高中数学求值域的10种方法
高中数学:求函数值域的方法十三种

高中数学:求函数值域的十三种方法
一、观察法(☆
)二、配方法(☆)
三、分离常数法(☆)
四、反函数法(☆)
五、判别式法(☆)
六、换元法(☆☆☆)
七、函数有界性
八、函数单调性法(☆)九、图像法(数型结合法)(☆)十、基本不等式法十一、利用向量不等式十二、一一映射法十三、多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y
f x 的取值范围。
【例1】求函数1y
x 的值域。
【解析】∵0x ,∴
11x ,∴函数1y x 的值域为[1,)。
【例2】求函数x 1
y
的值域。
【解析】∵0x
∴0x 1显然函数的值域是:),0()0,(【例3】已知函数
112x y ,2,1,0,1x ,求函数的值域。
【解析】因为2,1,0,1x ,而331f f ,02
0f f ,11f 所以:3,0,1y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ,则函数的值域为
1|y y 。
二.配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c 的函数的值域问题,均可使用配方法。
【例1】求函数225,[1,2]y x x x 的值域。
【解析】将函数配方得:∵
由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,
故函数的值域是:[4,8] 【变式】已知,求函数的最值。
高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种)一、 观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例:求函数()x 323y -+=的值域。
点拨:根据算术平方根的性质,先求出()x 3-2的值域。
解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。
点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。
练习:求函数()5x 0x y ≤≤=的值域。
(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例:求函数2x 1x y ++=的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数2x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数x-x -xx 10101010y ++=的值域。
(答案:{}1y 1-y |y 或)。
三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。
例:求函数()2x x-y 2++=的值域。
点拨:将被开方数配方成平方数,利用二次函数的值求。
解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。
此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:x 4-155-x 2y +=的值域。
(答案:{}3y |y ≤)四、判别式法:若可化为关于某变量的二次方程的分式函数或无理数,可用判别式法求函数的值域。
高中数学求值域的10种方法

求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。
例1.求函数1y =的值域。
【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。
【练习】1.求下列函数的值域:①32(11)y x x =+-≤≤; ②x x f -+=42)(;③1+=x xy ;○4()112--=x y ,{}2,1,0,1-∈x 。
【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞;○4{1,0,3}-。
二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
例2.求函数242y x x =-++([1,1]x ∈-)的值域。
【解析】2242(2)6y x x x =-++=--+。
∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。
∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。
例3.求函数][)4,0(422∈+--=x x x y 的值域。
