2019中考二次函数压轴题专题分类训练
2019全国中考数学压轴题二次函数压轴题(新颖题型)

最值问题定角对定边(弦)模型1.(2019•淄博)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得△P AM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.解:(1)∵抛物线y=ax2+bx+3过点A(3,0),B(﹣1,0)∴解得:∴这条抛物线对应的函数表达式为y=﹣x2+2x+3(2)在y轴上存在点P,使得△P AM为直角三角形.∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴顶点M(1,4)∴AM2=(3﹣1)2+42=20设点P坐标为(0,p)∴AP2=32+p2=9+p2,MP2=12+(4﹣p)2=17﹣8p+p2①若∠P AM=90°,则AM2+AP2=MP2∴20+9+p2=17﹣8p+p2解得:p=﹣∴P(0,﹣)②若∠APM=90°,则AP2+MP2=AM2∴9+p2+17﹣8p+p2=20解得:p1=1,p2=3∴P(0,1)或(0,3)③若∠AMP=90°,则AM2+MP2=AP2∴20+17﹣8p+p2=9+p2解得:p=∴P(0,)综上所述,点P坐标为(0,﹣)或(0,1)或(0,3)或(0,)时,△P AM为直角三角形.(3)如图,过点I作IE⊥x轴于点E,IF⊥AD于点F,IH⊥DG于点H∵DG⊥x轴于点G∴∠HGE=∠IEG=∠IHG=90°∴四边形IEGH是矩形∵点I为△ADG的内心∴IE=IF=IH,AE=AF,DF=DH,EG=HG∴矩形IEGH是正方形设点I坐标为(m,n)∴OE=m,HG=GE=IE=n∴AF=AE=OA﹣OE=3﹣m∴AG=GE+AE=n+3﹣m∵DA=OA=3∴DH=DF=DA﹣AF=3﹣(3﹣m)=m∴DG=DH+HG=m+n∵DG2+AG2=DA2∴(m+n)2+(n+3﹣m)2=32∴化简得:m2﹣3m+n2+3n=0配方得:(m﹣)2+(n+)2=∴点I(m,n)与定点Q(,﹣)的距离为∴点I在以点Q(,﹣)为圆心,半径为的圆在第一象限的弧上运动∴当点I在线段CQ上时,CI最小∵CQ=∴CI=CQ﹣IQ=∴CI最小值为.求面积最值有新意1.(2019•聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x 轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.解:(1)将点A、B、C的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+2x+8;(2)∵点A(﹣2,0)、C(0,8),∴OA=2,OC=8,∵l⊥x轴,∴∠PEA=∠AOC=90°,∵∠P AE≠∠CAO,∴只有当∠PEA=∠AOC时,PEA△∽AOC,此时,即:,∴AE=4PE,设点P的纵坐标为k,则PE=k,AE=4k,∴OE=4k﹣2,将点P坐标(4k﹣2,k)代入二次函数表达式并解得:k=0或(舍去0),则点P(,);(3)在Rt△PFD中,∠PFD=∠COB=90°,∵l∥y轴,∴∠PDF=∠COB,∴Rt△PFD∽Rt△BOC,∴,∴S△PDF=•S△BOC,而S△BOC=OB•OC==16,BC==4,∴S△PDF=•S△BOC=PD2,即当PD取得最大值时,S△PDF最大,将B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣2x+8,设点P(m,﹣m2+2m+8),则点D(m,﹣2m+8),则PD=﹣m2+2m+8+2m﹣8=﹣(m﹣2)2+4,当m=2时,PD的最大值为4,故当PD=4时,∴S△PDF=PD2=.定值问题1.(2019•宜昌)在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(﹣2,4),B(﹣2,﹣2),C(4,﹣2),D(4,4).(1)填空:正方形的面积为36;当双曲线y=(k≠0)与正方形ABCD有四个交点时,k的取值范围是:0<k<4或﹣8<k<0;(2)已知抛物线L:y=a(x﹣m)2+n(a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线y=(k≠0)与边DC交于点N.①点Q(m,﹣m2﹣2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别切运动过程中点Q在最高位置和最低位置时的坐标;②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求﹣的值;③求证:抛物线L与直线x=1的交点M始终位于x轴下方.解:(1)由点A(﹣2,4),B(﹣2,﹣2)可知正方形的边长为6,∴正方形面积为36;有四个交点时0<k<4或﹣8<k<0;故答案为36,0<k<4或﹣8<k<0;(2)①由题意可知,﹣2≤m≤4,y Q=﹣m2﹣2m+3=﹣(m+1)2+4,当m=﹣1,y Q最大=4,在运动过程中点Q在最高位置时的坐标为(﹣1,4),当m<﹣1时,y Q随m的增大而增大,当m=﹣2时,y Q最小=3,当m>﹣1时,y Q随m的增大而减小,当m=4时,y Q最小=﹣21,∴3>﹣21,∴y Q最小=﹣21,点Q在最低位置时的坐标(4,﹣21),∴在运动过程中点Q在最高位置时的坐标为(﹣1,4),最低位置时的坐标为(4,﹣21);②当双曲线y=经过点B(﹣2,﹣2)时,k=4,∴N(4,1),∵顶点P(m,n)在边BC上,∴n=﹣2,∴BP=m+2,CP=4﹣m,∵抛物线y=a(x﹣m)2﹣2(a>0)与边AB、DC分别交于点E、F,∴E(﹣2,a(﹣2﹣m)2﹣2),F(4,a(4﹣m)2﹣2),∴BE=a(﹣2﹣m)2,CF=a(4﹣m)2,∴=﹣,∴a(m+2)﹣a(4﹣m)=2am﹣2a=2a(m﹣1),∵AE=NF,点F在点N下方,∴6﹣a(﹣2﹣m)2=3﹣a(4﹣m)2,∴12a(m﹣1)=3,∴a(m﹣1)=,∴=;③由题意得,M(1,a(1﹣m)2﹣2),∴y M=a(1﹣m)2﹣2(﹣2≤m≤4),即y M=a(m﹣1)2﹣2(﹣2≤m≤4),∵a>0,∴对应每一个a(a>0)值,当m=1时,y M最小=﹣2,当m=﹣2或4时,y M最大=9a﹣2,当m=4时,y=a(x﹣4)2﹣2,∴F(4,﹣2),E(﹣2,36a﹣2),∵点E在边AB上,且此时不与B重合,∴﹣2<36a﹣2≤4,∴0<a≤,∴﹣2<9a﹣2≤﹣,∴y M≤﹣,同理m=﹣2时,y=y=a(x+2)2﹣2,∴E(﹣2,﹣2),F(4,36a﹣2),∵点F在边CD上,且此时不与C重合,∴﹣2<36a﹣2≤4,解得0<a≤,∴﹣2<9a﹣2≤﹣,∴y M≤﹣,综上所述,抛物线L与直线x=1的交点M始终位于x轴下方;2.(2019•泰州)已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;②过点B作x轴的平行线与函数y1的图象相交与点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.解:(1)①将点A的坐标代入一次函数表达式并解得:k=2,将点A的坐标代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=2+n﹣m,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC,即:2+n﹣m=m﹣n,或m﹣(2+n)=2即:m﹣n=1或4;②点E的横坐标为:,d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),m﹣n的值取不大于1的任意数时,d始终是一个定值,当1﹣=0时,此时k=1,从而d=1.存在性问题锐角三角形存在性1.(2019•无锡)已知二次函数y=ax2+bx﹣4(a>0)的图象与x轴交于A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.D为顶点,直线AC交对称轴于点E,直线BE 交y轴于点F,AC:CE=2:1.(1)求C点坐标,并判断b的正负性;(2)设这个二次函数的图象的对称轴与直线AC相交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC.①若△BCE的面积为8,求二次函数的解析式;②若△BCD为锐角三角形,请直接写出OA的取值范围.解:(1)令x=0,则y=﹣4,∴C(0,﹣4),∵OA<OB,∴对称轴在y轴右侧,即∵a>0,∴b<0;(2)①过点D作DM⊥Oy,则,∴,设A(﹣2m,0)m>0,则AO=2m,DM=m∵OC=4,∴CM=2,∴D(m,﹣6),B(4m,0),则,∴OE=8,S△BEF=×4×4m=8,∴m=1,∴A(﹣2,0),B(4,0),设y=a(x+2)(x﹣4),即y=ax2﹣2ax﹣8a,令x=0,则y=﹣8a,∴C(0,﹣8a),∴﹣8a=﹣4,a=,∴;②由①知B(4m,0)C(0,﹣4)D(m,﹣6),则∠CBD一定为锐角,CB2=16m2+16,CD2=m2+4,DB2=9m2+36,当∠CDB为锐角时,CD2+DB2>CB2,m2+4+9m2+36>16m2+16,解得﹣2<m<2;当∠BCD为锐角时,CD2+CB2>DB2,m2+4+16m2+16>9m2+36,解得,综上:,;故:.相似存在唯一性(2019•镇江)如图,二次函数y=﹣x2+4x+5图象的顶点为D,对称轴是直线1,一次函数y=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是(2,9);(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P、Q,使得△DPQ与△DAB相似.①当n=时,求DP的长;②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围<n<.解:(1)顶点为D(2,9);故答案为(2,9);(2)对称轴x=2,∴C(2,),由已知可求A(﹣,0),点A关于x=2对称点为(,0),则AD关于x=2对称的直线为y=﹣2x+13,∴B(5,3),①当n=时,N(2,),∴DA=,DN=,CD=当PQ∥AB时,△DPQ∽△DAB,∵△DAC∽△DPN,∴,∴DP=9;当PQ与AB不平行时,△DPQ∽△DBA,∴△DNQ∽△DCA,∴,∴DP=9;综上所述,DN=9;②当PQ∥AB,DB=DP时,DB=3,∴,∴DN=,∴N(2,),∴有且只有一个△DPQ与△DAB相似时,<n<;故答案为<n<;动点产生的图形存在性1.(2019·邵阳)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式,(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值,(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P 向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值,若不能,请说明理由.解:(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A.E、F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A.E、F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4,②当4<t≤7时,如图2所示,AQ=8﹣t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴8﹣t=﹣t2+t,解得:t3=4(舍去),t4=6,③当7<t≤8时,如图3所示,AQ=8﹣t,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴8﹣t=t2﹣t,解得:t5=2﹣2(舍去),t6=2+2.综上所述:当以A.E、F、Q四点为顶点构成的四边形为平行四边形时,t的值为4,6或2+2..已知角平分线的相关计算1.(2019•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣x2﹣x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR.若OQ∥PR,求出点Q的坐标.