爬杆机器人
爬杆机器人
![爬杆机器人](https://img.taocdn.com/s3/m/00ea7dc49ec3d5bbfd0a74f7.png)
原理方案一:
• 此爬行机构是简单的
曲柄滑块机构,其中 电机与曲柄固连,驱 动装置运动。上下四 个自锁套是实现上爬 的关键机构。
• 当自锁套有向上运动
趋势时,锥套. 趋势时,锥套.钢球与 圆杆之间会形成可靠 的自锁,使装置不下 滑,而上行时自锁 解 除。
爬杆机构(
1.上自锁套 1.上自锁套 2.电机 2.电机 3.曲柄 3.曲柄 4.圆杆 4.圆杆 5.连杆 5.连杆 6.下自锁套 6.下自锁套
方案 二
设计题目 :爬杆机械人
设计小组成员:
绘图:赵元亮 杨庚 李孝龙 Ppt:张学敏 杨陶敏
一 工作原理 及工艺过程
• 方案一模仿尺蠖 (“尺蠖之屈,以求伸也”) 尺蠖之屈,以求伸也” •
向上爬行动作;方案二模仿猴子爬树 功能分解为:爬杆功能=上行功能+ 功能分解为:爬杆功能=上行功能+自锁功能
二 设计要求 保证机器人能顺利完成爬 杆的功能
三 设计方案的构思及分析
(各功能的实现方案及选择)
功能分解:爬杆(上行+自锁) 功能分解:爬杆(上行+
1 2 3
上 A 曲柄滑 B 曲柄滑 块 块+轮系 行
C 凸轮+滑 凸轮+ 块
自 D 对称重 E 非对称摩 锁 力自锁套 擦自锁套 可组合成六种不同的方案可供选择 方案一A+D和方案二B+E为较好方 方案一A+D和方案二B+E为较好方 案
• • • •
1.电机 1.电机 2.齿轮 2.齿轮 3.曲柄导杆 3.曲柄导杆 4.自锁套 4.自锁套
自锁机构 1钢球 钢球 2表面摩 表面摩 擦系数比 较大的介 质
机构俯视图
曲柄导杆运动原理图
爬杆机器人
![爬杆机器人](https://img.taocdn.com/s3/m/6cd733cf900ef12d2af90242a8956bec0975a5d6.png)
1绪论1.1背景“机器人学的进步和应用是本世纪自动控制最有说服力的成就,是当代最高意义的自动化”。
这是宋健院士对机器人在上个世纪所取得的成就的精辟概括。
同时机器人技术也是20世纪人类最伟大的发明之一,自60年代初问世以来,经历40余年的发展已取得长足的进步。
走向成熟的工业机器人,各种用途的特种机器人的实用化,昭示着机器人技术灿烂的明天。
所以我们必须走进它,了解它。
近年来,在我国大学,机器人作为机械电子学、计算机技术、人工智能等的典型载体被广泛地用来作为工科本科生的讲授课程之一;在中学,模型机器人则逐渐成为素质教育,技能实践的选题之一,各种机器人比赛正方兴未艾。
进入21世纪,人们也愈来愈亲身感受到机器人深入产业、深入生活、深入社会的坚实步伐。
这些都说明了机器人技术离我们越来越近了。
但大家是否可以给耳熟能详的机器人一个准确的定义呢?有人认为机器人无所不能,有人认为机器人必须像人。
那么,何为机器人?虽然很难给机器人下准确的定义,但是通常的理解就是:机器人是一种在计算机控制下的可编程的自动机器,根据所处的环境和作业的需要,它具有至少一项或多项拟人功能,如抓取功能或移动功能,或两者兼而有之,另外还可能程度不等地具有某些环境感知功能(如视觉、力觉、触觉、接近觉等)以及语音功能乃至逻辑思维、判断决策功能等,从而使它能在要求的环境中代替人进行作业。
如今进入二十一世纪,随着科技的迅速发展,现代化进程的日益加快,机器人的创新与研究越来越成为一个国家科技力量的具体体现,越来越多的机器人已成为各个领域重要的组成部分,因此机器人的发展也日益成熟,为人们的生活提供了更多的方便与快捷。
在世界经济快速发展的前提下,我国国民经济也有着飞速的增长,人民生活水平日益提高,伴随着城市和乡村矗立起无数的高层建筑和无数的高高的杆类,如电线杆、路灯杆等等。
这些杆类长年累月的暴露在空气中,很容易受到腐蚀和污染,不仅影响着城市的美观,而且缩短了它们的寿命,也大大提高的它的危险性,对人们造成诸多不便与危险。
爬杆机器人课程设计
![爬杆机器人课程设计](https://img.taocdn.com/s3/m/9f3dd14af08583d049649b6648d7c1c708a10b34.png)
爬杆机器人 课程设计一、课程目标知识目标:1. 学生能理解爬杆机器人的基本构造和原理,掌握相关的物理和机械知识。
2. 学生能描述爬杆机器人的功能和应用,了解其在现实生活中的重要性。
3. 学生能解释爬杆机器人设计中涉及的科学概念,如力、运动、能量等。
技能目标:1. 学生能运用所学的知识,设计并制作一个简单的爬杆机器人。
2. 学生能在团队中合作,进行问题分析、方案设计和实验操作。
3. 学生能通过实际操作,掌握基本的编程和控制技巧,使爬杆机器人完成特定任务。
情感态度价值观目标:1. 学生能培养对科学技术的兴趣和好奇心,激发创新意识和探索精神。
2. 学生能在设计和制作过程中,体会到团队合作的力量,增强沟通与协作能力。
3. 学生能认识到科技对社会进步的推动作用,培养热爱科学、服务社会的情感。
课程性质:本课程为实践性较强的综合课程,结合物理、机械、编程等多学科知识,注重培养学生的动手能力、创新能力和团队协作能力。
学生特点:六年级学生具有较强的观察力、动手能力和好奇心,对新鲜事物充满兴趣,但注意力集中时间较短,需要激发学习兴趣和参与度。
