2017年桂林中考数学试卷-附答案
广西桂林市中考数学试卷

精品基础教育教学资料,请参考使用,祝你取得好成绩!广西桂林市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2017的绝对值是()A.2017 B.﹣2017 C.0 D.2.(3分)4的算术平方根是()A.4 B.2 C.﹣2 D.±23.(3分)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.54.(3分)如图所示的几何体的主视图是()A.B.C. D.5.(3分)下列图形中不是中心对称图形的是()A.B.C.D.6.(3分)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×1087.(3分)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°9.(3分)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等10.(3分)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±211.(3分)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤12.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2 C.πD.π二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:x2﹣x=.14.(3分)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=.15.(3分)分式与的最简公分母是.16.(3分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.17.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.18.(3分)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.20.(6分)解二元一次方程组:.21.(8分)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:组别阅读时间t(单位:小时)频数(人数)A0≤t<18B1≤t<220C2≤t<324D3≤t<4mE4≤t<58Ft≥54(1)图表中的m=,n=;(2)扇形统计图中F组所对应的圆心角为度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?22.(8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.23.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)24.(8分)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?25.(10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.26.(12分)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B (4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.广西桂林市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•桂林)2017的绝对值是()A.2017 B.﹣2017 C.0 D.【分析】根据正数的绝对值是它本身,即可判断.【解答】解:2017的绝对值等于2017,故选A.【点评】本题考查绝对值的性质,记住正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.(3分)(2017•桂林)4的算术平方根是()A.4 B.2 C.﹣2 D.±2【分析】根据算术平方根的定义即可求出答案.【解答】解:4的算术平方根是2.故选:B.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根与平方根的定义,本题属于基础题型.3.(3分)(2017•桂林)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.5【分析】根据平均数的定义计算.【解答】解:数据2,3,5,7,8的平均数==5.故选D.【点评】本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.(3分)(2017•桂林)如图所示的几何体的主视图是()A.B.C. D.【分析】根据圆锥的三视图进行判断,即可得到其主视图.【解答】解:根据圆锥的摆放位置,可知从正面看圆锥所得的图形是三角形,故该圆锥的主视图是三角形,故选:A.【点评】本题主要考查了几何体的三视图,解决问题的关键是掌握圆锥的三视图的特征.5.(3分)(2017•桂林)下列图形中不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2017•桂林)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:用科学记数法表示数57000000为5.7×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2017•桂林)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a【分析】A、利用同底数幂的除法法则计算得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用合并同类项的法则计算得到结果,即可做出判断.【解答】解:A、a3÷a3=1,本选项错误;B、(x2)3=x6,本选项错误;C、m2•m4=m6,本选项正确;D、2a+4a=6a,本选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,幂的乘方,以及合并同类项,熟练掌握法则是解本题的关键.8.(3分)(2017•桂林)如图,直线a,b被直线c所截,下列条件能判断a∥b 的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°【分析】根据同位角相等,两直线平行即可判断.【解答】解:∵∠1=∠4,∴a∥b(同位角相等两直线平行).故选B.【点评】本题考查平行线的判定,解题的关键是熟练掌握平行线的判定方法,属于基础题.9.(3分)(2017•桂林)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等【分析】根据对顶角的定义,有理数的性质,角平分线的性质对各选项分析判断即可得解.【解答】解:A、相等的角是对顶角,是假命题,例如,角平分线把角分成的两个角相等,但不是对顶角,故本选项错误;B、若实数a,b满足a2=b2,则a=b,是假命题,应为a=b或a=﹣b,故本选项错误;C、若实数a,b满足a<0,b<0,则ab<0,是假命题,应为ab>0,故本选项错误;D、角的平分线上的点到角的两边的距离相等是真命题,故本选项正确.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•桂林)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±2【分析】根据分式的值为零的条件即可求出x的值.【解答】解:由题意可知:解得:x=2故选(C)【点评】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本属于基础题型.11.(3分)(2017•桂林)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤【分析】由x的取值范围结合y1=y2可求出y的取值范围,根据y关于x的关系式可得出x关于y的关系式,利用做差法求出x=1﹣y+再﹣9≤y≤﹣中的单调性,依此单调性即可求出x1+x2的取值范围.【解答】解:当x=﹣10时,y==﹣;当x=10时,y=﹣x+1=﹣9,∴﹣9≤y1=y2≤﹣.设x1<x2,则y2=﹣x2+1、y1=,∴x2=1﹣y2,x1=,∴x1+x2=1﹣y2+.设x=1﹣y+(﹣9≤y≤﹣),﹣9≤y m<y n≤﹣,则x n﹣x m=y m﹣y n+﹣=(y m﹣y n)(1+)<0,∴x=1﹣y+中x值随y值的增大而减小,∴1﹣(﹣)﹣10=﹣≤x≤1﹣(﹣9)﹣=.故选B.【点评】本题考查了反比例函数图象上点的坐标特征以及一次函数图象上点的坐标特征,找出x=1﹣y+在﹣9≤y≤﹣中的单调性是解题的关键.12.(3分)(2017•桂林)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB 边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2 C.πD.π【分析】如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点G,连接OG.∵BF⊥CE,∴∠BFC=90°,∴点F的运动轨迹在以边长为直径的⊙O上,当点E从点A运动到点B时,点F的运动路径长为,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴的长==π,故选D.【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•桂林)分解因式:x2﹣x=x(x﹣1).【分析】首先提取公因式x,进而分解因式得出答案.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(3分)(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=4.【分析】根据中点定义解答.【解答】解:∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4.故答案为4.【点评】本题考查了两点之间的距离,熟悉中点定义是解题的关键.15.(3分)(2017•桂林)分式与的最简公分母是2a2b2.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解与的分母分别是2a2b、ab2,故最简公分母是2a2b2;故答案是:2a2b2.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.16.(3分)(2017•桂林)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.【分析】根据6个完全相同的小球中有3个球的标号是偶数,再根据概率公式即可得出答案.【解答】解:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个,∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2017•桂林)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.【分析】作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC=90°,则根据勾股定理可计算出AC=5,AO=OB=,接着利用面积法计算出BH=,于是利用勾股定理可计算出OH=,然后证明△OBH∽△OEA,最后利用相似比可求出的值.【解答】解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,AC==5,∴AO=OB=,∵BH•AC=AB•BC,∴BH==,在Rt△OBH中,OH===,∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时主要利用相似比计算线段的长.也考查了矩形的性质.18.(3分)(2017•桂林)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点.【分析】观察已知图形,得出一般性规律,写出即可.【解答】解:如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点,故答案为:(3n﹣1)【点评】此题考查了规律型:图形的变化类,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•桂林)计算:(﹣2017)0﹣sin30°++2﹣1.【分析】根据先计算零指数幂、代入特殊角的三角函数值、化简二次根式、负整数指数幂,然后计算加减法.【解答】解:原式=1﹣+2+=1+2.【点评】本题综合考查了零指数幂、特殊角的三角函数值、化简二次根式、负整数指数幂,属于基础题,熟记计算法则即可解题.20.(6分)(2017•桂林)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)(2017•桂林)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:组阅读时间t(单位:小时)频数(人数)别A0≤t<18B1≤t<220C2≤t<324D3≤t<4m E4≤t<58Ft≥54(1)图表中的m=16,n=30;(2)扇形统计图中F组所对应的圆心角为18度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?【分析】(1)根据题意列式计算即可;(2)360°×F组所对应的百分数即可得到结论;(3)根据题意列式计算即可得到结论.【解答】解:(1)m=8÷10%×20%=16,n=24÷(8÷10%)×100=30;(2)扇形统计图中F组所对应的圆心角为:360°×=18°;(3)由题意得,每周平均课外阅读时间不低于3小时的学生数为:1500×(20%+10%+5%)=525名.故答案为:16,30,18.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(8分)(2017•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.23.(8分)(2017•桂林)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【分析】在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF 的长,从而可求得EF的长,即可求得CD的长.【解答】解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【点评】本题主要考查解直角三角形的应用,利用条件构造直角三角形是解题的关键,注意角度的应用.24.(8分)(2017•桂林)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【分析】(1)设该市这两年投入基础教育经费的年平均增长率为x,根据2015年及投入的基础教育经费金额,即可得出关于x的一元二次方程,解之即可取其正值即可得出结论;(2)根据年平均增长率求出基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最大值即可.【解答】解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:最多可购买电脑880台.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2015年及投入的基础教育经费金额,列出关于x的一元二次方程;(2)根据总价=单价×数量,列出关于m的一元一次不等式.25.(10分)(2017•桂林)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【分析】(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE :S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴D是AC的中点,∠ABD=∠CBD,∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴=,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF 交⊙O 于M ,在Rt △ABD 中,AD=,AB=10,∴BD=3, ∵EM ⊥AB ,AB 是⊙O 的直径, ∴=,∴∠BEP=∠EDB ,∴△BPE ∽△BED , ∴=,∴BP=,∴DP=BD ﹣BP=, ∴S △DPE :S △BPE =DP :BP=13:32,∵S △BCD =××3=15,S △BDE :S △BCD =BE :BC=4:5,∴S △BDE =12,∴S △DPE =.【点评】考查了圆周角定理、等腰三角形的性质、相似三角形的判定与性质以及勾股定理的知识.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.26.(12分)(2017•桂林)已知抛物线y 1=ax 2+bx ﹣4(a ≠0)与x 轴交于点A (﹣1,0)和点B (4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.【分析】(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3即可得到结论;(2)由对称性可知,得到抛物线y2的函数解析式为y2=﹣x2+3x+4,求得直线BC 的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,得到DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,即可得到结论;(3)由题意得到△BOC是等腰直角三角形,求得线段BC的垂直平分线为y=x,由(2)知,直线DE的解析式为x=1,得到H(2,2),根据S⊙P :S△DFH=2π,得到r=,由于⊙P与直线BC相切,推出点P在与直线BC平行且距离为的直线上,于是列方程即可得到结论.【解答】解:(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3得:a=1,b=﹣3,∴抛物线y1的函数解析式为:y1=x2﹣3x﹣4;(2)由对称性可知,抛物线y2的函数解析式为:y2=﹣x2+3x+4,∴C(0,4),设直线BC的解析式为:y=kx+q,把B(4,0),C(0,4)代入得,k=﹣1,q=4,∴直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,∴DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,∵0≤m≤4,∴当m=1时,DE max=9;此时,D(1,3),E(1,﹣6);(3)由题意可知,△BOC是等腰直角三角形,∴线段BC的垂直平分线为:y=x,由(2)知,直线DE的解析式为:x=1,∴F(1,1),∵H是BC的中点,∴H(2,2),∴DH=,FH=,∴S△DFH=1,设⊙P的半径为r,∵S⊙P :S△DFH=2π,∴r=,∵⊙P与直线BC相切,∴点P在与直线BC平行且距离为的直线上,∴点P在直线y=﹣x+2或y=﹣x+6的直线上,∵点P在抛物线y2=﹣x2+3x+4上,∴﹣x+2=﹣x2+3x+4,解得:x1=2+,x2=2﹣,﹣x+2=﹣x2+3x+4,解得:x3=2+,x4=2﹣,∴符合条件的点P坐标有4个,分别是(2+,﹣),(2﹣,),(2+,4﹣),(2﹣,4+).【点评】本题考查了待定系数法求函数的解析式,折叠的性质,二次函数的最大值问题,等腰直角三角形的性质,线段的垂直平分线的性质,直线与圆的位置关系,正确的理解题意是解题的关键.。
广西桂林市中考数学试卷

广西桂林市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2017的绝对值是()A.2017 B.﹣2017 C.0 D.2.(3分)4的算术平方根是()A.4 B.2 C.﹣2 D.±23.(3分)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.54.(3分)如图所示的几何体的主视图是()A.B.C. D.5.(3分)下列图形中不是中心对称图形的是()A.B.C.D.6.(3分)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×1087.(3分)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°9.(3分)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等10.(3分)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±211.(3分)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤12.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2 C.πD.π二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:x2﹣x=.14.(3分)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=.15.(3分)分式与的最简公分母是.16.(3分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.17.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.18.(3分)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.20.(6分)解二元一次方程组:.21.(8分)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m=,n=;(2)扇形统计图中F组所对应的圆心角为度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?22.(8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.23.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)24.(8分)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?25.(10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.26.(12分)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B (4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.2017年广西桂林市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•桂林)2017的绝对值是()A.2017 B.﹣2017 C.0 D.【分析】根据正数的绝对值是它本身,即可判断.【解答】解:2017的绝对值等于2017,故选A.【点评】本题考查绝对值的性质,记住正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.(3分)(2017•桂林)4的算术平方根是()A.4 B.2 C.﹣2 D.±2【分析】根据算术平方根的定义即可求出答案.【解答】解:4的算术平方根是2.故选:B.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根与平方根的定义,本题属于基础题型.3.(3分)(2017•桂林)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.5【分析】根据平均数的定义计算.【解答】解:数据2,3,5,7,8的平均数==5.故选D.【点评】本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.(3分)(2017•桂林)如图所示的几何体的主视图是()A.B.C. D.【分析】根据圆锥的三视图进行判断,即可得到其主视图.【解答】解:根据圆锥的摆放位置,可知从正面看圆锥所得的图形是三角形,故该圆锥的主视图是三角形,故选:A.【点评】本题主要考查了几何体的三视图,解决问题的关键是掌握圆锥的三视图的特征.5.(3分)(2017•桂林)下列图形中不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2017•桂林)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:用科学记数法表示数57000000为5.7×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2017•桂林)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a【分析】A、利用同底数幂的除法法则计算得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用合并同类项的法则计算得到结果,即可做出判断.