解:(1)将x=2代入y=﹣x2﹣x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣1),C(0,﹣3)代入y=x2+bx+c,得,解得,∴抛物线L1:y=x2﹣2x﹣3;(2)设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,①当点Q在点P右侧时,则点Q的坐标为(x+2,﹣2x﹣3),将Q(x+2,﹣2x﹣3)代入y=﹣x2﹣x+2,得﹣2x﹣3=﹣(x+2)2﹣(x+2)+2,解得,x=0或x=﹣1,因为x=0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(﹣1,0);②当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3),将Q(x﹣2,x2﹣2x﹣3)代入y=﹣x2﹣x+2,得y=﹣x2﹣x+2,得x2﹣2x﹣3=﹣(x﹣2)2﹣(x﹣2)+2,解得,x=3,或x=﹣,此时点P的坐标为(3,0)或(﹣,);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(1,﹣3),得PQ的中点坐标为(1,﹣3),故点Q的坐标为(2﹣x,﹣x2+2x﹣3),将Q(2﹣x,﹣x2+2x﹣3)代入y=﹣x2﹣x+2,得﹣x2+2x﹣3═﹣(2﹣x)2﹣(2﹣x)+2,解得,x=0或x=﹣3,因为x=0时,点P与点C重合,不符合题意,所以舍去,此时点P的坐标为(﹣3,12),综上所述,点P的坐标为(﹣1,0)或(3,0)或(﹣,)或(﹣3,12);(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分∠PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH⊥TR于点H,则有∠PSC=∠RTC=90°,由CA平分∠PCR,得∠PCA=∠RCA,则∠PCS=∠RCT,∴△PSC∽△RTC,∴,设点P坐标为(x1,),点R坐标为(x2,),所以有,整理得,x1+x2=4,在Rt△PRH中,tan∠PRH==过点Q作QK⊥x轴于点K,设点Q坐标为(m,),若OQ∥PR,则需∠QOK=∠PRH,所以tan∠QOK=tan∠PRH=2,所以2m =, 解得,m =, 所以点Q 坐标为(,﹣7+)或(,﹣7﹣).2.(19-20长郡期末25题)如图1,抛物线2: 2W y ax =-的顶点为点A ,与x 轴的负半轴交于点D ,直线AB 交抛物线W 于另一点C ,点B 的坐标为()1,0.(1)求直线AB 的解析式;(2)过点C 作CE x ⊥轴,交x 轴于点E ,若AC 平分DCE ∠,求抛物线W 的解析式; (3)若12a =,将抛物线W 向下平移()0m m >个单位得到抛物线1W ,如图2,记抛物线1W 的顶点为1A ,与x 轴负半轴的交点为1D ,与射线BC 的交点为1C .问:在平移的过程中,11tan D C B ∠是否恒为定值?若是,请求出11tan D C B ∠的值;若不是,请说明理由.【详解】(1)∵抛物线W :22y ax =-的顶点为点A , ∴点2(0)A -,, 设直线AB 解析式为y kx b =+,∵B (1,0),∴20b k b =-⎧⎨+=⎩, 解得:22k b =⎧⎨=-⎩, ∴抛物线解析式为:22y x =-.(2)如图,过点B 作BN CD ⊥于N ,∵AC 平分,DCE BN CD BE CE ∠⊥⊥,,,∴BN BE =,∵90,BND CED BDN CDE ∠=∠=︒∠=∠, ∴BND CED V :V , ∴BN DB CE CD=, ∴BE DB CE CD =, ∵//AO CE , ∴12BO BE DB AO CE CD===, 设,BE x BD y ==,则2,2CE x CD y ==, ∵222CD DE CE =+,∴()22244y x y x =++,∴()()530x y x y +-=, ∴53y x =, ∴点()1,2C x x +,点51,03D x ⎛⎫- ⎪⎝⎭, ∴点C ,点D 是抛物线W :22y ax =-上的点,∴()2221250123x a x a x ⎧=+-⎪⎨⎛⎫=--⎪ ⎪⎝⎭⎩, ∵x >0, ∴25113x x ⎛⎫+=- ⎪⎝⎭, 解得:10x =(舍去),23925x =, ∴2539012325a ⎛⎫=-⨯- ⎪⎝⎭, ∴2532a =, ∴抛物线解析式为:225232y x =-.(3)11tan D C B ∠恒为定值,理由如下: 如图,过点1C 作1C H x ⊥轴于H ,过点C 作CG x ⊥轴G ,过点B 作BF CD ⊥于点F , ∵a=12, ∴抛物线W 的解析式为y=12x 2-2, ∵将抛物线W 向下平移m 个单位,得到抛物线1W , ∴抛物线1W 的解析式为:2122y x m =--, 设点1D 的坐标为()(),00t t <, ∴21022t m =--, ∴2122m t +=, ∴抛物线1W 的解析式为:221122y x t =-, ∵抛物线1W 与射线BC 的交点为1C , ∴22221122y x y x t =-⎧⎪⎨=-⎪⎩, 解得:11222x t y t =-⎧⎨=-⎩,22222x t y t =-⎧⎨=+⎩(不合题意舍去), ∴点1C 的坐标()2,22t t --,∴122,2C H t OH t =-=-,∴()11222D H DO OH t t t =+=-+-=-, ∴11C H D H =,且1C H x ⊥轴,1145C D H ∴=o ,∵2122y x =-与x 轴交于点D , ∴点()2,0D -, ∵22y x =-与2122y x =-交于点C ,点A , ∴222122y x y x =-⎧⎪⎨=-⎪⎩, 解得:46x y =⎧⎨=⎩或02x y =⎧⎨=-⎩,∴点()4,6C ,A (0,-2),∴6,246GC DG OD OG ==+=+=, ∴DG CG =,且CG x ⊥轴, ∴1145GDC C D H ∠=︒=∠, ∴11//C D CD , ∴11D C B DCB ∠=∠, ∴11tan D C B tan DCB ∠=∠,∵45,,213CDB BF CD BD OD OB ∠=⊥=+=+=o, ∴45FDB FBD ∠=∠=o ,∴,3DF BF DB ===,∴DF BF ==∵点()2,0D -,点()4,6C , ∴CD ==,∴92CF CD DF =-=, ∴1113BF tan D C B tan DCB CF ∠=∠==, ∴11tan D C B ∠恒为定值.已知面积比的相关计算1.(2019•十堰)已知抛物线y =a (x ﹣2)2+c 经过点A (﹣2,0)和C (0,),与x 轴交于另一点B ,顶点为D .(1)求抛物线的解析式,并写出D 点的坐标;(2)如图,点E ,F 分别在线段AB ,BD 上(E 点不与A ,B 重合),且∠DEF =∠A ,则△DEF 能否为等腰三角形?若能,求出BE 的长;若不能,请说明理由; (3)若点P 在抛物线上,且=m ,试确定满足条件的点P 的个数.解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当DE=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△AED,∴△BEF≌△AED,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△AEF∽△BCE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).2.(2019年湖南省益阳市)在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C 两点,与y轴交于点D,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式,(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由,(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA.PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:若点A.B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,).解:(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3,(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM,(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5),如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,将点C(﹣1,0)、P(4,﹣5)的坐标代入一次函数表达式并解得:直线PC的表达式为:y=﹣x﹣1…①,同理直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣,即点Q(﹣,),∵点N是PQ的中点,由中点公式得:点N(,﹣).3.(2019年湖南省常德市)如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B点的坐标为(﹣1,0).(1)求二次函数的解析式,(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值,(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使△PNC的面积是矩形MNHG面积的?若存在,求出该点的横坐标,若不存在,请说明理由.解:(1)二次函数表达式为:y=a(x﹣1)2+4,将点B的坐标代入上式得:0=4a+4,解得:a=﹣1,故函数表达式为:y=﹣x2+2x+3…①,(2)设点M的坐标为(x,﹣x2+2x+3),则点N(2﹣x,﹣x2+2x+3),则MN=x﹣2+x=2x﹣2,GM=﹣x2+2x+3,矩形MNHG的周长C=2MN+2GM=2(2x﹣2)+2(﹣x2+2x+3)=﹣2x2+8x+2,∵﹣2<0,故当x=﹣=2,C有最大值,最大值为10,此时x=2,点N(0,3)与点D重合,(3)△PNC的面积是矩形MNHG面积的,则S△PNC=×MN×GM=×2×3=,连接DC,在CD得上下方等距离处作CD的平行线m、n,过点P作y轴的平行线交CD、直线n于点H、G,即PH=GH,过点P作PK∥⊥CD于点K,将C(3,0)、D(0,3)坐标代入一次函数表达式并解得:直线CD的表达式为:y=﹣x+3,OC=OD,∴∠OCD=∠ODC=45°=∠PHK,CD=3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),S△PNC==×PK×CD=×PH×sin45°×3,解得:PH==HG,则PH=﹣x2+2x+3+x﹣3=,解得:x=,故点P(,),直线n的表达式为:y=﹣x+3﹣=﹣x+…②,联立①②并解得:x=,即点P′、P″的坐标分别为(,)、(,),故点P坐标为:(,)或(,)或(,).4.(2019年湖南省湘西州)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式,(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值,(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标,若不存在,请说明理由,(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.解:(1)∵点A在线段OE上,E(8,0),OA=2∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'∴C四边形MNGF=MN+NG+GF+FM=MN+N'G+GF+FM'∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小∴C四边形MNGF=MN+M'N'==2+10=12∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x设点P坐标为(t,t2﹣4t)(0<t<8),则点E(t,﹣3t)①如图2,当0<t<2时,点P在点D左侧∴PE=y E﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t∴S△ODP=S△OPE+S△DPE=PE•x P+PE•(x D﹣x P)=PE(x P+x D﹣x P)=PE•x D=PE=﹣t2+t ∵△ODP中OD边上的高h=,∴S△ODP=OD•h∴﹣t2+t=×2×方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP=S△OPE﹣S△DPE=PE•x P﹣PE•(x P﹣x D)=PE(x P﹣x P+x D)=PE•x D=PE=t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,0)连接AC,交KL于点H∵S△ACD=S四边形ADLK=S矩形ABCD∴S△AHK=S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.4.(2019•武汉)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.