【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:)0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:]0,2y ⎡∈⎣。
说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。
例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。
【分析与解】本题可看成第一象限内动点(,)P x y 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。
利用两点(4,0),(0,2)确定一条直线,作出图象易得:2(0,4),(0,2),lg lg lg lg[(42)]lg[2(1)2]x y x y xy y y y ∈∈+==-=--+而,y=1时,y x lg lg +取最大值2lg 。
数学-值域12种归纳(学生版)

专业专心专注值域12类归纳1.一、热点题型归纳题型一:值域基础1:幂函数求值域1若函数f (x )=ax 2+bx +c (a ,b ,c ∈R )的定义域和值域分别为集合A ,B ,且集合{(x ,y )|x ∈A ,y ∈B }表示的平面区域是边长为1的正方形,则b +c 的最大值为_________.方法归纳基本规律1.幂函数主要考察一元二次函数2.二次函数在进行讨论的时候要首先考虑二次项系数为0的情况,然后根据题意,去讨论开口或者讨论Δ.1设二次函数f x =mx 2-2x +n m ,n ∈R ,若函数f x 的值域为0,+∞ ,且f 1 ≤2,则m 2n 2+1+n 2m 2+1的取值范围为___________.2已知函数f (x )=x 3-3x 在x ∈5-m 2,m -1 的值域为a ,b b >a ,则实数m 的取值范围为________.3已知函数y =x 2+2x 在闭区间[a ,b ]上的值域为[-1,3],则a ⋅b 的最大值为________.题型二:值域基础2:指数函数求值域1函数f (x )=a +b e x+1(a ,b ∈R )是奇函数,且图象经过点ln3,12 ,则函数f (x )的值域为____方法归纳基本规律1、底数讨论单增单减讨论。
2、“一点一线”伴随。
1函数f (x )=3-x 2+1(x ∈R )的值域为_________.2关于函数f (x )=14x+2的性质,有如下四个命题:①函数f (x )的定义域为R ;②函数f (x )的值域为(0,+∞);③方程f (x )=x 有且只有一个实根;④函数f (x )的图象是中心对称图形.其中正确命题的序号是_____.3已知函数f x =4x -2x +1+4,x ∈-1,1 ,则函数y =f x 的值域为( ).A.3,+∞B.3,4C.3,134D.134,4题型三:值域基础3:对数函数求值域第1页共7页原卷及答案见:新高考资料全科总群732599440;高考数学高中数学探究群562298495自信自强博观而约取 厚积而薄发1设函数f (x )=log a x (a >0且a ≠1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值是_____________.方法归纳基本规律1.对数函数中y =|log a x |要注意f (b )=f (c )时。
高中数学:求函数值域的方法十三种(二)

高中数学:求函数值域的方法十三种(二)五、判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解。
(解析式中含有分式和根式。
)【例1】求函数2211x x y x ++=+的值域。
【解析】原函数化为关于x 的一元二次方程,由于x 取一切实数,故有(1)当时,解得:(2)当y=1时,,而故函数的值域为【例2】求函数y x =+的值域。
【解析】两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y 的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
解法二:2(2)1(x 1)y x x x x =+-=+--]2,2[sin 1ππθθ-∈=-x )4sin(21cos sin 1πθθθ++=++=y 4344ππθπ≤+≤-14sin(22≤+≤-πθ原函数的值域为:【例3】已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。
【解析】2221x ax by x ++=+22(2)04(y 2)(y b)0y x ax y b a ⇒--+-=⇒∆=---≥2244(2b)y 8b a 0y -++-≤。
