有机废气催化燃烧
RTO与催化燃烧在有机废气治理中的技术对比分析
RTO与催化燃烧在有机废气治理中的技术对比分析催化燃烧分为:蓄热式催化热力氧化RCO(RegenerationCatalytic Oxidizer)和换热式催化热力氧化CO(CatalyticOxidizer)。
催化燃烧和蓄热式热力焚烧RTO(RegenerativeThermalOxidezer)废气治理技术,是目前能够实现VOCs达标排放的成熟技术。
两种技术从去除率、达标能力上来讲是一致的,但毕竟是两种截然不同的技术,在许多方面还是有区别的。
下面对两种技术进行比较。
一、催化燃烧技术反应温度低催化燃烧反应温度一般在250〜400C,热损失小,所需的能耗低;而RTO反应温度一般在800〜1000C(个别资料提到反应温度760℃,但需增加反应停留时间),热损失大,所需的能耗高。
二、催化燃烧技术不产生NOxRTO的反应温度比较高,会将空气中的氮气部分转化为NOx,并且这一转化率随着温度的提高、停留时间的延长会迅速提升,催化燃烧不会生成NOx。
据研究:1)一套20万m3/h处理量的RTO设备,其NOx排放量约等于一台35t/h的燃煤流化床锅炉。
2)在930℃时,在空气气氛下,N2和02反应生成的热力型NOx平衡浓度可以达到210Ppm(265mg/m3),如果停留时间足够长,生成的NOx还会进一步增加。
3)《蓄热燃烧法工业有机废气治理工程技术规范》5.5.1一般规定:在一般规定中,对治理工程处理后可达到的排放水平以及净化设备运行过程中的环境保护要求、监测要求等进行了原则性的规定。
关于净化系统产生的二次污染物的控制在规范6.4中进行了规定。
在此,需要指出的是,RTO 处理为高温燃烧,在此过程中,有可能会生成NOx,需要对其净化予以考虑,具体排放要求执行国家或地方的相关排放标准。
基于此,如果采用RTO技术治理VOCs,后续要采取脱硝措施。
三、催化燃烧技术不产生二嗯英L催化燃烧技术不产生二嗯英催化燃烧技术作为VOCs治理的主流技术,也是目前能够实现VOCs达标排放的成熟技术。
低温催化燃烧处理有机废气方案
浓缩低温催化燃烧法--处理有机废气方案(5000m3/h)临沂汇鑫环科院曹工一.概述1.项目概况业主在生产过程中,会产生有机废气,为了保护环境,保障企业员工职业健康及周边居民的健康,特对有机废气采取如下整治方案,以供贵公司审定。
2.设计范围自废气处理设备进风口至废气处理风机排放口之间的设备系统、电控系统及管道系统等的设计。
3.工程内容根据业主提供的相关资料和现场状况,设计废气治理工程方案,废气治理工程方案经业主最终确认后,根据方案进行设备、电控及管道的制造、发运、安装、调试、售后服务等。
废气治理工程中的土建平、台基础和至设备区的公用工程管线等外围事项由业主负责实施。
二.设计依据、标准、原则1.设计依据◊《中华人民共和国环境保护法》◊《中华人民共和国大气污染防治法》◊《大气污染物综合排放标准》(GB16297-1996)◊《恶臭污染物排放标准》(GB14554-93)◊《声环境质量标准》(GB3096-2008)◊《工业企业设计卫生标准》(GBZ1-2002)◊《烟囱设计规范》(GB50051-2002)◊《电气装置工程施工及验收规范》(GBJ232-82)◊《钢结构设计规范》(GBJ50205-2001)◊《通风管道技术规程》(JGJ141—2004)◊《建筑防雷设计规范》(GB50057-94)◊《通风与空调工程施工质量验收规范》(GB50243-2002)◊《建筑设计防火规范》(GBJ16-1987)◊《爆炸和火灾危险场所电气施工及验收规范》(GB50257-96)◊《涂装作业安全规程一有机废气净化装置安全技术规定》(GB16297-1996)◊《电气装置安装工程接地装置施工及验收规范》(GB50169-1992)◊《涂装前钢板表面锈蚀等级和除锈等级》(GB8923-88)◊《环境空气质量标准》(GB3095-2012)◊《工作场所有害因素职业接触限值第一部分:化学有害因素》◊公司提供的基础资料及要求:2.设计标准根据有关设计要求,本净化设备尾气的大气染污源最高允许排放标准参照《大气污染物综合排放标准》(GB16297-1996)中的二级标准和环评的标准执行。
RCO有机废气催化燃烧工艺原理
RCO有机废气催化燃烧工艺原理RCO(Regenerative Catalytic Oxidizer)是一种用于处理有机废气的催化燃烧工艺。
RCO工艺原理是通过将有机废气与空气混合,并通过催化剂的作用进行催化燃烧处理,将有机废气中的有害物质氧化转化为无害物质。
RCO工艺包括两个主要步骤:预热和催化氧化。
在预热阶段,有机废气通过燃烧室进行预热,将其温度升高至一定程度以确保燃烧反应的进行。
废气与燃烧室内的内置燃烧器相接触并混合,在燃烧室内依靠火焰和燃料进行加热,使废气达到最佳的反应温度。
在催化氧化阶段,经过预热的废气进入催化器室,在催化剂的作用下,有机废气中的有害气体与氧气发生氧化反应。
催化剂通常是由铂、钯、铑等贵金属组成,这些贵金属具有较好的催化活性和稳定性。
催化剂表面可以提供活性位点,使废气中的有害物质吸附在催化剂表面,并促使氧化反应发生。
催化氧化反应的化学方程式是:有机废气+氧气->二氧化碳+水+硝酸盐+硫酸盐通过催化剂的作用,有机废气中的有害物质被氧化为无害物质,如二氧化碳、水和一些盐。
这些产物可以通过烟囱排放到大气中。
RCO工艺的主要特点是高效能、节能和环保。