解:(1)y=(x﹣1)2﹣4向左评移1个单位长度,再向上平移4个单位长度即可得到y =x2;(2)y=(x﹣1)2﹣4与x轴正半轴的交点A(3,0),∵直线y=﹣x+b经过点A,∴b=4,∴y=﹣x+4,y=﹣x+4与y=(x﹣1)2﹣4的交点为﹣x+4=(x﹣1)2﹣4的解,∴x=3或x=﹣,∴B(﹣,),设P(t,﹣t+4),且﹣<t<3,∵PQ∥y轴,∴Q(t,t2﹣2t﹣3),①当AP=AQ时,|4﹣t|=|t2﹣2t﹣3|,则有﹣4+t=t2﹣2t﹣3,∴t=,∴P点横坐标为;②当AP=PQ时,PQ=﹣t2+t+7,P A=(3﹣t),∴﹣t2+t+7=(3﹣t),∴t=﹣;∴P点横坐标为﹣;(3)设经过M与N的直线解析式为y=k(x﹣m)+m2,∴,则有x2﹣kx+km﹣m2=0,△=k2﹣4km+4m2=(k﹣2m)2=0,∴k=2m,直线ME的解析式为y=2mx﹣m2,直线NE的解析式为y=2nx﹣n2,∴E(,mn),∴[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,∴(m﹣n)3﹣=4,∴(m﹣n)3=8,∴m﹣n=2;含参数二次函数分类讨论1.(2019•天门)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y =kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.解:(1)点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b,∴,∴,∴y=x﹣;联立y=ax2+2x﹣1与y=x﹣,则有2ax2+3x+1=0,∵抛物线C与直线l有交点,∴△=9﹣8a≥0,∴a≤且a≠0;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣4,∴当y=﹣4时,有﹣x2+2x﹣1=﹣4,∴x=﹣1或x=3,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣1时,y有最大值﹣4,∴m=﹣3;②在对称轴x=1右侧,y随x最大而减小,∴x=m=3时,y有最大值﹣4;综上所述:m=﹣3或m=3;(3)①a<0时,x=1时,y≤﹣1,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即a≥,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2;2.(2019•长沙)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值,(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围,(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好≤≤,求m,n的值.解:(1)由题可知,抛物线解析式是:y=﹣2(x﹣1)2+1=﹣2x2+4x﹣1.∴.∴b=6,c=2019.(2)设抛物线线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),代入解析式可得:.∴两式相加可得:﹣4x02+2(c﹣2020)=0.∴c=2x02+2020,∴c>2020,(3)由(1)可知抛物线为y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1.∴y≤1.∵0<m<n,当m≤x≤n时,恰好≤≤,∴≤.∴.∴≤1,即m≥1.∴1≤m<n.∵抛物线的对称轴是x=1,且开口向下,∴当m≤x≤n时,y随x的增大而减小.∴当x=m时,y最大值=﹣2m2+4m﹣1.当x=n时,y最小值=﹣2n2+4n﹣1.又,∴.将①整理,得2n3﹣4n2+n+1=0,变形,得2n2(n﹣1)﹣(2n+1)(n﹣1)=0.∴(n﹣1)(2n2﹣2n﹣1)=0.∵n>1,∴2n2﹣2n﹣1=0.解得n1=(舍去),n2=.同理,由②得到:(m﹣1)(2m2﹣2m﹣1)=0.∵1≤m<n,∴2m2﹣2m﹣1=0.解得m1=1,m2=(舍去),m3=(舍去).综上所述,m=1,n=.3.(2019•台州)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=﹣,n=,∴n=,∴n=2b﹣m2,(3)y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=﹣≤0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;求抛物线解析式1.(2019·怀化)如图,在直角坐标系中有Rt△AOB,O为坐标原点,OB=1,tan∠ABO=3,将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=﹣x2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标,(2)过定点Q的直线l:y=kx﹣k+3与二次函数图象相交于M,N两点.①若S△PMN=2,求k的值,②证明:无论k为何值,△PMN恒为直角三角形,③当直线l绕着定点Q旋转时,△PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.解:(1)OB=1,tan∠ABO=3,则OA=3,OC=3,即点A.B、C的坐标分别为(0,3)、(﹣1,0)、(3,0),则二次函数表达式为:y=a(x﹣3)(x+1)=a(x2﹣2x﹣3),即:﹣3a=3,解得:a=﹣1,故函数表达式为:y=﹣x2+2x+3,点P(1,4),(2)将二次函数与直线l的表达式联立并整理得:x2﹣(2﹣k)x﹣k=0,设点M、N的坐标为(x1,y1)、(x2,y2),则x1+x2=2﹣k,x1x2=﹣k,则:y1+y2=k(x1+x2)﹣2k+6=6﹣k2,同理:y1y2=9﹣4k2,①y=kx﹣k+3,当x=1时,y=3,即点Q(1,3),S△PMN=2=PQ×(x2﹣x1),则x2﹣x1=4,|x2﹣x1|=,解得:k=±2,②点M、N的坐标为(x1,y1)、(x2,y2)、点P(1,4),则直线PM表达式中的k1值为:,直线PN表达式中的k2值为:,为:k1k2===﹣1,故PM⊥PN,即:△PMN恒为直角三角形,③取MN的中点H,则点H是△PMN外接圆圆心,设点H坐标为(x,y),则x==1﹣k,y=(y1+y2)=(6﹣k2),整理得:y=﹣2x2+4x+1,即:该抛物线的表达式为:y=﹣2x2+4x+1.2.(2019·株洲)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标,②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.FA的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.解:(1)①∵a=1,b=﹣2,c=﹣1∴y=x2﹣2x﹣1=(x﹣1)2﹣2∴该二次函数图象的顶点坐标为(1,﹣2)②证明:当y=x时,x2﹣2x﹣1=x整理得:x2﹣3x﹣1=0∴△=(﹣3)2﹣4×1×(﹣1)=13>0∴方程x2﹣3x﹣1=0有两个不相等的实数根即二次函数y=x2﹣2x﹣1有两个不同的“不动点”.(2)把b=c3代入二次函数得:y=ax2+c3x+c∵二次函数与x轴交于点A(x1,0),B(x2,0)(x1<0,x2>0)即x1、x2为方程ax2+c3x+c=0的两个不相等实数根∴x1+x2=﹣,x1x2=∵当x=0时,y=ax2+c3x+c=c∴C(0,c)∵E(1,0)∴CE=,AE=1﹣x1,BE=x2﹣1∵DF⊥y轴,OC=OD∴DF∥x轴∴∴EF=CE=,CF=2∵∠AFC=∠ABC,∠AEF=∠CEB∴△AEF∽△CEB∴,即AE•BE=CE•EF∴(1﹣x1)(x2﹣1)=1+c2展开得:1+c2=x2﹣1﹣x1x2+x11+c2=﹣﹣1﹣c3+2ac2+2c+4a=0c2(c+2a)+2(c+2a)=0(c2+2)(c+2a)=0∵c2+2>0∴c+2a=0,即c=﹣2a∴x1+x2=﹣=4a2,x1x2==﹣2,CF=2=2∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16a4+8∴AB=x2﹣x1=∵∠AFC=∠ABC,∠P=∠P∴△PFC∽△PBA∴∴解得:a1=1,a2=﹣1(舍去)∴c=﹣2a=﹣2,b=c3=﹣4∴二次函数的表达式为y=x2﹣4x﹣23.(2019•孝感)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为(﹣2,0),点B的坐标为(4,0),线段AC的长为2,抛物线的解析式为y=x2﹣x﹣4.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.解:(1)由题意得:﹣8a=﹣4,故a=,故抛物线的表达式为:y=x2﹣x﹣4,令y=0,则x=4或﹣2,即点A、B的坐标分别为(﹣2,0)、(4,0),则AC=2,故答案为:(﹣2,0)、(4,0)、2、y=x2﹣x﹣4;(2)①当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,设:点P(n,n2﹣n﹣4),点Q(m,0),则点P向右平移4个单位、向上平移4个单位得到点Q,即:n+4=m,n2﹣n﹣4+4=0,解得:m=4或6(舍去4),即点Q(6,0);②当BC是平行四边形的对角线时,设点P(m,n)、点Q(s,0),其中n=m2﹣m﹣4,由中心公式可得:m+s=﹣2,n+0=4,解得:s=2或4(舍去4),故点Q(2,0);故点Q的坐标为(2,0)或(6,0);(3)如图2,过点P作PH∥x轴交BC于点H,∵GP∥y轴,∴∠HEP=∠ACB,∵PH∥x轴,∴∠PHO=∠AOC,∴△EPH∽△CAO,∴,即:,则EP=PH,设点P(t,y P),点H(x H,y P),则t2﹣t﹣4=x H﹣4,则x H=t2﹣t,f=PH=[t﹣(t2﹣t)]=﹣(t2﹣4t),当t=m时,f1=(m2﹣4m),当t=4﹣m时,f2=﹣(m2﹣2m),则f1﹣f2=﹣m(m﹣),则0<m<2,∴f1﹣f2>0,f1>f2.。
最新中考数学压轴题专项训练:二次函数(有答案)

2019年中考数学压轴题专项训练:二次函数1.如图,已知抛物线y =x 2﹣x ﹣n (n >0)与x 轴交于A ,B 两点(A 点在B 点的左边),与y 轴交于点C .(1)若AB =4,求n 的值;(2)如图,若△ABC 为直角三角形,求n 的值;(3)如图,在(2)的条件下,若点P 在抛物线上,点Q 在抛物线的对称轴上,是否存在以点B 、C 、P 、Q 为顶点的四边形是平行四边形?若存在,请求P 点的坐标;若不存在,请说明理由.解:(1)当y =0时, x 2﹣x ﹣n =0,解得:x 1=,x 2=,∴点A 的坐标为(,0),点B 的坐标为(,0).∵AB =4,∴﹣=4, 整理,得:9+8n =16,解得:n =.(2)当x =0时,y =x 2﹣x ﹣n =﹣n ,∴点C 的坐标为(0,﹣n ).∵△ABC 为直角三角形,∴∠ACB =90°,∴∠ACO +∠BCO =90°,∠CBO +∠BCO =90°,∴∠ACO =∠CBO .又∵∠AOC =∠COB =90°,∴△AOC ∽△COB ,∴=,∴OA •OB =OC 2,即﹣•=n 2, 整理,得:n 2﹣2n =0,解得:n 1=0(舍去),n 2=2.(3)由(2)可知,点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,﹣2),抛物线的对称轴为直线x =.设点P 的坐标为(m , m 2﹣m ﹣2),分两种情况考虑,如图2所示:①若BC 为边,当四边形BCP 1Q 1为平行四边形时,﹣m =4﹣0,解得:m =﹣,∴点P 1的坐标为(﹣,);当四边形BCQ 2P 2为平行四边形时,m ﹣=4﹣0,解得:m =,∴点P 2的坐标为(,).②若BC 为对角线,设BC ,P 3Q 3的交点为M ,∵点B 的坐标为(4,0),点C 的坐标为(0,﹣2),∴点M 的坐标为(2,﹣1),∴+m =2×2,解得:m =,∴点P 3的坐标为(,﹣).综上所述:存在以点B 、C 、P 、Q 为顶点的四边形是平行四边形,点P 的坐标为(﹣,),(,)或(,﹣).2.如图,抛物线y=ax2+bx+5(a≠0)交直线y=kx+n(k>0)于A(1,1),B两点,交y轴于点C,直线AB交y轴于点D.已知该抛物线的对称轴为直线x=.(1)求a,b的值;(2)记直线AB与抛物线的对称轴的交点为E,连结CE,CB.若△CEB的面积为,求k,n的值.解:(1)由题意,得,解得,故所求a 的值为1,b 的值为﹣5;(2)如图,设点B (m ,m 2﹣5m +5),过A 作AG ⊥y 轴于G ,过B 作BF ⊥x 轴于F ,延长GA 交BF 于H .∵DG ∥BF ,∴=,即=,∴DG =m ﹣4,∴CD =m .∵S △CEB =S △CDB ﹣S △CDE ,∴m 2﹣m ×=,解得m 1=﹣(舍去),m 2=6.把A (1,1),B (6,11)代入y =kx +n ,得,解得.故所求k 的值为2,n 的值为﹣1.3.如图,已知直线=﹣2x +m 与抛物线y =ax 2+bx +c 相交于A ,B 两点,且点A (1,4)为抛物线的顶点,点B 在x 轴上.