由于222()1x ax bf x x ++=+的值域为[1,3],故上式不等式的解集为{y|1≤y≤3}1221221328234y y b a b ab y y +=+=+⎧=±⎧⎪⇒⇒⎨⎨-===⎩⎪⎩【例4】求函数2212+++=x x x y 的值域。
【高中数学讲义】函数求值域的十种方法

前言:总有人求助如何学好数学,这个问题很宽泛,并非寥寥数语能够厘清。
有一点很明确,学好数学的必要条件是了解数学。
高中数学可以归结为两个“三位一体”:教学体系的三位一体和知识结构的三位一体。
知识结构的三位一体:数学思想,数学方法,典型习题。
三要素之间的关系:典型习题归纳数学思想,数学思想指导数学方法,数学方法解决典型习题。
数学思想举例:数形结合的思想等。
数学方法举例:配方法、反证法、倍差法等。
典型习题举例:恒成立问题、是否存在问题等。
教学体系的三位一体:教、学、练。
老师教什么:数学思想和数学方法。
熟练掌握各种方法的是优秀学生,深入理解各种思想的是顶尖学生。
学生怎么学:课堂紧跟老师,课下善于提问。
如何做练习:01,选题:中学数学最大的误区就是题海战术,有的老师不学无术只会告诉你多做题。
多做题没用,多做类型才有用。
典型习题,做一顶百。
02,做题:一题多解。
对于选定的习题,运用尽量多的方法去解决,然后比较各个方法的优劣,归纳出某类型题对应的最佳方法。
03,总结:针对错题。
大量统计表明,我们在考试中所犯的错误大多是重复性的。
通过总结,避免两次踏入同一条水沟。
由上可知,我讲数学的特点是方法论、重总结。
工欲善其事,必先利其器:各种数学方法就是我们解决难题的利器。
总喊看题就没思路的童鞋,回忆一下高中阶段你能说出多少种方法。
说不出?有思路才怪!言归正传,今天我们就来总结一下“函数求值域的十种方法”(高中数学最重要就是函数,函数之于高中数学好比力学之于高中物理。
高中数学函数的要点无非:三要素,四变换,五常见,六性质。
三要素中的求值域就是本讲的主题)方法一:配方法用于解决二次函数值域问题,考试中几乎不会单独考察配方法(太简单),但常与其他方法综合使用。
y=ax2+bx+c(a≠0)经过配方得到 y=a(x-m)2 +n 的形式,可直接观察出值域。
方法二:函数性质法高中阶段函数六性:奇偶性,单调性,周期性,对称性,凸凹性,有界性(前三为重点)。
求函数值域(最值)的方法

求函数值域(最值)方法汇总一.单调性法例1.求函数x 53x y ---=的值域 例2.求函数11--+=x x y 的值域例3.求函数x x y -+-=53的值域解一:例4.已知函数.2]2,0[34)(2的值,求实数上有最大值在区间a x ax x f -+= 解:(1)当0=a 时,max ()(2)4232,f x f ==⨯-≠舍去; (2)当↑⇒〈-=〉上在时,对称轴方程为]2,0[)(020x f ax a 舍去,043254)2(〈-=⇒=+=⇒a a f ;(3)当时,0〈a 02〉-=ax 对称轴方程为, ①]1,(]0,1[1]2,0[2--∞∈⇒-∈⇒∈-a a a 1542384)2(-〉-=⇒=--=-⇒a a a a f ,舍去②122-〉⇒〉-a a ↑⇒上在]2,0[)(x f 43-=⇒a纵上,43-=a例5.已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。
解:0)0()0()0()00(=⇒+=+f f f f为奇函数则令)()()()()()(,x f x f x f x f x f x x f x y ⇒-=-⇒-+=--= )()()()()(0)(0,121112121221x f x f x f x f x x f x x f x x x x 〉⇒〉+-⇒〉-⇒〉-〈则令422)1()1()11()2(-=--=-+-=--=-f f f f ,2)1()1(=--=f f()[-2,1][-4,2]f x ⇒在上的值域为:二.判别式(∆)法:用于自然定义域下的二次分式形式的函数,变形为关于x 的方程,讨论2x 的系数,当系数为0时,判断方程左边是否等于0;当系数不为0时,得0≥∆。
综上,求出y 的范围。
如:,,222211221121c x b x a b x a y b x a c x b x a y +++=+++=22221121c x b x a c x b x a y ++++=等。
高中数学必修一-函数的值域与表示