由于催化剂的存在,RCO工艺需要较低的温度即可实现废气的完全氧化,从而减少能源的消耗。
此外,RCO工艺没有产生二次污染物的风险,因为废气中的有害物质被完全转化为无害物质,没有副产物的形成。
此外,RCO工艺还具有可再生的特点。
RCO设备通常由两个反应器构成,分别称为器A和器B。
在工作过程中,器A用于处理废气,而器B则被用来进行废气的预热。
然后,设备会定期进行切换,使得废气在A器处理的同时,B器通过废气的热能进行预热。
这种热能的回收利用可以显著提高能源利用效率,从而降低运营成本。
综上所述,RCO工艺通过催化剂的作用将有机废气中的有害物质氧化转化为无害物质,实现了高效能、节能和环保的处理。
其原理基于催化燃烧技术,在废气处理领域具有广泛应用前景。
VOCs催化燃烧的催化剂原理、应用及常见问题
VOCs催化燃烧的催化剂原理、应用及常见问题催化燃烧技术作为VOCs废气处理工艺之一,因为其净化率高,燃烧温度低(一般低于350℃),燃烧没有明火,不会有NOx等二次污染物的生成,安全节能环保等特点,在环保市场应用有了很好的发展前景。
催化剂作为催化燃烧系统的关键技术环节,催化剂的合成技术及应用规则就显得尤为重要。
1、催化燃烧反应原理催化燃烧反应原理是有机废气在较低温度下在催化剂的作用下被完全氧化和分解,达到净化气体目的。
催化燃烧是典型的气固相催化反应,其原理是活性氧参与深度氧化作用。
在催化燃烧过程中,催化剂的作用是降低反应的活化能,同时使反应物分子富集在催化剂表面上以提高反应速率。
借助于催化剂,有机废气可以在较低的起燃温度下无焰燃烧并且在释放大量热量,同时氧化分解成CO2和H2O。
催化燃烧的催化剂反应原理图2.什么是低温催化剂低温催化剂性能指标:起燃温度≤200℃,氧化转化效率≥95%,孔密度200-400cpsi,抗压强度≥8MPa。
3.VOCs催化剂在催化燃烧系统中的作用与影响通常VOCs的自燃烧温度较高,通过催化剂的活化,可降低VOCs 燃烧的活化能,从而降低起燃温度,减少能耗,节约成本。
另外:一般(无催化剂存在)的燃烧温度都会在600℃以上,这样的燃烧会产生氮氧化物,就是常说的NOx,这也是要严格控制的污染物。
催化燃烧是没有明火的燃烧,一般低于350℃,不会有NOx 生成,因此更为安全和环保。
4.什么是空速?影响空速的因素有哪些在VOCs催化燃烧系统中,反应空速通常指体积空速(GHSV),体现出催化剂的处理能力:反应空速是指规定的条件下,单位时间单位体积催化剂处理的气体量,单位为m3/(m3催化剂•h),可简化为h-1。
例如产品标注空速30000h-1:代表每立方催化剂每小时能处理30000m3废气。
空速体现出催化剂的VOCs处理能力,因此和催化剂的性能息息相关。
5.贵金属负载量与空速的关系,贵金属含量是越高越好吗?贵金属催化剂的性能与贵金属的含量、颗粒大小和分散度相关。
催化燃烧废气处理工艺流程
催化燃烧废气处理工艺流程催化燃烧废气处理工艺流程废气处理是一项十分重要的环境保护工作。
随着工业的发展,工厂废气排放的问题也越来越严重。
催化燃烧废气处理是一种常见的处理方法,本文将介绍其工艺流程。
一、催化燃烧的原理催化燃烧是指利用催化剂将有害气体催化氧化成安全无害的气体的过程。
常见的催化剂有铂、钯、铑等贵金属,其作用是在较低温度下加速氧化反应,使反应速率大幅提高。
催化燃烧的反应速率远快于常规燃烧,而且需要的氧气量也较少,具有能耗低的优点。
二、工艺流程催化燃烧废气处理的工艺流程一般包括以下几个步骤:1.采样:对废气进行采样,以确定浓度和成分。
2.预处理:废气经过除尘、除油等处理后,进入预处理器,以提高废气中有害气体与氧气的接触面积和反应速率。
3.催化剂选择:根据废气的成分和特性,选择合适的催化剂。
4.反应器:经过预处理的废气进入反应器,和催化剂接触并发生催化氧化反应,产生安全无害的气体。
5.尾气处理:催化燃烧反应后,会产生少量的二氧化碳和水蒸气等副产品。
这些副产品需要进一步处理,以防止对环境造成二次污染。
三、应用领域催化燃烧废气处理是一种常见的废气处理方法,广泛应用于化工、半导体、电子等行业。
例如,半导体行业的废气处理就需要使用催化燃烧技术处理氧化氮、氯气、二氧化硫等有害气体。
化工行业也需要利用催化燃烧技术处理含甲基丙烯酸等有机物的产业废气。
四、优缺点催化燃烧废气处理具有不少优点,但也存在一些缺点:优点:1.处理效率高:对于有害气体催化氧化的速度快,效率高。
2.能耗低:相较于传统的燃烧处理,催化燃烧需要的氧气量较少,能耗相对较低。
3.安全可靠:催化燃烧过程安全可靠,基本不需要特殊安全措施。
缺点:1.催化剂价格高:制备和购买催化剂需要一定的成本。
2.需要特殊的反应器:催化燃烧需要特殊的反应器,增加了投资成本。
3.催化剂容易中毒:催化剂可能会因暴露在有毒废气中而失效或中毒。
五、总结催化燃烧废气处理是一种高效、能耗低、安全可靠的废气处理方法。
催化燃烧法工业有机废气治理工程技术规范
为规范工业有机废气治理工程建设,防治工业有机废气污染,改善环境质量,制定本标准。
本标准规定了工业有机废气催化燃烧工程设计、施工、验收和运行的技术要求。
本标准为指导性文件。
本标准为首次发布。
本标准由环境保护部科学技术标准司制定。
本标准主要起草单位:中国环保产业协会、中国人民解放军防化研究所、中国科学院生态环境研究中心、北京绿创环保设备有限公司。
,中电天辰(北京)环保科技有限公司、北京奥德维纳环保节能技术有限公司、佳源环保有限公司、康美(杭州)环保设备有限公司。