(1)求m 的值;(2)求抛物线的解析式;(3)若点P是x轴上一点,当△ABP为直角三角形时直接写出点P的坐标.解:(1)将点A坐标代入y=﹣2x+m得:4=﹣2+m,解得:m=6;(2)y=﹣2x+6,令y=0,则x=3,故点B(3,0),则二次函数表达式为:y=a(x﹣1)2+4,将点B的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(3)①当∠ABP=90°时,直线AB的表达式为:y=﹣2x+6,则直线PB的表达式中的k值为,设直线PB的表达式为:y=x+b,将点B的坐标代入上式得:0=3+b,解得:b=﹣,即直线PB的表达式为:y=x﹣,当x=1时,y=﹣1,即点P(1,﹣1);②当∠AP(P′)B=90°时,点P′(1,0);故点P的坐标为(1,﹣1)或(1,0).4.在平面直角坐标系xOy中抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,2),它的顶点为D(1,m)且tan∠COD=(1)求m的值及抛物线的表达式;(2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标.解:(1)顶点为D(1,m),且tan∠COD=,则m=3,则抛物线的表达式为:y=a(x﹣1)2+3,即:a+3=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+2;(2)设:抛物线向上平移n个单位,则函数表达式为:y=﹣x2+2x+2+n,令y=0,则x=1+,令x=0,则y=2+n,∵OA=OB,∴1+=2+n,解得:n=1或﹣2(舍去﹣2),则点A的坐标为(3,0),故点E(3,﹣1).5.如图,抛物线y=ax2﹣bx+3交x轴于B(1,0),C(3,0)两点,交y轴于A点,连接AB,点P为抛物线上一动点.(1)求抛物线的解析式;(2)当点P到直线AB的距离为时,求点P的横坐标;(3)当△ACP和△ABC的面积相等时,请直接写出点P的坐标.解:(1)用交点式抛物线表达式得:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3…①,则点A(0,3);(2)过点P作PH⊥AB于点H,过点H作HG∥x轴交过点P平行于y轴的直线于点G,则∠ABO=∠HPG=α,在△AOB中,tan ABO==3=tanα,设PG=n,则HG=3n,PH=,即:n2+9n2=()2,解得:n=,则直线直线AB的表达式为:y=﹣3x+3,设点H(m,3﹣3m),则点P(m+,﹣3m),将点P坐标代入①式并整理得:3m2+11m﹣14=0,解得:m=1或﹣,故点P的横坐标为:或﹣;(3)参考(2)作△P′G′H′,过点O作OM⊥AC于点M,∵△AC P和△ABC的面积相等,∴P′H′=OM,∵OA=OB,∴∠ACO=45°,∴OM=,即:P′H′=OM=,按照(2)的方法,同理可得:点P′的坐标为(,)或(,).6.如图1,在平面直角坐标系中,抛物线y=﹣﹣x+2与x轴交于B、C两点,与y 轴交于点A,抛物线的顶点为D.连接AB,点E是第二象限内的抛物线上的一动点,过点E作EP⊥BC于点P,交线段AB于点F.(1)连接EA、EB,取线段AC的中点Q,当△EAB面积最大时,在x轴上找一点R使得|RE 一RQ|值最大,请求出R点的坐标及|RE﹣RQ|的最大值;(2)如图2,在(1)的条件下,将△PED绕E点旋转得△ED′P′,当△AP′P是以AP 为直角边的直角三角形时,求点P′的坐标.解:(1)∵y =0时,﹣x 2﹣x +2=0,解得:x 1=﹣3,x 2=1 ∴B (﹣3,0),C (1,0)∵x =0时,y =2,∴A (0,2)设直线AB 的解析式为y =kx +b∴ 解得:∴直线AB 的解析式为:y =x +2设点E (e ,﹣e 2﹣e +2),则点F (e , e +2)∴EF =﹣e 2﹣e +2﹣(e +2)=﹣e 2﹣2e∴S △EAB =OB •EF =×3•(﹣e 2﹣2e )=﹣e 2﹣3e =﹣(e +)2+ ∵﹣3<e <0∴当e =﹣时,△EAB 的面积最大,∴﹣e 2﹣e +2=∴此时点E 坐标为(,)如图1,连接并延长EQ ,交x 轴于点R ,则此时|RE ﹣RQ |=EQ 值最大 ∵Q 是AC 中点∴Q (,1)设直线EQ 解析式为:y =ax +c∴ 解得:∴直线EQ 解析式为:y =x +当y =0时,x +=0,解得:x =∴R (,0)此时|RE ﹣RQ |的最大值EQ =(2)设点P '坐标为(m ,n )∵EP ⊥x 轴,E (,)∴P (,0),EP =,AP =i )当∠P 'PA =90°时,如图2,过点P '作P 'M ⊥x 轴于点M , ∴∠P 'MP =∠POA =90°,∠PP 'M +∠P 'PM =∠P 'PM +∠APO =90° ∴∠PP 'M =∠APO∴△PP 'M ∽△APO∴ 即:整理得:4n +3m =①∵EP '=EP∴(m +)2+(n ﹣)2=()2②联立①②解方程组得:(舍去)∴P '(,)ii )当∠PAP '=90°时,如图3,过点P '作P 'N ⊥y 轴于点N ,由△P 'AN ∽△APO 得即: 整理得:3m +4n =8①∵EP '=EP∴(m+)2+(n﹣)2=()2②联立①②解方程组得:∴P'(,)或(,)综上所述,当△AP′P是以AP为直角边的直角三角形时,点P′的坐标为(,)或(,)或(,)7.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,过点D作DE⊥x轴于点E,连接BD,求tan∠BDE的值.(1)解:∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)解:如图,过点C作直线CD⊥y轴交抛物线于点D,过点D作DE⊥x轴于点E,连接BD,∵抛物线y=x2﹣2x﹣3的对称轴是直线x=1,C(0,﹣3).∴D(2,﹣3).从而得CD=OE=2,DE=3.∵B(3,0),∴BE=1.在Rt△DEB中,∠DEB=90°.∴tan∠BDE==.8.如图,对称轴为直线x =﹣1的抛物线y =x 2+bx +c 与x 轴相交于A 、B 两点,其中A 点的坐标为(﹣3,0),C 为抛物线与y 轴的交点. (1)求抛物线的解析式;(2)若点P 在抛物线上,且S △POC =2S △BOC ,求点P 的坐标.解:(1)∵抛物线的对称轴为x =﹣1,A 点的坐标为(﹣3,0),∴点B 的坐标为(1,0). 将点A 和点B 的坐标代入抛物线的解析式得: 解得:b =2,c =﹣3,∴抛物线的解析式为y =x 2+2x ﹣3.(2)∵将x =0代y =x 2+2x ﹣3入,得y =﹣3, ∴点C 的坐标为(0,﹣3). ∴OC =3.∵点B 的坐标为(1,0), ∴OB =1.设点P 的坐标为(a ,a 2+2a ﹣3),则点P 到OC 的距离为|a |. ∵S △POC =4S △BOC ,∴OC •|a |=OC •OB ,即×3×|a |=2××3×1,解得a =±2. 当a =2时,点P 的坐标为(2,5); 当a =﹣2时,点P 的坐标为(﹣2,﹣3). ∴点P 的坐标为(2,5)或(﹣2,﹣3).9.定义:若抛物线的顶点和与x 轴的两个交点所组成的三角形为等边三角形时.则称此抛物线为正抛物线. 概念理解:(1)如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点.试证明:以点A 为顶点,且与x 轴交于D 、C 两点的抛物线是正抛物线; 问题探究:(2)已知一条抛物线经过x 轴的两点E 、F (E 在F 的左边),E (1,0)且EF =2若此条抛物线为正抛物线,求这条抛物线的解析式; 应用拓展:(3)将抛物线y 1=﹣x 2+2x +9向下平移9个单位后得新的抛物线y 2.抛物线y 2的顶点为P ,与x 轴的两个交点分别为M 、N (M 在N 左侧),把△PMN 沿x 轴正半轴无滑动翻滚,当边PN 与x 轴重合时记为第1次翻滚,当边PM 与x 轴重合时记为第2次翻滚,依此类推…,请求出当第2019次翻滚后抛物线y 2的顶点P 的对应点坐标.解:(1)证明:∠BAC =90°,点D 是BC 的中点∴AD =BD =CD =BC∵抛物线以A 为顶点与x 轴交于D 、C 两点 ∴AD =AC ∴AD =AC =CD ∴△ACD 是等边三角形∴以A 为顶点与x 轴交于D 、C 两点的抛物线是正抛物线.(2)∵E (1,0)且EF =2,点F 在x 轴上且E 在F 的左边 ∴F (3,0)∵一条经过x 轴的两点E 、F 的抛物线为正抛物线,设顶点为G ∴△EFG 是等边三角形∴x G =,|y G |=①当G (2,)时,设抛物线解析式为y =a (x ﹣2)2+把点E (1,0)代入得:a +=0∴a =﹣∴y =﹣(x ﹣2)2+②当G (2,﹣)时,设抛物线解析式为y =a (x ﹣2)2﹣把点E (1,0)代入得:a ﹣=0∴a =∴y =(x ﹣2)2﹣综上所述,这条抛物线的解析式为y =﹣(x ﹣2)2+或y =(x ﹣2)2﹣(3)∵抛物线y 1=﹣x 2+2x +9=﹣(x ﹣)2+12∴y 1向下平移9个单位后得抛物线y 2=﹣(x ﹣)2+3∴P (,3),M (0,0),N (2,0)∴PM =MN =PN =2∴△PMN 是等边三角形∴第一次翻滚顶点P 的坐标变为P 1(4,0),第二次翻滚得P 2与P 1相同,第三次翻滚得P 3(7,3)即每翻滚3次为一个周期,当翻滚次数n 能被3整除时,点P 纵坐标为3,横坐标为:+n ×2=(2n +1)∵2019÷3=673∴(2×2019+1)×=4039∴当第2019次翻滚后抛物线y 2的顶点P 的对应点坐标为(4039,3).10.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax ﹣3a (a <0)经过点B .(1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M ′.将直线l 绕点A 按顺时针方向旋转得到直线l ′,当直线l ′与直线AM ′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d 1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).解:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax﹣3a,∴3=﹣3a,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),S=S四边形OAMB ﹣S△AOB=S△OBM +S△OAM﹣S△AOB=×m×3+×1×(﹣m2+2m+3)﹣×1×3=﹣(m﹣)2+,∴当m=时,S取得最大值.(3)由(2)可知:M′的坐标为(,);②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得:AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°;方法二:过B点作BD垂直于l′于D点,过M′点作M′E垂直于l′于E点,则BD=d1,ME=d2,∵S△ABM′=×AC×(d1+d2)当d1+d2取得最大值时,AC应该取得最小值,当AC⊥BM′时取得最小值.根据B(0,3)和M′(,)可得BM′=,∵S△ABM=×AC×BM′=,∴AC=,当AC⊥BM′时,cos∠BAC===,∴∠BAC=45°.11.如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交CD轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.解:∵一次函数y=x﹣3的图象与x轴、y轴分别交于点A、B两点,∴A(3,0),B(0,﹣3),∵点B关于x轴的对称点是C,∴C(0,3),∵二次函数y=﹣x2+bx+c的图象经过点A、点C,∴∴b=2,c=3,∴二次函数的解析式为:y=﹣x2+2x+3.(2)∵A(3,0),C(0,3),平移线段AC,点A的对应为点D,点C的对应点为E,设E(m,m﹣3),则D(m+3,m﹣6),∵D落在二次函数在第四象限的图象上,∴﹣(m+3)2+2(m+3)+3=m﹣6,m 1=1,m2=﹣6(舍去),∴D(4,﹣5),(3)∵C(0,3),D(4,﹣5),∴解得,∴直线CD的解析式为y=﹣2x+3,令y=0,则x=,∴M(,0),∵一次函数y=x﹣3的图象与x轴交于A(3,0),C(0,3),∴AO=3,OC=3,∴∠OAC=45°,过点P作PF⊥AC,点P作PN⊥OA交AC于点E,连PC,∴△PEF和△AEN都是等腰直角三角形,设P(m,﹣m2+2m+3),E(m,﹣m+3),∴PE=PN﹣EN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴EN=﹣m+3,AE=,FE=,∴CF=AC﹣AE﹣EF=,①当△COM∽△PFC,,∴,解得m=0,舍去,,1②当△COM ∽△CFP 时,,∴,解得m 1=0(舍去),,综合可得P 点的横坐标为或.12.