变频器的分类

合集下载

变频器基础知识

变频器基础知识

变频器基础知识一、变频器的定义通常所说的变频器,是指将频率固定的电源(如50Hz三相交流电)变成频率可变的电源(如在0〜50HZ之间随意变换)的转换设备。

如果原有电源的频率为0(即为直流电源供电),则变频器可以省去直流变换环节,退化成单一的逆变器(DO AQO二、变频器的分类从不同的角度,可以对变频器进行不同的分类。

1、按电压等级不同,变频器可分为:高压变频器、中压变频器、低压变频器按照国际惯例,电压》10kV时称高压,1-10kV为中压,小于1kV 时称低压,与其电压范围相对应的变频器分别称为高压变频器、中压变频器、低压变频器。

在我国,习惯上把10KV 6kV或3kV的电机称为高压电机,相应的电压为10KV 6kV或3kV的变频器均称高压变频器。

平常所说的“高- 高”“高-低-高”“高-低”只是变频器的不同应用形式。

2、按主回路结构不同,变频器可分为:交-直-交变频器,交-交变频器。

交- 直- 交变频器1)交- 直-交变频器先将电网交流电用整流电路整成直流电,再用逆变电路将直流电转换为频率可变的交流电。

整流电路、直流回路、逆变电路是交-直-交变频器的三个基本组成部分。

整流电路可以是不控的(二极管全波整流)、也可以是可控的,如果是可控整流,则它也能工作在逆变状态,将直流回路的能量逆变回电网。

逆变电路肯定是可控的,主要功能是将直流回路电能变成交流电输出给电机。

如果电机工作在发电工况时(比如制动场合),逆变电路工作在整流状态,将电机的能量送到直流回路。

交- 交变频器2)交-交变频器没有直流回路,每相都由两个相互反并联的整流电路组成,正桥提供正向相电流,反桥提供负向相电流。

3、按储能方式不同,变频器可分为:电流源型、电压源型。

电流源型变频器1)电流源型:电流源变频器输入采用可控整流,控制电流的大小。

中间采用大电感,对电流进行平滑。

逆变桥将直流电流转换为频率可变的交流电流,供给交流电机。

在电流源变频器中,直接受控量是电流。

变频器的分类方式

变频器的分类方式

变频器基础知识及变频器的分类变频器的分类(1)按直流电源的性质分类变频器中间直流环节用于缓冲无功功率的储能元件可以是由电容或是电感,据此变频器可分成电压型变频器和电流型变频器两大类。