教学要求:教师应注重理论与实践相结合,采用启发式教学,引导学生主动探索,提高学生的实践操作能力和解决问题的能力。
同时,关注学生的个体差异,给予个性化指导,确保课程目标的实现。
通过课程学习,学生能够将所学知识转化为具体的学习成果,为后续学习奠定基础。
二、教学内容本课程以《科学》教材中“机械世界”单元为基础,结合以下内容进行教学:1. 爬杆机器人原理介绍:讲解爬杆机器人的基本构造、运动原理和功能应用,涉及教材中“简单机械”和“力的作用”等章节内容。
2. 爬杆机器人设计制作:a. 材料选择:介绍爬杆机器人制作所需的材料,如塑料、木材、金属等,与教材中“材料分类”章节相关。
b. 结构设计:引导学生学习爬杆机器人的结构设计,包括传动系统、控制系统等,涉及教材中“机械结构”章节内容。
c. 编程控制:教授爬杆机器人的基本编程方法,使学生在实际操作中掌握编程技巧,与教材中“计算机编程”章节相关。
爬杆机器人
![爬杆机器人](https://img.taocdn.com/s3/m/29f19f6a58fafab069dc02f6.png)
爬杆机器人
一.设计背景
现在大多数高压电线杆是不容易检测器损坏程度的。
于是我们设计了一种爬行机器人,可以沿电力电线自主行走、跨越障碍,装上携带的传感仪器可以对杆塔、导线及避雷线、绝缘子、线路金具、线路通道等实施接近检测。
二.方案构思
爬杆机器人这要分为两个动作,一是加紧,二是向上的爬升或下降。
我们通过两个手臂来抓紧杆件再通过手臂上的电机来实现机器人的爬升和下降。
三.整体的结构
1.总装图
爬行机器人分为两个部分,分别为上下手臂和中间的上升机构
2.机械的手臂
我们设计的机械手臂采用的是曲柄滑块机构,通过电机带动齿轮转动,齿轮和滑块之间用丝杠螺母连接从而使滑块运动,当滑块向上移动时,杆子将向内移动,最终实现两个手臂的夹持。
松开时,齿轮反转,滑块向下移动,杆子向外,实现松开。
3.上升装置
上升的装置,我们还是采用了丝杠螺母机构,丝杠用电机通过齿轮带动,正转时,上手臂上升,反转时下手臂上升。
下降时,就反之。
4.运动流程
5.运动过程的各个阶段
1、上手臂A和下手臂B位置离的较近
2.下手臂B夹紧不动,丝杠转动使A上升
3、上手臂A夹紧,丝杠反转使下手臂B上升
这样就实现了向上爬行。
四、电机选择
我们的爬杆机器人一共有3个电机,分别是控制手臂的两个和上升或下降部分的电机,由于每个电机都需要正反转,且运动要能控制,所以,控制部分我们选用了单片机来控制。
由于我们的爬杆机器人是全封闭的,电机控制方面的用电问题是个麻烦,经过讨论,我们决定用干电池来提供电。
五.渲染图。
爬杆机器人的自锁原理
![爬杆机器人的自锁原理](https://img.taocdn.com/s3/m/dc598658a9114431b90d6c85ec3a87c240288ac9.png)
爬杆机器人的自锁原理爬杆机器人的自锁原理指的是在停止电机运动时,能够使机器人保持固定位置而不下滑的一种机械装置或设计。
这种自锁原理的主要目的是为了满足爬杆机器人在工作中的稳定性和安全性需求。
一般而言,爬杆机器人的自锁原理可分为几个方面来进行解析和说明。
首先,爬杆机器人的自锁原理可以通过惰性锁实现。
所谓惰性锁,指的是利用杆件与锁爪之间的斜面作用,通过自锁机构使得机械系统在停止电机驱动时,仍然能够保持固定的位置。
其原理是在斜面上施加的力可以将锁爪向内部移动,从而实现松开锁爪的目的。
当杆件停止运动时,惰性锁会自动锁住杆件,使得爬杆机器人能够稳定停留在一定的位置上。
其次,爬杆机器人的自锁原理还可以通过齿轮自锁机构来实现。
齿轮自锁机构是利用斜面型轮齿的作用实现自锁的一种机械装置。
当电机停止转动时,齿轮会自动进入自锁状态,从而避免杆件下滑。
齿轮自锁机构通常由锁爪、轮齿、推力弹簧等组成。
推力弹簧的作用是将锁爪与轮齿紧密连接,当齿轮转动时,锁爪会向外移动。
而当电机停止转动时,推力弹簧的作用会使得锁爪自动卡在轮齿上,从而实现自锁的效果。
另外,爬杆机器人的自锁原理还可以通过离合器自锁机构来实现。
离合器自锁机构是将电机和爬杆机构连接起来的装置。
当电机停止转动时,离合器会自动进入自锁状态,从而在不需要额外电源的情况下锁定杆件。
这种自锁原理的优点是结构简单,操作方便。
离合器自锁机构通常由离合器齿圈、离合器凸轮、扭簧等组成。
当电机停止转动时,扭簧的作用会使得离合器凸轮自动锁定住离合器齿圈,从而实现自锁的效果。
总之,爬杆机器人的自锁原理是通过各种机构和装置实现的,其中包括惰性锁、齿轮自锁机构和离合器自锁机构等。
这些自锁原理的设计和应用可以使爬杆机器人在停止电机驱动时,保持固定位置而不下滑,提高机器人的工作稳定性和安全性。
这些自锁原理的应用也是爬杆机器人能够顺利完成各种高空作业任务的关键因素之一。
爬杆机器人运动原理及动力学研究的开题报告
![爬杆机器人运动原理及动力学研究的开题报告](https://img.taocdn.com/s3/m/c625d4c3fbb069dc5022aaea998fcc22bcd143d5.png)
爬杆机器人运动原理及动力学研究的开题报告一、选题的背景意义随着机器人技术的不断发展,越来越多的机器人应用于工业、军事、医疗等领域。