函数的值域与表示知识集结知识元常见的求函数值域类型知识讲解一、定义函数值的集合{f(x)|x∈A}叫做函数的值域.A是函数的定义域.二、求函数值域的常用方法(1)公式法:适用于一次函数、二次函数、反比例函数及以后要学的基本初等函数,形如(且分式不可约)的值域为.(2)图象法:适用于能画出图象的函数,如,.(3)不等式性质法(包含观察法、配方法、分离常数法、有界法):适用于解析式中只出现“一个”或通过变形化成只能出现“一个”函数,如:,等.(4)换元法:适用于无理式中含有自变量的函数,如等.(5)判别式:适用于形如(,不全为零且分式不可约)的函数.(6)方程思想(包括判别式法、反解法):适用于可解出的解析式函数,如等.例题精讲常见的求函数值域类型例1.函数f(x)=x+1,x∈{﹣1,1,2}的值域是()A.0,2,3B.0≤y≤3C.{0,2,3}D.[0,3]例2.函数y=的定义域是(﹣∞,1)∪[2,5),则其值域是()A.(﹣∞,0)∪(,2]B.(﹣∞,2]C.(﹣∞,)∪[2,+∞)D.(0,+∞)例3.函数y=的值域是()A.(﹣∞,1)∪(1,+∞)B.(﹣∞,0)∪(0,+∞)C.(﹣∞,)∪(,+∞)D.(﹣∞,)∪(,+∞)例4.函数的值域是.备选题库知识讲解本题库作为知识点“函数的值域”的题目补充.例题精讲备选题库例1.函的值域是()A.R B.[-1,1]C.{-1,1}D.{-1,0,1}例2.函数y=的值域是()A.[0,+∞)B.[0,4]C.[0,4)D.(0,4)例3.函数的值域为()A.[-1,+∞)B.[0,+∞)C.(-1,+∞)D.(0,+∞)例4.已知,则函数f(x)=log2x的值域是()A.[-3,-2]B.[-2,3]C.[-3,3]D.[-2,2]例5.函数y=2+1的值域为()A.[0,+∞)B.[1,+∞)C.[2,+∞)D.例6.已知函数f(x)=-,则函数f(x)的值域为()A.[-3,0]B.[0,3]C.[-3,3]D.[3,12]例7.下列哪个函数的定义域与函数f(x)=()x的值域相同()A.y=|x|B.y=C.y=x+D.y=lnx例8.定义函数f(x)={x∙{x}},其中{x}表示不小于x的最小整数,如{1.5}=2,{-2.5}=-2,当x∈(0,n],n∈N*时,函数f(x)的值域为A n,记集合A n中元素的个数为a n,则a n=()A.n B.C.D.图象法知识讲解1.图象法在坐标平面中用曲线的表示出函数关系.即图象上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图象上.这种由图形表示函数的方法叫作图象法.2.函数图象的作法步骤①列表;②.描点;③.连线.注意:一般情况下,函数需要同解变形后,结合函数的定义域,通过函数的对应法则,列出表格,然后在直角坐标系中,准确描点,然后连线(平滑曲线)例题精讲图象法例1.若a+b=0,则直线y=ax+b的图象可能是()A.B.C.D.例2.若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.例3.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点例4.已知函数f(x)=x2﹣2x,则下列各点中不在函数图象上的是()A.(1,﹣1)B.(﹣1,3)C.(2,0)D.(﹣2,6)例5.可作为函数y=f(x)的图象的是()A.B.C.D.图象的平移变换知识讲解一、变换作图法设,.例题精讲图象的平移变换例1.已知函数f(x)的图象关于直线x=1对称,如图所示,则满足等式f(a﹣1)=f(5)的实数a的值为.例2.已知反比例函数y=的图象如图所示,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.例3.若函数y=f(x)的图象如图①所示,则图②对应函数的解析式可以表示为()A.y=f(|x|)B.y=|f(x)|C.y=f(﹣|x|)D.y=﹣f(|x|)例4.函数y=f(x)的图象是两条直线的一部分(如图所示),其定义域为[﹣1,0)∪(0,1],则不等式f(x)﹣f(﹣x)>﹣1的解集为.例5.将y=f(x)的图象的横坐标伸长为原来的3倍,纵坐标缩短为原来的,则所得函数的解析式为()A.y=3f(3x)B.C.D.函数的解析式知识讲解一、解析法:用解析式把把x与y的对应关系表述出来,y=f(x);这种方法叫做解析法.注意:函数的三种表示方法间具有互补性,因此在实际研究问题时,通常是三种方法交替使用,例如在研究用解析式表示的某一函数的性质时,可以根据解析式画出函数图象,数形结合更清晰、直观,如何画函数图象?列表法,通常取其自变量的部分值,根据解析式算出相应的函数值,列表显示其数值的对应关系,再根据表格,在平面直角坐标系中描点,形成该函数的图象.二、求函数解析式的常用方法1.配凑法:原函数的表达式为,t是关于x的式子,要求的解析式,这是要把通过变形、整理,使其变为只含t与常数的式子,然后将t换成x,即可以得到的解析式,这种方法叫做配凑法.2.换元法:解题时,把某个式子看做整体,用一个新的变量取代替它,从而使问题简化,这种方法叫做配凑法.3.待定系数法:已知的函数类型,要求的解析式时,可根据类型先设出函数解析式,再将对应值代入,利用恒等式原理求出待定系数即可.4.