电流型变频器的特点是中间直流环节采用大电感作为储能元件,无功功率将由该电感来缓冲。

电流型变频器的一个较突出的优点是,当电动机处于再生发电状态是,回馈到直流侧的再生电能可以方便地回馈交流电网,不需要在主电路内附加任何设备。

电流型变频器常用于频繁急加减速的大容量电动机的传动。

在大容量风机、泵类节能调速中也有应用。

电压变频器的特点是中间直流环节的储能元件采用大电容,用来缓冲负载的无功功率。

对负载而言,变频器是一个交流电压源,在不超过容量限度的情况下,可以驱动多台电动机并联运行,具有不选择负载的通用性。

缺点是电动机处于再生发电状态时,回馈到直流侧的无功能量难于回馈给交流电网。

要实现这部分能量向电网的回馈,必须采用可逆变流器。

(2)按变换环节分类1)交-交变频器交-交变频器是将工频交流电直接变换成频率电压可调的交流电(转换前后的相数相同),又称直接式变频器。

对于大容量、低转速的交流调速系统,常采用晶闸管交一交直接变频器直接驱动低速电动机,可以省去庞大的齿轮减速箱。

其缺点是:最高输出频率不超过电网频率的l/3~1/2,且输入功率因数较低,谐波电流含量大,谐波频谱复杂,因此必须配置大容量的滤波和无功补偿设备。

近年来,又出现了一种应用全控型开关器件的矩阵式交一交变压变频器,采用PWM控制方式,可直接输出变频电压。

这种调速方法的主要优点是:①输出电压和输人电流的低次谐波含量都较小。

②输入功率因数可调。

③输出频率不受限制。

④能量可双向流动,可获得四象限运行。

⑤可省去中间直流环节的电容元件。

2)交-直-交变频器交-直-交变频器是先把工频交流电通过整流器变成直流电,然后再把直流电变换成频率电压可调的交流电,又称间接式变频器。

把直流电逆变成交流电的环节较易控制,在频率的调节范围,以及改善变频后电动机的特性等方面,都具有明显的优势。

变频器按直流电源的性质分类

变频器按直流电源的性质分类

电动机知识变频器按直流电源的性质分类一、变频器按直流电源的性质分类变频器中间直流环节用于缓冲无功功率的储能元件可以是电容或是电感,据此变频器可分成电压型变频器和电流型变频器两大类。

1.电流型变频器电流型变频器主电路的典型构成方式如图2-8所示。

其特点是中间直流环节采用大电感作为储能元件,无功功率将由该电感来缓冲。

由于电感的作用,直流电流趋于平稳,电动机的电流波形为方波或阶梯波,电压波形接近于正弦波。

直流电源的内阻较大,近似于电流源,故称为电流源型变频器或电流型变频器。

图2—8电流型变频器的主电路电流型变频器的一个较突出的优点是,当电动机处于再生发电状态时,回馈到直流侧的再生电能可以方便地回馈到交流电网,不需要在主电路内附加任何设备。

这种电流型变频器可用于频繁急加减速的大容量电动机的传动。

在大容量风机、泵类节能调速中也有应用。

2.电压型变频器电压型变频器主电路的半导体开关器件经历了三个阶段,即晶闸管阶段、电力晶体管(GTR)和绝缘栅晶体管(IGBT)阶段,当前市场上变频器的逆变器件基本上均是IGBT,其性能远优于前两种器件。

电压型变频器主电路如图2-9所示,这是早期的电压变频器,电路的特点是中间直流环节的储能元件采用大电容,用来缓冲负载的无功功率。

由于大电容的作用,主电路直流电压比较平稳,电动机的端电压为方波或阶梯波。

直流电源内阻比较小,相当于电压源,故称为电压源型变频器或电压型变频器。

图2 -9电压型变频器的主电路对负载而言,变频器是一个交流电压源,在不超过容量限度的情况下,可以驱动多台电动机并联运行,具有不选择负载的通用性。

缺点是电动机处于再生发电状态时,回馈到直流侧的无功能量难于回馈给交流电网。

要实现这部分能量向电网的回馈,必须采用可逆变流器。

〃如何选择变频器主电路外围设备〃变频器调速的基本概念及其作用原理〃变频器负载匹配办法〃变频器常见的错误处理〃矢量变频器的直接转矩控制〃变频器维修怎样处理过电压保护OUd〃变频器控制电动机停车制动方式〃变频器按用途分类〃利用PLC管理变频器处理机械故障〃正确使用变频器〃变频器的转差频率控制方式〃变频器瞬停再启动运行及其注意事项〃概述如何进行变频器的正常选型和容量匹〃变频器的合理选用及干扰抑制Domain: 直流减速电机More:2saffa 〃恒转矩负载变频器的选择〃变频器选择时的注意事项〃变频器额定参数的选择〃变频器应用中存在的问题及对策〃变频器容量问题如何解决〃变频器应用的常见故障与对策(二)〃风机、水泵设备变频器运行中的问题〃机泵用变频器故障原因分析〃变频器选型时一些要注意的事项〃如何选择变频器容量〃变频器制动控制目的〃变频器控制系统过电流故障诊断技术〃变频器维修的相关经验(2)〃变频器参数的设定〃变频器自动、并联、比例运行及其注意事〃变频器现场常见5种故障解决方法匿名随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。

变频器的分类

变频器的分类

变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

一、主电路工作方式分类:1、电压型变频器:电压型变频器与电流型变频器同属于交一直一交变频器,也由整流器、滤波器、逆变器三部分组成。

工作原理也是整流电路将电网来的交流电转换成直流电;再经三相桥式逆变电路转变为频率可调的交流电,供给推进电动机,电压型变频器的中问环节采用大电容。

2、电流型变频器:电流型工作原理是整流电路将电网来的交流电转换成直流电;再经三相桥式逆变电路转变为频率可调的交流电,供给推进电动机,电流型变频器的直流中间环节,采用大电感滤波。