环境保护部于2013年3月29日生效。
本标准自2013年7月1日起实施。
本标准由环境保护部负责解释。
《工业有机废气催化燃烧技术规范》的适用范围1。
本标准规定了工业有机废气催化燃烧工程设计、施工、验收和运行的技术要求。
本标准适用于工业有机废气催化燃烧工程。
建成后可作为环境影响评价、工程咨询、设计、施工、验收和运行管理的技术依据。
2引用文件本标准内容引用下列文件中的术语。
凡是不注日期的引用文件,其有效版本适用于本标准。
GB 12348工业企业厂界噪声标准GB/T 16157固定污染源废气中颗粒物的测定及气体污染物采样方法GB 50016《建筑防火设计规范》GB 50019《采暖通风与空调设计规范》GB 50051《排气筒设计规范》GB 50057《建筑防雷设计规范》GB 50058《爆炸和火灾危险环境电气装置设计规范》GB 50140《建筑灭火器配置设计规范》GB 50160《建筑设计防火规范》GB 50187《工业总平面设计规范》企业GBJ 87《工业企业噪声控制设计规范》HGJ 229《工业设备和管道防腐工程施工及验收规范》HJ/T 1气体参数测量和固定装置。
采样HJ/T 389-2007工业有机废气净化装置HJ 2000大气污染控制工程技术规范JJF 1049温度传感器动态响应校准《建设项目环境保护设计规定》国家计委、国家环保委员会中华人民共和国国务院令[1987]中华人民共和国国务院令[002]《建设项目环境保护管理条例》[1998]253号《建设工程竣工验收办法》对《环境保护管理办法》适用下列术语和定义《建设项目验收》国家计委(1990)和国家环境保护行政令[2002]13号。
什么是有机废气催化燃烧
什么是有机废气催化燃烧
什么是有机废气催化燃烧?原理是什么?哪些行业会用到呢?对于这些问题,如果是行业人士,那么很容易就苦于解答出来,但是对于广大路人来说,就不是很懂了,只能大概知道是什么东西,在这个工业光速发展的时代,了解多一些知识,总是没错的,不管你知道也好不知道也好,下面就请挤出一分钟,让我们来了解一下。
有机废气催化燃烧是一种治理方式,通过使有机废气中的碳氢化合物在温度较低的条件下迅速氧化成水和二氧化碳,其实该项技术,早在20世纪40年代末就已经出现了,所以说,还是有很长历史的,经过不断的改革,该项技术也逐渐被广泛应用。
那么主要应用于那些领域呢?
油漆、橡胶加工、塑料加工、树脂加工、皮革加工、食品业、铸造业、绝缘材料、印刷工业等部门,也用于汽车废气净化等方面。
有机废气催化燃烧的过程是怎样的?过程是在催化燃烧装置中进行的,那么原理是什么呢?这就知道我们深究了,知道了工作原理,大概就能知道这是怎么一回事了。
有机废气先通过热交换器预热到200~400℃,再进入燃烧室,通过催化剂床时,碳氢化合物的分子和混合气体中的氧分子分别被吸附在催化剂的表面而活化。
由于表面吸附降低了反应的活化能,碳氢化合物与氧分子在较低的温度下迅速氧化,产生二氧化碳和水。
为什么要选择有机废气催化燃烧呢?还不是因为它有很好的优势,比如说可以降低有机废气的起始燃烧温度,燃烧不受碳氢化合物浓度的限制,基本上不会造成二次污染,设备较简单,投资少,见效快。
有机废气处理方案
有机废气处理方案有机废气是指含有有机物质的废气,通常来自于工业生产、化学合成和废弃物处理等过程。
这些废气中的有机物质不仅对环境造成污染,还可能对人类健康产生潜在的风险。
因此,有机废气的处理成为了重要的环境问题之一、下面将介绍几种常见的有机废气处理方案。
1.催化燃烧催化燃烧是利用催化剂将废气中的有机物质氧化为无害物质的一种方法。
该技术通过在高温下使有机物与氧气发生氧化反应,生成二氧化碳和水等无害物质。
催化剂的使用可以降低反应温度,提高反应效率。
该技术适用于有机废气中有较高浓度的有机物质的场景。
2.活性炭吸附活性炭是一种高度孔隙化的材料,具有很强的吸附能力。
通过将有机废气通过活性炭层,有机物质可以被吸附在活性炭表面,从而达到净化废气的目的。
活性炭吸附技术适用于有机废气中有低浓度有机物质的场景。
3.生物技术生物技术是利用微生物处理有机废气的一种方法。
通过选择适当的微生物并提供合适的环境条件,有机物质可以被微生物分解代谢,生成无害物质。
生物技术具有处理效率高、成本低等优点,但受到环境条件和微生物菌种的限制。
4.膜分离膜分离是利用膜的选择性通透性将废气中的有机物质分离出来达到净化的一种方法。
该技术通过选择合适的膜材料和运行条件,利用有机物质在膜上的溶解度、扩散速率等性质,将有机物质与废气分离开来。
膜分离技术适用于有机废气中有液体有机物的场景。
5.等离子体技术等离子体技术是利用高温高能量的等离子体将有机废气中的有机物质氧化分解为无害物质的方法。
该技术通过产生诸如氧分子、OH自由基等有氧化性的物种,使有机物与其反应生成无害物质。
等离子体技术具有处理速度快、适应性强等优点,但需要较高的能量消耗。
综上所述,有机废气处理方案有催化燃烧、活性炭吸附、生物技术、膜分离和等离子体技术等。
根据实际情况选择合适的处理方案可以有效地减少有机废气对环境的污染,保护人类的健康。
RCO催化燃烧技术
RCO催化燃烧VOCs有机废气处理技术挥发性有机化合物(VOCs)是一类毒性大、污染严重的化学物质。
目前VOCs的污染问题日益受到各国的高度重视,我国颁布的《大气污染物综合排放标准》,规定了各类有机污染物在空气中严格的排放标准。
