路程与时间之 间关系的图像。根据图像,你能得到关于甲、乙两人旅行 的那些信息?
路程(千米)
100 答题要求: 90 (1)请至少提供四条信息。 80 如,由图像可知:甲比乙早出 70 发4小时(或乙比甲迟出发4小 60 时);甲从A城到B城的平均速 50 40 度是12.的信息。 10 参考答案: 0 (1)本次旅行甲用了8小时 (2)甲比乙晚到2小时 (3)甲出发3小时后走了全程的一半
软,然后逐渐变稀,然后全部变为液态, 整个过程温度不断上升,没有一定的熔 化温度,如图所示,四个图象中表示蜡 熔化的是( ) C
例3:心理学家发现,学生对概念的接受能力y与提出概念所 用的时间x(单位:分)之间有如下关系(其中0≤x≤30)
提出概念所用时间(x) 2 5 7 10 12 13 14 17 20
对概念的接受能力(y) 47.8 53.5 56.3
59
59.8
59.9
59.8
58.3
55
(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个 是因变量? (2)当提出概念所用时间是10分钟时,学生的接受能力是多少? (3)根据表格中的数据,你认为提出概念几分钟时,学生的接受 能力最强? (4)从表格中可知,当时间x在什么范围内,学生的接受能力逐 步增强?当时间x在什么范围内,学生的接受能力逐步降低? (5) 根据表格大致估计当时间为23分钟时,学生对概念的接受能 力是多少。 解: (1)提出概念所用的时间x和对概念接受能力y两个变 量,其中x是自变量,y是因变量。
变量之间关系的探索和表示 (表格、关系式、图像)
利用变量之间的关系 解决问题、进行预测
分析用表格、关系式、图像所 表示的变量之间的关系
例1: 某蓄水池开始蓄水,每时进水20米3,设蓄水量为V(米3), 蓄水时间为t(时) (1)V与t之间的关系式是什么? (2)用表格表示当t从2变化到8时(每次增加1),相应的V值? (3)若蓄水池最大蓄水量为1000米3,则需要多长时间能蓄满水? (4)当t逐渐增加时,V怎样变化?说说你的理由。
相关文档
最新文档