3、电压型变频器和电流型变频器的区别:就是储能元件不同,电压型的储能元件是电容,电流型的是电感。

其实普通变频器应用电力电子电路,就是一个交流变直流--〉直流储能--〉直流变交流的过程。

也就是常说的整流环节--〉储能环节--〉逆变环节。

一般控制环节在逆变上,除非是四象限变频器,要用于回馈至电网的,会把整流和逆变做的结构一样。

否则的话,整流一般用晶闸管等,逆变用IGBT。

说多了,反正最后的控制都是对变流进行控制的,电压型和电流型的差别就在储能环节。

二、开关方式分类1、PAM控制变频器PAM是英文Pulse Amplitude Modulation (脉冲幅值调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。

2、PWM控制变频器PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调制方式。

3、高载频PWM控制变频器高载频PWM控制。

变频器的分类_变频器应用技术1

变频器的分类_变频器应用技术1
电 气 自动化
二、
外形
ABB变频器(瑞士) 变频器(瑞士) 变频器
电 气 自动化
ABB变频器(瑞士) 变频器(瑞士) 变频器
电 气 自动化
富士变频器G11系列 系列 富士变频器
富士变频器GP11系列 系列 富士变频器
富士变频器(日本) 富士变频器(日本)
电 气 自动化
MICROMASTER 440系列
西门子变频器(德国) 西门子变频器(德国)
电 气 自动化
G110系列 系列
西门子变频器(德国) 西门子变频器(德国)
电 气 自动化
西门子变频器(德国) 西门子变频器(德国)
电 气 自动化
变频器外形
FR-E500系列 系列
FR-S500E系列 系列
三菱变频器(日本) 三菱变频器(日本)
电 气 自动化
J7系列 系列
安川变频器(日本) 安川变频器(日本)
电 气 自动化
变频器外形
SB40系列高性能通用型 系列高性能通用型
SB80系列矢量控制型 系列矢量控制型
森兰变频器
电 气 自动化
变频器外形
SB60系列全能王 系列全能王
SB12系列风机 水泵专用 系列风机/水泵专用 系列风机
森兰变频器
电 气 自动化
当中间直流环节采用大电感滤波时,电流波形较平直, 当中间直流环节采用大电感滤波时,电流波形较平直,因而电源内阻抗大 输出是一个恒流源,输出交流电流是矩形波或阶梯波, ,输出是一个恒流源,输出交流电流是矩形波或阶梯波,这类变频装置叫电 流型变频器。 流型变频器。
电气自动化
3. 电压型和电流型变频器比较
2.交-交变频器 交 交变频器 交-交变频器是把工频交流电直接变换成不同频率交流电的 交变频器是把工频交流电直接变换成不同频率交流电的 过程,它不通过中间直流环节, 过程,它不通过中间直流环节,故又称为直接变频器或周波变换 因为没有中间环节,仅用一次变换就实现了变频, 器。因为没有中间环节,仅用一次变换就实现了变频,效率较高 主要构成环节如下图所示。 。主要构成环节如下图所示。

变频器的基础知识

变频器的基础知识
稳定性
变频器在长时间运行过程中保持性能 稳定的能力,包括温度稳定性、电气 性能稳定性等。
04 变频器的应用领域
工业自动化
电机控制
01
变频器在工业自动化领域中广泛应用于电机控制,通过调节电
源频率来改变电机转速,实现生产线的自动化和高效化。
过程控制
02
变频器能够精确控制工业生产过程中的各种参数,如流量、压
直接转矩控制
通过控制电机的磁通和转矩来直接控制电机的输 出转矩和速度,具有快速响应和良好的动态性能。
调速性能指标
调速范围
变频器能够调节的电机转速范围,通常 以最高转速与最低转速的比值来表示。
动态响应时间
从设定值变化到实际输出值所需的时 间,要求快速响应以减小对机械系统
的冲击。
调速精度
调速过程中实际转速与设定转速的偏 差,一般要求精度在±5%以内。
其他领域
楼宇自动化
变频器在楼宇自动化领域中用于控制 空调系统、电梯和照明等设备的运行 ,提高楼宇的能源效率和舒适度。
医疗器械
变频器在医疗器械中用于控制设备的 运行速度和精度,如呼吸机、输液泵 等,保障患者的安全和治疗质量。
05 变频器的选型与使用注意 事项
选型原则
根据电机功率选择合适的变频器
在选择变频器时,应确保其能够满足电机的功率需求,同时 留有一定的余量。
保护电路
在变频器出现异常时,及时切断主电 路和控制电路的电源,保护变频器和 电机不受损坏。
保护电路
过流保护
检测主电路的电流,当电流超过设定值时, 保护电路动作,切断电源。
欠压保护
检测直流母线的电压,当电压低于设定值时, 保护电路动作,切断电源。
过压保护