【解答】解:A、a3÷a3=1,本选项错误;B、(x2)3=x6,本选项错误;C、m2•m4=m6,本选项正确;D、2a+4a=6a,本选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,幂的乘方,以及合并同类项,熟练掌握法则是解本题的关键.8.(3分)(2017•桂林)如图,直线a,b被直线c所截,下列条件能判断a∥b 的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°【分析】根据同位角相等,两直线平行即可判断.【解答】解:∵∠1=∠4,∴a∥b(同位角相等两直线平行).故选B.【点评】本题考查平行线的判定,解题的关键是熟练掌握平行线的判定方法,属于基础题.9.(3分)(2017•桂林)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等【分析】根据对顶角的定义,有理数的性质,角平分线的性质对各选项分析判断即可得解.【解答】解:A、相等的角是对顶角,是假命题,例如,角平分线把角分成的两个角相等,但不是对顶角,故本选项错误;B、若实数a,b满足a2=b2,则a=b,是假命题,应为a=b或a=﹣b,故本选项错误;C、若实数a,b满足a<0,b<0,则ab<0,是假命题,应为ab>0,故本选项错误;D、角的平分线上的点到角的两边的距离相等是真命题,故本选项正确.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•桂林)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±2【分析】根据分式的值为零的条件即可求出x的值.【解答】解:由题意可知:解得:x=2故选(C)【点评】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本属于基础题型.11.(3分)(2017•桂林)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤【分析】由x的取值范围结合y1=y2可求出y的取值范围,根据y关于x的关系式可得出x关于y的关系式,利用做差法求出x=1﹣y+再﹣9≤y≤﹣中的单调性,依此单调性即可求出x1+x2的取值范围.【解答】解:当x=﹣10时,y==﹣;当x=10时,y=﹣x+1=﹣9,∴﹣9≤y1=y2≤﹣.设x1<x2,则y2=﹣x2+1、y1=,∴x2=1﹣y2,x1=,∴x1+x2=1﹣y2+.设x=1﹣y+(﹣9≤y≤﹣),﹣9≤y m<y n≤﹣,则x n﹣x m=y m﹣y n+﹣=(y m﹣y n)(1+)<0,∴x=1﹣y+中x值随y值的增大而减小,∴1﹣(﹣)﹣10=﹣≤x≤1﹣(﹣9)﹣=.故选B.【点评】本题考查了反比例函数图象上点的坐标特征以及一次函数图象上点的坐标特征,找出x=1﹣y+在﹣9≤y≤﹣中的单调性是解题的关键.12.(3分)(2017•桂林)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB 边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2 C.πD.π【分析】如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点G,连接OG.∵BF⊥CE,∴∠BFC=90°,∴点F的运动轨迹在以边长为直径的⊙O上,当点E从点A运动到点B时,点F的运动路径长为,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴的长==π,故选D.【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•桂林)分解因式:x2﹣x=x(x﹣1).【分析】首先提取公因式x,进而分解因式得出答案.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(3分)(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=4.【分析】根据中点定义解答.【解答】解:∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4.故答案为4.【点评】本题考查了两点之间的距离,熟悉中点定义是解题的关键.15.(3分)(2017•桂林)分式与的最简公分母是2a2b2.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解与的分母分别是2a2b、ab2,故最简公分母是2a2b2;故答案是:2a2b2.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.16.(3分)(2017•桂林)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.【分析】根据6个完全相同的小球中有3个球的标号是偶数,再根据概率公式即可得出答案.【解答】解:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个,∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2017•桂林)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.【分析】作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC=90°,则根据勾股定理可计算出AC=5,AO=OB=,接着利用面积法计算出BH=,于是利用勾股定理可计算出OH=,然后证明△OBH∽△OEA,最后利用相似比可求出的值.【解答】解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,AC==5,∴AO=OB=,∵BH•AC=AB•BC,∴BH==,在Rt△OBH中,OH===,∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时主要利用相似比计算线段的长.也考查了矩形的性质.18.(3分)(2017•桂林)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点.【分析】观察已知图形,得出一般性规律,写出即可.【解答】解:如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点,故答案为:(3n﹣1)【点评】此题考查了规律型:图形的变化类,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•桂林)计算:(﹣2017)0﹣sin30°++2﹣1.【分析】根据先计算零指数幂、代入特殊角的三角函数值、化简二次根式、负整数指数幂,然后计算加减法.【解答】解:原式=1﹣+2+=1+2.【点评】本题综合考查了零指数幂、特殊角的三角函数值、化简二次根式、负整数指数幂,属于基础题,熟记计算法则即可解题.20.(6分)(2017•桂林)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)(2017•桂林)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m=16,n=30;(2)扇形统计图中F组所对应的圆心角为18度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?【分析】(1)根据题意列式计算即可;(2)360°×F组所对应的百分数即可得到结论;(3)根据题意列式计算即可得到结论.【解答】解:(1)m=8÷10%×20%=16,n=24÷(8÷10%)×100=30;(2)扇形统计图中F组所对应的圆心角为:360°×=18°;(3)由题意得,每周平均课外阅读时间不低于3小时的学生数为:1500×(20%+10%+5%)=525名.故答案为:16,30,18.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(8分)(2017•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.23.(8分)(2017•桂林)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【分析】在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF 的长,从而可求得EF的长,即可求得CD的长.【解答】解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【点评】本题主要考查解直角三角形的应用,利用条件构造直角三角形是解题的关键,注意角度的应用.24.(8分)(2017•桂林)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【分析】(1)设该市这两年投入基础教育经费的年平均增长率为x,根据2015年及2017年投入的基础教育经费金额,即可得出关于x的一元二次方程,解之即可取其正值即可得出结论;(2)根据年平均增长率求出2018年基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最大值即可.【解答】解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2015年及2017年投入的基础教育经费金额,列出关于x的一元二次方程;(2)根据总价=单价×数量,列出关于m的一元一次不等式.25.(10分)(2017•桂林)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【分析】(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE :S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴D是AC的中点,∠ABD=∠CBD,∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴=,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD=,AB=10,∴BD=3,∵EM⊥AB,AB是⊙O的直径,∴=,∴∠BEP=∠EDB,∴△BPE∽△BED,∴=,∴BP=,∴DP=BD﹣BP=,∴S△DPE :S△BPE=DP:BP=13:32,∵S△BCD=××3=15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE=.【点评】考查了圆周角定理、等腰三角形的性质、相似三角形的判定与性质以及勾股定理的知识.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.26.(12分)(2017•桂林)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.【分析】(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3即可得到结论;(2)由对称性可知,得到抛物线y2的函数解析式为y2=﹣x2+3x+4,求得直线BC 的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,得到DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,即可得到结论;(3)由题意得到△BOC是等腰直角三角形,求得线段BC的垂直平分线为y=x,由(2)知,直线DE的解析式为x=1,得到H(2,2),根据S⊙P :S△DFH=2π,得到r=,由于⊙P与直线BC相切,推出点P在与直线BC平行且距离为的直线上,于是列方程即可得到结论.【解答】解:(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3得:a=1,b=﹣3,∴抛物线y1的函数解析式为:y1=x2﹣3x﹣4;(2)由对称性可知,抛物线y2的函数解析式为:y2=﹣x2+3x+4,∴C(0,4),设直线BC的解析式为:y=kx+q,把B(4,0),C(0,4)代入得,k=﹣1,q=4,∴直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,∴DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,∵0≤m≤4,∴当m=1时,DE max=9;此时,D(1,3),E(1,﹣6);(3)由题意可知,△BOC是等腰直角三角形,∴线段BC的垂直平分线为:y=x,由(2)知,直线DE的解析式为:x=1,∴F(1,1),∵H是BC的中点,∴H(2,2),∴DH=,FH=,∴S△DFH=1,设⊙P的半径为r,∵S⊙P :S△DFH=2π,∴r=,∵⊙P与直线BC相切,∴点P在与直线BC平行且距离为的直线上,∴点P在直线y=﹣x+2或y=﹣x+6的直线上,∵点P在抛物线y2=﹣x2+3x+4上,∴﹣x+2=﹣x2+3x+4,解得:x1=2+,x2=2﹣,﹣x+2=﹣x2+3x+4,解得:x3=2+,x4=2﹣,∴符合条件的点P坐标有4个,分别是(2+,﹣),(2﹣,),(2+,4﹣),(2﹣,4+).【点评】本题考查了待定系数法求函数的解析式,折叠的性质,二次函数的最大值问题,等腰直角三角形的性质,线段的垂直平分线的性质,直线与圆的位置关系,正确的理解题意是解题的关键.。
2017年广西桂林市中考数学试卷及答案

2017年广西桂林市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2017的绝对值是()A.2017 B.﹣2017 C.0 D.2.(3分)4的算术平方根是()A.4 B.2 C.﹣2 D.±23.(3分)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)下列图形中不是中心对称图形的是()A.B.C.D.6.(3分)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×1087.(3分)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6 D.2a+4a=8a8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°9.(3分)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等10.(3分)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±211.(3分)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤12.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2C.πD.π二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:x2﹣x= .14.(3分)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB= .15.(3分)分式与的最简公分母是.16.(3分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.17.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA 交DB的延长线于点E,若AB=3,BC=4,则的值为.18.(3分)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.20.(6分)解二元一次方程组:.21.(8分)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m= ,n= ;(2)扇形统计图中F组所对应的圆心角为度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?22.(8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.23.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)24.(8分)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?25.(10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.26.(12分)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B (4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.2017年广西桂林市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•桂林)2017的绝对值是()A.2017 B.﹣2017 C.0 D.【分析】根据正数的绝对值是它本身,即可判断.【解答】解:2017的绝对值等于2017,故选A.【点评】本题考查绝对值的性质,记住正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.(3分)(2017•桂林)4的算术平方根是()A.4 B.2 C.﹣2 D.±2【分析】根据算术平方根的定义即可求出答案.【解答】解:4的算术平方根是2.故选:B.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根与平方根的定义,本题属于基础题型.3.(3分)(2017•桂林)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.5【分析】根据平均数的定义计算.【解答】解:数据2,3,5,7,8的平均数==5.故选D.【点评】本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.(3分)(2017•桂林)如图所示的几何体的主视图是()A.B.C.D.【分析】根据圆锥的三视图进行判断,即可得到其主视图.【解答】解:根据圆锥的摆放位置,可知从正面看圆锥所得的图形是三角形,故该圆锥的主视图是三角形,故选:A.【点评】本题主要考查了几何体的三视图,解决问题的关键是掌握圆锥的三视图的特征.5.(3分)(2017•桂林)下列图形中不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2017•桂林)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:用科学记数法表示数57000000为5.7×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2017•桂林)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6 D.2a+4a=8a【分析】A、利用同底数幂的除法法则计算得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用合并同类项的法则计算得到结果,即可做出判断.【解答】解:A、a3÷a3=1,本选项错误;B、(x2)3=x6,本选项错误;C、m2•m4=m6,本选项正确;D、2a+4a=6a,本选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,幂的乘方,以及合并同类项,熟练掌握法则是解本题的关键.8.(3分)(2017•桂林)如图,直线a,b被直线c所截,下列条件能判断a∥b 的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°【分析】根据同位角相等,两直线平行即可判断.【解答】解:∵∠1=∠4,∴a∥b(同位角相等两直线平行).故选B.【点评】本题考查平行线的判定,解题的关键是熟练掌握平行线的判定方法,属于基础题.9.(3分)(2017•桂林)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等【分析】根据对顶角的定义,有理数的性质,角平分线的性质对各选项分析判断即可得解.【解答】解:A、相等的角是对顶角,是假命题,例如,角平分线把角分成的两个角相等,但不是对顶角,故本选项错误;B、若实数a,b满足a2=b2,则a=b,是假命题,应为a=b或a=﹣b,故本选项错误;C、若实数a,b满足a<0,b<0,则ab<0,是假命题,应为ab>0,故本选项错误;D、角的平分线上的点到角的两边的距离相等是真命题,故本选项正确.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•桂林)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±2【分析】根据分式的值为零的条件即可求出x的值.【解答】解:由题意可知:解得:x=2故选(C)【点评】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本属于基础题型.11.(3分)(2017•桂林)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤【分析】由x的取值范围结合y1=y2可求出y的取值范围,根据y关于x的关系式可得出x关于y的关系式,利用做差法求出x=1﹣y+再﹣9≤y≤﹣中的单调性,依此单调性即可求出x1+x2的取值范围.【解答】解:当x=﹣10时,y==﹣;当x=10时,y=﹣x+1=﹣9,∴﹣9≤y1=y2≤﹣.设x1<x2,则y2=﹣x2+1、y1=,∴x2=1﹣y2,x1=,∴x1+x2=1﹣y2+.设x=1﹣y+(﹣9≤y≤﹣),﹣9≤ym <yn≤﹣,则xn ﹣xm=ym﹣yn+﹣=(ym﹣yn)(1+)<0,∴x=1﹣y+中x值随y值的增大而减小,∴1﹣(﹣)﹣10=﹣≤x≤1﹣(﹣9)﹣=.故选B.【点评】本题考查了反比例函数图象上点的坐标特征以及一次函数图象上点的坐标特征,找出x=1﹣y+在﹣9≤y≤﹣中的单调性是解题的关键.12.(3分)(2017•桂林)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB 边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2C.πD.π【分析】如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点G,连接OG.∵BF⊥CE,∴∠BFC=90°,∴点F的运动轨迹在以边长为直径的⊙O上,当点E从点A运动到点B时,点F的运动路径长为,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴的长==π,故选D.【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•桂林)分解因式:x2﹣x= x(x﹣1).【分析】首先提取公因式x,进而分解因式得出答案.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(3分)(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB= 4 .【分析】根据中点定义解答.【解答】解:∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4.故答案为4.【点评】本题考查了两点之间的距离,熟悉中点定义是解题的关键.15.(3分)(2017•桂林)分式与的最简公分母是2a2b2.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解与的分母分别是2a2b、ab2,故最简公分母是2a2b2;故答案是:2a2b2.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.16.(3分)(2017•桂林)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.【分析】根据6个完全相同的小球中有3个球的标号是偶数,再根据概率公式即可得出答案.【解答】解:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个,∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2017•桂林)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.【分析】作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC=90°,则根据勾股定理可计算出AC=5,AO=OB=,接着利用面积法计算出BH=,于是利用勾股定理可计算出OH=,然后证明△OBH∽△OEA,最后利用相似比可求出的值.