如图1,将抛物线P 1:y 1=x 2﹣3右移m 个单位长度得到新抛物线P 2:y 2=a (x +h )2+k ,抛物线P 1与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线P 2与x 轴交于A 1,B 1两点,与y 轴交于点C 1.(1)当m =1时,a =,h = ﹣1 ,k = ﹣3 ;(2)在(1)的条件下,当y 1<y 2<0时,求x 的取值范围;(3)如图2,过点C 1作y 轴的垂线,分别交抛物线P 1,P 2于D 、E 两点,当四边形A 1DEB 是矩形时,求m 的值.解:(1)∵抛物线P 1:y 1=x 2﹣3右移m 个单位长度得到新抛物线解析式为:y 2=(x ﹣m )2﹣3∴y 2=a (x +h )2+k =(x ﹣m )2﹣3 又∵m =1 ∴h =﹣m =﹣1故答案为:;﹣1,﹣3(2)∵当y 2=(x ﹣1)2﹣3=0时, 解得:x 1=﹣2,x 2=4∴由图象可知,当﹣2<x <4时,y 2<0当y 1=y 2时, x 2﹣3=(x ﹣1)2﹣3 解得:x =,∴由图象可知,当x <时,y 1<y 2∴当y 1<y 2<0时,x 的取值范围是﹣2<x <(3)当y 1=x 2﹣3=0时,解得:x =±3 ∴A (﹣3,0),OA =3 根据平移性质得:AA 1=DC 1=m ∵四边形A 1DEB 是矩形 ∴∠A 1DE =∠DA 1B =90° ∴四边形A 1DC 1O 是矩形 ∴OA 1=DC 1=m ∴OA =AA 1+OA 1=2m =3∴m =13.已知:如图,抛物线的顶点为A (0,2),与x 轴交于B (﹣2,0)、C(2,0)两点.(1)求抛物线的函数表达式;(2)设点P 是抛物线y 上的一个动点,连接PO 并延长至点Q ,使OQ =2OP .若点Q 正好落在该抛物线上,求点P 的坐标;(3)设点P 是抛物线y 上的一个动点,连接PO 并延长至点Q ,使OQ =mOP (m 为常数);①证明点Q 一定落在抛物线上;②设有一个边长为m +1的正方形(其中m >3),它的一组对边垂直于x 轴,另一组对边垂直于y 轴,并且该正方形四个顶点正好落在抛物线和组成的封闭图形上,求线段PQ 被该正方形的两条边截得线段长最大时点Q 的坐标.解:(1)由条件可设抛物线y=ax2+2,将C(2,0)代入1可得抛物线;(2)如图,作PE⊥x轴,FQ⊥x轴设点P(t,),利用△PEO∽△OFQ可求得点Q(﹣2t,t2﹣4).把Q(﹣2t,t2﹣4)代入中,得:t2﹣4=,∴3t2=6,,∴(3)①证明:设点P(t,),利用相似可求得点Q(﹣mt,).将x=﹣mt代入中,得:.∴点Q一定落在抛物线上;②如图所示∵正方形的边长为m+1,由抛物线的对称性可知正方形右边两个顶点横坐标为,将x=代入抛物线解析式可得两点纵坐标分别为:和,∴﹣=m+1,解得:.∵m>3,∴∴正方形右边两个顶点横坐标为==,将x=代入得:=,∴正方形右下顶点的纵坐标为﹣()=.∴正方形右下顶点的坐标为(,),同理,正方形左下顶点的坐标为(,).设PQ与y轴所成的角为α,当PQ与正方形上下两边相交时,PQ被正方形上下两边所截线段的长=,当α增大时,cosα减小,增大,当PQ经过正方形右下顶点时,α最大,PQ被正方形上下两边所截线段最大,此时点Q 与正方形右下或左下顶点重合;当PQ与正方形上右两边(或上左两边)相交时,由图形可知随着α的增大,PQ被正方形上下两边所截线段的长减小,综上所述,当点Q与正方形右下或左下顶点重合时,PQ被正方形上下两边所截线段最长,此时点Q的坐标为(,)或(,).14.如图,已知二次函数的图象经过点A(﹣3,6),并与x轴交于点B(﹣1,0)和点C,顶点为点P.(1)求这个二次函数解析式;(2)设D为x轴上一点,满足∠DPC=∠BAC,求点D的坐标;(3)作直线AP,在抛物线的对称轴上是否存在一点M,在直线AP上是否存在点N,使AM+MN的值最小?若存在,求出M、N的坐标:若不存在,请说明理由.解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故:抛物线的表达式为:y=x2﹣x﹣,令y=0,则x=﹣1或3,令x=0,则y=﹣,故点C坐标为(3,0),点P(1,﹣2);(2)过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,由题意得:AB=2,AC=6,BC=4,PC=2,S=×AC×BH=×BC×y A,△ABC解得:BH=2,sinα===,则tanα=,由题意得:GC=2=PG,故∠PCB=45°,延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,在△PMD中,tanα===,解得:x=2,则CD=x=4,故点P(7,0);(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,直线AP表达式中的k值为:=﹣2,则直线A′N表达式中的k值为,设直线A′N的表达式为:y=x+b,将点A′坐标代入上式并求解得:b=,故直线A′N的表达式为:y=x+…①,当x=1时,y=4,故点M(1,4),同理直线AP的表达式为:y=﹣2x…②,联立①②两个方程并求解得:x=﹣,故点N(﹣,).15.在平面直角坐标系中,已知抛物线的顶点为A(﹣1,4),且经过点B(﹣2,3),与x 轴分別交于C、D两点(点C在点D的左侧).(1)求该抛物线对应的函数表达式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,连接OM.①求MN的最大值;②当△OMN为直角三角形时,直接写出点M的坐标;(3)如图2,过点A的直线交x轴于点E,且AE∥y轴,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分別交于F、G两点.当点P运动时,EF+EG的和是否为定值?若是,试求出该定值;若不是,请说明理由.解:(1)∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y =﹣(x +1)2+4,即y =﹣x 2﹣2x +3. (2)①设直线OB 对应的函数表达式为y =kx (k ≠0), 将B (﹣2,3)代入y =kx ,得:3=﹣2k ,解得:k =﹣,∴直线OB 对应的函数表达式为y =﹣x .联立直线OB 和抛物线的函数表达式成方程组,得:,解得:,.设点M 的坐标为(m ,﹣m 2﹣2m +3)(﹣2<m <),则点N 的坐标为(m 2+m ﹣2,﹣m 2﹣2m +3),∴MN =m ﹣(m 2+m ﹣2)=﹣m 2﹣m +2=﹣(m +)2+.∵﹣<0,∴当m =﹣时,MN 最大,最大值为.②∵MN ∥x 轴, ∴∠ONM ≠90°,∴分两种情况考虑(如图3所述): (i )当∠OMN =90°时,线段OM 在y 轴上. ∵当m =0时,y =﹣m 2﹣2m +3=3, ∴点M 的坐标为(0,3); (ii )当∠MON =90°时,OM ⊥OB , ∵点B 的坐标为(﹣2,3), ∴点(3,2)在直线OM 上,∴直线OM 对应的函数表达式为y =x .联立直线OM和抛物线的函数表达式成方程组,得:,解得:(不合题意,舍去),,∴点M的坐标为(,).综上所述:点M的坐标为(0,3)或(,).(3)当y=0时,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∴点C的坐标为(﹣3,0),点D的坐标为(1,0).设点P的坐标为(n,﹣n2﹣2n+3)(﹣1<n<1).∵点C的坐标为(﹣3,0),点D的坐标为(1,0),∴直线CP对应的函数表达式为y=(1﹣n)x+3﹣3n,直线DP对应的函数表达式为y=﹣(n+3)x+n+3(可利用待定系数法求出).∵点A的坐标为(﹣1,4),AE∥y轴,∴直线AE对应的函数表达式为x=﹣1.当x=﹣1时,y=(1﹣n)x+3﹣3n=2﹣2n,y=﹣(n+3)x+n+3=2n+6,∴点F的坐标为(﹣1,2﹣2n),点G的坐标为(﹣1,2n+6),∴EF=2﹣2n,EG=2n+6,∴EF+EG=8.∴EF+EG的和为定值,该定值为8.16.如图1,在平面直角坐标系中,直线与x 轴交于点A ,与y 轴交于点C ,抛物线经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点,①连接BC 、CD 、BD ,设BD 交直线AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2.求:的最大值;②如图2,是否存在点D ,使得∠DCA =2∠BAC ?若存在,直接写出点D 的坐标,若不存在,说明理由.解:(1)根据题意得A (﹣4,0),C (0,2),∵抛物线y =﹣x 2+bx +c 经过A .C 两点,∴,∴b =﹣,c =2,∴y =﹣x 2﹣x +2;(2)①如图1,令y =0,∴﹣x 2﹣x +2=0,∴x 1=﹣4,x 2=1,∴B (1,0),过D 作DM ⊥x 轴交AC 于M ,过B 作BN ⊥x 轴交AC 于N , ∴DM ∥BN ,∴△DME ∽△BNE ,∴S 1:S 2=DE :BE =DM :BN ,设D (a ,﹣a 2﹣a +2),∴M (a , a +2),∵B (1.0),∴N (1,),∴S 1:S 2=DM :BN =(﹣a 2﹣2a ):=﹣(a +2)2+;∴当a =﹣2时,S 1:S 2的最大值是;②∵A (﹣4,0),B (1,0),C (0,2),∴AC =2,BC =,AB =5,∴AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P (﹣,0),∴PA =PC =PB =,∴∠CPO =2∠BAC ,∴tan ∠CPO =tan (2∠BAC )=,过作x轴的平行线交y轴于R,交AC的延长线于G,如图2,∴∠DCA=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即RC:DR=,令D(a,﹣a2﹣a+2),∴DR=﹣a,RC=﹣a2﹣a,∴(﹣a2﹣a):(﹣a)=1:2,∴a1=0(舍去),a2=﹣2,∴x D=﹣2,∴yD=3,∴点D的坐标为(﹣2,3).。
二次函数含参数分类讨论综合问题(函数)-全国各地2019中考数学压轴题函数大题题型分类汇编(解析版)

2019全国各地中考数学压轴大题函数综合八、二次函数含参数分类讨论综合问题1.(2019•宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.解:(1)把点P(﹣2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3,∴顶点坐标为(﹣1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴2≤n<11;2.(2019•杭州)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=时,y=﹣,∴乙说点的不对;(2)对称轴为x=,当x=时,y=﹣是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[﹣][﹣]∵0<x1<x2<1,∴0≤﹣≤,0≤﹣≤,∴0<mn<.3.(2019•温州)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值.解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6,m),B2(6﹣n,m),B3(﹣n,m),函数图象的对称轴为直线,∵点B2,B3在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.4.(2019•台州)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=﹣,n=,∴n=,∴n=2b﹣m2,(3)y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=﹣≤0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;5.(2019•天门)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.解:(1)点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b,∴,∴,∴y=x﹣;联立y=ax2+2x﹣1与y=x﹣,则有2ax2+3x+1=0,∵抛物线C与直线l有交点,∴△=9﹣8a≥0,∴a≤且a≠0;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣4,∴当y=﹣4时,有﹣x2+2x﹣1=﹣4,∴x=﹣1或x=3,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣1时,y有最大值﹣4,∴m=﹣3;②在对称轴x=1右侧,y随x最大而减小,∴x=m=3时,y有最大值﹣4;综上所述:m=﹣3或m=3;(3)①a<0时,x=1时,y≤﹣1,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即a≥,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2;6.