变频器的分类

变频器的分类

2.转差频率控制变频器 转差频率控制方式是对电压频率比控制的一
种改进,这种控制需要由安装在电动机上的速度 传感器检测出电动机的转速,构成速度闭环,速 度调节器的输出为转差频率,而变频器的输出频 率则由电动机的实际转速与所需转差频率之和决 定。
3.矢量控制变频器 矢量控制是一种高性能异步电动机控制方
2.PWM方式 PWM方式的特点是变频器在改变输出频率的 同时也改变了电压的脉冲占空比。PWM只需控制 逆变电路便可实现。通过改变脉冲宽度来改变输出 电压幅值,通过改变调制周期可以控制其输出频率。 这种方式大大减少了负载电流中的高次谐波。
1.7 按输入电源的相数分类
1.单相变频器 单相变频器框图如图4- 4所示。
4.直接转矩控制变频器 直接转矩控制是继矢量控制变频调速技术之后的
一种新型的交流变频调速技术。它是利用空间电压矢 量PWM(SVPWM)通过磁链、转矩的直接控制、确 定逆变器的开关状态来实现的。直接转矩控制还可用 于普通的PWM控制,实行开环或闭环控制。
1.4 按功能分类
1.恒转矩变频器 恒转矩变频器控制的对象具有恒转矩特性,在
3.高频变频器 在超精密加工和高性能机械中,常常要用到高速
电动机,为了满足这些高速电动机的驱动要求,出现 了采用PAM控制方式的高频变频器,其输出频率可达 到3 kHz。
1.6 按输出电压调制方式分类
1.PAM方式 PAM方式的特点是变频器在改变输出频率的同 时也改变了电压的振幅值。在变频器中,逆变器负 责调节输出频率,而输出电压的调节则由相控整流 器或直流斩波器通过调节直流电压Ud去实现。采用 相控整流器调压时供电电源的功率因数随调节深度 的增加而变小。采用直流斩波器调压时,供电电源 的功率因数在不考虑谐波影响时,功率因数可以达 到1。

变频器的分类与特点

变频器的分类与特点
9
变频器的技术规范
根据系统应用分类
2. 输出侧的额定数据
变频器输出侧的额定数据包括以下内容:
(1)额定电压U(N)因为变频器的输出电压要随频率而变,所以,U(N)定义为输出的最 大电压。通常它总是和输入电压U(IN)相等的。
(2)额定电流I(N)变频器允许长时间输出的最大电流。
( 3 ) 额 定 容 量 S(N) 由 额 定 线 电 压 U(N) 和 额 定 线 电 流 I(N) 的 乘 积 决 定 : S(N)=1.732U(N)I(N)
载能力规定为:150%,1min。可见,变频器的允许过载时间与电机的允许过载时间相比,是微不足道的。10变频器的个性化特点
发展:
交流变频器自20世纪60年代左右在西方工业化国家问世以来,到 现在已经在中国得到了大面积的普及,并业已形成60亿元以上的 年销售规模。根据变频器在不同行业的应用特点,很多厂家都推 出非常新颖的变频器,并将个性化发挥得淋漓尽致。所谓变频器 个性化,就是指变频器本体按照各自特定的方式发展自己的风格, 并完善变频器本体,从而形成相对稳定而独特的变频器特性。
(2)单进三出变频器 变频器的输入侧为单相交流电,输出侧是三相交流电,俗称“单 相变频器”。该类变频器通常容量较小,且适合在单相电源情况 下使用,如家用电器里的变频器均属此类。
5
变频器的分类与特点
根据负载转矩特性分类
(1)P型机变频器 适用于变转矩负载的变频器。 (2)G型机变频器 适用于恒转矩负载的变频器。 (3)P/G合一型变频器 同一种机型既可以使用变转矩负载,又可以适用于恒转矩负载; 同时在变转矩方式下,其标称功率大一档。
(4)容量P(N)在连续不变负载中,允许配用的最大电机容量。必须注意:在生产机械 中,电机的容量主要是根据发热状况来定的。在变动负载、断续负载及短时负载中, 只要温升不超过允许值,电机是允许短时间(几分钟或几十分钟)过载的,而变频器 则不允许。所以,在选用变频器时,应充分考虑负载的工况。