【解答】解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,AC==5,∴AO=OB=,∵BH•AC=AB•BC,∴BH==,在Rt△OBH中,OH===,∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时主要利用相似比计算线段的长.也考查了矩形的性质.18.(3分)(2017•桂林)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点.【分析】观察已知图形,得出一般性规律,写出即可.【解答】解:如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n 个图形中有(3n﹣1)个点,故答案为:(3n﹣1)【点评】此题考查了规律型:图形的变化类,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•桂林)计算:(﹣2017)0﹣sin30°++2﹣1.【分析】根据先计算零指数幂、代入特殊角的三角函数值、化简二次根式、负整数指数幂,然后计算加减法.【解答】解:原式=1﹣+2+=1+2.【点评】本题综合考查了零指数幂、特殊角的三角函数值、化简二次根式、负整数指数幂,属于基础题,熟记计算法则即可解题.20.(6分)(2017•桂林)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)(2017•桂林)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m= 16 ,n= 30 ;(2)扇形统计图中F组所对应的圆心角为18 度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?【分析】(1)根据题意列式计算即可;(2)360°×F组所对应的百分数即可得到结论;(3)根据题意列式计算即可得到结论.【解答】解:(1)m=8÷10%×20%=16,n=24÷(8÷10%)×100=30;(2)扇形统计图中F组所对应的圆心角为:360°×=18°;(3)由题意得,每周平均课外阅读时间不低于3小时的学生数为:1500×(20%+10%+5%)=525名.故答案为:16,30,18.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(8分)(2017•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.23.(8分)(2017•桂林)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD 的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【分析】在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF 的长,从而可求得EF的长,即可求得CD的长.【解答】解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【点评】本题主要考查解直角三角形的应用,利用条件构造直角三角形是解题的关键,注意角度的应用.24.(8分)(2017•桂林)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【分析】(1)设该市这两年投入基础教育经费的年平均增长率为x,根据2015年及2017年投入的基础教育经费金额,即可得出关于x的一元二次方程,解之即可取其正值即可得出结论;(2)根据年平均增长率求出2018年基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最大值即可.【解答】解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2015年及2017年投入的基础教育经费金额,列出关于x的一元二次方程;(2)根据总价=单价×数量,列出关于m的一元一次不等式.25.(10分)(2017•桂林)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【分析】(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE :S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴D是AC的中点,∠ABD=∠CBD,∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴=,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD=,AB=10,∴BD=3,∵EM⊥AB,AB是⊙O的直径,∴=,∴∠BEP=∠EDB,∴△BPE∽△BED,∴=,∴BP=,∴DP=BD﹣BP=,∴S△DPE :S△BPE=DP:BP=13:32,∵S△BCD =××3=15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE=.【点评】考查了圆周角定理、等腰三角形的性质、相似三角形的判定与性质以及勾股定理的知识.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.26.(12分)(2017•桂林)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.【分析】(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3即可得到结论;(2)由对称性可知,得到抛物线y2的函数解析式为y2=﹣x2+3x+4,求得直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,得到DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,即可得到结论;(3)由题意得到△BOC是等腰直角三角形,求得线段BC的垂直平分线为y=x,由(2)知,直线DE的解析式为x=1,得到H(2,2),根据S⊙P :S△DFH=2π,得到r=,由于⊙P与直线BC相切,推出点P在与直线BC平行且距离为的直线上,于是列方程即可得到结论.【解答】解:(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3得:a=1,b=﹣3,∴抛物线y1的函数解析式为:y1=x2﹣3x﹣4;(2)由对称性可知,抛物线y2的函数解析式为:y2=﹣x2+3x+4,∴C(0,4),设直线BC的解析式为:y=kx+q,把B(4,0),C(0,4)代入得,k=﹣1,q=4,∴直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,∴DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,∵0≤m≤4,∴当m=1时,DEmax=9;此时,D(1,3),E(1,﹣6);(3)由题意可知,△BOC是等腰直角三角形,∴线段BC的垂直平分线为:y=x,由(2)知,直线DE的解析式为:x=1,∴F(1,1),∵H是BC的中点,∴H(2,2),∴DH=,FH=,∴S△DFH=1,设⊙P的半径为r,∵S⊙P :S△DFH=2π,∴r=,∵⊙P与直线BC相切,∴点P在与直线BC平行且距离为的直线上,∴点P在直线y=﹣x+2或y=﹣x+6的直线上,∵点P在抛物线y2=﹣x2+3x+4上,∴﹣x+2=﹣x2+3x+4,解得:x1=2+,x2=2﹣,﹣x+2=﹣x2+3x+4,解得:x3=2+,x4=2﹣,∴符合条件的点P坐标有4个,分别是(2+,﹣),(2﹣,),(2+,4﹣),(2﹣,4+).【点评】本题考查了待定系数法求函数的解析式,折叠的性质,二次函数的最大值问题,等腰直角三角形的性质,线段的垂直平分线的性质,直线与圆的位置关系,正确的理解题意是解题的关键.。
广西省桂林市中考数学试题

广西省桂林市中考数学试题参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.2017的绝对值是()A.2017 B.﹣2017 C.0 D.1 2017【解析】根据将绝对值的意义,得2017的绝对值等于2017,故选A.2.4的算术平方根是()A.4 B.2 C.﹣2 D.±2【解析】4的算术平方根是2.故选B.3.一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.5【解析】数据2,3,5,7,8的平均数=235785++++=5.故选D.4.如图所示的几何体的主视图是()A.B.C.D.【解析】根据圆锥的摆放位置,可知从正面看圆锥所得的图形是三角形,故该圆锥的主视图是三角形,故选A.5.下列图形中不是中心对称图形的是()A.B.C.D.【解析】根据中心对称图形的概念:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,易得B是中心对称图形,A,C,D 不是中心对称图形.故选B.6.用科学记数法表示数57 000 000为()A.57×106B.5.7×106C.5.7×107D.0.57×108【解析】用科学记数法表示数57 000 000为5.7×107,故选:C.7.(3分)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a【解析】A、a3÷a3=1,故本选项错误;B、(x2)3=x6,故本选项错误;C、m2•m4= m2+4=m6,故本选项正确;D、2a+4a=6a,故本选项错误.故选C.8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4 C.∠3+∠4=180°D.∠2=30°,∠4=35°【解析】解:∵∠1=∠4,∴a∥b(同位角相等两直线平行).故选B.9.(3分)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等【解析】A、是假命题,例如,角平分线把角分成的两个角相等,但它们不是对顶角,故本选项错误;B、是假命题,结论应为a=b或a=﹣b,故本选项错误;C、是假命题,结论应为ab>0,故本选项错误;D、是真命题,故本选项正确.故选D.10.若分式242xx-+的值为0,则x的值为()A.﹣2 B.0 C.2 D.±2 【解析】由题意可知,x2-4=0,且x+2≠0.解得x=2.故选C.11.一次函数y=﹣x+1(0≤x≤10)与反比例函数y=1x(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣8910≤x≤1 B.﹣8910≤x≤899C.﹣899≤x≤8910D.1≤x≤8910【解析】当x=﹣10时,y=1x=﹣110;当x=10时,y=﹣x+1=﹣9,∴﹣9≤y 1=y 2≤﹣110. 设x 1<x 2,则y 2=﹣x 2+1,y 1=11x , ∴x 2=1﹣y 2,x 1=11y ,∴x 1+x 2=1﹣y 2+11y . 设x=1﹣y+1y (﹣9≤y ≤﹣110),﹣9≤y m <y n ≤﹣110, 则x n ﹣x m =y m ﹣y n +1n y ﹣1m y =(y m ﹣y n )(1+1m ny y )<0, ∴x=1﹣y+1y中x 值随y 值的增大而减小, ∴1﹣(﹣110)﹣10=﹣8910≤x ≤1﹣(﹣9)﹣19=899. 故选B .12.如图,在菱形ABCD 中,∠ABC=60°,AB=4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,点F 的运动路径长为( )A .3B .23C .23π D .43π 【解析】如图,连接AC 、BD 交于点G ,连接OG .∵BF ⊥CE ,∴∠BFC=90°,∴点F 的运动轨迹在以边长为直径的⊙O 上. 当点E 从点A 运动到点B 时,点F 的运动路径长为,∵四边形ABCD 是菱形,∴AB=BC=CD=AD=4. ∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴的长==43π, 故选D .二、填空题(本大题共6小题,每小题3分,共18分) 13.分解因式:x 2﹣x= . 【解析】x 2﹣x=x (x ﹣1). 故答案为:x (x ﹣1).14.如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1,则AB= .【解析】∵点C 是线段AD 的中点,CD=1,∴AD=1×2=2. ∵点D 是线段AB 的中点,∴AB=2×2=4. 故答案为4. 15.分式212a b 与21ab 的最简公分母是 . 【解析】212a b 与21ab的分母分别是2a 2b ,ab 2,故最简公分母是2a 2b 2; 故答案是2a 2b 2.16.一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是 . 【解答】解:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个, ∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是36=12; 故答案为12. 17.(3分)如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,过点A 作EA ⊥CA 交DB 的延长线于点E ,若AB=3,BC=4,则AOAE的值为 .【解析】如图,作BH ⊥OA 于H.∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,AC==5,∴AO=OB=52,∵12 BH•AC=12AB•BC,∴BH==125.在Rt△OBH中,OH===,∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴BH OHAE OA=,∴710125OA OHAE BH===724.故答案为724.18.如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.【解析】第一个图形中有1个点,即1=12(31﹣1);第二个图形中有4个点,即4=12(32﹣1)第三个图形中有13个点,即13=12(32﹣1),…按此规律,第n 个图形中有12(3n﹣1)个点,故答案为12(3n﹣1).三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣2017)0﹣sin30°+8+2﹣1.【解】原式=1﹣12+22+12=1+22.20.(6分)解二元一次方程组:.【解】②﹣①,得3x=6,解得x=2,把x=2代入①,得y=﹣1,∴原方程组的解为.21.(8分)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:组别阅读时间t(单位:小时)频数(人数)A 0≤t<1 8B 1≤t<2 20C 2≤t<3 24D 3≤t<4 mE 4≤t<5 8F t≥5 4(1)图表中的m= ,n= ;(2)扇形统计图中F组所对应的圆心角为度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?【解】(1)m=8÷10%×20%=16,n=24÷(8÷10%)×100=30;(2)扇形统计图中F组所对应的圆心角为:360°×=18°;(3)由题意得,每周平均课外阅读时间不低于3小时的学生数为1500×(20%+10%+5%)=525名.故答案为:16,30,18.22.(8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【解】(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.23.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【解】∵BN∥ED,∴∠NBD=∠BDE=37°.∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm).如图,过C作AE的垂线,垂足为F.∵∠FCA=∠CAM=45°,∴AF=FC=25cm.∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.24.(8分)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【解】(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意,得5000(1+x)2=7200,解得x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86 400 000×5%,解得m≤880.答:2018年最多可购买电脑880台.25.(10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°.∵AB=BC,∴D是AC的中点,∠ABD=∠CBD,∴AD=DE.(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴CE CD CA CB=.∵AB=BC=10,CE=2,D是AC的中点,∴CD=10. (3)解:如图,延长EF交⊙O于M.在Rt△ABD中,AD=10,AB=10,∴BD=310. ∵EM⊥AB,AB是⊙O的直径,∴,∴∠BEP=∠EDB,∴△BPE∽△BED,∴BD BEBE BP=,∴3210∴DP=BD﹣BP=1310 15,∴S△DPE:S△BPE=DP:BP=13:32,∵S△BCD=12×10×310=15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE=52 15.26.(12分)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).(1)求抛物线y1的函数解析式;(2)如图,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(3)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE 于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P:S△DFH=2π,求满足条件的所有点P的坐标.【解】(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣4,得a=1,b=﹣3,∴抛物线y1的函数解析式为y1=x2﹣3x﹣4.(2)由对称性可知,抛物线y2的函数解析式为:y2=﹣x2+3x+4,∴C(0,4),设直线BC的解析式为:y=kx+q,把B(4,0),C(0,4)代入得,k=﹣1,q=4,∴直线BC的解析式为:y=﹣x+4.设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,∴DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,∵0≤m≤4,∴当m=1时,DE max=9;此时,D(1,3),E(1,﹣6).(3)如图,由题意可知,△BOC是等腰直角三角形,∴线段BC的垂直平分线为y=x,由(2)知,直线DE的解析式为x=1,∴F(1,1).∵H是BC的中点,∴H(2,2),∴22,∴S△DFH=1.设⊙P的半径为r,∵S⊙P:S△DFH=2π,∴2,∵⊙P与直线BC相切,∴点P在与直线BC2∴点P在直线y=﹣x+2或y=﹣x+6的直线上,∵点P在抛物线y2=﹣x2+3x+4上,∴﹣x+2=﹣x2+3x+4,解得x16,x2=26;﹣x+6=﹣x2+3x+4,解得x32,x4=22,∴符合条件的点P的坐标有4个,分别是(66),(266),(2,4 2),(222).第11 页。
2017年广西桂林市中考数学试卷

2017年广西桂林市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1. (3分)2017的绝对值是()A. 2017B.- 2017C. 0D.20172. (3分)4的算术平方根是()A. 4B. 2C. - 2D.± 23. (3分)一组数据2, 3, 5, 7, 8的平均数是()A. 2B. 3C. 4D. 54. (3分)如图所示的几何体的主视图是()C.Z 3+Z 4=180°D.Z 2=30°, / 4=35°9. (3分)下列命题是真命题的是()A. 相等的角是对顶角B. 若实数a, b满足a2=b2,则a=bC. D.D.A.Z 仁/ 2B.Z 仁/ 4C. 若实数a,b满足a v0, b v0,则ab v 0D. 角的平分线上的点到角的两边的距离相等2 .10. (3分)若分式’ 的值为0,则x的值为()z+2A. - 2B. 0C. 2D.± 211. (3分)一次函数y=-x+1 (0< x< 10)与反比例函数y= (- 10< x v 0)在同一平面直角坐标系中的图象如图所示,点(为,y1), (X2, y2)是图象上两个不同的点,若y1=y2,则X1+X2的取值范围是()12. (3分)如图,在菱形ABCD中,/ ABC=60, AB=4,点E是AB边上的动点, 过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动C.n D.二、填空题(本大题共6小题,每小题3分,共18分) 13. (3分)分解因式:x 2-x= _______ .14. (3分)如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1, 则AB=15.(3分)分式 .与 ______ 的最简公分母是 .2a% ab 216. (3分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为 1, 2, 3, 4, 5, 6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率 是•17. (3分)如图,在矩形 ABCD 中,对角线AC, BD 交于点0,过点A 作EA1CA 交DB 的延长线于点E,若AB=3, BC =4,则:「的值为 .19. (6分)20. (6 分) (本大题共8小题,共66分) 计算:(-2017) 0- sin30+航+2-1.f2x+y=3® L 5x+y=9@' 解二元一次方程组:21. (8 分) 某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:阅读时间t (单位:小时)频数(人数)组别A0< t v 18B K t v 220C2< t v 324D3< t v 4mE4< t v 58t > 54F(1)图表中的m二____ ,n二______ ;(2)扇形统计图中F组所对应的圆心角为_____ 度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?22. (8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A B'画出平移后的线段并连接AB和A,两线段相交于点O;(2)求证:△ AOB^A B' OAA1/B23. (8分)“C91大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB// CD, AM// BN// ED,AE丄DE,请根据图中数据,求出线段BE和CD的长.(sin37 °0.60, cos37*0.80,tan37 °0.75,结果保留小数点后一位)24. (8分)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200 万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?25. (10分)已知:如图,在△ ABC中,AB=BC=10以AB为直径作。
广西桂林市2017年中考数学真题试题(含解析)

1 2017
【答案】B.
考点:算术平方根. 3.一组数据 2,3,5,7,8 的平均数是( ) A.2 【答案】 【解析】 试题解析:数据 2,3,5,7,8 的平均数= 故选 D. 考点:算术平均数. 4.如图所示的几何体的主视图是( ) B.3 C.4 D.5
23578 =5. 5
Aቤተ መጻሕፍቲ ባይዱ 【答案】A.
考点:菱形的性质.
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) 13.分解因式:x2-x= 【答案】x(x-1). 【解析】 试题解析:x2-x=x(x-1). 考点:因式分解-提公因式法. 14.如图,点 D 是线段 AB 的中点,点 C 是线段 AD 的中点,若 CD=1,则 AB= . .
1 . 2
∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是 考点:概率.
3 1 . 6 2
17.如图,在矩形 ABCD 中,对角线 AC,BD 交于点 O,过点 A 作 EA⊥CA 交 DB 的延长线于点 E,若 AB=3,BC=4,则
AC 的值为 AE
.
【答案】
7 . 24
∴AO=OB=
考点:科学记数法—表示较大的数. 7.下列计算正确的是( ) A.a3÷a3=a 【答案】C. B.(x2)3=x5 C.m2•m4=m6 D.2a+4a=8a
考点:同底数幂的除法;合并同类项;同底数幂的乘 法;幂的乘方与积的乘方. 8.如图,直线 a,b 被直线 c 所截,下列条件能判断 a∥b 的是( )
A. 3 【答案】 D.
B.2 3
C.
2 3
D.