(2019•大连)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为2m﹣1(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,t=2m﹣1,故答案为:2m﹣1;(2)a=﹣1时,C1:y=﹣(x﹣1)2+4,①当t<1时,x=时,有最小值y2=,x=t时,有最大值y1=﹣(t﹣1)2+4,则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;②1≤t时,x=1时,有最大值y1=4,x=时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=≠1(舍去);③当t时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,当C2过点D′时,同理可得:a=1,故:0<a或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得:a=﹣,故:a≤﹣;综上,故:0<a或a≥1或a≤﹣.7.(2019•贵阳)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.解:(1)∵点A(﹣1,0)与点B关于直线x=1对称,∴点B的坐标为(3,0),代入y=x2+bx+c,得:,解得,所以二次函数的表达式为y=x2﹣2x﹣3;(2)如图所示:由抛物线解析式知C(0,﹣3),则OB=OC=3,∴∠OBC=45°,若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,∴OP=OB tan∠OBP=3,∴CP=3;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OB tan∠OBP′=33,∴CP=33;综上,CP的长为3或33;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,解得a=1(正值舍去);若a<1<a+1,即0<a<1,则函数的最小值为1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,则函数的最小值为a2﹣2a﹣3=2a,解得a=2(负值舍去);综上,a的值为1或2.8.(2019•天津)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.解:(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=5,∴5﹣(﹣1)=(b+1),∴b=3﹣1;(Ⅲ)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM =,∴[(﹣)﹣(﹣1)]+2[(b +)﹣(﹣)]=,∴b=4.。
2019中考二次函数压轴题专题分类训练(word文档良心出品)

中考二次函数压轴题专题分类训练题型一:面积问题【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.【变式练习】1.(2009广东省深圳市)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.图22.(2010绵阳)如图,抛物线y = ax 2+ bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积.3.(2012铜仁)如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.C ED GAxy OB F题型二:构造直角三角形【例2】(2010山东聊城)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P 为抛物线的对称轴x=1上的一动点,求使∠PCB=90º的点P的坐标.E【变式练习】1.(2012广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.2.(2009成都)在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS∠BCO=10。
二次函数定值与最值综合问题(函数)-全国各地2019中考数学压轴题函数大题题型分类汇编(解析版)

2019全国各地中考数学压轴大题函数综合七、二次函数定值与最值综合问题1.(2019•黄石)如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)解:(1)函数的表达式为:y=(x+1)(x﹣5)=(x2﹣4x﹣5)=x2﹣x﹣,点M坐标为(2,﹣3);(2)当x=8时,y=(x+1)(x﹣5)=9,即点C(8,9),S四边形AMBC=AB(y C﹣y D)=×6×(9+3)=36;(3)y=(x+1)(x﹣5)=(x2﹣4x﹣5)=(x﹣2)2﹣3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y=x2,则定点D与动点P之间距离PD==,∵,PD有最小值,当x2=3m﹣时,PD最小值d==.2.(2019•张家界)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=4,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S△PBC=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),∵﹣<0,故S△PBC有最大值,此时x=,故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+QC最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.3.(2019•泰州)已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m ﹣n的值;②过点B作x轴的平行线与函数y1的图象相交与点E.当m﹣n的值取不大于1的任意实数时,点B、C 间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.解:(1)①将点A的坐标代入一次函数表达式并解得:k=2,将点A的坐标代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=2+n﹣m,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC,即:2+n﹣m=m﹣n,或m﹣(2+n)=2即:m﹣n=1或4;②点E的横坐标为:,d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),m﹣n的值取不大于1的任意数时,d始终是一个定值,当1﹣=0时,此时k=1,从而d=1.4.(2019•宿迁)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ 分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.解:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3)∴解得:∴抛物线的函数表达式为y=x2+2x﹣3(2)①若点P在x轴下方,如图1,延长AP到H,使AH=AB,过点B作BI⊥x轴,连接BH,作BH中点G,连接并延长AG交BI于点F,过点H作HI⊥BI于点I∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1∴B(﹣3,0)∵A(1,0),C(0,﹣3)∴OA=1,OC=3,AC=,AB=4∴Rt△AOC中,sin∠ACO=,cos∠ACO=∵AB=AH,G为BH中点∴AG⊥BH,BG=GH∴∠BAG=∠HAG,即∠P AB=2∠BAG∵∠P AB=2∠ACO∴∠BAG=∠ACO∴Rt△ABG中,∠AGB=90°,sin∠BAG=∴BG=AB=∴BH=2BG=∵∠HBI+∠ABG=∠ABG+∠BAG=90°∴∠HBI=∠BAG=∠ACO∴Rt△BHI中,∠BIH=90°,sin∠HBI=,cos∠HBI=∴HI=BH=,BI=BH=∴x H=﹣3+=﹣,y H=﹣,即H(﹣,﹣)设直线AH解析式为y=kx+a∴解得:∴直线AH:y=x﹣∵解得:(即点A),∴P(﹣,﹣)②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称∴H'(﹣,)设直线AH'解析式为y=k'x+a'∴解得:∴直线AH':y=﹣x+∵解得:(即点A),∴P(﹣,)综上所述,点P的坐标为(﹣,﹣)或(﹣,).(3)DM+DN为定值∵抛物线y=x2+2x﹣3的对称轴为:直线x=﹣1∴D(﹣1,0),x M=x N=﹣1设Q(t,t2+2t﹣3)(﹣3<t<1)设直线AQ解析式为y=dx+e∴解得:∴直线AQ:y=(t+3)x﹣t﹣3当x=﹣1时,y M=﹣t﹣3﹣t﹣3=﹣2t﹣6∴DM=0﹣(﹣2t﹣6)=2t+6设直线BQ解析式为y=mx+n∴解得:∴直线BQ:y=(t﹣1)x+3t﹣3当x=﹣1时,y N=﹣t+1+3t﹣3=2t﹣2∴DN=0﹣(2t﹣2)=﹣2t+2∴DM+DN=2t+6+(﹣2t+2)=8,为定值.5.(2019•淄博)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得△P AM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.解:(1)∵抛物线y=ax2+bx+3过点A(3,0),B(﹣1,0)∴解得:∴这条抛物线对应的函数表达式为y=﹣x2+2x+3(2)在y轴上存在点P,使得△P AM为直角三角形.∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴顶点M(1,4)∴AM2=(3﹣1)2+42=20设点P坐标为(0,p)∴AP2=32+p2=9+p2,MP2=12+(4﹣p)2=17﹣8p+p2①若∠P AM=90°,则AM2+AP2=MP2∴20+9+p2=17﹣8p+p2解得:p=﹣∴P(0,﹣)②若∠APM=90°,则AP2+MP2=AM2∴9+p2+17﹣8p+p2=20解得:p1=1,p2=3∴P(0,1)或(0,3)③若∠AMP=90°,则AM2+MP2=AP2∴20+17﹣8p+p2=9+p2解得:p=∴P(0,)综上所述,点P坐标为(0,﹣)或(0,1)或(0,3)或(0,)时,△P AM为直角三角形.(3)如图,过点I作IE⊥x轴于点E,IF⊥AD于点F,IH⊥DG于点H∵DG⊥x轴于点G∴∠HGE=∠IEG=∠IHG=90°∴四边形IEGH是矩形∵点I为△ADG的内心∴IE=IF=IH,AE=AF,DF=DH,EG=HG∴矩形IEGH是正方形设点I坐标为(m,n)∴OE=m,HG=GE=IE=n∴AF=AE=OA﹣OE=3﹣m∴AG=GE+AE=n+3﹣m∵DA=OA=3∴DH=DF=DA﹣AF=3﹣(3﹣m)=m∴DG=DH+HG=m+n∵DG2+AG2=DA2∴(m+n)2+(n+3﹣m)2=32∴化简得:m2﹣3m+n2+3n=0配方得:(m﹣)2+(n+)2=∴点I(m,n)与定点Q(,﹣)的距离为∴点I在以点Q(,﹣)为圆心,半径为的圆在第一象限的弧上运动∴当点I在线段CQ上时,CI最小∵CQ=∴CI=CQ﹣IQ=∴CI最小值为.6.(2019•滨州)如图①,抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠P AD的值.解:(1)当x=0时,y=4,则点A的坐标为(0,4),当y=0时,0=﹣x2+x+4,解得,x1=﹣4,x2=8,则点B的坐标为(﹣4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°,∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0),设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=﹣x+4;(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,﹣t2+t+4),则点N的坐标为(t,﹣t+4),∴PN=(﹣t2+t+4)﹣(﹣t+4)=﹣t2+t,∵PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°,作PH⊥AD于点H,则∠PHN=90°,∴PH==(﹣t2+t)=t=﹣(t﹣6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是;②当点P到直线AD的距离为时,如右图②所示,则t=,解得,t1=2,t2=10,则P1的坐标为(2,),P2的坐标为(10,﹣),当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;当P2的坐标为(10,﹣),则P2A==,∴sin∠P2AD==;由上可得,sin∠P AD的值是或.7.