解方程组法(或消元法):在已知式子中,含有关于两个不同变量的函数,而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的关于两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变量,得到目标变量的解析式,这种方法叫做解方程组法(或消元法).5.赋值法:如果一个函数关系式中的变量对某个范围内的一切值都成立,结合题设条件的结构特点,给变量适当赋值,从而使问题简单化、具体化.例题精讲函数的解析式例1.若函数,,则f(x)+g(x)=.例2.已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,则5a﹣b =.例3.已知f(x)=2x+3,g(x+2)=f(x),则g(x)等于()A.2x+1B.2x﹣1C.2x﹣3D.2x+7例4.已知g(x)=1﹣2x,f[g(x)]=(x≠0),则f()等于()A.15B.1C.3D.30例5.已知f(x+1)=2x2+1,则f(x﹣1)=.构造函数知识讲解例题精讲分段函数知识讲解1.定义分段函数是定义在不同区间上解析式也不相同的函数.若函数在定义域的不同子集上的对应法则不同,可用几个式子来表示函数,这种形式的函数叫分段函数.已知一个分段函数在某一区间上的解析式,求此函数在另一区间上的解析式,这是分段函数中最常见的问题.1.学习分段函数的注意事项(1)分段函数是一个函数,而不是几个函数;(2)处理分段函数问题时,要首先确定自变量的取值属于哪一范围,然后选取相应的对应关系.要注意写解析式是各自端点的开闭,做到不重复、不遗漏.(3)分段函数的定义域是各段定义域的并集,分段函数的值域是分别求出各段上值域的并集;分段函数的最大(小)值则是分别在没端上求出最大(小)值,然后取各个最大(小)值中的最大(小)值.例题精讲分段函数例1.设f(x)=,则f(5)的值为()A.10B.11C.12D.13例2.函数,其中P、M为实数集R的两个非空子集,又规定A={y|y =f(x),x∈P},B={y|y=f(x),x∈M},给出下列三个判断:①若P∩M=Φ,则A∩B=Φ;②若P∪M=R,则A∪B=R;③若P∪M≠R,则A∪B≠R.其中错误的判断是(只需填写序号).例3.已知函数f(x)=则f(f(5))=()A.0B.-2C.-1D.1例4.设f(x)=,则f(5)的值为()A.10B.11C.12D.例5.设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f (x2)=f(x3),则x1+x2+x3的取值范围是()A.(]B.()C.(]D.()列表法知识讲解1.列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法.例题精讲列表法例1.设f,g都是由A到A的映射,其对应法则如下表(从上到下):表1映射f的对应法则原象1234象3421表2映射g的对应法则原象1234象4312则与f[g(1)]相同的是()A.g[f(1)]B.g[f(2)]C.g[f(3)]D.g[f(4)]例2.已知函数f(x),g(x)分别由表给出,则f(g(1))=.x123 f(x)213 g(x)321例3.已知函数分别由下表给出x123f(x)131x123g(x)321则f(g(1))=.备选题库知识讲解本题库作为知识点“函数的表示方法”的题目补充.例题精讲备选题库例1.直线l1:y=kx+b和直线l2:(k≠0,b≠0)在同一坐标系中,两直线的图形应为()A.B.C.D.例2.函数f(x)=ln|x|-|x|的图象为()A.B.C.D.例3.二次函数y=ax2+bx+c(x∈R)的部分对应值如表:则不等式ax2+bx+c>0的解集是()A.(-∞,-6)∪(-6,+∞)B.(-∞,-2)∪(3,+∞)C.(-2,3)D.(-6,+∞)例4.已知函数f(x)=x2+bx,若函数y=f(f(x))的最小值与函数y=f(x)的最小值相等,则实数b的取值范围是______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。
例1.求函数1y =的值域。
【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。
【练习】1.求下列函数的值域:①32(11)y x x =+-≤≤; ②x x f -+=42)(;③1+=x xy ;○4()112--=x y ,{}2,1,0,1-∈x 。
【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞;○4{1,0,3}-。
二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
例2.求函数242y x x =-++([1,1]x ∈-)的值域。
【解析】2242(2)6y x x x =-++=--+。
∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。
∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。
例3.求函数][)4,0(422∈+--=x x x y 的值域。
【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:)0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:]0,2y ⎡∈⎣。
说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。
例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。
【分析与解】本题可看成第一象限内动点(,)P x y 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。
利用两点(4,0),(0,2)确定一条直线,作出图象易得:2(0,4),(0,2),lg lg lg lg[(42)]lg[2(1)2]x y x y xy y y y ∈∈+==-=--+而,y=1时,y x lg lg +取最大值2lg 。
【练习】2.求下列函数的最大值、最小值与值域:①142+-=x x y ;②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ;④]5,0[,142∈+-=x x x y ;○5xx x y 422++=,]4,41[∈x ;○6y =。
【参考答案】①[3,)-+∞;②[2,1]-;③[2,1]-;④[3,6]-;○573[6,]4;○6[0,2] 三.反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。
适用类型:分子、分母只含有一次项的函数(即有理分式一次型),也可用于其它易反解出自变量的函数类型。
例5.求函数12+=x xy 的值域。
分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出x ,从而便于求出反函数。
12+=x xy 反解得y y x -=2,故函数的值域为(,2)(2,)-∞+∞。
【练习】 1.求函数2332x y x +=-的值域。
2.求函数ax b y cx d +=+,0,d c x c ⎛⎫≠≠- ⎪⎝⎭的值域。
【参考答案】1.22(,)(,)33-∞+∞;(,)(,)a ac c-∞+∞。
四.分离变量法:适用类型1:分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
例6:求函数125xy x -=+的值域。
解:∵177(25)112222525225x x y x x x -++-===-++++, ∵72025x ≠+,∴12y ≠-,∴函数125x y x -=+的值域为1{|}2y y ≠-。
适用类型2:分式且分子、分母中有相似的项,通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式。
例7:求函数122+--=x x xx y 的值域。
分析与解:观察分子、分母中均含有x x -2项,可利用分离变量法;则有22221111x x x x y x x x x --+-==-+-+ 21113()24x =--+。
不妨令:)0)(()(1)(,43)21()(2≠=+-=x f x f x g x x f 从而)∞+⎢⎣⎡∈,43)(x f 。
注意:在本题中若出现应排除0)(=x f ,因为)(x f 作为分母.所以4()0,3g x ⎛⎤∈ ⎥⎦⎝故)1,31⎢⎣⎡-∈y 。
另解:观察知道本题中分子较为简单,可令222111x x t x x x x-+==+--,求出t 的值域,进而可得到y 的值域。
【练习】1.求函数132222++++=x x x x y 的值域。
【参考答案】1.10(2,]3五、换元法:对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑通过换元的方法将原函数转化为简单的熟悉的基本函数。
其题型特征是函数解析式含有根式或三角函数公式模型,当根式里是一次式时,用代数换元;当根式里是二次式时,用三角换元。
例8:求函数2y x =解:令t =0t ≥),则212t x -=,∴22151()24y t t t =-++=--+。
∵当12t =,即38x =时,max 54y =,无最小值。
∴函数2y x =5(,]4-∞。
例9:求函数2y x =+解:因21(1)0x -+≥,即2(1)1x +≤。
故可令1cos ,[0,]x ββπ+=∈,∴1cos sin cos 11cos y 2+β+β=β-++β=1)4sin(2+π+β=。