4 3
, 当点 E 从点 A 运动到点 B 时,点 F 的运动路径长为 BG
2017年桂林市初中毕业升学考试试卷(解析版)

2017年桂林市初中毕业升学考试试卷英语(全卷满分120分考试用时120分钟)注意事项:1.试卷分为试题卷和答题卡两部分。
请在答题卡上作答,在本试题卷上作答无效...................。
2.答题前,请认真阅读答题卡上的注意事项..............。
3.考试结束后,将本试题卷和答题卡一并交回.............。
第Ⅰ卷一、听力测试(共30分)(一)听句子,选图画(每小题1分,共5分)听句子,选择与你听到的句子内容相符的图画。
1. 2. 3. 4. 5.答案:1~5 AECBD(二)听句子,选答语(每小题1分,共5分)听句子,选择恰当的答语。
每个句子读一遍。
6.A.It’s mine. B.It’s big. C.It’s me.7 A.I'm in Class B. In the morning. C. In a small town.8. A. No, she can't. B. No, you can't. C. Yes,I can.9. A. Half a kilo. B. Ten yuan a kilo. C. Here is twenty yuan.10. A. It is going to be a fantastic weekend.B. We are going to help with the housework.C. You are going to come with us.答案:6~10 ACABB(三)对话理解(每小题1分,共10分)A.听五段短对话,选择最佳答案。
每段对话读两遍。
11.What are they talking?A.The moon.B.The sun.C.The spaceship12.Where can the man find the book?A.The third shelf on his left.B.The second shelf on his left.C.The first shelf on his left.13.What is wrong with the woman?A.She has got a headache.B.She has got a stomach ache.C.She has got a bad cough.14.Which club does Linda want to join?A.The Dance Club.B.The Music Club.C.The Sports Club.15.What is the cheapest way to get to the Summer Palace?A.By bus.B. By taxi.C.By underground.答案:11~15 CACACB.听第一段长对话,根据对话内容回答第16~17小题。
最新广西省桂林市中考数学试卷(含答案解析版)

2017年广西桂林市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2017的绝对值是()1A.2017 B.﹣2017 C.0 D.20172.(3分)4的算术平方根是()A.4 B.2 C.﹣2 D.±23.(3分)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.54.(3分)如图所示的几何体的主视图是()A.B. C.D.5.(3分)下列图形中不是中心对称图形的是()A.B.C.D.6.(3分)用科学记数法表示数57000000为()A.57×106B.5.7×106C.5.7×107D.0.57×1087.(3分)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°9.(3分)下列命题是真命题的是( )A .相等的角是对顶角B .若实数a ,b 满足a 2=b 2,则a=bC .若实数a ,b 满足a <0,b <0,则ab <0D .角的平分线上的点到角的两边的距离相等 10.(3分)若分式242+-x x 的值为0,则x 的值为( ) A .﹣2 B .0 C .2 D .±211.(3分)一次函数y=﹣x+1(0≤x ≤10)与反比例函数y=x1(﹣10≤x <0)在同一平面直角坐标系中的图象如图所示,点(x 1,y 1),(x 2,y 2)是图象上两个不同的点,若y 1=y 2,则x 1+x 2的取值范围是( )A .11089≤≤-xB .9891089≤≤-xC .1089989≤≤-xD .10891≤≤x 12.(3分)如图,在菱形ABCD 中,∠ABC=60°,AB=4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,点F 的运动路径长为( )A .B .2C .32πD .34π二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:x 2﹣x= .14.(3分)如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1,则AB= .15.(3分)分式b a 221与21ab 的最简公分母是 . 16.(3分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是 .17.(3分)如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,过点A 作EA ⊥CA 交DB 的延长线于点E ,若AB=3,BC=4,则AEAO 的值为 .18.(3分)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n 个图形中有 个点.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.20.(6分)解二元一次方程组:.21.(8分)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m= ,n= ;(2)扇形统计图中F组所对应的圆心角为度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?22.(8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.23.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,请根据图中数据,求出线段BE和CD的长.结果保留小数点后一位)24.(8分)为进一步促进义务教育运恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?25.(10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.26.(12分)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P:S△DFH=2π,求满足条件的所有点P的坐标.2017年广西桂林市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•桂林)2017的绝对值是()A.2017 B.﹣2017 C.0 D.【考点】15:绝对值.【分析】根据正数的绝对值是它本身,即可判断.【解答】解:2017的绝对值等于2017,故选A.【点评】本题考查绝对值的性质,记住正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.(3分)(2017•桂林)4的算术平方根是()A.4 B.2 C.﹣2 D.±2【考点】22:算术平方根.【分析】根据算术平方根的定义即可求出答案.【解答】解:4的算术平方根是2.故选:B.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根与平方根的定义,本题属于基础题型.3.(3分)(2017•桂林)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.5【考点】W1:算术平均数.【分析】根据平均数的定义计算.【解答】解:数据2,3,5,7,8的平均数==5.故选D.【点评】本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.(3分)(2017•桂林)如图所示的几何体的主视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据圆锥的三视图进行判断,即可得到其主视图.【解答】解:根据圆锥的摆放位置,可知从正面看圆锥所得的图形是三角形,故该圆锥的主视图是三角形,故选:A.【点评】本题主要考查了几何体的三视图,解决问题的关键是掌握圆锥的三视图的特征.5.(3分)(2017•桂林)下列图形中不是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2017•桂林)用科学记数法表示数57000000为()A.57×106B.5.7×106C.5.7×107D.0.57×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示数57000000为5.7×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2017•桂林)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】A、利用同底数幂的除法法则计算得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用合并同类项的法则计算得到结果,即可做出判断.【解答】解:A、a3÷a3=1,本选项错误;B、(x2)3=x6,本选项错误;C、m2•m4=m6,本选项正确;D、2a+4a=6a,本选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,幂的乘方,以及合并同类项,熟练掌握法则是解本题的关键.8.(3分)(2017•桂林)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°【考点】J9:平行线的判定.【分析】根据同位角相等,两直线平行即可判断.【解答】解:∵∠1=∠4,∴a∥b(同位角相等两直线平行).故选B.【点评】本题考查平行线的判定,解题的关键是熟练掌握平行线的判定方法,属于基础题.9.(3分)(2017•桂林)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等【考点】O1:命题与定理.【分析】根据对顶角的定义,有理数的性质,角平分线的性质对各选项分析判断即可得解.【解答】解:A、相等的角是对顶角,是假命题,例如,角平分线把角分成的两个角相等,但不是对顶角,故本选项错误;B、若实数a,b满足a2=b2,则a=b,是假命题,应为a=b或a=﹣b,故本选项错误;C、若实数a,b满足a<0,b<0,则ab<0,是假命题,应为ab>0,故本选项错误;D、角的平分线上的点到角的两边的距离相等是真命题,故本选项正确.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•桂林)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±2【考点】63:分式的值为零的条件.【分析】根据分式的值为零的条件即可求出x的值.【解答】解:由题意可知:解得:x=2故选(C)【点评】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本属于基础题型.11.(3分)(2017•桂林)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【分析】由x的取值范围结合y1=y2可求出y的取值范围,根据y关于x的关系式可得出x 关于y的关系式,利用做差法求出x=1﹣y+再﹣9≤y≤﹣中的单调性,依此单调性即可求出x1+x2的取值范围.【解答】解:当x=﹣10时,y==﹣;当x=10时,y=﹣x+1=﹣9,∴﹣9≤y1=y2≤﹣.设x1<x2,则y2=﹣x2+1、y1=,∴x2=1﹣y2,x1=,∴x1+x2=1﹣y2+.设x=1﹣y+(﹣9≤y≤﹣),﹣9≤y m<y n≤﹣,则x n﹣x m=y m﹣y n+﹣=(y m﹣y n)(1+)<0,∴x=1﹣y+中x值随y值的增大而减小,∴1﹣(﹣)﹣10=﹣≤x≤1﹣(﹣9)﹣=.故选B.【点评】本题考查了反比例函数图象上点的坐标特征以及一次函数图象上点的坐标特征,找出x=1﹣y+在﹣9≤y≤﹣中的单调性是解题的关键.12.(3分)(2017•桂林)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2C.πD.π【考点】O4:轨迹;L8:菱形的性质.【分析】如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B时,点F 的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点G,连接OG.∵BF⊥CE,∴∠BFC=90°,∴点F的运动轨迹在以边长为直径的⊙O上,当点E从点A运动到点B时,点F的运动路径长为,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴的长==π,故选D.【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•桂林)分解因式:x2﹣x= x(x﹣1).【考点】53:因式分解﹣提公因式法.【分析】首先提取公因式x,进而分解因式得出答案.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(3分)(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB= 4 .【考点】ID:两点间的距离.【分析】根据中点定义解答.【解答】解:∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4.故答案为4.【点评】本题考查了两点之间的距离,熟悉中点定义是解题的关键.15.(3分)(2017•桂林)分式与的最简公分母是2a2b2.【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解与的分母分别是2a2b、ab2,故最简公分母是2a2b2;故答案是:2a2b2.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.16.(3分)(2017•桂林)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.【考点】X4:概率公式.【分析】根据6个完全相同的小球中有3个球的标号是偶数,再根据概率公式即可得出答案.【解答】解:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个,∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2017•桂林)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC=90°,则根据勾股定理可计算出AC=5,AO=OB=,接着利用面积法计算出BH=,于是利用勾股定理可计算出OH=,然后证明△OBH∽△OEA,最后利用相似比可求出的值.【解答】解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,AC==5,∴AO=OB=,∵BH•AC=AB•BC,∴BH==,在Rt△OBH中,OH===,∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时主要利用相似比计算线段的长.也考查了矩形的性质.18.(3分)(2017•桂林)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点.【考点】38:规律型:图形的变化类.【分析】观察已知图形,得出一般性规律,写出即可.【解答】解:如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点,故答案为:(3n﹣1)【点评】此题考查了规律型:图形的变化类,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•桂林)计算:(﹣2017)0﹣sin30°++2﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】根据先计算零指数幂、代入特殊角的三角函数值、化简二次根式、负整数指数幂,然后计算加减法.【解答】解:原式=1﹣+2+=1+2.【点评】本题综合考查了零指数幂、特殊角的三角函数值、化简二次根式、负整数指数幂,属于基础题,熟记计算法则即可解题.20.(6分)(2017•桂林)解二元一次方程组:.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)(2017•桂林)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:m= 16 ,n= 30 ;(2)扇形统计图中F组所对应的圆心角为18 度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表;W2:加权平均数.【分析】(1)根据题意列式计算即可;(2)360°×F组所对应的百分数即可得到结论;(3)根据题意列式计算即可得到结论.【解答】解:(1)m=8÷10%×20%=16,n=24×(8÷10%)×100=30;(2)扇形统计图中F组所对应的圆心角为:360°×=18°;(3)由题意得,每周平均课外阅读时间不低于3小时的学生数为:1500×(20%+10%+5%)=525名.故答案为:16,30,18.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(8分)(2017•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【考点】Q4:作图﹣平移变换;KB:全等三角形的判定.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.23.(8分)(2017•桂林)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN ∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【考点】T8:解直角三角形的应用.【分析】在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF的长,从而可求得EF的长,即可求得CD的长.【解答】解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【点评】本题主要考查解直角三角形的应用,利用条件构造直角三角形是解题的关键,注意角度的应用.24.(8分)(2017•桂林)为进一步促进义务教育运恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)设该市这两年投入基础教育经费的年平均增长率为x,根据2015年及2017年投入的基础教育经费金额,即可得出关于x的一元二次方程,解之即可取其正值即可得出结论;(2)根据年平均增长率求出2018年基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最大值即可.【解答】解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2015年及2017年投入的基础教育经费金额,列出关于x的一元二次方程;(2)根据总价=单价×数量,列出关于m的一元一次不等式.25.(10分)(2017•桂林)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质;KQ:勾股定理;M2:垂径定理.【分析】(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE:S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴D是AC的中点,∠ABD=∠∠CBD,∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴=,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD=,AB=10,∴BD=3,∵EM⊥AB,AB是⊙O的直径,∴=,∴∠BEP=∠EDB,∴△BPE∽△BED,∴=,∴BP=,∴DP=BD﹣BP=,∴S△DPE:S△BPE=DP:BP=13:32,∵S△BCD=××3=15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE=.【点评】考查了圆周角定理、等腰三角形的性质、相似三角形的判定与性质以及勾股定理的知识.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.26.(12分)(2017•桂林)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE 于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P:S△DFH=2π,求满足条件的所有点P的坐标.【考点】HF:二次函数综合题.【分析】(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3即可得到结论;(2)由对称性可知,得到抛物线y2的函数解析式为y2=﹣x2+3x+4,求得直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,得到DE=﹣m+4﹣(m2﹣3m ﹣4)=﹣(m﹣1)2+9,即可得到结论;(3)由题意得到△BOC是等腰直角三角形,求得线段BC的垂直平分线为y=x,由(2)知,直线DE的解析式为x=1,得到H(2,2),根据S⊙P:S△DFH=2π,得到r=,由于⊙P与直线BC相切,推出点P在与直线BC平行且距离为的直线上,于是列方程即可得到结论.【解答】解:(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3得:a=1,b=﹣3,∴抛物线y1的函数解析式为:y1=x2﹣3x﹣4;(2)由对称性可知,抛物线y2的函数解析式为:y2=﹣x2+3x+4,∴C(0,4),设直线BC的解析式为:y=kx+q,把B(4,0),C(0,4)代入得,k=﹣1,q=4,∴直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,∴DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,∵0≤m≤4,∴当m=1时,DE max=9;此时,D(1,3),E(1,﹣6);(3)由题意可知,△BOC是等腰直角三角形,∴线段BC的垂直平分线为:y=x,由(2)知,直线DE的解析式为:x=1,∴F(1,1),∵H是BC的中点,∴H(2,2),∴DH=,FH=,∴S△DFH=1,设⊙P的半径为r,∵S⊙P:S△DFH=2π,∴r=,∵⊙P与直线BC相切,∴点P在与直线BC平行且距离为的直线上,∴点P在直线y=﹣x+2或y=﹣x+6的直线上,∵点P在抛物线y2=﹣x2+3x+4上,∴﹣x+2=﹣x2+3x+4,解得:x1=2+,x2=2﹣,﹣x+2=﹣x2+3x+4,解得:x3=2+,x4=2﹣,∴符合条件的点P坐标有4个,分别是(2+,﹣),(2﹣,),(2+,4﹣),(2﹣,4+).【点评】本题考查了待定系数法求函数的解析式,折叠的性质,二次函数的最大值问题,等腰直角三角形的性质,线段的垂直平分线的性质,直线与圆的位置关系,正确的理解题意是解题的关键.。
2017年广西桂林市中考数学试卷 (2)