(2019•绵阳)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交x轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+P A的最小值是3.8.(2019•达州)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.解:(1)由题意把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,得,,解得b=﹣2,c=3,∴y=﹣x2﹣2x+3=﹣(x+1)2+4,∴此抛物线解析式为:y=﹣x2﹣2x+3,顶点C的坐标为(﹣1,4);(2)∵抛物线顶点C(﹣1,4),∴抛物线对称轴为直线x=﹣1,设抛物线对称轴与x轴交于点H,则H(﹣1,0),在Rt△CHO中,CH=4,OH=1,∴tan∠COH==4,∵∠COH=∠CAO+∠ACO,∴当∠ACO=∠CDO时,tan(∠CAO+∠CDO)=tan∠COH=4,如图1,当点D在对称轴左侧时,∵∠ACO=∠CDO,∠CAO=∠CAO,∴△AOC∽△ACD,∴=,∵AC==2,AO=1,∴=,∴AD=20,∴OD=19,∴D(﹣19,0);当点D在对称轴右侧时,点D关于直线x=1的对称点D'的坐标为(17,0),∴点D的坐标为(﹣19,0)或(17,0);(3)设P(a,﹣a2﹣2a+3),将P(a,﹣a2﹣2a+3),A(1,0)代入y=kx+b,得,,解得,k=﹣a﹣3,b=a+3,∴y P A=(﹣a﹣3)x+a+3,当x=0时,y=a+3,∴N(0,a+3),如图2,∵S△BPM=S△BP A﹣S四边形BMNO﹣S△AON,S△EMN=S△EBO﹣S四边形BMNO,∴S△BPM﹣S△EMN=S△BP A﹣S△EBO﹣S△AON=×4×(﹣a2﹣2a+3)﹣×3×3﹣×1×(a+3)=﹣2a2﹣a=﹣2(a+)2+,由二次函数的性质知,当a=﹣时,S△BPM﹣S△EMN有最大值,∵△BMP和△EMN的面积分别为m、n,∴m﹣n的最大值为.9.(2019•恩施州)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF 是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)如图1,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC=1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).10.(2019•鞍山)在平面直角坐标系中,过点A(3,4)的抛物线y=ax2+bx+4与x轴交于点B(﹣1,0),与y轴交于点C,过点A作AD⊥x轴于点D.(1)求抛物线的解析式.(2)如图1,点P是直线AB上方抛物线上的一个动点,连接PD交AB于点Q,连接AP,当S△AQD=2S△APQ时,求点P的坐标.(3)如图2,G是线段OC上一个动点,连接DG,过点G作GM⊥DG交AC于点M,过点M作射线MN,使∠NMG=60°,交射线GD于点N;过点G作GH⊥MN,垂足为点H,连接BH.请直接写出线段BH的最小值.解:(1)将点A(3,4),B(﹣1,0)代入y=ax2+bx+4,得:,解得,∴y=﹣x2+3x+4;(2)如图1,过点P作PE∥x轴,交AB于点E,∵A(3,4),AD⊥x轴,∴D(3,0),∵B(﹣1,0),∴BD=3﹣(﹣1)=4,∵S△AQD=2S△APQ,△AQD与△APQ是等高的两个三角形,∴,∵PE∥x轴,∴△PQE∽△DQB,∴,∴,∴PE=2,∴可求得直线AB的解析式为y=x+1,设E(x,x+1),则P(x﹣2,x+1),将点P坐标代入y=﹣x2+3x+4得﹣(x+2)2+3(x+2)+4=x+1,解得x1=3,x2=3,当x=3时,x﹣2=32=1,x+1=31=4,∴点P(1,4);当x=3时,x﹣2=32=1,x+1=31=4,∴P(1,4),∵点P是直线AB上方抛物线上的一个动点,∴﹣1<x﹣2<3,∴点P的坐标为(1,4)或(1,4);(3)由(1)得,抛物线的解析式为y=﹣x2+3x+4,∴C(0,4),∵A(3,4),∴AC∥x轴,∴∠OCA=90°,∴GH⊥MN,∴∠GHM=90°,在四边形CGHM中,∠GCM+∠GHM=180°,∴点C、G、H、M共圆,如图2,连接CH,则∠GCH=∠GMH=60°,∴点H在与y轴夹角为60°的定直线上,∴当BH⊥CH时,BH最小,过点H作HP⊥x轴于点P,并延长PH交AC于点Q,∵∠GCH=60°,∴∠HCM=30°,又BH⊥CH,∴∠BHC=90°,∴∠BHP=∠HCM=30°,设OP=a,则CQ=a,∴QH a,∵B(﹣1,0),∴OB=1,∴BP=1+a,在Rt△BPH中,HP(a+1),BH2(1+a),∵QH+HP=AD=4,∴a(a+1)=4,解得a,∴BH最小=2(1+a).11.(2019•日照)如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC 面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、P A,当点P运动到某一位置时,PC+P A 的值最小,请求出这个最小值,并说明理由.解:(1)直线y=﹣5x+5,x=0时,y=5∴C(0,5)y=﹣5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴解得:∴抛物线解析式为y=x2﹣6x+5当y=x2﹣6x+5=0时,解得:x1=1,x2=5∴B(5,0)(2)如图1,过点M作MH⊥x轴于点H∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5∴S△ABC=AB•OC=×4×5=10∵点M为x轴下方抛物线上的点∴设M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5∴S△ABM=AB•MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8 ∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18 (可以直接利用点M是抛物线的顶点时,面积最大求解)(3)如图2,在x轴上取点D(4,0),连接PD、CD∴BD=5﹣4=1∵AB=4,BP=2∴∵∠PBD=∠ABP∴△PBD∽△ABP∴==,∴PD=AP∴PC+P A=PC+PD∴当点C、P、D在同一直线上时,PC+P A=PC+PD=CD最小∵CD=∴PC+P A的最小值为12.(2019•遵义)如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴与点P,此时P A+PC的值最小为:线段AC′的长度=3,此时点P(2,2);(3)直线OC的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),则S△MOC MH×x C(﹣x2+4x﹣x)x2x,∵0,故x,故当点M(,)时,S△MOC最大值为.13.(2019•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.解:(1)将点D、E的坐标代入函数表达式得:,解得:,故抛物线的表达式为:y x2x+2,同理可得直线DE的表达式为:y=x﹣1…①;(2)如图1,连接BF,过点P作PH∥y轴交BF于点H,将点FB代入一次函数表达式,同理可得直线BF的表达式为:y x+1,设点P(x,x2x+2),则点H(x,x+1),S四边形OBPF=S△OBF+S△PFB4×1PH×BO=2+2(x2x+2x﹣1)=7,解得:x=2或,故点P(2,3)或(,);(3)当点P在抛物线对称轴的右侧时,点P(2,3),过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接P A″交直线DE于点M,此时,点Q运动的路径最短,∵MN=2,相当于向上、向右分别平移2个单位,故点A′(1,2),A′A″⊥DE,则直线A′A″过点A′,则其表达式为:y=﹣x+3…②,联立①②得x=2,则A′A″中点坐标为(2,1),由中点坐标公式得:点A″(3,0),同理可得:直线A″P的表达式为:y=﹣3x+9…③,联立①③并解得:x,即点M(,),点M沿ED向下平移2个单位得:N(,).14.(2019•锦州)如图1,在平面直角坐标系中,一次函数y x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过A,B两点,在第一象限的抛物线上取一点D,过点D作DC⊥x轴于点C,交直线AB于点E.(1)求抛物线的函数表达式(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;(3)如图2,F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DF,FG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.解:(1)在y x+3中,令x=0,得y=3,令y=0,得x=4,∴A(4,0),B(0,3),将A(4,0),B(0,3)分别代入抛物线y=﹣x2+bx+c中,得:,解得:,∴抛物线的函数表达式为:y=﹣x2x+3.(2)存在.如图1,过点B作BH⊥CD于H,设C(t,0),则D(t,),E(t,),H(t,3);∴EC,AC=4﹣t,BH=t,DH=﹣t2t,DE=﹣t2+4t∵△BDE和△ACE相似,∠BED=∠AEC∴△BDE∽△ACE或△DBE∽△ACE①当△BDE∽△ACE时,∠BDE=∠ACE=90°,∴,即:BD•CE=AC•DE∴t()=(4﹣t)×(﹣t2+4t),解得:t1=0(舍去),t2=4(舍去),t3,∴D(,3)②当△DBE∽△ACE时,∠BDE=∠CAE∵BH⊥CD∴∠BHD=90°,∴tan∠BDE=tan∠CAE,即:BH•AC=CE•DH∴t(4﹣t)=()(﹣t2t),解得:t1=0(舍),t2=4(舍),t3,∴D(,);综上所述,点D的坐标为(,3)或(,);(3)如图2,∵四边形DEGF是平行四边形∴DE∥FG,DE=FG设D(m,),E(m,),F(n,),G(n,),则:DE=﹣m2+4m,FG=﹣n2+4n,∴﹣m2+4m=﹣n2+4n,即:(m﹣n)(m+n﹣4)=0,∵m﹣n≠0∴m+n﹣4=0,即:m+n=4过点G作GK⊥CD于K,则GK∥AC∴∠EGK=∠BAO∴cos∠EGK=cos∠BAO,即:GK•AB=AO•EG∴5(n﹣m)=4EG,即:EG(n﹣m)∴DEGF周长=2(DE+EG)=2[(﹣m2+4m)(n﹣m)]=﹣2∵﹣2<0,∴当m时,∴▱DEGF周长最大值,∴G(,),当E,G互换时,结论也成立,此时G(,).15.(2019•烟台)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)解:(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y x∴N(,0),F(0,);(3)设P(0,t),N(r,t),作△PBD的外接圆N,当⊙N与y轴相切时此时圆心N到BD的距离最小,圆心角∠DNB最大,则,∠BPD 的度数最大;∴PN=ND,∴r,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y x,N在中垂线上,∴t r,∴t2﹣18t+21=0,∴t=9+2或t=9﹣2,∵圆N与y轴相切,∴圆心N在D点下方,∴0<t<3,∴t=9﹣2.。
2019年中考专题:二次函数压轴题(精编含解析)

1.在平面直角坐标系中,已知抛物线 y=ax2+bx+c(a≠0)经过点 A(1,0)、B(4,0),C(0,2)三 点,直线 y=kx+t 经过 B、C 两点,点 D 是抛物线上一个动点,过点 D 作 y 轴的平行线,与直线 BC 相 交于点 E. (1)求直线和抛物线的解析式; (2)当点 D 在直线 BC 下方的抛物线上运动,使线段 DE 的长度最大时,求点 D 的坐标; (3)点 D 在运动过程中,若使 O、C、D、E 为顶点的四边形为平行四边形时,请直接写出满足条件的 所有点 D 的坐标.
令 m2﹣2m=2,
解得 m=2
,
∴此时 D(2+2 ,3﹣ )或(2﹣2 ,3+ ),
综上所述,点 D 的坐标是(2,﹣1)或(2+2 ,3﹣ )或(2﹣2 ,3+ )时,都可以使 O、C、D、E 为顶点的四边形为平行四边形.
【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式,二次函数的性质及 平行四边形的判定与性质等知识点.
,利用二次函数的性质,即可求得当△
(3)直角三角形斜边上的中线等于斜边的一半列出关系式 m=(n﹣ )2﹣ ,然后根据 n 的取值得 到最小值.