∵ππβππβ4544,0≤+≤≤≤,sin()124πβ∴-≤+≤,0)114πβ∴≤++≤故所求函数的值域为]21,0[+。
例10.求函数34221x x y x x -=++的值域。
解:原函数可变形为:222121211x x y x x -=-⨯⨯++ 可令X=βtan ,则有222221sin 2,cos 11x x x xββ-==++ 11sin 2cos 2sin 424y βββ∴=-⨯=-当28k ππβ=-时,max 14y = 当28k ππβ=+时,min 14y =- 而此时βtan 有意义。
故所求函数的值域为⎥⎦⎤⎢⎣⎡-41,41 例11. 求函数(sin 1)(cos 1)y x x =++,,122x ππ⎡⎤∈-⎢⎥⎣⎦的值域。
解:(sin 1)(cos 1)y x x =++sin cos sin cos 1x x x x =+++令sin cos x x t +=,则21sin cos (1)2x x t =- 2211(1)1(1)22y t t t =-++=+由sin cos )4t x x x π=+=+且,122x ππ⎡⎤∈-⎢⎥⎣⎦可得:2t ≤≤∴当t =时,max 32y =2t =342y =+故所求函数的值域为3342⎡++⎢⎣。
例12. 求函数4y x =+解:由250x -≥,可得||x ≤故可令,[0,]x ββπ=∈4)44y πβββ=++=++∵0βπ≤≤5444πππβ∴≤+≤当4πβ=时,max 4y =当βπ=时,min4y =故所求函数的值域为:[44-+六、判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解。
例13:求函数2231x x y x x -+=-+的值域。
解:由2231x x y x x -+=-+变形得2(1)(1)30y x y x y ---+-=,当1y =时,此方程无解;当1y ≠时,∵x R ∈,∴2(1)4(1)(3)0y y y ∆=----≥,解得1113y ≤≤,又1y ≠,∴1113y <≤ ∴函数2231x x y x x -+=-+的值域为11{|1}3y y <≤七、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。
例14:求函数y x =-解:∵当x 增大时,12x -随x的增大而减少,x 的增大而增大,∴函数y x =1(,]2-∞上是增函数。
∴1122y ≤-=,∴函数y x =1(,]2-∞。
例15.求函数y =解:原函数可化为:1x 1x 2y -++=令1,121-=+=x y x y ,显然21y ,y 在],1[+∞上为无上界的增函数所以21y y y +=在],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值2,原函数有最大值222=显然0y >,故原函数的值域为]2,0(适用类型2:用于求复合函数的值域或最值。
(原理:同增异减)例16:求函数)4(log 221x x y -=的值域。
分析与解:由于函数本身是由一个对数函数(外层函数)和二次函数(内层函数)复合而成,故可令:2()4(()0)t x x x t x =-+≥配方得:2()(2)4()0,4)t x x t x =--+∈所以(由复合函数的单调性(同增异减)知:),2[+∞-∈y 。
八、利用有界性:一般用于三角函数型,即利用]1,1[cos ],1,1[sin -∈-∈x x 等。
例17:求函数cos sin 3x y x =-的值域。
解:由原函数式可得:sin cos 3y x x y -=,可化为:()3x x y β+=即sin ()x x β+=∵x R ∈∴sin ()[1,1]x x β+∈- 即11-≤≤解得:44y -≤≤故函数的值域为⎡⎢⎣⎦注:该题还可以使用数形结合法。
cos cos 0sin3sin 3x x y x x -==--,利用直线的斜率解题。
例18:求函数1212xxy -=+的值域。
解:由1212x xy -=+解得121xy y -=+,∵20x >,∴101yy->+,∴11y -<< ∴函数1212xxy -=+的值域为(1,1)y ∈-。
九、图像法(数形结合法):其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例19:求函数|3||5|y x x =++-的值域。
解:∵22|3||5|822x y x x x -+⎧⎪=++-=⎨⎪-⎩(3)(35)(5)x x x <--≤<≥,∴|3||5|y x x =++-的图像如图所示,由图像知:函数|3||5|y x x =++-的值域为[8,)+∞ 例20. 求函数22(2)(8)y x x =-++的值域。