2017年广西桂林市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2017的绝对值是()A.2017 B.﹣2017 C.0 D.2.(3分)4的算术平方根是()A.4 B.2 C.﹣2 D.±23.(3分)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.54.(3分)如图所示的几何体的主视图是()A.B.C. D.5.(3分)下列图形中不是中心对称图形的是()A.B.C.D.6.(3分)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×1087.(3分)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°9.(3分)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等10.(3分)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±211.(3分)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤12.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2 C.πD.π二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:x2﹣x=.14.(3分)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=.15.(3分)分式与的最简公分母是.16.(3分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.17.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.18.(3分)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.20.(6分)解二元一次方程组:.21.(8分)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m=,n=;(2)扇形统计图中F组所对应的圆心角为度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?22.(8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.23.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)24.(8分)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?25.(10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.26.(12分)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B (4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.2017年广西桂林市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•桂林)2017的绝对值是()A.2017 B.﹣2017 C.0 D.【分析】根据正数的绝对值是它本身,即可判断.【解答】解:2017的绝对值等于2017,故选A.【点评】本题考查绝对值的性质,记住正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.(3分)(2017•桂林)4的算术平方根是()A.4 B.2 C.﹣2 D.±2【分析】根据算术平方根的定义即可求出答案.【解答】解:4的算术平方根是2.故选:B.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根与平方根的定义,本题属于基础题型.3.(3分)(2017•桂林)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.5【分析】根据平均数的定义计算.【解答】解:数据2,3,5,7,8的平均数==5.故选D.【点评】本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.(3分)(2017•桂林)如图所示的几何体的主视图是()A.B.C. D.【分析】根据圆锥的三视图进行判断,即可得到其主视图.【解答】解:根据圆锥的摆放位置,可知从正面看圆锥所得的图形是三角形,故该圆锥的主视图是三角形,故选:A.【点评】本题主要考查了几何体的三视图,解决问题的关键是掌握圆锥的三视图的特征.5.(3分)(2017•桂林)下列图形中不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2017•桂林)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:用科学记数法表示数57000000为5.7×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2017•桂林)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a【分析】A、利用同底数幂的除法法则计算得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用合并同类项的法则计算得到结果,即可做出判断.【解答】解:A、a3÷a3=1,本选项错误;B、(x2)3=x6,本选项错误;C、m2•m4=m6,本选项正确;D、2a+4a=6a,本选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,幂的乘方,以及合并同类项,熟练掌握法则是解本题的关键.8.(3分)(2017•桂林)如图,直线a,b被直线c所截,下列条件能判断a∥b 的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°【分析】根据同位角相等,两直线平行即可判断.【解答】解:∵∠1=∠4,∴a∥b(同位角相等两直线平行).故选B.【点评】本题考查平行线的判定,解题的关键是熟练掌握平行线的判定方法,属于基础题.9.(3分)(2017•桂林)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等【分析】根据对顶角的定义,有理数的性质,角平分线的性质对各选项分析判断即可得解.【解答】解:A、相等的角是对顶角,是假命题,例如,角平分线把角分成的两个角相等,但不是对顶角,故本选项错误;B、若实数a,b满足a2=b2,则a=b,是假命题,应为a=b或a=﹣b,故本选项错误;C、若实数a,b满足a<0,b<0,则ab<0,是假命题,应为ab>0,故本选项错误;D、角的平分线上的点到角的两边的距离相等是真命题,故本选项正确.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•桂林)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±2【分析】根据分式的值为零的条件即可求出x的值.【解答】解:由题意可知:解得:x=2故选(C)【点评】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本属于基础题型.11.(3分)(2017•桂林)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤【分析】由x的取值范围结合y1=y2可求出y的取值范围,根据y关于x的关系式可得出x关于y的关系式,利用做差法求出x=1﹣y+再﹣9≤y≤﹣中的单调性,依此单调性即可求出x1+x2的取值范围.【解答】解:当x=﹣10时,y==﹣;当x=10时,y=﹣x+1=﹣9,∴﹣9≤y1=y2≤﹣.设x1<x2,则y2=﹣x2+1、y1=,∴x2=1﹣y2,x1=,∴x1+x2=1﹣y2+.设x=1﹣y+(﹣9≤y≤﹣),﹣9≤y m<y n≤﹣,则x n﹣x m=y m﹣y n+﹣=(y m﹣y n)(1+)<0,∴x=1﹣y+中x值随y值的增大而减小,∴1﹣(﹣)﹣10=﹣≤x≤1﹣(﹣9)﹣=.故选B.【点评】本题考查了反比例函数图象上点的坐标特征以及一次函数图象上点的坐标特征,找出x=1﹣y+在﹣9≤y≤﹣中的单调性是解题的关键.12.(3分)(2017•桂林)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB 边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2 C.πD.π【分析】如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点G,连接OG.∵BF⊥CE,∴∠BFC=90°,∴点F的运动轨迹在以边长为直径的⊙O上,当点E从点A运动到点B时,点F的运动路径长为,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴的长==π,故选D.【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•桂林)分解因式:x2﹣x=x(x﹣1).【分析】首先提取公因式x,进而分解因式得出答案.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(3分)(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=4.【分析】根据中点定义解答.【解答】解:∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4.故答案为4.【点评】本题考查了两点之间的距离,熟悉中点定义是解题的关键.15.(3分)(2017•桂林)分式与的最简公分母是2a2b2.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解与的分母分别是2a2b、ab2,故最简公分母是2a2b2;故答案是:2a2b2.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.16.(3分)(2017•桂林)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.【分析】根据6个完全相同的小球中有3个球的标号是偶数,再根据概率公式即可得出答案.【解答】解:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个,∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2017•桂林)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.【分析】作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC=90°,则根据勾股定理可计算出AC=5,AO=OB=,接着利用面积法计算出BH=,于是利用勾股定理可计算出OH=,然后证明△OBH∽△OEA,最后利用相似比可求出的值.【解答】解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,AC==5,∴AO=OB=,∵BH•AC=AB•BC,∴BH==,在Rt△OBH中,OH===,∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时主要利用相似比计算线段的长.也考查了矩形的性质.18.(3分)(2017•桂林)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点.【分析】观察已知图形,得出一般性规律,写出即可.【解答】解:如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点,故答案为:(3n﹣1)【点评】此题考查了规律型:图形的变化类,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•桂林)计算:(﹣2017)0﹣sin30°++2﹣1.【分析】根据先计算零指数幂、代入特殊角的三角函数值、化简二次根式、负整数指数幂,然后计算加减法.【解答】解:原式=1﹣+2+=1+2.【点评】本题综合考查了零指数幂、特殊角的三角函数值、化简二次根式、负整数指数幂,属于基础题,熟记计算法则即可解题.20.(6分)(2017•桂林)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)(2017•桂林)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m=16,n=30;(2)扇形统计图中F组所对应的圆心角为18度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?【分析】(1)根据题意列式计算即可;(2)360°×F组所对应的百分数即可得到结论;(3)根据题意列式计算即可得到结论.【解答】解:(1)m=8÷10%×20%=16,n=24÷(8÷10%)×100=30;(2)扇形统计图中F组所对应的圆心角为:360°×=18°;(3)由题意得,每周平均课外阅读时间不低于3小时的学生数为:1500×(20%+10%+5%)=525名.故答案为:16,30,18.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(8分)(2017•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.23.(8分)(2017•桂林)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【分析】在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF 的长,从而可求得EF的长,即可求得CD的长.【解答】解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【点评】本题主要考查解直角三角形的应用,利用条件构造直角三角形是解题的关键,注意角度的应用.24.(8分)(2017•桂林)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【分析】(1)设该市这两年投入基础教育经费的年平均增长率为x,根据2015年及2017年投入的基础教育经费金额,即可得出关于x的一元二次方程,解之即可取其正值即可得出结论;(2)根据年平均增长率求出2018年基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最大值即可.【解答】解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2015年及2017年投入的基础教育经费金额,列出关于x的一元二次方程;(2)根据总价=单价×数量,列出关于m的一元一次不等式.25.(10分)(2017•桂林)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【分析】(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE :S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴D是AC的中点,∠ABD=∠CBD,∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴=,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD=,AB=10,∴BD=3,∵EM⊥AB,AB是⊙O的直径,∴=,∴∠BEP=∠EDB,∴△BPE∽△BED,∴=,∴BP=,∴DP=BD﹣BP=,∴S△DPE :S△BPE=DP:BP=13:32,∵S△BCD=××3=15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE=.【点评】考查了圆周角定理、等腰三角形的性质、相似三角形的判定与性质以及勾股定理的知识.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.26.(12分)(2017•桂林)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.【分析】(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3即可得到结论;(2)由对称性可知,得到抛物线y2的函数解析式为y2=﹣x2+3x+4,求得直线BC 的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,得到DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,即可得到结论;(3)由题意得到△BOC是等腰直角三角形,求得线段BC的垂直平分线为y=x,由(2)知,直线DE的解析式为x=1,得到H(2,2),根据S⊙P :S△DFH=2π,得到r=,由于⊙P与直线BC相切,推出点P在与直线BC平行且距离为的直线上,于是列方程即可得到结论.【解答】解:(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3得:a=1,b=﹣3,∴抛物线y1的函数解析式为:y1=x2﹣3x﹣4;(2)由对称性可知,抛物线y2的函数解析式为:y2=﹣x2+3x+4,∴C(0,4),设直线BC的解析式为:y=kx+q,把B(4,0),C(0,4)代入得,k=﹣1,q=4,∴直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,∴DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,∵0≤m≤4,∴当m=1时,DE max=9;此时,D(1,3),E(1,﹣6);(3)由题意可知,△BOC是等腰直角三角形,∴线段BC的垂直平分线为:y=x,由(2)知,直线DE的解析式为:x=1,∴F(1,1),∵H是BC的中点,∴H(2,2),∴DH=,FH=,∴S△DFH=1,设⊙P的半径为r,∵S⊙P :S△DFH=2π,∴r=,∵⊙P与直线BC相切,∴点P在与直线BC平行且距离为的直线上,∴点P在直线y=﹣x+2或y=﹣x+6的直线上,∵点P在抛物线y2=﹣x2+3x+4上,∴﹣x+2=﹣x2+3x+4,解得:x1=2+,x2=2﹣,﹣x+2=﹣x2+3x+4,解得:x3=2+,x4=2﹣,∴符合条件的点P坐标有4个,分别是(2+,﹣),(2﹣,),(2+,4﹣),(2﹣,4+).【点评】本题考查了待定系数法求函数的解析式,折叠的性质,二次函数的最大值问题,等腰直角三角形的性质,线段的垂直平分线的性质,直线与圆的位置关系,正确的理解题意是解题的关键.2017年黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.(3分)下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.(3分)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.6.(3分)方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣57.(3分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B 的大小是()A.43°B.35°C.34°D.44°8.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.(3分)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)将57600000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)把多项式4ax2﹣9ay2分解因式的结果是.14.(3分)计算﹣6的结果是.15.(3分)已知反比例函数y=的图象经过点(1,2),则k的值为.16.(3分)不等式组的解集是.17.(3分)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.(3分)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为度.19.(3分)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为.20.(3分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE ⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.(7分)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.23.(8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.(8分)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.(10分)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.(10分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB 于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,。
2017年广西桂林市中考数学试卷

2017年广西桂林市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中小于0的数是()A.2017 B.﹣2017 C.D.2.如图,直线a∥b,c是截线,∠1的度数是()A.55° B.75° C.110° D.125°3.一组数据7,8,10,12,13的平均数是()A.7 B.9 C.10 D.124.下列几何体的三视图相同的是()A.圆柱B.球C.圆锥D.长方体5.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形6.计算3﹣2的结果是()A.B.2C.3D.67.下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x2•5x3=15x5D.5x2y3+2x2y3=10x4y98.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣39.当x=6,y=3时,代数式()•的值是()A.2 B.3 C.6 D.910.若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>511.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.π B.C.3+π D.8﹣π12.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个二、填空题:本大题共6小题,每小题3分,共18分13.分解因式:x2﹣36=.14.若式子在实数范围内有意义,则x的取值范围是.15.把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是.16.正六边形的每个外角是度.17.如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.18.如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是.三、解答题:本大题共8小题,共66分19.计算:﹣(﹣4)+|﹣5|+﹣4tan45°.20.解不等式组:.21.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF(1)根据题意,补全原形;(2)求证:BE=DF.22.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?23.已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.24.五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?25.如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D 作DE∥AB交圆O于点E(1)证明点C在圆O上;(2)求tan∠CDE的值;(3)求圆心O到弦ED的距离.26.如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.(1)直接写出点A,C,D的坐标;(2)当四边形ABCD是矩形时,求a的值及抛物线y2的解析式;(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.2017年广西桂林市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中小于0的数是()A.2017 B.﹣2017 C.D.【考点】实数大小比较.【分析】根据正数大于负数0,0大于负数进行选择即可.【解答】解:∵﹣2017是负数,∴﹣2017<0,故选B.2.如图,直线a∥b,c是截线,∠1的度数是()A.55° B.75° C.110° D.125°【考点】平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:∵直线a∥b,∴∠1=55°,故选A.3.一组数据7,8,10,12,13的平均数是()A.7 B.9 C.10 D.12【考点】算术平均数.【分析】根据平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数进行计算即可.【解答】解:(7+8+10+12+13)÷5=50÷5=10答:一组数据7,8,10,12,13的平均数是10.故选:C.4.下列几何体的三视图相同的是()A.圆柱B.球C.圆锥D.长方体【考点】简单几何体的三视图.【分析】找出圆柱,球,圆锥,以及长方体的三视图,即可做出判断.【解答】解:A、圆柱的三视图,如图所示,不合题意;B、球的三视图,如图所示,符合题意;C、圆锥的三视图,如图所示,不合题意;D、长方体的三视图,如图所示,不合题意;.故选B5.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念,结合选项求解即可.【解答】解:A、直角三角形中只有等腰直角三角形为轴对称图形,本选项错误;B、平行四边形不是轴对称图形,本选项错误;C、直角梯形不是轴对称图形,本选项错误;D、正方形是轴对称图形,本选项正确.故选D.6.计算3﹣2的结果是()A.B.2C.3D.6【考点】二次根式的加减法.【分析】直接利用二次根式的加减运算法则求出答案.【解答】解:原式=(3﹣2)=.故选:A.7.下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x2•5x3=15x5D.5x2y3+2x2y3=10x4y9【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】A、原式利用积的乘方运算法则计算得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用单项式乘单项式法则计算得到结果,即可作出判断;D、原式合并同类项得到结果,即可作出判断.