其中爬杆机器人是一种具有特殊功能和特点的机器人,可以在直立杆、倾斜杆、曲线杆等多种杆状环境中实现机器人运动,具有较高的适应性和实用性。
然而,爬杆机器人的动力学问题是一个重要的问题,影响着机器人的运动性能和稳定性,而针对这个问题的研究还比较薄弱,因此有必要对爬杆机器人的运动原理和动力学问题进行深入研究,为机器人的设计与控制提供理论基础和技术支持。
二、研究内容爬杆机器人的运动原理和动力学问题是一个涉及机器人力学、控制等多学科交叉的问题,本文将从以下几个方面展开研究:1、分析爬杆机器人的运动原理与结构,建立机器人运动模型。
2、分析机器人在杆上运动的动力学特性,包括运动稳定性、杆面摩擦力、杆面反弹力等因素的影响。
3、研究机器人的控制策略,设计合理的控制算法,提高机器人的运动性能和稳定性。
三、研究方法和技术路线本文将采用分析理论、数值模拟、模型实验等多种方法,建立机器人运动模型和控制算法,进行仿真分析和实验验证,实现对爬杆机器人运动原理和动力学问题的深入研究。
具体的技术路线如下:1、理论分析:分析机器人的运动原理和结构特点,建立机器人运动模型,并对机器人运动的动力学方程进行推导和分析。
2、数值模拟:采用多体动力学软件ADAMS进行模拟计算,模拟机器人在杆上的运动,分析机器人的运动稳定性和摩擦力等因素的影响。
3、模型实验:通过在实验室制造机器人样机,开展相关实验研究,验证理论和模拟结果的有效性和可行性。
四、研究预期结果与意义本文的研究将有助于深入掌握爬杆机器人的运动原理和动力学问题,提高机器人的运动性能和稳定性,具有重要的理论和实用价值。
具体的预期研究结果如下:1、建立爬杆机器人的运动模型,分析机器人运动的动力学特性和影响因素。
2、设计合理的控制算法,提高机器人的运动性能和稳定性。
爬杆机器人
![爬杆机器人](https://img.taocdn.com/s3/m/64722e094a7302768e99398c.png)
一 设计题目:爬杆机器人为代替人高空作业,设计出爬上和爬下干装的机器人。
1.1设计目的目前全国日益加快的现代化建设步伐,除了2008年8月在北京举办的奥运会、2010年将要在上海举办的世博会之外,随着我国国民经济的飞速增长、人民生活水平日益提高,城镇中随之矗立起无数的高层城市建筑,各类集实用性与美观性一体的市政、商业工程诸如电线杆、路灯杆、大桥斜拉钢索、广告牌立柱等(图1-1),它们通常5~30米,有的甚至高达百米,壁面多采用油漆、电镀、玻璃钢结构等,由于常年裸露在大气之中,风沙长年累月的积累会形成灰尘层,该污染影响城市的美观,同时空气中混合的酸性物质也会对这些城市建筑特别是金属杆件造成损坏,加快它们的生锈,并缩短它们的使用寿命,需要定期进行壁面维护工作。
为保持清洁,许多国际性城市如厦门、深圳、香港等地规定,每年至少清洗数次。
目前传统的清洗技术主要分为人工清洗(化学药剂清洗)和高压水枪清洗等方法。
其中人工清洗是由清洁工人搭乘吊篮进行高空作业来完成,工人的工作环境恶劣,具有很大程度上的危险性,工作效率也很低,耗资巨大。
化学药剂中所用的去污剂具有很强的毒副作用会对人造成潜在的危害,并易造成环境的二次污染;高压水枪清洗耗能比较大、成本高,且对周边环境有很大的影响。
在利用高压水进行清洗时,它的周边不能有车辆、行人通过,且不能有过近的建筑物。
其它高空作业诸如:各种杆状城市建筑的油漆、喷涂料、检查、维护,电力系统架设电缆、瓷瓶清洁等工作主要由人工和大型设备来完成,但它们都集中表现出效率低、劳动强度大、耗能高、二次污染严重等问题。
随着机器人技术的出现和发展以及人们自我安全保护意识的增强,迫切希望能用机器人代替人工进行这些高空危险作业,从而把人从危险、恶劣、繁重的劳动环境中解脱出来。
1.2设计条件攀爬对象为直径150毫米左右的等直径杆(学有余力的同学可以考虑攀爬对象为变截面杆,如电线杆)。
可以用电动机,液压站,气压站其中的任意一种做动力源,但要分析其应用场合和优缺点。
毕业设计(论文)爬杆机器人的机械结构设计
![毕业设计(论文)爬杆机器人的机械结构设计](https://img.taocdn.com/s3/m/bf8bf0049b89680203d825f0.png)
毕业设计(论文)--爬杆机器人的机械结构设计爬杆机器人的机械结构设计摘要论文在比较几类爬行机构的优劣的基础上,确定了机器人本体的大致结构。
在此基础上详细阐述了仿生爬行的原理和机器人模块化设计的理念。
根据路灯杆的尺寸数据,设计机器人的三维模型。
机器人建模的过程功能的实现与机械结构的尺寸优化包括以下几个关键点:爬杆机器人设计中的功能机构的协调配合、攀爬手臂夹持重合度的选择、攀爬力的变化与结构参数之间的关系、攀爬力零点的渡过等难点的设计方法和设计准则,为此类爬行机器人的设计提供参考。