国内外VOCs污染控制方法目前主要有吸附法、吸收法、生物处理技术、膜分离技术、直接燃烧法、催化燃烧法等。
其中,催化燃烧法是一种高效清洁燃烧技术,主要利用催化剂使有机废气在较低的温度条件下充分燃烧。
相对其他处理技术,催化燃烧具有显著的优点:起燃温度低能耗少,处理效率高,无二次污染等,使之成为目前前景广阔的VOCs有机废气治理方法之一。
高效催化燃烧催化剂是催化燃烧技术的关键核心,以块状载体作为骨架基体的催化剂称为规整结构催化剂,也称为整体式催化剂。
由于具有特殊孔道结构,这类催化剂改善了催化反应床层上的物质传递,提高了催化效率,降低了压力,减少了操作费用,在石油化工、精细化工等多相催化反应中得到越来越广泛的应用。
RCO有机废气催化燃烧技术在日本、美国和西欧被广泛地应用于VOCs的治理,工艺设备非常成熟,相关的技术标准和使用规范已经非常完善,一些大公司都有自己的企业标准,对工艺设计、催化剂的性能要求、反应器制造和工程控制措施等都有详细的规定。
不同的燃烧工艺组合,形成4种基本的燃烧工艺方式:催化燃烧(换热),直接燃烧(换热),回热催化燃烧(RCO),回热燃烧(RTO)。
在此基础上还形成了转轮富集燃烧,陶瓷过滤器等方式。
RCO有机废气催化燃烧技术是指在催化剂的作用下,使有机废气中的碳氢化合物在温度较低的条件下迅速氧化成水和二氧化碳,达到彻底治理的目的。
一、RCO有机废气催化燃烧工艺原理:催化净化是典型的气固相催化反应,其实质是活性氧参与的深度氧化作用。
在催化净化过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行;借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H2O,同时放出大量热能,从而达到去除废气中的有害物的方法。
催化燃烧安全问题及防范措施
催化燃烧安全问题及防范措施
催化燃烧是一种常见的有机废气处理技术,它能够在较低温度下实现完全燃烧,从而减少污染物的排放。
然而,催化燃烧也存在一些安全问题需要采取相应的防范措施。
以下是一些常见的催化燃烧安全问题及防范措施:
1. 着火点低的安全问题:在催化燃烧过程中,废气中的可燃物质可能会沉积在催化剂表面,导致催化剂的着火点降低。
防范措施包括定期清洗催化剂表面,避免可燃物质的积聚。
2. 爆炸的安全问题:催化燃烧产生的高温废气可能与空气混合形成爆炸性气体,存在爆炸的危险。
防范措施包括设置废气排放系统,确保废气能够及时排放,避免在室内积聚。
3. 毒性安全问题:催化燃烧过程中可能会产生一些有毒气体,如CO、NOx等,需要进行安全处理。
防范措施包括设置废气净化系统,对废气进行净化处理,确保排放的废气符合环保标准。
4. 操作安全问题:催化燃烧过程中需要进行高温操作,存在烫伤的危险。
防范措施包括提供充足的安全防护装备,如耐高温手套、防护眼镜等,并进行安全培训,确保操作人员能够安全操作。
5.设备安全问题:催化燃烧设备需要定期维护,避免设备故障导致安全问题。
防范措施包括制定设备维护计划,定期对设备进行检查和维修,确保设备的正常运行。
针对以上安全问题,采取相应的防范措施,可以有效保障催化燃烧过程的安全性。
同时,还需要加强操作人员的安全意识,定期进行安全培训和演练,确保操作人员能够熟练掌握安全操作规程,避免发生安全事故。
VOCs催化燃烧的催化剂原理、应用及常见问题
VOCs催化燃烧的催化剂原理、应用及常见问题1、催化燃烧反应原理催化燃烧反应原理是有机废气在较低温度下在催化剂的作用下被完全氧化和分解,达到净化气体目的。
催化燃烧是典型的气固相催化反应,其原理是活性氧参与深度氧化作用。
在催化燃烧过程中,催化剂的作用是降低反应的活化能,同时使反应物分子富集在催化剂表面上以提高反应速率。
借助于催化剂,有机废气可以在较低的起燃温度下无焰燃烧并且在释放大量热量,同时氧化分解成CO2和H2O。
催化燃烧的催化剂反应原理图2.什么是低温催化剂低温催化剂性能指标:起燃温度≤200℃,氧化转化效率≥95%,孔密度200-400cpsi,抗压强度≥8MPa。
3.VOCs催化剂在催化燃烧系统中的作用与影响通常VOCs的自燃烧温度较高,通过催化剂的活化,可降低VOCs燃烧的活化能,从而降低起燃温度,减少能耗,节约成本。
另外:一般(无催化剂存在)的燃烧温度都会在600℃以上,这样的燃烧会产生氮氧化物,就是常说的NOx,这也是要严格控制的污染物。
催化燃烧是没有明火的燃烧,一般低于350℃,不会有NOx生成,因此更为安全和环保。
4.什么是空速?影响空速的因素有哪些在VOCs催化燃烧系统中,反应空速通常指体积空速(GHSV),体现出催化剂的处理能力:反应空速是指规定的条件下,单位时间单位体积催化剂处理的气体量,单位为m3/(m3催化剂•h),可简化为h-1。
例如产品标注空速30000h-1:代表每立方催化剂每小时能处理30000m3废气。
空速体现出催化剂的VOCs处理能力,因此和催化剂的性能息息相关。
5.贵金属负载量与空速的关系,贵金属含量是越高越好吗?贵金属催化剂的性能与贵金属的含量、颗粒大小和分散度相关。
理想状态下,贵金属高度分散,此时的贵金属以极小的颗粒(几个纳米)存在于载体上,贵金属得到最大程度的利用,此时催化剂的处理能力与贵金属含量成正相关。
然而当贵金属含量高到一定程度后,金属颗粒容易聚集长大成为较大的颗粒,贵金属与VOCs的接触面反倒下降,大部分贵金属被包在内部,此时增加贵金属含量反而不利于催化剂活性的提高。
催化燃烧治理VOCs和恶臭废气工艺和设备知识简介