【解答】解:A、原式=x3y3,错误;B、原式=1,错误;C、原式=15x5,正确;D、原式=7x2y3,错误,故选C8.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3【考点】一次函数与一元一次方程.【分析】所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.【解答】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故选D9.当x=6,y=3时,代数式()•的值是()A.2 B.3 C.6 D.9【考点】分式的化简求值.【分析】先对所求的式子化简,然后将x=6,y=3代入化简后的式子即可解答本题.【解答】解:()•==,当x=6,y=3时,原式=,故选C.10.若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.11.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.π B.C.3+π D.8﹣π【考点】扇形面积的计算;旋转的性质.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.12.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点E的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.二、填空题:本大题共6小题,每小题3分,共18分13.分解因式:x2﹣36=(x+6)(x﹣6).【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+6)(x﹣6),故答案为:(x+6)(x﹣6)14.若式子在实数范围内有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.15.把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是.【考点】概率公式.【分析】先确定9张扑克牌上的数字为3的倍数的张数,再根据随机事件A的概率P(A)=,求解即可.【解答】解:∵数字为3的倍数的扑克牌一共有3张,且共有9张扑克牌,∴P==.故答案为:.16.正六边形的每个外角是60度.【考点】多边形内角与外角.【分析】正多边形的外角和是360度,且每个外角都相等,据此即可求解.【解答】解:正六边形的一个外角度数是:360÷6=60°.故答案为:60.17.如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】在BD上截取BE=CH,连接CO,OE,根据相似三角形的性质得到,求得CH=,根据等腰直角三角形的性质得到AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,等量代换得到∠OCH=∠ABD,根据全等三角形的性质得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直角三角形,根据等腰直角三角形的性质即可得到结论.【解答】解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴,∴CH=,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.18.如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是π.【考点】轨迹;正方形的性质;旋转的性质.【分析】如图点P运动的路径是以G为圆心的弧,在⊙G上取一点H,连接EH、FH,只要证明∠EGF=90°,求出GE的长即可解决问题.【解答】解:如图点P运动的路径是以G为圆心的弧,在⊙G上取一点H,连接EH、FH.∵四边形AOCB是正方形,∴∠AOC=90°,∴∠AFP=∠AOC=45°,∵EF是⊙O直径,∴∠EAF=90°,∴∠APF=∠AFP=45°,∴∠H=∠APF=45°,∴∠EGF=2∠H=90°,∵EF=4,GE=GF,∴EG=GF=2,∴的长==π.故答案为π.三、解答题:本大题共8小题,共66分19.计算:﹣(﹣4)+|﹣5|+﹣4tan45°.【考点】零指数幂;特殊角的三角函数值.【分析】先去括号、计算绝对值、零指数幂、三角函数值,再计算乘法、减法即可.【解答】解:原式=4+5+1﹣4×1=6.20.解不等式组:.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>2,解②得x≤5.则不等式组的解集是:2<x≤5.21.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF(1)根据题意,补全原形;(2)求证:BE=DF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)如图所示;(2)由全等三角形的判定定理SAS证得△BEO≌△DFO,得出全等三角形的对应边相等即可.【解答】(1)解:如图所示:(2)证明:∵四边形ABCD是平行四边形,对角线AC、BD交于点O,∴OB=OD,OA=OC.又∵E,F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF.∵在△BEO与△DFO中,,∴△BEO≌△DFO(SAS),∴BE=DF.22.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为50,扇形统计图中A类所对的圆心角是72度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据统计图可以得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.23.已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.【考点】三角形的内切圆与内心;二次根式的应用.【分析】(1)先根据BC、AC、AB的长求出P,再代入到公式S=即可求得S的值;(2)根据公式S=r(AC+BC+AB),代入可得关于r的方程,解方程得r的值.【解答】解:(1)∵BC=5,AC=6,AB=9,∴p===10,∴S===10;故△ABC的面积10;(2)∵S=r(AC+BC+AB),∴10=r(5+6+9),解得:r=,故△ABC的内切圆半径r=.24.五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据该爱心组织按照此需求的比例购买这2000件物品列出方程,求解即可.【解答】解:(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,=,解得:x=60.经检验,x=60是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、60元;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据题意得,m+3m=2000,解得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.25.如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D 作DE∥AB交圆O于点E(1)证明点C在圆O上;(2)求tan∠CDE的值;(3)求圆心O到弦ED的距离.【考点】实数的运算.【分析】(1)如图1,连结CO.先由勾股定理求出AC=10,再利用勾股定理的逆定理证明△ACD是直角三角形,∠C=90°,那么OC为Rt△ACD斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半得出OC=AD=r,即点C在圆O上;(2)如图2,延长BC、DE交于点F,∠BFD=90°.根据同角的余角相等得出∠CDE=∠ACB.在Rt△ABC中,利用正切函数定义求出tan∠ACB==,则tan∠CDE=tan∠ACB=;(3)如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,根据相似三角形对应边成比例求出CF=,那么BF=BC+CF=.再证明四边形ABFE是矩形,得出AE=BF=,所以OG=AE=.【解答】(1)证明:如图1,连结CO.∵AB=6,BC=8,∠B=90°,∴AC=10.又∵CD=24,AD=26,102+242=262,∴△ACD是直角三角形,∠C=90°.∵AD为⊙O的直径,∴AO=OD,OC为Rt△ACD斜边上的中线,∴OC=AD=r,∴点C在圆O上;(2)解:如图2,延长BC、DE交于点F,∠BFD=90°.∵∠BFD=90°,∴∠CDE+∠FCD=90°,又∵∠ACD=90°,∴∠ACB+∠FCD=90°,∴∠CDE=∠ACB.在Rt△ABC中,tan∠ACB==,∴tan∠CDE=tan∠ACB=;(3)解:如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,∴=,即=,∴CF=,∴BF=BC+CF=8+=.∵∠B=∠F=∠AE D=90°,∴四边形ABFE是矩形,∴AE=BF=,∴OG=AE=,即圆心O到弦ED的距离为.26.如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.(1)直接写出点A,C,D的坐标;(2)当四边形ABCD是矩形时,求a的值及抛物线y2的解析式;(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.【考点】二次函数综合题.【分析】(1)直接将点A的坐标代入y1=ax2﹣2ax+1得出m的值,因为由图象可知点A在第一象限,所以m≠0,则m=2,写出A,C的坐标,点D与点A关于点C对称,由此写出点D的坐标;(2)根据顶点坐标公式得出抛物线y1的顶点B的坐标,再由矩形对角线相等且平分得:BC=CD,在直角△BMC中,由勾股定理列方程求出a的值得出抛物线y1的解析式,由旋转的性质得出抛物线y2的解析式;(3)分两种情况讨论:①当0≤t≤1时,S=S△GHD=S△PDH+S△PDG,作辅助线构建直角三角形,求出PG和PH,利用面积公式计算;②当1<t≤2时,S=S直角三角形+S矩形﹣S不重合,这里不重合的图形就是△GE′F,利用30°角和60°角的直角三角形的性质进行计算得出结论.【解答】解:(1)由题意得:将A(m,1)代入y1=ax2﹣2ax+1得:am2﹣2am+1=1,解得:m1=2,m2=0(舍),∴A(2,1)、C(0,1)、D(﹣2,1);(2)如图1,由(1)知:B(1,1﹣a),过点B作BM⊥y轴,若四边形ABDE为矩形,则BC=CD,∴BM2+CM2=BC2=CD2,∴12+(﹣a)2=22,∴a=,∵y1抛物线开口向下,∴a=﹣,∵y2由y1绕点C旋转180°得到,则顶点E(﹣1,1﹣),∴设y2=a(x+1)2+1﹣,则a=,∴y2=x2+2x+1;(3)如图1,当0≤t≤1时,则DP=t,构建直角△BQD,得BQ=,DQ=3,则BD=2,∴∠BDQ=30°,∴PH=,PG=t,∴S=(PE+PF)×DP=t2,如图2,当1<t≤2时,EG=E′G=(t﹣1),E′F=2(t﹣1),S不重合=(t﹣1)2,21 S=S 1+S 2﹣S 不重合=+(t ﹣1)﹣(t ﹣1)2,=﹣;综上所述:S=t 2(0≤t ≤1)或S=﹣(1<t ≤2).。
2017年广西省桂林市初中毕业生学业考试数学试题(附答案解析)

2017年广西桂林市初中毕业生学业考试数学试题一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2017的绝对值是()A.2017 B.﹣2017 C.0 D.2.(3分)4的算术平方根是()A.4 B.2 C.﹣2 D.±23.(3分)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)下列图形中不是中心对称图形的是()A.B.C.D.6.(3分)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×1087.(3分)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6 D.2a+4a=8a8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°9.(3分)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等10.(3分)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±211.(3分)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤12.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2C.πD.π二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:x2﹣x= .14.(3分)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB= .15.(3分)分式与的最简公分母是.16.(3分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.17.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA 交DB的延长线于点E,若AB=3,BC=4,则的值为.18.(3分)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.20.(6分)解二元一次方程组:.21.(8分)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:组别阅读时间t(单位:小时)频数(人数)A0≤t<18B1≤t<220C2≤t<324D3≤t<4mE4≤t<58F t≥54(1)图表中的m=,n= ;(2)扇形统计图中F组所对应的圆心角为度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?22.(8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.23.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)24.(8分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?25.(10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.26.(12分)已知抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B1(4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•桂林)2017的绝对值是()A.2017 B.﹣2017 C.0 D.分析&根据正数的绝对值是它本身,即可判断.解答&解:2017的绝对值等于2017,故选A.点评&本题考查绝对值的性质,记住正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.(3分)(2017•桂林)4的算术平方根是()A.4 B.2 C.﹣2 D.±2分析&根据算术平方根的定义即可求出答案.解答&解:4的算术平方根是2.故选:B.点评&本题考查算术平方根,解题的关键是正确理解算术平方根与平方根的定义,本题属于基础题型.3.(3分)(2017•桂林)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.5分析&根据平均数的定义计算.解答&解:数据2,3,5,7,8的平均数==5.故选D.点评&本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.(3分)(2017•桂林)如图所示的几何体的主视图是()A.B.C.D.分析&根据圆锥的三视图进行判断,即可得到其主视图.解答&解:根据圆锥的摆放位置,可知从正面看圆锥所得的图形是三角形,故该圆锥的主视图是三角形,故选:A.点评&本题主要考查了几何体的三视图,解决问题的关键是掌握圆锥的三视图的特征.5.(3分)(2017•桂林)下列图形中不是中心对称图形的是()A.B.C.D.分析&根据中心对称图形的概念求解.解答&解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.点评&本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2017•桂林)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×108分析&科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.解答&解:用科学记数法表示数57000000为5.7×107,故选:C.点评&此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2017•桂林)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6 D.2a+4a=8a分析&A、利用同底数幂的除法法则计算得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用合并同类项的法则计算得到结果,即可做出判断.解答&解:A、a3÷a3=1,本选项错误;B、(x2)3=x6,本选项错误;C、m2•m4=m6,本选项正确;D、2a+4a=6a,本选项错误.故选:C.点评&此题考查了同底数幂的乘除法,幂的乘方,以及合并同类项,熟练掌握法则是解本题的关键.8.(3分)(2017•桂林)如图,直线a,b被直线c所截,下列条件能判断a∥b 的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°分析&根据同位角相等,两直线平行即可判断.解答&解:∵∠1=∠4,∴a∥b(同位角相等两直线平行).故选B.点评&本题考查平行线的判定,解题的关键是熟练掌握平行线的判定方法,属于基础题.9.(3分)(2017•桂林)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等分析&根据对顶角的定义,有理数的性质,角平分线的性质对各选项分析判断即可得解.解答&解:A、相等的角是对顶角,是假命题,例如,角平分线把角分成的两个角相等,但不是对顶角,故本选项错误;B、若实数a,b满足a2=b2,则a=b,是假命题,应为a=b或a=﹣b,故本选项错误;C、若实数a,b满足a<0,b<0,则ab<0,是假命题,应为ab>0,故本选项错误;D、角的平分线上的点到角的两边的距离相等是真命题,故本选项正确.故选D.点评&本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•桂林)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±2分析&根据分式的值为零的条件即可求出x的值.解答&解:由题意可知:解得:x=2故选(C)点评&本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本属于基础题型.11.(3分)(2017•桂林)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤分析&由x的取值范围结合y1=y2可求出y的取值范围,根据y关于x的关系式可得出x关于y的关系式,利用做差法求出x=1﹣y+再﹣9≤y≤﹣中的单调性,依此单调性即可求出x1+x2的取值范围.解答&解:当x=﹣10时,y==﹣;当x=10时,y=﹣x+1=﹣9,∴﹣9≤y1=y2≤﹣.设x1<x2,则y2=﹣x2+1、y1=,∴x2=1﹣y2,x1=,∴x1+x2=1﹣y2+.设x=1﹣y+(﹣9≤y≤﹣),﹣9≤ym <yn≤﹣,则xn ﹣xm=ym﹣yn+﹣=(ym﹣yn)(1+)<0,∴x=1﹣y+中x值随y值的增大而减小,∴1﹣(﹣)﹣10=﹣≤x≤1﹣(﹣9)﹣=.故选B.点评&本题考查了反比例函数图象上点的坐标特征以及一次函数图象上点的坐标特征,找出x=1﹣y+在﹣9≤y≤﹣中的单调性是解题的关键.12.(3分)(2017•桂林)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB 边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2C.πD.π分析&如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B 时,点F的运动路径长为,求出圆心角,半径即可解决问题.解答&解:如图,连接AC、BD交于点G,连接OG.∵BF⊥CE,∴∠BFC=90°,∴点F的运动轨迹在以边长为直径的⊙O上,当点E从点A运动到点B时,点F的运动路径长为,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴的长==π,故选D.点评&本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•桂林)分解因式:x2﹣x= x(x﹣1).分析&首先提取公因式x,进而分解因式得出答案.解答&解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).点评&此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(3分)(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB= 4 .分析&根据中点定义解答.解答&解:∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4.故答案为4.点评&本题考查了两点之间的距离,熟悉中点定义是解题的关键.15.(3分)(2017•桂林)分式与的最简公分母是2a2b2.分析&确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解答&解与的分母分别是2a2b、ab2,故最简公分母是2a2b2;故答案是:2a2b2.点评&本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.16.(3分)(2017•桂林)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.分析&根据6个完全相同的小球中有3个球的标号是偶数,再根据概率公式即可得出答案.解答&解:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个,∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是=;故答案为:.点评&本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2017•桂林)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.分析&作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC=90°,则根据勾股定理可计算出AC=5,AO=OB=,接着利用面积法计算出BH=,于是利用勾股定理可计算出OH=,然后证明△OBH∽△OEA,最后利用相似比可求出的值.解答&解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,AC==5,∴AO=OB=,∵BH•AC=AB•BC,∴BH==,在Rt△OBH中,OH===,∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为.点评&本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时主要利用相似比计算线段的长.也考查了矩形的性质.18.(3分)(2017•桂林)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点.分析&观察已知图形,得出一般性规律,写出即可.解答&解:如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点,故答案为:(3n﹣1)点评&此题考查了规律型:图形的变化类,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•桂林)计算:(﹣2017)0﹣sin30°++2﹣1.分析&根据先计算零指数幂、代入特殊角的三角函数值、化简二次根式、负整数指数幂,然后计算加减法.解答&解:原式=1﹣+2+=1+2.点评&本题综合考查了零指数幂、特殊角的三角函数值、化简二次根式、负整数指数幂,属于基础题,熟记计算法则即可解题.20.(6分)(2017•桂林)解二元一次方程组:.分析&方程组利用加减消元法求出解即可.解答&解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.点评&此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)(2017•桂林)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:组别阅读时间t(单频数(人数)位:小时)A0≤t<18B1≤t<220C2≤t<324D3≤t<4mE4≤t<58F t≥54(1)图表中的m= 16 ,n= 30 ;(2)扇形统计图中F组所对应的圆心角为18 度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?分析&(1)根据题意列式计算即可;(2)360°×F组所对应的百分数即可得到结论;(3)根据题意列式计算即可得到结论.