关键词:爬杆机器人变直径杆仿生学Mechanical Structure design of Pole-Climbing-RobotAbstractIn the paper,the wormlike imitated pole-climbing robot what the author designed and manufactured is non-intelligence mechanical crawler. Based on compared the merits and demerits of several kind of crawling mechanism,confirmed the general structure of robot body. Based on above-mentioned,expatiated the principle of bionic crawling and the theory of modular designing on robot in detail. Based on the dimension data of poles,we have designed and manufactured the model of robot. The design methods and design guidelines during the course of robot modelingachieve the movement and optimum structural design following several key points: Functional coordination between agencies,choice of climbing arm gripping coincidence,changes of climbing force the relationship between the structural parameters,choice of zero point of climbing force and its transition in pole-climbing robot designing. Provides references forth kind of crawling robot’s designing.Key Words : pole-climbing robot,variable-diameter pole,bionics 目录1 绪论 11.1 论文研究的目的和意义 11.2 国内外研究现状及存在的主要问题 2机器人的分类 3研究现状 4目前存在的主要问题81.3 研究主要内容和研究对象91.4 本章小结92 爬杆机器人仿生的设计理论研究102.1 仿生机器人概述102.2 总体方案分析112.3 蠕动式仿生爬行方案研究142.4 本章小结153 机器人爬行部分的结构方案163.1 爬行机器人本体结构设计准则16 模块化设计基础理论163.2 机器人结构原理方案分析18夹紧机构方案研究18传动机构方案分析20动力系统方案研究23机器人结构原理及爬行动作原理 243.3 变直径杆爬行问题的解决263.4 安全稳定的工作保障 27夹紧力的保证―弹簧的设计方法研究27 3.4 机器人的结构设计27电机的选型及参数选择 28机器人本体的空间结构设计30抓紧机构尺寸参数的确定33传动机构尺寸参数的确定37上、下凸轮的配合研究413.5 弹簧的设计与校核423.6 本章小结45结语46致谢47参考文献481 绪论1.1 论文研究的目的和意义目前全国日益加快的现代化建设步伐,除了2008年8月在北京举办的奥运会、还有2010年在上海举办的世博会,随着我国国民经济的飞速增长、人民生活水平日益提高,城镇中随之矗立起无数的高层城市建筑,各类集实用性与美观性一体的市政、商业工程诸如电线杆、路灯杆、大桥斜拉钢索、广告牌立柱等如图1.1 ,它们通常5-30m,有的甚至高达百米,壁面多采用油漆、电镀、玻璃钢结构等,由于常年裸露在大气之中,风沙长年累月的积累会形成灰尘层,该污染影响城市的美观,同时空气中混合的酸性物质也会对这些城市建筑特别是金属杆件造成损坏,加快它们的生锈,并缩短它们的使用寿命,需要定期进行壁面维护工作。
爬杆器简介介绍
![爬杆器简介介绍](https://img.taocdn.com/s3/m/c71ec14703020740be1e650e52ea551810a6c9d2.png)
03
爬杆器的关键技术
防滑技术
防滑设计
爬杆器的防滑设计可以确保操作 员在攀爬时不会滑落。
防滑材料
使用具有防滑性能的材料制作把 手和脚踏板,以增加操作员在攀
爬过程中的摩擦力。
防滑控制系统
设计一个控制系统,当操作员攀 爬时,可以自动调整防滑装置的 工作状态,以确保操作员始终保
持稳定。
负载平衡技术
01
爬杆器简介介绍
汇报人: 日期:
目 录
• 爬杆器概述 • 爬杆器的工作原理 • 爬杆器的关键技术 • 爬杆器的优势与挑战 • 爬杆器的应用领域与前景 • 相关案例分享
01
爬杆器概述
定义与特点
定义
爬杆器是一种机械设备,能够沿着垂直的杆子或柱子向上或 向下移动。
特点
爬杆器具有结构简单、使用方便、操作灵活等特点,能够适 应各种不同的环境和地形。
成熟阶段
现代的爬杆器已经非常成熟,能够 适应各种不同的环境和地形,并且 具有更高的安全性和稳定性。
02
爬杆器的工作原理
爬杆器的工作原理
• 爬杆器是一种用于攀爬垂直杆件的机械设备,常用于电力、通 信、林业等领域。它能够根据作业需求,灵活地攀爬、下降和 移动,从而有效地解决了传统攀爬方式存在的安全隐患和工作 效率低下等问题。
定位系统
通过GPS或其他定位技术 ,实现操作员的高度定位 和跟踪。
安全防护
当操作员到达特定高度时 ,自动触发安全保护装置 ,如自动刹车或降落伞系 统。