催化燃烧治理VOCs和恶臭废气工艺和设备知识简介一、工艺概述催化燃烧是典型的气—固相催化反应,它借助催化剂降低了反应的活化能,使其在较低的起燃温度200~300℃下进行无焰燃烧,有机物质氧化发生在固体催化剂表面,同时产生CO2和H2O,并放出大量的热量。
因其氧化反应温度低,所以大大地抑制了空气中的N2形成高温NOx。
而且由于催化剂有选择性催化作用,有可能限制燃料中含氮化合物(RNH)的氧化过程,使其多数形成分子氮(N2)。
二、技术原理催化燃烧是使有机废气通过催化剂床层,经历催化反应,转化为无害物质的方法。
在贵金属催化剂的作用下,有机废气在较低的温度下进行无焰催化燃烧,将有机成分转化为无毒、无害的CO2和H2O,同时释放出大量的热量。
由于催化剂可加速氧化分解的历程,大多数碳氢化合物在300~450℃的温度时,通过催化剂就可以氧化完全。
三、工艺处理特点起燃温度低,能耗少,燃烧易达稳定,甚至到起燃温度后无需外界传热就能完成氧化反应;净化效率高,污染物(如NOx及不完全燃烧产物等)的排放水平较低;适应氧浓度范围大,噪音小,无二次污染,且燃烧缓和,运转费用低,操作管理也很方便;催化剂易中毒和不耐高温。
易使催化剂中毒的物质有焦油、油烟、粉尘、铅化合物和硫、磷、卤族元素的化合物等。
为了保持催化剂的活性,一般都采用前处理的办法,预先除掉有毒物质。
四、适用范围催化燃烧技术作为一个低温燃烧废气治理工艺,适用于中低浓度废气,被广泛应用于石油化工、油漆、电镀、印刷、涂料、轮胎制造等工业废气的治理,可处理的有机物质种类包括苯类、酮类、酯类、酚类、醛类、醇类、醚类和烃类等等。
对于大风量低浓度的有机废气,可以采取吸附浓缩+脱附催化燃烧的组合工艺。
五、催化燃烧设备简介根据对废气加热方式的不同,催化燃烧工艺可分为常规催化燃烧工艺(简称CO)和蓄热式催化燃烧工艺(简称RCO)如图1和2。
这两种技术的工作原理基本相同,工艺流程大致类似,所以相关的单元设备也基本相同。
催化燃烧有机废气方案
催化燃烧有机废气方案引言随着工业发展和人类活动的增加,有机废气的排放问题日益凸显。
有机废气的高浓度排放不仅对环境造成严重污染,还对人体健康造成潜在风险。
因此,采取有效的措施处理有机废气,特别是采用催化燃烧技术,成为解决这一问题的重要途径。
催化燃烧原理催化燃烧是利用催化剂在较低温度下实现有机物氧化反应的过程。
其基本原理是将有机废气与催化剂接触,通过催化剂的作用,促使有机物发生氧化反应,转化为无害的废气排放。
催化燃烧技术具有高效、节能的特点,广泛应用于有机废气处理领域。
催化燃烧有机废气方案的关键技术催化剂选择催化剂是催化燃烧过程中的核心元素,其选择直接影响到废气处理效果。
催化剂应具有较高的活性和稳定性,能够在较低的温度下催化有机物的氧化反应。
常用的催化剂包括铂、钯、铑等贵金属催化剂以及过渡金属氧化物等。
反应温度控制催化燃烧过程中,反应温度的控制是十分重要的。
温度过低会导致反应缓慢,处理效率低下;温度过高则容易引起其他问题,如催化剂的失活。
因此,合理控制反应温度,通常在200℃至400℃范围内进行燃烧,有助于提高废气处理效果。
在进行催化燃烧处理之前,对废气进行适当的预处理可以提高处理效果。
常见的废气预处理方法包括除尘、脱硫、脱氮等。
除尘可以去除颗粒物,避免对催化剂的堵塞影响;脱硫和脱氮则可以减少废气中的有害气体含量,提高处理效果。
催化燃烧有机废气方案的应用案例汽车尾气处理汽车尾气排放是城市环境污染的重要来源之一。
采用催化燃烧技术,可以有效降低尾气中的有害物质含量,包括一氧化碳、氮氧化物等。
通过在汽车尾气排放系统中设置催化转化器,将废气中的有机物与催化剂接触,实现有机物的氧化反应,从而达到净化废气的目的。
工业生产过程中产生的有机废气,包括VOCs(挥发性有机化合物)等,对环境和人体健康造成潜在危害。
催化燃烧技术被广泛应用于工业废气处理领域,通过选择适当的催化剂和控制反应条件,实现工业废气的高效处理,减少有机物的排放。
工业有机废气处理技术
❖ 1.4 催化燃烧工艺流程
❖ 废气在进入反应器前,在热交换器内与燃 烧净化后气体进行热交换,并采用煤气或电 加热的方式保持燃烧室的起燃温度。当有机 废气浓度较高时,燃烧所产生的热量能够维 持热平衡,此时无需补充热量,只需要在催 化燃烧反应器中设置电加热器供起燃时使用 即可。当有机废气的流量大、浓度低、温度 低,采用催化燃烧需耗大量燃料时,可先采 用吸附手段将有机废气浓缩,再进行催化燃 烧。
❖ 催化剂是催化燃烧法的一个重要环节,目前催 化剂种类繁多,但在处理有机废气时常用的主 要有两种:
❖ 1.2.1贵金属催化剂:铂、钯、钌等。它们有很 高的催化活性、易于回收、使用寿命长、适用 范围广等优点,但价格昂贵和耐中毒性较差。
❖ 1.2.2过渡金属氧化物催化剂:采用氧化性较强 的过渡金属氧化物,如铜、锰、钴的氧化物等。 这类催化剂比贵金属催化剂的耐热性差,活性 低,但价格相对便宜。
❖ 1.3催化剂的失活及防治
❖ 催化剂在使用过程中随着时间的延长,活性 会逐渐下降,直至失活。催化剂失活是由于 毒物与活性组分化合或熔成合金;其次,卤 族元素和硫的化合物能够抑制催化反应;最 后,由于碳的沉积、废气中的粉尘等沉积, 从而影响催化剂的吸附与解吸能力,致使催 化剂活性下降。
❖ 催化剂失活的防治:按操作规程,正确控制 反应条件;当催化剂表面结碳时,通过吹入 新鲜空气,提高燃烧温度,烧去表面结碳; 将废气进行预处理,以除去毒物,防止催化 剂中毒;