变频器常用的10种控制方式

变频器常用的10种控制方式

变频器常用的10种控制方式
变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素。

除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

一、变频器的分类
变频器的分类方法有多种。

按照主电路工作滤波方式分类,可以分为电压型变频器和电流型变频器。

按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器。

按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等。

按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

二、变频器中常用的控制方式
1、非智能控制方式
在交流变频器中使用的非智能控制方式有V/f控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制
V/f就是加在电机定子上的电压和电源频率的比值。

如下图,V/F符合直线AB,则是直线型;符合折线段ABC,则是多点型;符合曲线AB,则是平方型。

变频技术及应用电子教案变频第2章

变频技术及应用电子教案变频第2章
河北工业职业技术学院
图2-3 不控整流整流、斩波器变压、逆变器变频 (3)用不控整流器整流、SPWM逆变器同时变压变频的交-直-交变频器
如图2-4所示。在图中,整流电路采用二极管不控整流器,逆变器采用可控关断的 全控式器件,称为正弦脉宽调制SPWM逆变器。电网的恒压恒频正弦交流电,经过不控整 流器转变为恒定的直流,再经过SPWM逆变器逆变成电压和频率均可调的正弦交流电,供 给电动机,实现交流变频调速。
于0.5V时,正向阳极电流急剧上升,管子正向导通。 反向特性:当二极管加上反向电压时,起始段的反向漏电流也很小,而且随
着反向电压增加,反向漏电流只略有增大,但当反向电压增加到反向不重复峰值电压 值时,反向漏电流开始急剧增加。
2.1.3 按电压的调制方式分类 按电压的调制方式分为交-直-交变频器,又可再分为脉幅调制和脉宽调制两种。 1.脉幅调制(PAM)。PAM(Pulse Amplitude Modulation)方式,是一种改变电压源 的电压或电流源的电流的幅值进行输出控制的方式。因此,在逆变器部分只控制频率, 整流器部分只控制电压或电流。
矢量控制方式使异步电动机的高性能成为可能。矢量变频器不仅在调速范围上 可与直流电动机相媲美,而且可以直接控制异步电动机转矩的变化,所以已经在许 多需要精密或快速控制的领域得到应用。
3.直接转矩控制 直接转矩控制通过控制电动机的瞬时输入电压来控制电动机定子磁链的瞬时旋转
速度,改变它对转子的瞬时转差率,从而达到直接控制电动机输出的目的。
• 按照直流电路的滤波方式不同,变频器分成电压型变频器 和电流型变频器两大类。
• 1.电压型变频器 • 在交-直-交电压型变频器中,中间直流环节的滤波元件为
电容器,如图2-7所示。当采用大电容滤波时,直流电压 波形比较平直,相当于一个理想情况下的内阻抗为零的恒 压源。输出交流电压是矩形波或阶梯波。对负载电动机而 言,变频器是一个交流电源,可以驱动多台电动机并联运 行。

变频器的电路组成分类

变频器的电路组成分类

变频器的电路组成分类
从变频器的电路组成来看,变频器可分为交-交变频器和交-直-交变频器。

1.交-交变频器
它是将频率固定的交流电源直接变换成频率连续可调的交流电源,其主要优点是没有中间环节,变换效率高。

但其连续可调的频率范围窄,所采用的器件多,其应用受到很大限制。

2.交-直-交变频器
先将频率固定的交流电整流后变成直流电,再经过逆变电路,把直流电逆变成频率连续可调的三相交流电,由于把直流电逆变成交流电较易控制,因此在频率的调节范围以及变频后电动机特性改善等方面,都具有明显优势,目前使用最多的变频器均属于交-直-交变频器。