故障诊断与排除技术
故障检测
通过传感器和控制系统实时监测爬杆器的各部件 工作状态。
诊断软件
开发一个诊断软件,用于分析故障原因并提供解 决方案。
排除方法
爬杆作业机器人设计
![爬杆作业机器人设计](https://img.taocdn.com/s3/m/2b07ef14fc4ffe473368ab72.png)
摘要在市政工程中,有大量的安装及维修等工作需要爬杆作业。
对于较粗的杆件,人 工攀爬和工程车作业都比较方便,但是对于一些直径较细,强度较小的杆件比如路灯 杆等,人工攀爬较为困难。
因此本文设计了一爬杆机器人,可以在没有障碍的光杆上 爬行,对人工攀爬较难的作业具有较大的现实意义。
本文设计的爬杆机器人由曲柄滑块机构、并联盘形凸轮机构、移动凸轮机构以及 上下机械手爪等组成,通过弹簧的预紧力来实现机器人手爪对杆的抱紧,通过曲柄滑 块机构、凸轮机构等实现攀爬动作,同时机器人只需一个驱动源就能带动整个机器人 的运动,能攀爬变直径的杆,工作简单可靠,运动灵活,可以广泛应用于各种高空作 业。
关键字:爬杆机器人,变直径杆,夹紧,攀爬ABSTRACTIn the municipal engineering, there are a large number of installation and repair work needed to climb rod operation, For the coarse bar,artificial climbing and vehicle operation is convenient, artificial climbing is difficultfor for some small diameter low strength member such as a road lamp pole,so this paper designs a pole climbing robot,which can crawl on no obstacle bar,it has great practical significance for artificial climbingThe pole climbing robot consist of songCrank slider mechanism, parallel plate cam mechanism.moving cam mechanism, the robot tight the wallHold by the spring pretightening force.so as to realize Climbing action. at the same time the robot can drive by a robot motion and at the same time all devices were designed perfectl. In this text.its mechanism electric control principle and various features .it can be widely applied to various kinds of highaltitude operation.Key words:poleclimbing robot, variablediameter pole sepal, poleclimbing1 绪论11.1研究目的11.2国内外研究现状11.3研究内容31.4设计要求42 爬杆作业机器人总体方案设计52.1机械方案设计52.2电气控制系统设计 72.3小结 83 机械系统设计 93.1减速机构设计93.2曲柄滑块机构设计 173.3凸轮机构的设计233.4机械手爪设计243.5电动机选择 264 电气控制284.1系统论述284.2直流电机单元电路设计与分析294.3直流电机PWM控制系统的实现365 结论与展望 43 参考文献44 致谢451.1 研究目的目前全国日益加快的现代化建设步伐随着我国经济的快速增长、人民生活水平日 益不断提高, 城镇中随之矗立起无数的高层建筑, 各类集实用性 与美观性一体的市政、 商业工程诸如电灯杆、路灯杆、大桥斜拉钢索、广告牌立柱等,它们的直径通常在5— 30米,有的甚至高达百米,壁面多采用油漆、电镀、玻璃铜结构等,由于常年裸露在 大气之中,风沙长年累月的积累会因此而形成灰尘层,酸类物质污染从而影响城市的 美观,同时空气中混合的酸性物质也会对这些城市建筑特别是金属杆件造成损坏,加 快它们的生锈过程,并缩短它们的使用寿命,因此需要定期进行壁面维护工作 。
爬杆机器人的运动原理
![爬杆机器人的运动原理](https://img.taocdn.com/s3/m/b3f359eeb8f67c1cfad6b81b.png)
爬杆机器人的运动原理:
爬杆机器人总体结构应分为三部分:上端加紧机构,下端夹紧机构和行进机构。
运动基本步骤:上端加紧——行进机构收缩——下端加紧——行进机构伸张——上端加紧。
如此循环完
成前进动作。
为了简化结构,将上端加紧机构和下端夹紧机构设计成能够实现向下自锁功能的机构,则只需要一个行进机构就能够实现。
能够实现自锁的机构很多,如锁套、凸轮、棘轮等
需要的材料:
直流电机一个
电木或薄铝片
铆钉和螺钉