以废气中的污染物为养料,进行生长繁殖,
另一方面将废气中的有味的挥发性有机物质 (VOC)作生物分解及脱臭处理,降解成为无毒 无味的二氧化碳(CO2)和水(H2O)后再排出, 达到净化废气的目的。
❖ 适用领域: ❖ PVC人造革、PVC手套、PVC薄膜、塑胶等
rco蓄热式催化燃烧法
rco蓄热式催化燃烧法1. 什么是RCO蓄热式催化燃烧法RCO蓄热式催化燃烧法是一种用于处理有机废气的技术。
RCO是指"Regenerative Catalytic Oxidizer",意为再生式催化氧化装置。
该技术结合了蓄热和催化氧化两种处理方法,通过催化剂促使有机废气在高温条件下发生氧化反应,将有机废气转化为无害的二氧化碳和水。
2. RCO蓄热式催化燃烧法的工作原理是什么RCO蓄热式催化燃烧法主要包括四个步骤:进气、预热、催化氧化和蓄热再生。
首先,有机废气通过进气口进入系统,经过净化处理,去除可能的颗粒物和污染物。
接下来,废气进入预热器,与从系统中排出的燃烧废气进行热交换,将废气预热至催化反应所需的高温。
这样可以节约能源,提高燃烧效率。
然后,预热后的废气进入催化氧化室,接触到催化剂。
催化剂是一种特殊的物质,能够加速氧化反应的进行,使有机废气中的有害物质转化为无害的产物。
在催化氧化过程中,废气会发生化学反应,释放出热量。
最后,经过催化氧化后的废气进入蓄热器,其中的热量被吸收并储存下来。
然后,系统会周期性地改变进气和排气的方向,利用蓄热器释放储存的热量,再次加热进入的废气。
这样可以减少能源的消耗,并提高系统的热效率。
3. RCO蓄热式催化燃烧法的优势是什么RCO蓄热式催化燃烧法相比其他废气处理技术具有以下优势:a. 高效处理:催化剂的存在使得废气在较低的温度下就能发生氧化反应,从而提高了处理效率。
b. 节能环保:通过蓄热再生的方式,可以将废气中的热能回收利用,减少了能源消耗。
c. 安全可靠:催化燃烧过程中,温度控制较为精确,不会产生高温燃烧或副产物,减少了对环境和设备的损害。
d. 适用性强:RCO技术适用于处理各种有机废气,无论是低浓度还是高浓度,都能有效去除有害物质。
e. 操作维护简单:RCO系统结构简单,操作和维护相对容易,不需要频繁更换催化剂,降低了运行成本。
综上所述,RCO蓄热式催化燃烧法是一种高效、节能、环保的有机废气处理技术,通过催化剂和蓄热再生的方式将有机废气转化为无害的二氧化碳和水。
催化燃烧处理有机废气和恶臭气体
催化燃烧处理有机废气和恶臭气体目录1、VOCs和恶臭气体 (3)1.1定义 (3)1.2来源 (3)1.3危害............................................................... 错误!未定义书签。
2、催化燃烧技术............................................................ 错误!未定义书签。
2.1定义............................................................... 错误!未定义书签。
2.2原理............................................................... 错误!未定义书签。
2.3催化燃烧的特点 (5)3、催化剂 (5)3.1催化剂种类 (5)3.2催化剂载体及负载方式 (6)3.3催化剂失活与防止 (7)3.3.1催化剂失活 (7)3.3.2催化剂失活的防止 (7)4、燃烧动力学 (7)5、催化燃烧工艺流程 (8)6、催化燃烧热平衡 (9)7、催化燃烧的应用 (10)8、催化燃烧新技术 (11)9、工程案例:催化燃烧法在污水处理场的应用 (11)参考文献 (15)1、VOCs和恶臭气体1.1定义VOCs是指沸点在50-260℃、室温下饱和蒸气压超过133.3Pa的易挥发性有机化合物,包括烃类、卤代烃、芳香烃、多环芳香烃等,主要来自石油化工、制药、印刷、喷漆、机动车、制鞋等行业排放的废气。
多数的VOCs 具有刺激性气味且有毒性或剧毒, 这样的VOCs 可以称为VOCs 恶臭污染物质。
1.2来源VOCs 恶臭物质来源于生活和工业生产等方面。
生活源主要有粪便处理、生活垃圾等; 工业有害废气来自于以煤、石油、天然气为燃料或原料的工业, 或者与之有关的化工企业。
例如:石油加工、炼油、炼焦、煤气、化肥、制药、造纸、合成材料等行业。
有机废气催化燃烧技术方案
有机废气催化燃烧技术方案一、催化燃烧的工作原理:催化燃烧是典型的气—固相催化反应,其实质是活性氧参与深度氧化作用。
在催化燃烧过程中,催化剂的作用是降低活化能,同时使反应物分子富集于表面提高了反应速率。
借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H2O,同时放出大量热能,其反应过程为:24O m n m H n C )++(催化剂+热量+O H m nCO 222 二、催化燃烧的特点:1、起燃温度低:由表1可见,有机废气催化燃烧与直接燃烧相比,具有起燃温度低,能耗小的显著特点。
在某些情况下,达到起燃温度后便无需外界供热。
2、适用范围广:催化燃烧几乎可以处理所有的烃类有机废气及恶臭气体。
对于有机化工、涂料、绝缘材料等行业排放的低浓度、多成分、又没有、回收价值的废气,采用吸附一催化燃烧法的处理效果更好。