其组成方框图如图所示。

图交-直-交变频器主电路方框图
(1)根据直流环节的储能方式来分,交-直-交变频器又可分为电压型和电流型两种。

①电压型。

整流后若是靠电容来滤波,这种交-直-交变频器称为电压型变频器,而现在使用的变频器大部分为电压型。

②电流型。

整流后若是靠电感来滤波,这种交-直-交变频器称为电流型变频器,这种形式的变频器较为少见。

(2)根据调压方式的不同,交-直-交变频器又可分为脉幅调制(PAM)和脉宽调制( PWM)两种。

①脉幅调制( PAM)。

变频器输出电压的大小是通过改变直流电压(UD)来实现的,这种方法现在已经很少采用。

②脉宽调制( PWM)。

变频器输出电压的大小是通过改变输出脉冲的占空比来实现的。

目前使用最多的是占空比按正弦规律变化的正弦波脉宽调制,即SPWM方式。

变频器的分类

变频器的分类

1,按变换环节分1)交----交变频器2)交---直---交变频器2,按直流环节的储能方式1)电流型变频器:直流环节的储能元件是电感线圈2)电压型变频器:直流环节的储能元件是电容器3,按控制模式(工作原理分)1)U/F 控制变频器。

特点是对变频器输出的电压和频率同时进行控制,通过使U/F的值保持一定而得到所需的转矩特性,多用于对精度要求不高的通用变频器。

2)转差频率控制变频器。

时对U/F控制的一种改进,这种控制需要由安装在马达上的速度传感器检测出马达的转速,构成速度闭环,速度调节器的输出为转差频率,而变频器的输出频率则由马达的实际转速与所需转差频率之和决定。

由于通过控制转差频率来控制转矩和电流,其加减速特性和限制过电流的能力得到提高。

3)矢量控制变频器。

基本思路是:将马达的定子电流分为产生磁场的励磁电流和与其垂直的产生转矩的转矩电流,并分别加以控制。

由于这种控制方式中必须同时控制马达定子电流的幅值和相位,即定子电流的矢量。

4,按用途分:1)通用变频器。

是指能与普通的笼型马达配套使用,能适应各种不同性质的负载,并具有多种可供选择功能的变频器。

2)高性能专用变频器。

主要应用于对马达控制要求较高的系统,大多数采用矢量控制方式,驱动对象通常是变频器厂家指定的专用马达。

3)高频变频器。

再超精密加工和高性能机械中,常常要用到高速马达,为了满足这些高速马达的驱动要求,出现了采用PAM(脉冲幅值调制)控制方式的高频变频器,其输出频率可达到3kHZ.:2::::j em L T j G D T T 1)对于风机和泵类负载,由于低速时转矩较小,对过载能力和转速精度要求较低,故选用廉价的变频器。

2)对于希望具有转矩特性,但在转速精度及动态性能方面要求不高的负载,可选用无矢量控制型 变频器。

3)对于低速时要求有较硬的机械特性,并要求有一定的调速精度,但在动态性能方面无较高要求的负载,可选用不带速度反馈的矢量控制型变频器。

变频器的基本构成、作用和分类

变频器的基本构成、作用和分类

变频器的基本构成、作用和分类一. 变频器的基本构成及其作用电压型变频器在电压型变频器中,整流电路产生逆变电路所需要的直流电压,并通过直流中间电路的电容进行平滑后输出。

整流电路和直流中间电路起直流电压源的作用,而电压源输出的直流电压在逆变电路中被转换为具有所需频率的沟通电压。

在电压型变频器中,由于能量回馈给直流中间电路的电容,并使直流电压上升,还需要有专用的放电电路,以防止换流器件因电压过高而被破坏。

电压型变频器主电路的结构因其使用的换流器件的不同而有多种形式。

关于这些电路的结构,可参考有关资料。

电流型变频器整流电路通过中间电路的电抗将电流平滑后输出。

整流电路和直流中间电路起电流源的作用,而电流源输出的直流电流在逆变电路中被转换为具有所需频率的沟通电流供应给电动机。

在电流型变频器中,电动机定子电压的掌握是通过检测电压后对电流进行掌握的方式实现的。

对于电流型变频器来说,在电动机进行制动的过程中可通过将直流中间电路的电压反向的方式使整流电路变为逆变电路,并将负载的能量回馈给电源,而且在消失负载短路等状况时也更简单处理,电流型掌握方式更适合于大容量变频器。