电源
基本原理简图:
总体方案简图
自锁机构创新点:
将爬杆机器人进行结构上的剖析简化,用最简单的机构实现了同样的功能。
这只是一个简化了的模型,可以此为平台再进行改进和复杂化,从而实现所需要的功能。
制作难点:
模型虽然简单,但需要考虑一些额外的问题,如:
1、行进机构是偏转型的,运动时不稳定,容易左右偏转,需要考虑一个辅助机构防止偏转。
可以考虑将机构改成对称的。
2、电机与连接杆之间如何连接固定。
3、自锁机构的可靠性。
毕业设计爬杆机器人机械结构设计
![毕业设计爬杆机器人机械结构设计](https://img.taocdn.com/s3/m/89b37b2726d3240c844769eae009581b6ad9bd58.png)
毕业设计爬杆机器人机械结构设计摘要:随着科技的不断进步,机器人技术在现代生产和生活中的应用越来越广泛。
爬杆机器人作为一种具有重要应用价值的特种机器人,可以在高空或垂直杆上进行工作,具有很强的适应性和灵活性。
本文以一种爬杆机器人为对象,对其机械结构进行设计,并对其性能进行测试和评估。
1.引言爬杆机器人是一种具有特殊工作功能的机器人,它通过利用杆状结构的特点,在高空或垂直杆上进行工作。
由于其能够适应复杂环境和完成特殊任务的能力,爬杆机器人在电力、石油、航空等行业中有着重要的应用价值。
因此,对爬杆机器人的研究和开发具有重要的意义。
爬杆机器人的机械结构设计主要包括杆状结构、传动机构和控制系统。
其中,杆状结构的设计需要考虑机器人的稳定性和抓握能力,传动机构的设计需要考虑机器人的运动实现和负载能力,控制系统的设计需要考虑机器人的控制精度和稳定性。
2.1杆状结构设计杆状结构是爬杆机器人的基础,它需要满足机器人稳定性和抓握能力的要求。
为了提高机器人的稳定性,可以采用多杆并联机构,通过增加支撑点来增强机器人的平衡能力。
为了提高机器人的抓握能力,可以在杆状结构上安装抓握装置,通过具有摩擦力的材料来增加机器人的抓握力。
此外,杆状结构的材料选择也需要考虑机器人的负载能力和重量要求。
2.2传动机构设计传动机构是爬杆机器人实现运动的关键部分,其设计需要考虑机器人的运动实现和负载能力。
一般采用电机和减速器组成的传动装置来实现机器人的运动控制,通过调整电机的转速和减速器的传动比,可以实现机器人在杆状结构上的爬升和下降。
为了提高机器人的负载能力,可以采用带有增力装置的传动机构,通过增大输出力矩来提高机器人的负载能力。
2.3控制系统设计控制系统是爬杆机器人实现运动和抓握的关键部分,其设计需要考虑机器人的控制精度和稳定性。
一般采用微控制器和传感器组成的控制装置来实现机器人的运动控制和抓握控制。
通过合理选择传感器和编写控制程序,可以实现机器人对杆状结构的位置和姿态的感知,实现对机器人的运动和抓握的精确控制。
爬杆机器人的自锁原理
![爬杆机器人的自锁原理](https://img.taocdn.com/s3/m/8a37d140591b6bd97f192279168884868662b876.png)
爬杆机器人的自锁原理爬杆机器人作为一种特殊的机器人,其主要功能是能够爬行并在垂直杆上停止和自锁。
这种机器人在工业生产、建筑维护和救援等领域有着广泛的应用。
它的自锁原理主要依赖于以下几个方面:机械结构、重力平衡、电动机控制和传感器反馈。
首先,机械结构是爬杆机器人自锁的基础。
机器人通常采用类似于螺距的装置,通过旋转螺距来使机器人向上或向下移动。
这种机械结构能够提供足够的力以抵抗重力对机器人的拉力,从而保持其在垂直杆上的稳定性。
同时,机器人上的爪子或脚部装置也能够提供额外的支撑,防止机器人滑落。
其次,重力平衡是爬杆机器人自锁的重要机制。
通过合理设计机器人的重心位置以及相对于杆的摩擦力,使机器人在重力和摩擦力的共同作用下保持平衡。
当机器人停止运动时,重心会向下移动,增加机器人与杆间的压力,从而增加摩擦力,进一步防止机器人滑落。
这种重力平衡的设计使得机器人能够在杆上停止并自锁。
第三,电动机控制也是爬杆机器人自锁的关键。
机器人上通常装有电动机,通过控制电动机以停止机器人的运动。
当机器人需要停止时,电动机会自动关闭,并保持电流断开状态。
这样可以防止机器人继续运动,进而实现自锁。
当需要解除自锁时,电动机会重新启动,使机器人继续运动。
最后,传感器反馈是爬杆机器人自锁的重要保障。
机器人通常装有多种传感器,比如位移传感器、力传感器和倾斜传感器等。
这些传感器能够检测机器人所处的位置、力的大小以及倾斜角度等信息,并将这些信息反馈给控制系统。
控制系统根据这些反馈信息来判断机器人的位置和状态,并做出相应的控制措施,确保机器人能够及时自锁和解除自锁。
综上所述,爬杆机器人的自锁原理主要包括机械结构、重力平衡、电动机控制和传感器反馈。
这些机制相互协作,使得机器人能够在垂直杆上停止和自锁。
这种自锁原理为机器人的稳定性和安全性提供了保障,使得机器人能够更好地应对不同环境和工作需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 绪论1.1 背景“机器人学的进步和应用是本世纪自动控制最有说服力的成就,是当代最高意义的自动化”。
这是宋健院士对机器人在上个世纪所取得的成就的精辟概括。
同时机器人技术也是20世纪人类最伟大的发明之一,自60年代初问世以来,经历40余年的发展已取得长足的进步。