表1催化燃烧与势力燃烧的比较℃项目起燃温度燃烧温度燃烧方式(NOx )催化燃烧200-400300-500催化剂表面无焰燃烧几乎没有热力燃烧600-900600-800高温火焰中停留产生一定量3、处理效率高:无二次污染用催化燃烧法处理有机废气的净化率一般都在95%以上,最终产物为无害的CO2和H2O,因此无二次污染问题。
此外,由于温度低,能大量减少NOx 的生成。
三、催化燃烧工艺流程:根据废气预热方式及富集方式,催化燃烧工艺流程分为以下几种:1、预热式:有机废气温度在100℃以下,浓度也较低,热量不能自给,因此在进入反应器前需要在预热室加热升温。
燃烧净化后气体在热交换器内与未处理废气进行热交换,以回收部分热量。
该工艺通常采用煤气或电加热升温至催化反应所需的起燃温度。
2、自身热平衡式:当有机废气排出温度高于起燃温度(在300℃左右)且有机物含量较高,热交换器回收部分净化气体所产生的热量,在正常操作下能够维持热平衡,无需补充热量,通常只需要在催化燃烧反应器中设置电加热器供起燃时使用。
科技成果——分子筛转轮吸附浓缩-催化燃烧有机废气处理技术
科技成果——分子筛转轮吸附浓缩-催化燃烧有
机废气处理技术
技术开发单位
广州黑马科技有限公司
适用范围
适用于治理涂料行业挥发性有机物甲苯、二甲苯、乙酸乙酯等。
成果简介
催化燃烧技术:利用高效催化剂,有机物200℃开始起燃,300℃可达到99%的转化率。
新设计的高效换热装置使有机物浓度高于1.5g/m3,就无需辅助燃料。
分子筛浓缩转轮技术:利用大比表面分子筛连续吸附,连续再生。
可将大风量低浓度有机废气浓缩成小风量高浓度有机废气,降低后续装置的投资成本和运行成本。
本技术采用的工艺流程为:
(1)反应罐高浓度废气进入催化燃烧装置处理,产生的热量用于产生热水和再生转轮;
(2)分子筛转轮浓缩用于车间废气,再生高浓度废气送入催化燃烧装置。
技术效果
进气浓度:
(1)反应罐废气排气浓度2-10g/m3;
(2)车间废气进气浓度200mg/m3左右;
排气浓度:分子筛转轮和催化燃烧装置混合后排放,排放浓度低于20mg/m3,年实现VOCs减排:400吨。
应用情况
目前该技术已应用于海虹老人涂料有限公司有机废气处理工程。
成本估算
投资费用:280万;运行费用:1.5万/月,产生较多热水,用于员工洗澡。
环评工程师:催化燃烧有机废气
有机废气是石油化工、轻工、塑料、印刷、涂料等行业排放的常见污染物,有机废气中常含有烃类化合物(芳烃、烷烃、烯烃)、含氧有机化合物(醇、酮、有机酸等)、含氮、硫、卤素及含磷有机化合物等。
如对这些废气不加处理,直接排入大气将会对环境造成严重污染,危害人体健康。
传统的有机废气净化方法包括吸附法、冷凝法和直接燃烧法等,这些方法常有易产生二次污染、能耗大、易受有机废气浓度和温度限制等缺点。
而新兴的催化燃烧技术已由实验阶段走向工程实践,并逐渐应用于石油化工、农药、印刷、涂料、电线加工等行业。
1.催化燃烧的基本原理催化燃烧是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。
在催化燃烧过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行。
借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H2O,同时放出大量热能,其反应过程为:2.催化燃烧的特点及经济性2.1.催化燃烧的特点2.1.1.起燃温度低,节省能源有机废气催化燃烧与直接燃烧相比,具有起燃温度低,能耗也小的显著特点。
在某些情况下,达到起燃温度后便无需外界供热。
2.1.2.适用范围广催化燃烧几乎可以处理所有的烃类有机废气及恶臭气体,即它适用于浓度范围广、成分复杂的各种有机废气处理。
对于有机化工、涂料、绝缘材料等行业排放的低浓度、多成分,又没有回收价值的废气,采用吸附-催化燃烧法的处理效果更好。
2.1.3.处理效率高,无二次污染用催化燃烧法处理有机废气的净化率一般都在95%以上,最终产物为无害的CO2和H2O(杂原子有机化合物还有其他燃烧产物),因此无二次污染问题。
此外,由于温度低,能大量减少NO X的生成。
2.2.催化燃烧的经济性影响催化燃烧法经济效益的主要因素有:催化剂性能和成本;废气中的有机物浓度;热量回收效率;经营管理和操作水平。
催化燃烧虽然不能回收有用的产品,但可以回收利用催化燃烧的反应热,节省能源,降低处理成本,在经济上是合理可行的。
RCO有机废气催化燃烧工艺原理
RCO有机废气催化燃烧工艺原理催化净化是典型的气固相催化反应,其实质是活性氧参与的深度氧化作用。
在催化净化过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行;借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H2O,同时放出大量热能,从而达到去除废气中的有害物的方法。
在将废气进行催化净化的过程中,废气经管道由风机送入热交换器,将废气加热到催化燃烧所需要的起始温度。
经过预热的废气,通过催化剂层使之燃烧。
由于催化剂的作用,催化燃烧法废气燃烧的起始温度约为250~300摄氏度,大大低于直接燃烧法的燃烧温度650~800摄氏度,高温气体再次进入热交换器,经换热冷却,最终以较低的温度经风机排入大气。
处理设备说明1、活性炭吸附床利用活性炭多微孔的吸附特性吸附有机废气是一种最有效的工业处理手段。