PAM调制变频器(参见)PAM掌握是脉冲幅度调制(Pulse Amplitude Modulation)的缩写,是一种在整流电路部分对输出电压(电流)的幅值进行掌握,而在逆变电路部分对输出频率进行掌握的掌握方式。

由于在PAM掌握的变频器中,逆变电路换流器件的开关频率即为变频器的输出频率,所以这是一种同步调制方式。

由于逆变电路换流器件的开关频率(简称载波频率)较低,在使用PAM掌握方式的变频器进行调速驱动时具有电动机运转噪音小,效率高等特点。

但是,由于这种掌握方式必需同时对整流电路和逆变电路进行掌握,掌握电路比较简单。

此外,这种掌握方式也还具有当电动机进行低速运转时波动较大的缺点。

PWM调制变频器PWM掌握是脉冲宽度调制(Pulse Width ModuLation)的缩写。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器的分类
变频器是一种能够改变电源频率的装置,广泛应用于工业生产中。

根据其功能和特点的不同,变频器可以分为多种分类。

下面将介绍几种常见的变频器分类。

一、按输出功率分类
根据变频器的输出功率不同,可以将其分为低功率变频器、中功率变频器和高功率变频器三类。

1. 低功率变频器:低功率变频器通常指输出功率在1千瓦以下的变频器。

这类变频器体积小、重量轻,适用于小型机械设备的驱动,如风扇、水泵等。

低功率变频器具有运行稳定、噪音低等特点。

2. 中功率变频器:中功率变频器的输出功率在1千瓦到100千瓦之间。

这类变频器广泛应用于中型机械设备的驱动,如压缩机、切割机等。

中功率变频器具有较高的输出功率和较强的控制能力。

3. 高功率变频器:高功率变频器的输出功率在100千瓦以上。

这类变频器适用于大型机械设备的驱动,如电机、风力发电机组等。

高功率变频器具有较大的输出功率和高效率的能量转换。

二、按控制方式分类
根据变频器的控制方式不同,可以将其分为V/F控制变频器和矢量控制变频器两类。

1. V/F控制变频器:V/F控制变频器是一种常见的变频器控制方式,其通过控制输出电压和频率的比值来控制电机的转速。

V/F控制变频器结构简单,控制稳定,适用于一般的驱动需求。

2. 矢量控制变频器:矢量控制变频器是一种高级的变频器控制方式,其通过对电机转子位置和转速进行精确控制,实现对电机的高性能驱动。

矢量控制变频器具有较高的控制精度和动态响应能力,适用于对转速要求较高的场合。

三、按输出电压分类
根据变频器的输出电压不同,可以将其分为单相变频器和三相变频器两类。

1. 单相变频器:单相变频器适用于单相电源供电的场合,常见于家用电器和小型机械设备的驱动。

单相变频器结构简单,安装方便,但输出功率相对较小。

2. 三相变频器:三相变频器适用于三相电源供电的场合,广泛应用于工业生产中的大型机械设备。

三相变频器输出功率较大,能够满足各种工业驱动需求。

四、按应用场景分类
根据变频器的应用场景不同,可以将其分为通用型变频器和专用型变频器两类。

1. 通用型变频器:通用型变频器适用于各种机械设备的驱动,具有较广泛的应用范围。

通用型变频器通常具有较多的控制参数和功能,能够满足不同驱动需求。

2. 专用型变频器:专用型变频器针对特定的行业或设备开发,具有针对性的控制策略和功能设计。

专用型变频器通常具有较高的性能和可靠性,能够满足特定行业的严苛需求。

变频器根据输出功率、控制方式、输出电压和应用场景的不同,可以分为低功率、中功率和高功率变频器;V/F控制和矢量控制变频器;单相和三相变频器;通用型和专用型变频器。

不同类型的变频器适用于不同的驱动需求,选择合适的变频器可以提高设备的性能和效率,实现更好的生产效果。

相关文档
最新文档