走向成熟的工业机器人,各种用途的特种机器人的实用化,昭示着机器人技术灿烂的明天。
所以我们必须走进它,了解它。
近年来,在我国大学,机器人作为机械电子学、计算机技术、人工智能等的典型载体被广泛地用来作为工科本科生的讲授课程之一;在中学,模型机器人则逐渐成为素质教育,技能实践的选题之一,各种机器人比赛正方兴未艾。
进入21世纪,人们也愈来愈亲身感受到机器人深入产业、深入生活、深入社会的坚实步伐。
这些都说明了机器人技术离我们越来越近了。
但大家是否可以给耳熟能详的机器人一个准确的定义呢?有人认为机器人无所不能,有人认为机器人必须像人。
那么,何为机器人?虽然很难给机器人下准确的定义,但是通常的理解就是:机器人是一种在计算机控制下的可编程的自动机器,根据所处的环境和作业的需要,它具有至少一项或多项拟人功能,如抓取功能或移动功能,或两者兼而有之,另外还可能程度不等地具有某些环境感知功能(如视觉、力觉、触觉、接近觉等)以及语音功能乃至逻辑思维、判断决策功能等,从而使它能在要求的环境中代替人进行作业。
如今进入二十一世纪,随着科技的迅速发展,现代化进程的日益加快,机器人的创新与研究越来越成为一个国家科技力量的具体体现,越来越多的机器人已成为各个领域重要的组成部分,因此机器人的发展也日益成熟,为人们的生活提供了更多的方便与快捷。
在世界经济快速发展的前提下,我国国民经济也有着飞速的增长,人民生活水平日益提高,伴随着城市和乡村矗立起无数的高层建筑和无数的高高的杆类,如电线杆、路灯杆等等。
这些杆类长年累月的暴露在空气中,很容易受到腐蚀和污染,不仅影响着城市的美观,而且缩短了它们的寿命,也大大提高的它的危险性,对人们造成诸多不便与危险。
然而,如果人工的对这些杆类进行清洗与保养,由于其条件所致,势必需要清洗工人高空作业完成,这样不仅工作效率低下,耗资巨大,而且安全系数低,很容易造成危险。
如果采取高压水枪清洗,则太浪费人力物力,得不偿失了。
这时,人们通过设想,能不能设计一种机器人,使得它能够代替人类进行对杆类的清洗或进行相关工作,用这些机器人代替人工进行高空危险作业,从而把工人从危险、恶劣、繁重的劳动环境中解脱出来,不仅提高的工作效率,同时也保护了工人的生命安全。
因此,我们需要设计一种爬杆机器人,使得它代替工人进行高空作业,改善工人的工作环境,提高工作效率,大大降低高层杆状的清洗成本,或许将带来清洗业的一次创新与革命。
这种机器人的研制必将有很大的社会效益、经济效益和广阔的应用前景。
本课题旨在设计一种新型的、结构简单、经济适用、价格便宜、操作简便的使用与路灯杆等杆类的可搭载清洗、维护设备的爬杆机器人,以解决当前城镇中存在的杆状清洗等问题。
该机构要保证良好的运行效果,低耗能高效率,绿色环保,节省人力物力。
1.2 国内外发展现状及其存在的问题1.2.1 爬杆机器人的分类爬杆机器人的种类多种多样。
按仿生学角度来分爬杆机器人可分为:螳螂式爬行机器人、蜘蛛式爬行机器人、蛇形机器人、足蠖式爬行机器人等。
按驱动方式来分可分为:气动爬行机器人、电动爬行机器人和液压驱动爬行机器人等。
按行走方式可分为:轮式、履带式、蠕动式、多足式等。
按工作空间来分可分为:管道爬行机器人、壁面爬行机器人、球面爬行机器人、陆地移动爬行机器人、水下机器人、空间机器人等。
按功能用途来分可分为:焊弧爬行机器人、检测爬行机器人、清洗爬行机器人、提升爬行机器人、巡线爬行机器人等。
根据不同的驱动方式和功能等可以设计不同结构和用途的爬行机器人,如气动爬行机器人,电磁吸附多足式爬行机器人、电驱动壁面焊弧爬行机器人等。
1.2.2 发展现状爬杆机器人是机器人大家族的一员,爬杆机器人因为需要克服重力的作用而可靠地依附于爬升表面上并自主移动,完成特定条件下的作业,区别于平面移动机器人,故爬杆机器人是机器人领域的一个重要研究分支,从运动方式上来表征的一种机器人,形式是多种多样的。
爬杆机器人并不少见,但是通常来说,这类机器人大多采用多足来进行移动或是使用腹部的摩擦表层来左右扭动前进。
更主要的是,平常的机器人,因为体积或行动方式的影响,不能到一些特殊的地方进行工作,比如说管道,壁面等等特种用途的领域。
爬升机器人与一般地面移动机构的最明显不同是需克服重力的作用可靠地依附于爬升表面上并自主移动,完成特定条件下的作业。
最早开始研究且研究最多的是帕比机器人,适于高层建筑、水里发电大坝等垂直壁面和大球形表面上的危险作业。
对于管道外壁表面,已有车轮移动形、姿态可变形、尺蠖形和多关节形机器人,用于石油、化工企业等多为水平管线上的检查和诊断,且牵引力较小。
国内外的学者很早就对爬杆机器人进行研究工作,获得了丰硕的成果。
目前,国内外提出的一些依附于杆体表面的自动爬行机构主要由电动机械式爬杆机器人、电动液压式爬杆机器人和气动蠕行式爬杆机器人等等。
电动机械式爬杆机器人是由电动机带动链轮、带轮、齿轮驱动夹紧杆体的前后轮向同一方向转动,依靠行走轮与杆体的摩擦力使爬杆机器人沿杆体上升下降。
螺旋运动爬杆机器人的爬行动作是由轮子的安装位置决定的,轮子滚动方向与水平面成一定角度,这样轮子转动时它在杆体上形成的是螺旋轨迹,沿此轨迹通过电动机的正反转该机构便可实现上升和下降运动。
电动机械式爬杆机器人和螺旋线运动爬杆机器人都是以电动机带动滚轮压紧杆体,依靠此摩擦力带动整个机器人沿杆体上升和下降。