【解答】解:(1)由题意得:
,
解得: , ∴抛物线解析式为 y=﹣x2+2x+3;
(2)令﹣x2+2x+3=0, ∴x1=﹣1,x2=3, 即 B(3,0), 设直线 BC 的解析式为 y=kx+b′,
∴
,
解得:
,
∴直线 BC 的解析式为 y=﹣x+3,
设 P(a,3﹣a),则 D(a,﹣a2+2a+3),
2019中考二次函数压轴题整理

中考数学冲刺复习资料:二次函数压轴题面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.平行四边形类3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P 是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD 的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.周长类6.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S 和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.等腰三角形类7.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.8.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.9.在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.综合类10.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.11.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x 轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P 点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.12.如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.对应练习13.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.14.如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.15.如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形P ACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.。
2019年数学中考总复习:压轴题专项训练(二次函数)精编习题

2019年数学中考总复习:二次函数压轴题专项训练(一)1.如图,直线AB与x轴,y轴分别交于点A(2,0),点B(0,2),动点D以1个单位长度/秒的速度从点A出发向x轴负半轴运动,同时动点E以个单位长度/秒的速度从点B出发向y轴负半轴运动,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F(1)求∠OAB度数;(2)当t为何值时,四边形ADEF为菱形,请求出此时二次函数解析式;(3)是否存在实数t,使△AGF为直角三角形?若存在,求t的值;若不存在,请说明理由.2.如图,已知抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,点D是第四象限内该抛物线上一动点,连AC、AD与抛物线对称轴分别交于点M、N,延长DC交抛物线对称轴于点E.(1)直接写出线段AB的长;(2)若∠CAB=∠DAB,求的值;(3)若在第三象限内该抛物线上有一点P,使得以A、B、P为项点的三角形与△ABC相似,求点P的坐标.3.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣4ax﹣交x轴正半轴于点A (5,0),交y轴于点B.(1)求抛物线的解析式;(2)如图1,点P为第一象限内抛物线上一点,连接AP,将射线AP绕点A逆时针旋转60°,与过点P且垂直于AP的直线交于点C,设点P横坐标为t,点C的横坐标为m,求m与t之间的函数关系式(不要求写出t的取值范围);(3)如图2,在(2)的条件下,过点C作直线交x轴于点D,在x轴上取点F,连接FP,点E为AC的中点,连接ED,若F的横坐标为,∠AFP=∠CDE,且∠FAP+∠ACD=180°,求m的值.4.如图,在平面直角坐标中,抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3),点P是直线BC上方抛物线上的一动点,PE∥y轴,交直线BC于点E连接AP,交直线BC 于点D.(1)求抛物线的函数表达式;(2)当AD=2PD时,求点P的坐标;(3)求线段PE的最大值;(4)当线段PE最大时,若点F在直线BC上且∠EFP=2∠ACO,直接写出点F的坐标.5.如图,在平面直角坐标系中,点A(0,1),点B(﹣9,10),抛物线y=2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)过点A作x轴的平行线,与抛物线交于点C,点P是直线AC下方抛物线上一点,过点P且与y轴平行的直线与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P运动到抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.2019年数学中考总复习:二次函数压轴题专项训练(二)6.二次函数y=ax2+x+3的图象与x轴分别相交于A、B两点,且A(﹣1,0),与y轴交于点C.(1)如图1,求抛物线解析式(2)如图2,点P是第一象限抛物线上一点,设点P的横坐标为t(t>1),连接PC、PB、BC.设△PBC的面积为s,求s与t的函数关系式.(3)如图3,在(2)的条件下当s=时,点Q为第二象限抛物线上一点,连接PQ交y 轴于点E,延长PQ交x轴于点M,点N在点C上方的y轴上,连接MN,若MP平分∠NMB,MN=5CN,且OM<ON.将线段PQ绕点P逆时针旋转45°得到线段PR,求点R的坐标.7.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(﹣3,4)、B(﹣3,0)、C (﹣1,0).以D为顶点的抛物线y=ax2+bx+c过点B.动点P从点D出发,沿DC边向点C 运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q运动的速度均为每秒1个单位,运动的时间为t秒.过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.(1)求抛物线的解析式;(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?(3)动点P、Q运动过程中,是否存在某一时刻,使△PQF是等腰三角形?若存在,请求出此时t的值;若不存在,请说明理由.8.已知抛物线经过y=ax2+bx+c点A(﹣4,0)、B(1,0)、C(0,3).(1)求抛物线解析式和直线AC的解析式;(2)若点P是第四象限抛物线上的一点,若S△PAC=10,求点P的坐标;(3)如图2,点M是线段AC上的一个动点(不与A、C重合),经过A、M、O三点的圆与过A且垂直于AC的直线交于点N,求当S△OMN 最小时点M的坐标及S△OMN最小值.9.在平面直角坐标系中,点0为坐标原点,抛物线y=ax2﹣2ax﹣3a与x轴交于点B,C,与y轴交于点A,点A的坐标为(0,),点D为抛物线的顶点.(1)如图1,求拋物线的顶点D的坐标;(2)如图2,点P是第一象限内对称轴右侧拋物线上一点,连接PB,过点D作DQ⊥BP 于点H,交x轴于点Q,设点P的横坐标为m,点Q的横坐标为n,求n与m的函数关系式;(3)如图3,在(2)的条件下,过点C作CE∥y轴交BP的延长线于点E,点F为CE的中点,连接FQ,若∠DQC+∠CQF=135°,求点P的坐标.10.如图,抛物线y=ax2+bx的对称轴为y轴,且经过点(,),P为抛物线上一点,A (0,).(1)求抛物线解析式;(2)Q为直线AP上一点,且满足AQ=2AP.当P运动时,Q在某个函数图象上运动,试写出Q点所在函数的解析式;(3)如图2,以PA为半径作⊙P与x轴分别交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求点P的横坐标.2019年数学中考总复习:二次函数压轴题专项训练(三)11.如图,抛物线y=+bx+c经过△ABC的三个顶点,其中点A(0,﹣1),点B (9,﹣10),AC∥x轴,点P是直线AC上方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB,AC分别交于点E,F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.12.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+8与x轴相交于点A(﹣2,0)和点B(4,0),与y轴相交于点C,顶点为点P.点D(0,4)在OC上,联结BC、BD.(1)求抛物线的表达式并直接写出点P的坐标;(2)点E为第一象限内抛物线上一点,如果△COE与△BCD的面积相等,求点E的坐标;(3)点Q在抛物线对称轴上,如果△BCD∽△CPQ,求点Q的坐标.13.如图,抛物线y=ax2+bx+2与直线y=﹣x交第二象限于点E,与x轴交于A(﹣3,0),B两点,与y轴交于点C,EC∥x轴.(1)求抛物线的解析式;(2)点P是直线y=﹣x上方抛物线上的一个动点,过点P作x轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M的坐标.14.如图,在平面直角坐标系中,以直线x=1为对称轴的抛物线恰好经过A(0,4),B(4,0)两点,连结AB.(1)求该抛物线的函数解析式.(2)点C为线段AB上一动点,延长OC交抛物线于点D,连结BD.若△AOC与△BCD的面积相等,求点C的坐标.(3)设k=,求k的最大值.15.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C(1)填空:b=,c=,点C的坐标为.(2)如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.(3)如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考二次函数压轴题专题分类训练题型一:面积问题【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.【变式练习】1.(2009广东省深圳市)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.图22.(2010绵阳)如图,抛物线y = ax 2+ bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积.3.(2012铜仁)如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.题型二:构造直角三角形【例2】(2010山东聊城)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,C E D GAxy OB F并求此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90º的点P 的坐标.【变式练习】1.(2012广州)如图,抛物线y=与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.2.(2009成都)在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS∠BCO=310。
E(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C 的点P ,使以N 、P 、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标:若不存在,请说明理由;(3)过点A 作x 轴的垂线,交直线MC 于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?3.(2012杭州) 在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A (1,k )和点B (﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值4.如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标; (2)当b =0时(如图(2)),ABE 与ACE 的面积大小关系如何?当4b >-时,上述关系还成立吗,为什么?(3)是否存在这样的b ,使得BOC 是以BC 为斜边的直角三角形,若存在,求出b ;若不存在,说明理由.题型三:构造等腰三角形【例3】如图,已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)在x 轴上是否存在一点Q 使得△ACQ 为等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由;(3)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【变式练习】1.如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,﹣n ),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2﹣2x ﹣3=0的两根. (1)求抛物线的解析式;yxCBAOE yxCBAOE 第26题图(1)图(2)(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点(点D 在y 轴右侧),连接OD 、BD . ①当△OPC 为等腰三角形时,求点P 的坐标; ②求△BOD 面积的最大值,并写出此时点D 的坐标.2.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC .(1)写出A,B,C 三点的坐标并求抛物线的解析式;(2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.3.(2010黄冈)已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线54y =作垂线,垂足为M ,连FM (如图). (1)求字母a ,b ,c 的值;(2)在直线x =1上有一点3(1,)4F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形;(3)对抛物线上任意一点P ,是否总存在一点N (1,t ),使PM =PN 恒成立,若存在请求出AC By x0 11t值,若不存在请说明理由.题型四:构造相似三角形【例4】(2011临沂)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.【变式练习】1.(2012天水)如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.7),且顶2. 如图,二次函数的图象经过点D(0,39点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【例5】(2012苏州)如图,已知抛物线y=x2 - (b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为,点C的坐标为(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.【变式练习】1.(2012上海宝山)如图,平面直角坐标系xOy 中,已知点A (2,3),线段AB 垂直于y 轴,垂足为B ,将线段AB 绕点A 逆时针方向旋转90°,点B 落在点C 处,直线BC 与x 轴的交于点D .(1)试求出点D 的坐标;(2)试求经过A 、B 、D 三点的抛物线的表达式,并写出其顶点E 的坐标;(3)在(2)中所求抛物线的对称轴上找点F ,使得以点A 、E 、F 为顶点的三角形与△ACD 相似.2.(2012上海杨浦区)已知直线112y x =+与x 轴交于点A ,与y 轴交于点B ,将△AOB 绕点O 顺时针旋转90︒,使点A 落在点C ,点B 落在点D ,抛物线2y ax bx c =++过点A 、D 、C ,其对称轴与直线AB 交于点P ,(1)求抛物线的表达式; (2)求∠POC 的正切值;(3)点M 在x 轴上,且△ABM 与△APD 相似,求点M 的坐标。
(图7)11 xyBAOy13.(2012宁波)如图,二次函数y =ax 2+bx +c 的图象交x 轴于A (﹣1,0),B (2,0),交y 轴于C (0,﹣2),过A ,C 画直线. (1)求二次函数的解析式;(2)点P 在x 轴正半轴上,且P A =PC ,求OP 的长;(3)点M 在二次函数图象上,以M 为圆心的圆与直线AC 相切,切点为H . ①若M 在y 轴右侧,且△CHM ∽△AOC (点C 与点A 对应),求点M 的坐标; ②若⊙M 的半径为,求点M 的坐标.题型五:构造梯形【例6】已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C的坐标为)20(-,,直线x y 32-=与边BC 相交于点D . (1)求点D 的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.【变式练习】1.已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N 的坐标及梯形AOMN的面积.2.(2011义乌)已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒2个单位长度的速度由点P向点O 运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t 秒,求S 关于t 的函数关系式.3.如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.题型六:构造平行四边形【例7】(2010陕西)如图,在平面直角坐标系中,抛物线经过A (—1,0),B (3,0),C (0,—1)三点。