解答&解:(1)m=8÷10%×20%=16,n=24÷(8÷10%)×100=30;(2)扇形统计图中F组所对应的圆心角为:360°×=18°;(3)由题意得,每周平均课外阅读时间不低于3小时的学生数为:1500×(20%+10%+5%)=525名.故答案为:16,30,18.点评&本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(8分)(2017•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.分析&(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.解答&解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.点评&本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.23.(8分)(2017•桂林)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD 的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)分析&在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF的长,从而可求得EF的长,即可求得CD的长.解答&解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.点评&本题主要考查解直角三角形的应用,利用条件构造直角三角形是解题的关键,注意角度的应用.24.(8分)(2017•桂林)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?分析&(1)设该市这两年投入基础教育经费的年平均增长率为x,根据2015年及2017年投入的基础教育经费金额,即可得出关于x的一元二次方程,解之即可取其正值即可得出结论;(2)根据年平均增长率求出2018年基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中的最大值即可.解答&解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.点评&本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2015年及2017年投入的基础教育经费金额,列出关于x的一元二次方程;(2)根据总价=单价×数量,列出关于m的一元一次不等式.25.(10分)(2017•桂林)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.分析&(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE :S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.解答&(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴D是AC的中点,∠ABD=∠CBD,∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴=,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD=,AB=10,∴BD=3,∵EM⊥AB,AB是⊙O的直径,∴=,∴∠BEP=∠EDB,∴△BPE∽△BED,∴=,∴BP=,∴DP=BD﹣BP=,∴S△DPE :S△BPE=DP:BP=13:32,∵S△BCD =××3=15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE=.点评&考查了圆周角定理、等腰三角形的性质、相似三角形的判定与性质以及勾股定理的知识.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.26.(12分)(2017•桂林)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.分析&(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3即可得到结论;(2)由对称性可知,得到抛物线y2的函数解析式为y2=﹣x2+3x+4,求得直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,得到DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,即可得到结论;(3)由题意得到△BOC是等腰直角三角形,求得线段BC的垂直平分线为y=x,由(2)知,直线DE的解析式为x=1,得到H(2,2),根据S⊙P :S△DFH=2π,得到r=,由于⊙P与直线BC相切,推出点P在与直线BC平行且距离为的直线上,于是列方程即可得到结论.解答&解:(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3得:a=1,b=﹣3,∴抛物线y1的函数解析式为:y1=x2﹣3x﹣4;(2)由对称性可知,抛物线y2的函数解析式为:y2=﹣x2+3x+4,∴C(0,4),设直线BC的解析式为:y=kx+q,把B(4,0),C(0,4)代入得,k=﹣1,q=4,∴直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,∴DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,∵0≤m≤4,∴当m=1时,DEmax=9;此时,D(1,3),E(1,﹣6);(3)由题意可知,△BOC是等腰直角三角形,∴线段BC的垂直平分线为:y=x,由(2)知,直线DE的解析式为:x=1,∴F(1,1),∵H是BC的中点,∴H(2,2),∴DH=,FH=,∴S△DFH=1,设⊙P的半径为r,∵S⊙P :S△DFH=2π,∴r=,∵⊙P与直线BC相切,∴点P在与直线BC平行且距离为的直线上,∴点P在直线y=﹣x+2或y=﹣x+6的直线上,∵点P在抛物线y2=﹣x2+3x+4上,∴﹣x+2=﹣x2+3x+4,解得:x1=2+,x2=2﹣,﹣x+2=﹣x2+3x+4,解得:x3=2+,x4=2﹣,∴符合条件的点P坐标有4个,分别是(2+,﹣),(2﹣,),(2+,4﹣),(2﹣,4+).点评&本题考查了待定系数法求函数的解析式,折叠的性质,二次函数的最大值问题,等腰直角三角形的性质,线段的垂直平分线的性质,直线与圆的位置关系,正确的理解题意是解题的关键.。
广西桂林市中考数学试卷

广西桂林市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)2017的绝对值是()A.2017 B.﹣2017 C.0 D.2.(3分)4的算术平方根是()A.4 B.2 C.﹣2 D.±23.(3分)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.54.(3分)如图所示的几何体的主视图是()A.B.C. D.5.(3分)下列图形中不是中心对称图形的是()A.B.C.D.6.(3分)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×1087.(3分)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°9.(3分)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等10.(3分)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±211.(3分)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤12.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2 C.πD.π二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:x2﹣x=.14.(3分)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=.15.(3分)分式与的最简公分母是.16.(3分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.17.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.18.(3分)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有个点.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.20.(6分)解二元一次方程组:.21.(8分)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m=,n=;(2)扇形统计图中F组所对应的圆心角为度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?22.(8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.23.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)24.(8分)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?25.(10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.26.(12分)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B (4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.广西桂林市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•桂林)2017的绝对值是()A.2017 B.﹣2017 C.0 D.【分析】根据正数的绝对值是它本身,即可判断.【解答】解:2017的绝对值等于2017,故选A.【点评】本题考查绝对值的性质,记住正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.(3分)(2017•桂林)4的算术平方根是()A.4 B.2 C.﹣2 D.±2【分析】根据算术平方根的定义即可求出答案.【解答】解:4的算术平方根是2.故选:B.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根与平方根的定义,本题属于基础题型.3.(3分)(2017•桂林)一组数据2,3,5,7,8的平均数是()A.2 B.3 C.4 D.5【分析】根据平均数的定义计算.【解答】解:数据2,3,5,7,8的平均数==5.故选D.【点评】本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.(3分)(2017•桂林)如图所示的几何体的主视图是()A.B.C. D.【分析】根据圆锥的三视图进行判断,即可得到其主视图.【解答】解:根据圆锥的摆放位置,可知从正面看圆锥所得的图形是三角形,故该圆锥的主视图是三角形,故选:A.【点评】本题主要考查了几何体的三视图,解决问题的关键是掌握圆锥的三视图的特征.5.(3分)(2017•桂林)下列图形中不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2017•桂林)用科学记数法表示数57000000为()A.57×106 B.5.7×106C.5.7×107D.0.57×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:用科学记数法表示数57000000为5.7×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2017•桂林)下列计算正确的是()A.a3÷a3=a B.(x2)3=x5C.m2•m4=m6D.2a+4a=8a【分析】A、利用同底数幂的除法法则计算得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用合并同类项的法则计算得到结果,即可做出判断.【解答】解:A、a3÷a3=1,本选项错误;B、(x2)3=x6,本选项错误;C、m2•m4=m6,本选项正确;D、2a+4a=6a,本选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,幂的乘方,以及合并同类项,熟练掌握法则是解本题的关键.8.(3分)(2017•桂林)如图,直线a,b被直线c所截,下列条件能判断a∥b 的是()A.∠1=∠2 B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°【分析】根据同位角相等,两直线平行即可判断.【解答】解:∵∠1=∠4,∴a∥b(同位角相等两直线平行).故选B.【点评】本题考查平行线的判定,解题的关键是熟练掌握平行线的判定方法,属于基础题.9.(3分)(2017•桂林)下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0D.角的平分线上的点到角的两边的距离相等【分析】根据对顶角的定义,有理数的性质,角平分线的性质对各选项分析判断即可得解.【解答】解:A、相等的角是对顶角,是假命题,例如,角平分线把角分成的两个角相等,但不是对顶角,故本选项错误;B、若实数a,b满足a2=b2,则a=b,是假命题,应为a=b或a=﹣b,故本选项错误;C、若实数a,b满足a<0,b<0,则ab<0,是假命题,应为ab>0,故本选项错误;D、角的平分线上的点到角的两边的距离相等是真命题,故本选项正确.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017•桂林)若分式的值为0,则x的值为()A.﹣2 B.0 C.2 D.±2【分析】根据分式的值为零的条件即可求出x的值.【解答】解:由题意可知:解得:x=2故选(C)【点评】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本属于基础题型.11.(3分)(2017•桂林)一次函数y=﹣x+1(0≤x≤10)与反比例函数y=(﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A.﹣≤x≤1 B.﹣≤x≤C.﹣≤x≤D.1≤x≤【分析】由x的取值范围结合y1=y2可求出y的取值范围,根据y关于x的关系式可得出x关于y的关系式,利用做差法求出x=1﹣y+再﹣9≤y≤﹣中的单调性,依此单调性即可求出x1+x2的取值范围.【解答】解:当x=﹣10时,y==﹣;当x=10时,y=﹣x+1=﹣9,∴﹣9≤y1=y2≤﹣.设x1<x2,则y2=﹣x2+1、y1=,∴x2=1﹣y2,x1=,∴x1+x2=1﹣y2+.设x=1﹣y+(﹣9≤y≤﹣),﹣9≤y m<y n≤﹣,则x n﹣x m=y m﹣y n+﹣=(y m﹣y n)(1+)<0,∴x=1﹣y+中x值随y值的增大而减小,∴1﹣(﹣)﹣10=﹣≤x≤1﹣(﹣9)﹣=.故选B.【点评】本题考查了反比例函数图象上点的坐标特征以及一次函数图象上点的坐标特征,找出x=1﹣y+在﹣9≤y≤﹣中的单调性是解题的关键.12.(3分)(2017•桂林)如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB 边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2 C.πD.π【分析】如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点G,连接OG.∵BF⊥CE,∴∠BFC=90°,∴点F的运动轨迹在以边长为直径的⊙O上,当点E从点A运动到点B时,点F的运动路径长为,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴的长==π,故选D.【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•桂林)分解因式:x2﹣x=x(x﹣1).【分析】首先提取公因式x,进而分解因式得出答案.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(3分)(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=4.【分析】根据中点定义解答.【解答】解:∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4.故答案为4.【点评】本题考查了两点之间的距离,熟悉中点定义是解题的关键.15.(3分)(2017•桂林)分式与的最简公分母是2a2b2.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解与的分母分别是2a2b、ab2,故最简公分母是2a2b2;故答案是:2a2b2.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.16.(3分)(2017•桂林)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是.【分析】根据6个完全相同的小球中有3个球的标号是偶数,再根据概率公式即可得出答案.【解答】解:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个,∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2017•桂林)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则的值为.【分析】作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC=90°,则根据勾股定理可计算出AC=5,AO=OB=,接着利用面积法计算出BH=,于是利用勾股定理可计算出OH=,然后证明△OBH∽△OEA,最后利用相似比可求出的值.【解答】解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,AC==5,∴AO=OB=,∵BH•AC=AB•BC,∴BH==,在Rt△OBH中,OH===,∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时主要利用相似比计算线段的长.也考查了矩形的性质.18.(3分)(2017•桂林)如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点.【分析】观察已知图形,得出一般性规律,写出即可.【解答】解:如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有(3n﹣1)个点,故答案为:(3n﹣1)【点评】此题考查了规律型:图形的变化类,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•桂林)计算:(﹣2017)0﹣sin30°++2﹣1.【分析】根据先计算零指数幂、代入特殊角的三角函数值、化简二次根式、负整数指数幂,然后计算加减法.【解答】解:原式=1﹣+2+=1+2.【点评】本题综合考查了零指数幂、特殊角的三角函数值、化简二次根式、负整数指数幂,属于基础题,熟记计算法则即可解题.20.(6分)(2017•桂林)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)(2017•桂林)某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题:(1)图表中的m=16,n=30;(2)扇形统计图中F组所对应的圆心角为18度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?【分析】(1)根据题意列式计算即可;(2)360°×F组所对应的百分数即可得到结论;(3)根据题意列式计算即可得到结论.【解答】解:(1)m=8÷10%×20%=16,n=24÷(8÷10%)×100=30;(2)扇形统计图中F组所对应的圆心角为:360°×=18°;(3)由题意得,每周平均课外阅读时间不低于3小时的学生数为:1500×(20%+10%+5%)=525名.故答案为:16,30,18.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(8分)(2017•桂林)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.【分析】(1)根据平移变换的性质作图即可;(2)根据平行线的性质得到∠A=∠B′,∠B=∠A′,根据ASA定理证明即可.【解答】解:(1)如图所示:(2)证明:∵AB∥A′B′,∴∠A=∠B′,∠B=∠A′在△AOB和△B′OA′中,,∴△AOB≌△B′OA′.【点评】本题考查的是作图﹣平移变换、全等三角形的判定,掌握平移变换的性质、全等三角形的判定定理是解题的关键.23.(8分)(2017•桂林)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)【分析】在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF 的长,从而可求得EF的长,即可求得CD的长.【解答】解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【点评】本题主要考查解直角三角形的应用,利用条件构造直角三角形是解题的关键,注意角度的应用.24.(8分)(2017•桂林)为进一步促进义务教育均恒发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?【分析】(1)设该市这两年投入基础教育经费的年平均增长率为x,根据2015年及投入的基础教育经费金额,即可得出关于x的一元二次方程,解之即可取其正值即可得出结论;(2)根据年平均增长率求出2018年基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最大值即可.【解答】解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2015年及投入的基础教育经费金额,列出关于x的一元二次方程;(2)根据总价=单价×数量,列出关于m的一元一次不等式.25.(10分)(2017•桂林)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【分析】(1)根据圆周角定理可得∠ADB=90°,再根据等腰三角形的性质可证AD=DE;(2)根据AA可证△CED∽△CAB,根据相似三角形的性质和已知条件可求CD;(3)延长EF交⊙O于M,在Rt△ABD中,根据勾股定理可求BD,根据AA可证△BPE∽△BED,根据相似三角形的性质可求BP,进一步求得DP,根据等高三角形面积比等于底边的比可得S△DPE :S△BPE=13:32,S△BDE:S△BCD=4:5,再根据三角形面积公式即可求解.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴D是AC的中点,∠ABD=∠CBD,∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴=,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD=,AB=10,∴BD=3,∵EM⊥AB,AB是⊙O的直径,∴=,∴∠BEP=∠EDB,∴△BPE∽△BED,∴=,∴BP=,∴DP=BD﹣BP=,∴S△DPE :S△BPE=DP:BP=13:32,∵S△BCD=××3=15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE=.【点评】考查了圆周角定理、等腰三角形的性质、相似三角形的判定与性质以及勾股定理的知识.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.26.(12分)(2017•桂林)已知抛物线y1=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(4,0).(1)求抛物线y1的函数解析式;(2)如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值;(2)在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是抛物线y2上一动点,⊙P与直线BC相切,且S⊙P :S△DFH=2π,求满足条件的所有点P的坐标.【分析】(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3即可得到结论;(2)由对称性可知,得到抛物线y2的函数解析式为y2=﹣x2+3x+4,求得直线BC 的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,得到DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,即可得到结论;(3)由题意得到△BOC是等腰直角三角形,求得线段BC的垂直平分线为y=x,由(2)知,直线DE的解析式为x=1,得到H(2,2),根据S⊙P :S△DFH=2π,得到r=,由于⊙P与直线BC相切,推出点P在与直线BC平行且距离为的直线上,于是列方程即可得到结论.