如果工作阻力和重力大于摩擦力就不能安全运作,且机器人总体机构较复杂。
气动蠕行式爬杆机器人用气缸驱动机构实现交替夹紧和移动,其向上爬行是气缸动作一个周期的过程为下部气缸夹紧,上部气缸松开,提升气缸活塞杆伸出,上部上升;上部气缸夹紧,下部气缸松开,提升气缸体上升,下部上升。
如此反复,机器人就可以连续爬行。
对于气动蠕行式爬杆机器人,其上升和下降运动的实现由气压控制,需要气源和气动控制系统,因此其设备成本较高。
国外有代表性的有东京大学研制的关节型行走机器人,宾夕法尼亚州大学研制的Rise系列攀爬机器人,德国西门子公司研制出仿蜘蛛的爬杆微机器人。
国内比较典型的有上海交通大学研究所研发的一种斜拉桥缆索涂装维护用气动蠕动式爬缆机器人,国防科技大学设计的摩擦轮式爬杆机器人,吉林大学机械学院基于钢球自锁装置设计的爬杆机器人,浙江大学陈俊龙教授设计的气动爬杆机器人等。
1.2.3 目前存在的问题由上面叙述及调研知目前国内外所设计制造的各种电机机械式爬杆器有一个缺陷:它们大多只能依靠气动蠕行式爬杆器来解决变直径杆的爬行,其上升和下降由气压控制,还需要气动控制系统,因此其设备成本和维护费用较高。
因此,有必要设计一种利用简单的机械结构来替代繁琐的气动设备实现变直径杆的攀爬,同时在爬行过程中可携带其他清洁能源实现对路灯杆等杆状城市建筑的清洗作业的设备。
1.3 仿生机器人概述生物在经历了千百万年的进化之后,由于遗传和变异的原因,已经形成了从执行、感知、控制方式,一直到信息加工处理、组织方式等诸多方面的优势和长处。
仿生机器人这门学科产生和存在的前提就在于,生物经过了长期的自然选择进化而来,在结构、功能执行、信息处理、环境适应、自主学习等方面具有高度的合理性、科学性和进步性。
而非结构化的、未知的工作环境、复杂的精巧的高难度的工作任务和对于高精度、高灵活性、高可靠性、高鲁棒性、高智能型的目标需求则是仿生机器人提出和发展的客观动力。
“模仿生物的身体结构和功能,从事生物特点工作的仿生机器人,有望代替传统的工业机器人,成为未来机器人领域的发展方向。
”2004年8月在沈阳举行的“2004IEEE 机器人学与仿生学国际学术会议”上,与会的机器人学专家这样表示。
日本东京工业大学教授广濑茂男曾获得IEEE颁发的领先成就奖,是世界机器人研究领域的权威科学家。
在他看来,模仿生物活动机能和身体结构的仿生机器人,应当是机器人研究领域未来的发展方向。
他说,很多生物为了生存,在进化过程中具备适应大自然的独特功能,科学界在机器人的发明制造上,就应当借鉴一些生物的独特本领为人类服务。
所以,仿生机器人必将是超出人类一般需求之前探索的一门真正的前沿科学。
仿生机器人是机器人发展的最高阶段,它既是机器人研究的最初目的,也是机器人发展的最终目标之一。
仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人系统。
从仿生学的角度来看,仿生机器人是仿生学技术的完美综合与全面应用。
从本质上来讲,所谓“仿生机器人”就是指利用各种光、机、电、液等各种无机元器件和有机功能体相配合所组建起来的在运动机理和行为方式、感知模式和信息处理、控制协调和计算推理、能量代谢和材料结构等多方面具有高级生命形态特征从而可以在未来的非结构化环境下精确的、灵活的、可靠的、高效的完成各种复杂任务的机器人系统。
按照所模仿的运动机理、感知机理、控制机理及能量代谢和材料组成的不同,划分仿生机器人的主要研究内容如图2-1所示。
其中运动仿生下的划分也可看作基于不同运动机理的仿生机器人分类。
仿生机器人运动仿生位移运动仿生陆地生物运动仿生水中生物运动仿生空中生物仿生执行运动仿生如仿生手等感知仿生听觉仿生视觉仿生嗅觉仿生其他感知仿生仿生耳仿生眼仿生鼻控制仿生定向导航仿生计算推理仿生群体控制仿生如仿蜜蜂定位等如神经网络等如蚁群通信控制仿真等能量仿生如分解碳水化合物驱动等材料仿生如仿生皮肤等图1-3 仿生机器人的主要研究内容及分类2 爬杆机器人方案选择2.1 总体方案分析欲使机器人在杆上自由地移动,必须具备两种功能:贴附功能与移动功能。
贴附方式有吸附式和夹持式两种,运动方式有轮式、履带式、腿式及蠕动式四种。
这些不同的方式可以进行多种组合,构成多种风格的机器人。
吸附式是通过面接触方式紧贴于壁面上,夹持式是靠点夹紧在杆上。
吸附式又有真空吸附和电磁吸附之分,其中真空吸附式用得比较多,因为它对壁面的要求不十分严格;电磁吸附承载能力大,有很强的适应能力,但其应用范围窄,需要杆件壁面含有电磁场可吸附的含铁、钴、镍等材料。
各种贴附方式的优缺点和比较如表2-1所示。
表2-1 爬杆机器人贴附方案的比较在设计移动机器人系统时,首先应考虑机器人的用途,因为不同的用途,移动机器人的移动机构是不同的。
此外,还应考虑机器人的工作环境、耐久性、稳定性、机动性、可控性、复杂性、外型尺寸及制作费用等。
作为杆件爬行机器人,根据现有的技术方案,有很多种移动方式可供选择。
各种移动方案的比较见表2-2所示。
表2-2 爬行机器人移动方案的比较根据设计本课题所提的要求,及考虑现实生活中的实用性与结构简单的原则,要求承载能力始终,控制方面,接触面积小等设计原则,通过对比各种方案,对于本课题我选择了轮式爬杆机器人的结构形式,这种方案能基本满足我们设定和要求的工作状况。