活性炭吸附床采用新型活性炭,该活性炭比表面积和孔隙率大,吸附能力强,具有较好的机械强度、化学稳定性和热稳定性,净化效率高达95%。
有机废气通过吸附床,与活性炭接触,废气中的有机污染物被吸附在活性炭表面,从而从气流中脱离出来,达到净化效果。
从活性炭吸附床排出的气流已达排放标准,空气可直接排放。
2、催化燃烧床在有机废气引入催化燃烧装置前,先通过预热器对废气进行先预热,再通过催化燃烧床内的电加热器加热废气使废气温度升高到2800C左右,在催化剂的作用下,热反应生成无害的H2O和CO2,此时无需电加热,通过自身平衡处理掉高浓度有机废气。
燃烧后放出大量的热量,可采用热交换器将高温尾气回收利用以减少预热能耗。
上述过程可通过PLC系统控制柜全自动操作。
饱和的活性炭经热空气脱附-催化燃烧后,吸附其上的有机废气生成CO2和H2O,饱和活性炭重新获得吸附能力,循环使用。
某方案采用双吸附箱工艺,即系统配备两个吸附箱,一个吸附一个脱附或者待机。
喷漆工作时,吸附箱A开启运行(吸附箱B脱附或者待机)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机废气催化燃烧
在催化剂的作用下,使有机废气中的碳氢化合物在温度较低的条件下迅速氧化成水和二氧化碳,达到治理的目的。
催化燃烧法处理工业有机废气是20世纪40
年代末出现的技术。
概述
有机废气催化燃烧
catalytic combustion of industrial organic gases
从1949年美国研制出世界上第一套催化燃烧装置到现在,这项技术已广泛地应用于油漆、橡胶加工、塑料加工、树脂加工、皮革加工、食品业和铸造业等部门,也用于汽车废气净化等方面。
中国在1973年开始将催化燃烧法用于治理漆包线烘干炉排出的有机废气,随后又在绝缘材料、印刷工业等方面进行了研究,使催化燃烧法得到了广泛的应用。
燃烧过程
催化燃烧过程是在催化燃烧装置中进行的。
有机废气先通过热交换器预热到200~400℃,再进入燃烧室,通过催化剂床时,碳氢化合物的分子和混合气体中的氧分子分别被吸附在催化剂的表面而活化。
由于表面吸附降低了反应的活化能,碳氢化合物与氧分子在较低的温度下迅速氧化,产生二氧化碳和水。
催化剂
催化燃烧反应的关键是选择合适的催化剂。
对催化剂的要求是:活性高,特别要低温活性好,以便在尽可能低的温度下开始反应。
燃烧反应是放热反应,释放出大量的热可使催化剂的表面达到 500~1000℃的高温,而催化剂容易因熔融而降低活性,所以要求催化剂能耐高温。
作催化燃烧用的催化剂可分为:①贵金属类:铂、钯、钌等。
贵金属催化剂有很高的氧化活性和易回收等优点,虽然存在着资源稀少、价格昂贵和耐中毒性差等缺点,但仍然是世界各国采用的主要催化剂。
②非贵金属类:主要是过渡族元素的氧化物以及稀土元素的氧化物。
单组分的氧化物,如氧化铜(CuO)和氧化镍(NiO)等。
单组分氧化物耐热性差,活性低,致使应用受到限制。
以后改用两种以上的金属氧化物的混合物,如二氧化锰-氧化铜 (3:2)的复合物,三氧化二铁-三氧化二铬复合物,氧化铜-三氧化二铬复合物,钴、锰的尖晶石型复合物,铜、锰、镍、锌的铬酸盐等。
复合氧化物虽可改善某些催化性能,但氧化活性仍不及贵金属。
此外,还
有金属硫化物如钍、镍、钼、钴的硫化物。
这类催化剂一般只适用于含硫的碳氢化合物的催化燃烧,使用温度限于300~400℃,高温时易分解。
催化剂的活性物质
一般都涂在载体上,所以它的形状也依载体而异。
载体有γ-Al2O3制成的球体、圆柱体和各种异形体,有用表面覆盖活性氧化铝薄膜的多孔陶瓷蜂窝体,也有用耐热合金丝制成的膨体球和金属波纹板等。
载体可减少催化剂的用量,起支撑作用。
它应具有比表面积大、耐高温、机械强度大和流体阻力小等特性。
反应的难易程度
不同的碳氢化合物通过催化剂时反应的难易程度也不相同。
难度大小一般按下列顺序排列:侧链>直链;炔烃>烯烃>烷烃;Cn>…>C3>C2>C1;脂肪族>脂环族>芳香族。
相同的碳氢化合物通过不同的催化剂时反应的难易程度也有差别。
难度大小一般按下列顺序排列:
甲烷:Pd>Pt>Co3O4>PdO>Cr2O3>Mn2O3>CuO>CeO2>Fe2O3>
V2O5>NiO>MoO3>TiO2
乙烯:Pd>Pt>Co3O4>Cr2O3>Ag2O>Mn2O3>CuO>NiO>V2O5>CdO >Fe2O3>MoO3>WO>TiO>ZnO
丙烷:Pt>Pd>Ag2O>Co3O4>CuO>MnO2>Cr2O3>CdO>V2O5>Fe2O3>NiO>>CeO2>Al2O3>ThO2
异戊二烯:Pd>Pt>>MnO2>Co3O4>Cr2O3>CeO2>NiO>Fe2O3
处理不同的工业有机废气应当根据上述排列顺序选择适当的催化剂。
催化燃烧法的优点
①可以降低有机废气的起始燃烧温度。
例如甲醇、甲醛在以氧化铝为载体的Pt催化剂(Pt/Al2O3)的作用下,室温下就开始燃烧,而直接燃烧法起始燃烧点通常为300~600℃。
②燃烧不受碳氢化合物浓度的限制。
③基本上不会造成二次污染。
④设备较简单,投资少,见效快。
催化燃烧法存在的主要问题是催化剂易中毒和不耐高温。
易使催化剂中毒的物质有焦油、油烟、粉尘、铅化合物和硫、磷、卤族元素的化合物等。
为了保持催化剂的活性,一般都采用前处理的办法,预先除掉有毒物质。
近几年来,含稀土元素的钙钛矿结构的复合氧化物催化剂的研制在提高耐高温性能等方面有所进展。
中国研制的稀土元素催化剂已用于有机废气的治理。