【解答】解:(1)将点A(﹣1,0)和点B(4,0)代入y1=ax2+bx﹣3得:a=1,b=﹣3,∴抛物线y1的函数解析式为:y1=x2﹣3x﹣4;(2)由对称性可知,抛物线y2的函数解析式为:y2=﹣x2+3x+4,∴C(0,4),设直线BC的解析式为:y=kx+q,把B(4,0),C(0,4)代入得,k=﹣1,q=4,∴直线BC的解析式为:y=﹣x+4,设D(m,﹣m+4),E(m,m2﹣3m﹣4),其中0≤m≤4,∴DE=﹣m+4﹣(m2﹣3m﹣4)=﹣(m﹣1)2+9,∵0≤m≤4,∴当m=1时,DE max=9;此时,D(1,3),E(1,﹣6);(3)由题意可知,△BOC是等腰直角三角形,∴线段BC的垂直平分线为:y=x,由(2)知,直线DE的解析式为:x=1,∴F(1,1),∵H是BC的中点,∴H(2,2),∴DH=,FH=,∴S△DFH=1,设⊙P的半径为r,∵S⊙P :S△DFH=2π,∴r=,∵⊙P与直线BC相切,∴点P在与直线BC平行且距离为的直线上,∴点P在直线y=﹣x+2或y=﹣x+6的直线上,∵点P在抛物线y2=﹣x2+3x+4上,∴﹣x+2=﹣x2+3x+4,解得:x1=2+,x2=2﹣,﹣x+2=﹣x2+3x+4,解得:x3=2+,x4=2﹣,∴符合条件的点P坐标有4个,分别是(2+,﹣),(2﹣,),(2+,4﹣),(2﹣,4+).【点评】本题考查了待定系数法求函数的解析式,折叠的性质,二次函数的最大值问题,等腰直角三角形的性质,线段的垂直平分线的性质,直线与圆的位置关系,正确的理解题意是解题的关键.黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.(3分)下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.(3分)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.6.(3分)方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣57.(3分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B 的大小是()A.43°B.35°C.34°D.44°8.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.(3分)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)将57600000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)把多项式4ax2﹣9ay2分解因式的结果是.14.(3分)计算﹣6的结果是.15.(3分)已知反比例函数y=的图象经过点(1,2),则k的值为.16.(3分)不等式组的解集是.17.(3分)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.(3分)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为度.19.(3分)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为.20.(3分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE ⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.(7分)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.23.(8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.(8分)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.(10分)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.(10分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB 于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,。
2017年桂林市中考数学试题及答案

2017年桂林市初中毕业升学考试试卷数 学(考试用时:120分钟 满分: 120分)注意事项:1.试卷分为试题卷和答题卡两部分,在本试...题.卷上作答无效......。
2.答题前,请认真阅读答题..卡.上的注意事项。
3.考试结束后,将本试卷和答题......卡.一并交回。
一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题..卡.上对应题目的答案标号涂黑). 1.2011的倒数是( ).A .12011 B .2011 C .2011- D .12011- 2.在实数2、0、1-、2-中,最小的实数是( ).A .2B .0C .1-D .2-3.下面四个图形中,∠1=∠2一定成立的是( ).4.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ).5.下列运算正确的是( ).A . 22232x x x -= B .22(2)2a a -=-C .222()a b a b +=+ D .()2121a a --=--6.如图,已知Rt △ABC 中,∠C =90°,BC =3, AC =4,则sinA 的值为( ).A .34B .43 C .35 D .457.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的 俯视图是( ).8.直线1y kx =-一定经过点( ).A .(1,0)B .(1,k )C .(0,k )D .(0,-1) 9.下面调查中,适合采用全面调查的事件是( ).A .对全国中学生心理健康现状的调查.B .对我市食品合格情况的调查.C .对桂林电视台《桂林板路》收视率的调查.D .对你所在的班级同学的身高情况的调查.10.若点 P (a ,a -2)在第四象限,则a 的取值范围是( ). A .-2<a <0 B .0<a <2 C .a >2 D .a <0 11.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++ B .2(1)4y x =--+ C .2(1)2y x =--+ D .2(1)4y x =-++12.如图,将边长为a 的正六边形A 1 A 2 A 3 A 4 A 5 A 6在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为( ). A .4233a π+ B . 8433a π+ C . 433a π+ D . 4236a π+二、填空题(共6小题,每小题3分,共18分,请将答案填在答题..卡.上). 13.因式分解:22a a += .14.我市在临桂新区正在建设的广西桂林图书馆、桂林博物馆、桂林大剧院及文化广场,建成后总面积达163500平方米,将成为我市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为 平方米.15.当2x =-时,代数式21x x -的值是 .16.如图,等腰梯形ABCD 中,AB ∥DC ,BE ∥AD , 梯形ABCD的周长为26,DE =4,则△BEC 的周长为 .17.双曲线1y 、2y 在第一象限的图像如图,14y x=, 过1y 上的任意一点A ,作x 轴的平行线交2y 于B , 交y 轴于C ,若1AOB S ∆=,则2y 的解析式是 . 18.若111a m =-,2111a a =-,3211a a =-,… ;则2011a 的值为 .(用含m 的代数式表示)三、解答题(本大题共8题,共66分,请将答案写在答题..卡.上). 19.(本题满分6分)计算:01(21)22452tan -︒+--+-20.(本题满分6分)解二元一次方程组:35382x y y x =-⎧⎨=-⎩21.(本题满分8分)求证:角平分线上的点到这个角的两边距离相等.已知: 求证: 证明: 22.(本题满分8分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题: (1)这次抽查的家长总人数为 ; (2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是 .3.(本题满分8分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2017年需投入多少万元? 24.(本题满分8分)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x 名老人,则这批牛奶共有多少盒?(用含x 的代数式表示). (2)该敬老院至少有多少名老人?最多有多少名老人?25.(本题满分10分)如图,在锐角△ABC 中,AC 是最短边;以AC 中点O 为圆心,12AC 长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连结AE 、AD 、DC . (1)求证:D 是AE 的中点; (2)求证:∠DAO =∠B +∠BAD ; (3)若12CEF OCD S S ∆∆=,且AC =4,求CF 的长.26.(本题满分12分)已知二次函数21342y x x =-+的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB =90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.① ②35382x y y x =-⎧⎨=-⎩ 2017年桂林市初中毕业升学考试数学参考答案及评分标准一、选择题:题号1 2 3 4 5 6 7 8 9 10 11 12 答案A D BCAC CD D B B A二、填空题:13.(2)a a + 14.51.63510⨯ 15.43- 16.18 17.26y x =18.11m- 三、解答题:19.(本题满分 6分)解:原式=112122--⨯+ ………4分(求出一个值给1分) =12……………………6分20.(本题满分6分)解: 把①代入②得:382(35)y y =-- ……………………1分2y = ……………………3分把2y =代入①可得:325x =⨯- ……………………4分1x = ……………………5分所以此二元一次方程组的解为12x y =⎧⎨=⎩. ……………………6分21.(本题满分8分)已知:如图,OC 是∠AOB 的平分线,P 是OC 上任意一点,PE ⊥OA ,PF ⊥OB ,垂足分别为E 、F ……………2分求证:PE =PF …………………………………3分 证明:∵OC 是∠AOB 的平分线∴∠POE =∠POF …………………4分 ∵PE ⊥OA ,PF ⊥OB∴∠PEO =∠PFO ……………………5分 又∵OP =OP ………………6分∴△POE ≌△POF ……………………7分 ∴PE =PF ……………………8分22.(本题满分8分)解:(1)100 ; ………………2分(2)条形统计图:70, ………………4分扇形统计图:赞成:10﹪,反对:70﹪; ………………6分(3)25. ………………8分 23.(本题满分8分) 解:(1)设该市对市区绿化工程投入资金的年平均增长率为x , ………………1分根据题意得,22000(1)2420x += ……………3分得 110%x =,2 2.1x =-(舍去) …………5分答:该市对市区绿化工程投入资金的年平均增长率为10﹪. …………6分 (2)2017年需投入资金:22420(110%)2928.2⨯+=(万元) …………7分 答:2017年需投入资金2928.2万元. …………8分 24.(本题满分8分) 解:(1)牛奶盒数:(538)x +盒 …………1分 (2)根据题意得:5386(1)55386(1)1x x x x +--<⎧⎨+--≥⎩ …………4分∴不等式组的解集为:39<x ≤43 …………6分 ∵x 为整数∴x =40,41,42,43答:该敬老院至少有40名老人,最多有43名老人. …………8分25.(本题满分10分)证明:(1)∵AC 是⊙O 的直径∴AE ⊥BC …………1分 ∵OD ∥BC∴AE ⊥OD …………2分∴D 是AE 的中点 …………3分 (2)方法一:如图,延长OD 交AB 于G ,则OG ∥BC …4分 ∴∠AGD =∠B∵∠ADO =∠BAD +∠AGD …………5分 又∵OA =OD∴∠DAO =∠ADO∴∠DAO =∠B +∠BAD …………6分 方法二:如图,延长AD 交BC 于H …4分 则∠ADO =∠AHC∵∠AHC =∠B +∠BAD …………5分 ∴∠ADO =∠B +∠BAD 又∵OA =OD∴∠DAO =∠B +∠BAD …………6分 (3) ∵AO =OC ∴12OCD ACD S S ∆∆=∵12CEF OCD S S ∆∆= ∴14CEFACDSS ∆∆= …………7分 ∵∠ACD =∠FCE ∠ADC =∠FEC =90° ∴△ACD ∽△FCE …………………8分∴2()CEF ACD S CF S AC∆∆= 即: 21()44CF = …………9分 ∴CF =2 …………10分26.(本题满分12分) 解: (1)由21342y x x =-+得 32bx a=-= …………1分 ∴D(3,0)…………2分(2)方法一:如图1, 设平移后的抛物线的解析式为21342y x x k =-++ …………3分则C (0,)k OC =k令0y = 即 213042x x k -++=得 1349x k =++ 2349x k =-+ …………4分∴A (349,0)k -+,B (349,0)k ++∴22(493349)1636AB k k k =++-++=+………5分222222(349)(349)AC BC k k k k +=+-+++++22836k k =++……………………6分 ∵222AC BC AB +=即: 228361636k k k ++=+得 14k = 20k =(舍去) ……………7分∴抛物线的解析式为213442y x x =-++ ……………8分方法二: ∵ 21342y x x =-+ ∴顶点坐标93,4⎛⎫⎪⎝⎭设抛物线向上平移h 个单位,则得到()0,C h ,顶点坐标93,4M h ⎛⎫+ ⎪⎝⎭…………3分 ∴平移后的抛物线: ()219344y x h =--++……………………4分 当0y =时, ()2193044x h --++=, 得 1349x h =-+ 1349x h =++ ∴ A (349,0)h -+ B (349,0)h ++……………………5分∵∠ACB =90° ∴△AOC ∽△COB ∴2OC =OA ·OB ……………………6分()()2493493h h h =+-++ 得 14h =,()20h =舍去…………7分∴平移后的抛物线: ()()22191253434444y x x =--++=--+…………8分(3)方法一:如图2, 由抛物线的解析式213442y x x =-++可得 A (-2 ,0),B (8,0) ,C (4,0) ,M 25(3,)4…………9分过C 、M 作直线,连结CD ,过M 作MH 垂直y 轴于H , 则3MH = ∴2225625()416DM == 22222252253(4)416CM MH CH =+=+-= 在Rt △COD 中,CD =22345+==AD∴点C 在⊙D 上 …………………10分∵2225625()416DM == 2222225256255()16416CD CM +=+== ……11分∴222DM CM CD =+∴△CDM 是直角三角形,∴CD ⊥CM ∴直线CM 与⊙D 相切 …………12分方法二:如图3, 由抛物线的解析式可得A (-2 ,0),B (8,0) ,C (4,0) ,M 25(3,)4…………9分 作直线CM ,过D 作DE ⊥CM 于E , 过M 作MH 垂直y 轴于H ,则3MH =,254DM =, 由勾股定理得154CM = ∵DM ∥OC∴∠MCH=∠EMD∴Rt △CMH ∽Rt △DME …………10分∴DE MDMH CM= 得 5DE = …………11分 由(2)知10AB = ∴⊙D 的半径为5∴直线CM 与⊙D 相切 …………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年桂林市初中毕业升学考试试卷 (考试用时:120分钟,满分:120分)注意事项:1.本试卷分选择题和非选择题两部分,在本试卷上作答无效.2.考试结束后,将本试卷和答题卷一并交回.3.答题前,请认真阅读答题卡上的注意事项.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卷上对应题目的答案标号涂黑)1.2017的绝对值是( )A .2017B .﹣2017C .0 D . 2.4的算术平方根是( ) A .4 B .2 C .-2 D.2±3.一组数据2,3,5,7,8的平均数是( ) A .2 B .3 C .4 D .54.如图所示几何体的主视图是( )5.下列图形不是中心对称图形的是( )6.用科学记数法表示57000000为( )A .61057⨯ B .6107.5⨯ C .7107.5⨯ D .81057.0⨯7.下列计算正确的是( )A .a a a =÷33B .()532a a = C .642m m m =⋅ D .a a a 842=+8.如图,直线a ,b 被直线 c 所截,下列条件能判断//b a 的是( )20171A .21∠=∠B .41∠=∠C .︒=∠+∠18043D .︒=∠︒=∠354202,9.下列命题是真命题的是( ) A .相等的角是对顶角B .若实数a ,b 满足22b a =,则b a = C .若实数0<a ,0<b 满足,则0<ab D .角的平分线上的点到角两边的距离相等10.若分式242+-x x 的值为0,则x 的值为( )A .-2B .0C .2D .2±11.一次函数)(1001≤≤+-=x x y 与反比例函数)010(1≤≤-=x xy 在同一平面直角坐标系中的图象如图所示,点()()2211,,,y x y x 是图象上两个不同的点,若21y y =,则21x x +的取值范围是( ) A .11089≤≤-x B .9891089≤≤-x C .1089989≤≤-x D .10891≤≤x12.如图,在菱形ABCD 中,︒=∠60ABC ,AB=4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,点F 的运动路径为( ) A .3 B .32 C .π32 D .π34 二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上)第11题图第12题图13.分解因式:=-x x 2.14.如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1则AB .15.分式b a 221与21ab 的最简公分母是 . 16.一个不透明的口袋中有6各完全相同的小球,把他们分别标号为1,2,3,4,5,6,从18.如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,按此规律,第n 个图形中有 个点.三、解答题(本大题共8道题,共66分,请将答案填在答题卡上)19.(本题满分6分)计算:()1002830sin 2017-++--21.(本题满分8分)某校为了解学生每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息,解答下列问题 :O(1)图表中=m ,=n . (2)扇形统计图中F 组对应的圆心角为 度;(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?22.(本题满分8分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB 的端点均在格点上.(1)将线段AB 向右平移3个单位长度,得到线段A ´B ´,画出平移后的线段并连接AB ´和A ´B ,两线段相交于点O ; (2)求证:△AOB ∽△B ´OA ´.23.(本题满分8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,下图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB //CD ,AM //BN //ED ,AE ⊥DE ,请根据图中数据,求出线段BE 和CD 的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位.)24.(本题满分8分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元. (1)求该市这两年投入基础教育经费的年平均增长率;(2)如果安(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影仪需2000元,则最多可购买电脑多少台?25、(本题满分10分)已知:如图在ABC ∆中,10==BC AB ,以AB 为直径作☉O 分别交BC AC 、于点D 、E ,连接DE 和DB ,过点E 作AB EF ⊥,垂足为F ,交BD 于点P .(1)求证:DE AD =.(2)若2=CE ,求线段CD 的长.(3)在(2)的条件下,求DPE ∆的面积.26.(本题满分12分)已知抛物线()0421≠-+=a bx ax y 与x 轴交于点A (-1,0)和点B(4,0).(1)求抛物线1y 的函数解析式;(2)如图①,将抛物线1y 沿x 轴翻折得到抛物线2y ,抛物线2y 与y 轴交于点C ,点D 是线段BC 上的一个动点,过点D 做DE//y 轴交抛物线1y 于点E ,求线段DE 的长度的最大值; (3)在(2)的条件下,当线段DE 处于长度最大值位置时,作线段BC 的垂直平分线交DE 于点F ,垂足为H ,点P 是抛物线2y 上一动点,⊙P 与直线BC 相切,且π2:△DFH P ⊙=S S 求满足条件的所有点P 的坐标.答案一、选择题(36312=⨯,)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B D A B C C B D C B D二、填空(1836=⨯,)13. ()1-x x 14. 4 15. 222b a 16.21 17. 24718.213-n三、解答题(本大题共8小题,共66分)19. 221+ 20. ⎩⎨⎧-==12y x 21.(1)16=m ,30=n ; (2)18; (3)52522.(1)如图所示(2)证明:在△AOB 和△A ´OB ´中 ∠AOB=∠A ´OB ´,∠ABO=∠B ´A ´O ∴△AOB ∽△A ´OB ´23.(1)∠NBD=∠BDE=37° tan∠BDE=tan37°=75.0=DEBEBE=0.75×DE=25×0.75=18.75≈18.8 (2)过点C 作CM∠AE ∠∠MAC=∠ACM=45° ∠AM=MC=25∠BM=AM -AB=25-17=8∠CD=ME=BE -BM=18.8-8=10.824.解:(1)设:该市这两年投入基础教育经费的平均增长率为x7200)1(50002=+x解得:%20=x答:设该市这两年投入基础教育经费的平均增长率为20%.(2)设:购买电脑a 台,实物投影仪b 台()⎩⎨⎧⨯+≤+=+%5%20172000000200035001500b a b a 解得:880≤a答:最多能够买电脑880台.25.解:(1)证:AB 为直径,点D 在☉O 上 AC BD ⊥∴ , 又BC AB =ABC BD ∠∴平分, CBD ABD ∠=∠ 即DE AD =.(2)如图,连接AE ,10==BC AB ,2=CE 3664100222=-=-=BE AB AE 即6=AE .在ACE ∆中,40436222=+=+=CE AE AC , 即102=AC又 BD 垂直平分AC 1021==∴AC CD . (3)过点E 做EG ⊥BD , 由(2)知AE=6EF AB BE AE S ABE •=•=∆2121,解得:524=EF BF 2=BE 2-EF 2 ,解得:532=BF在∠BPF 和∠ABD 中,∠BFP=∠ADB,∠ABD=∠ABD ∴∠BPF∠∠ABD ∴ABBPBD BF =10322=-=AD AB BD ,解得:151032=BP 151013=-=BP BD DP∠∠CDB=90°,EG ⊥BD ∴EG//CD ∴10108EGCD EG BC BE === ∴5104=EG∴155221=••=∆EG DP S DPE 26.(1)4321--=x x y (2)∠1y 与2y 关于x 轴对称 ∠4322++-=x x y ∠点C 的坐标为(0,4) 设直线BD 的解析式为b kx y +=将点B (4,0),点C (0,4)代入解析式得:⎩⎨⎧==+404b b k 解得:⎩⎨⎧=-=41b k ∴直线BD 的解析式为4+-=x y 设点D 的坐标为()4,+-m m 则E ()43,2--m m m()()9143422+--=---+-=m m m m DE∴当1=m 时,DE 最大值为9. (2)∠C (0,4),B (4,0) ∠∠OBC 为等腰直角三角形 ∠∠OCB=∠OBC=45°设线段BC 的垂直平分线的解析式过原点 ∠x y =由(2)知,当DE 取最大值时,1=x此时点D 坐标为(1,3),点E 坐标为(1,-6) 点H 的坐标为(2,2) ∴()()2232122=-+-=DH∠DF//CO∠∠HDF=∠DFH=45° ∴2==FH DH∴12221△DFH =⨯⨯=S ∴π2:△DFH P ⊙=S S 则π2P ⊙=S∵2r S π=圆,可知⊙P 的半径2=r 或2-=r (舍去)设点P 的坐标为()43,2++-m m m 则点P 到BC 的距离为()()()2114431222==+-++-+⨯=r m m m d整理得242=+-m m ∴242±=+-m m①242=+-m m ,解得:621+=m 或622-=m②242-=+-m m ,解得221+=m 或221-=m∴满足要求的P 坐标为()6,621-+P 或()6,622-P 或()24,223-+P 或()24,224+-PDHF。